2 * Postcopy migration for RAM
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
7 * Dave Gilbert <dgilbert@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
24 #include "postcopy-ram.h"
26 #include "qapi/error.h"
27 #include "qemu/notify.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/balloon.h"
30 #include "qemu/error-report.h"
33 /* Arbitrary limit on size of each discard command,
34 * keeps them around ~200 bytes
36 #define MAX_DISCARDS_PER_COMMAND 12
38 struct PostcopyDiscardState
{
39 const char *ramblock_name
;
42 * Start and length of a discard range (bytes)
44 uint64_t start_list
[MAX_DISCARDS_PER_COMMAND
];
45 uint64_t length_list
[MAX_DISCARDS_PER_COMMAND
];
46 unsigned int nsentwords
;
47 unsigned int nsentcmds
;
50 static NotifierWithReturnList postcopy_notifier_list
;
52 void postcopy_infrastructure_init(void)
54 notifier_with_return_list_init(&postcopy_notifier_list
);
57 void postcopy_add_notifier(NotifierWithReturn
*nn
)
59 notifier_with_return_list_add(&postcopy_notifier_list
, nn
);
62 void postcopy_remove_notifier(NotifierWithReturn
*n
)
64 notifier_with_return_remove(n
);
67 int postcopy_notify(enum PostcopyNotifyReason reason
, Error
**errp
)
69 struct PostcopyNotifyData pnd
;
73 return notifier_with_return_list_notify(&postcopy_notifier_list
,
77 /* Postcopy needs to detect accesses to pages that haven't yet been copied
78 * across, and efficiently map new pages in, the techniques for doing this
79 * are target OS specific.
81 #if defined(__linux__)
84 #include <sys/ioctl.h>
85 #include <sys/syscall.h>
86 #include <asm/types.h> /* for __u64 */
89 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
90 #include <sys/eventfd.h>
91 #include <linux/userfaultfd.h>
93 typedef struct PostcopyBlocktimeContext
{
94 /* time when page fault initiated per vCPU */
95 uint32_t *page_fault_vcpu_time
;
96 /* page address per vCPU */
98 uint32_t total_blocktime
;
99 /* blocktime per vCPU */
100 uint32_t *vcpu_blocktime
;
101 /* point in time when last page fault was initiated */
103 /* number of vCPU are suspended */
108 * Handler for exit event, necessary for
109 * releasing whole blocktime_ctx
111 Notifier exit_notifier
;
112 } PostcopyBlocktimeContext
;
114 static void destroy_blocktime_context(struct PostcopyBlocktimeContext
*ctx
)
116 g_free(ctx
->page_fault_vcpu_time
);
117 g_free(ctx
->vcpu_addr
);
118 g_free(ctx
->vcpu_blocktime
);
122 static void migration_exit_cb(Notifier
*n
, void *data
)
124 PostcopyBlocktimeContext
*ctx
= container_of(n
, PostcopyBlocktimeContext
,
126 destroy_blocktime_context(ctx
);
129 static struct PostcopyBlocktimeContext
*blocktime_context_new(void)
131 PostcopyBlocktimeContext
*ctx
= g_new0(PostcopyBlocktimeContext
, 1);
132 ctx
->page_fault_vcpu_time
= g_new0(uint32_t, smp_cpus
);
133 ctx
->vcpu_addr
= g_new0(uintptr_t, smp_cpus
);
134 ctx
->vcpu_blocktime
= g_new0(uint32_t, smp_cpus
);
136 ctx
->exit_notifier
.notify
= migration_exit_cb
;
137 ctx
->start_time
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
);
138 qemu_add_exit_notifier(&ctx
->exit_notifier
);
142 static uint32List
*get_vcpu_blocktime_list(PostcopyBlocktimeContext
*ctx
)
144 uint32List
*list
= NULL
, *entry
= NULL
;
147 for (i
= smp_cpus
- 1; i
>= 0; i
--) {
148 entry
= g_new0(uint32List
, 1);
149 entry
->value
= ctx
->vcpu_blocktime
[i
];
158 * This function just populates MigrationInfo from postcopy's
159 * blocktime context. It will not populate MigrationInfo,
160 * unless postcopy-blocktime capability was set.
162 * @info: pointer to MigrationInfo to populate
164 void fill_destination_postcopy_migration_info(MigrationInfo
*info
)
166 MigrationIncomingState
*mis
= migration_incoming_get_current();
167 PostcopyBlocktimeContext
*bc
= mis
->blocktime_ctx
;
173 info
->has_postcopy_blocktime
= true;
174 info
->postcopy_blocktime
= bc
->total_blocktime
;
175 info
->has_postcopy_vcpu_blocktime
= true;
176 info
->postcopy_vcpu_blocktime
= get_vcpu_blocktime_list(bc
);
179 static uint32_t get_postcopy_total_blocktime(void)
181 MigrationIncomingState
*mis
= migration_incoming_get_current();
182 PostcopyBlocktimeContext
*bc
= mis
->blocktime_ctx
;
188 return bc
->total_blocktime
;
192 * receive_ufd_features: check userfault fd features, to request only supported
193 * features in the future.
195 * Returns: true on success
197 * __NR_userfaultfd - should be checked before
198 * @features: out parameter will contain uffdio_api.features provided by kernel
201 static bool receive_ufd_features(uint64_t *features
)
203 struct uffdio_api api_struct
= {0};
207 /* if we are here __NR_userfaultfd should exists */
208 ufd
= syscall(__NR_userfaultfd
, O_CLOEXEC
);
210 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__
,
216 api_struct
.api
= UFFD_API
;
217 api_struct
.features
= 0;
218 if (ioctl(ufd
, UFFDIO_API
, &api_struct
)) {
219 error_report("%s: UFFDIO_API failed: %s", __func__
,
225 *features
= api_struct
.features
;
233 * request_ufd_features: this function should be called only once on a newly
234 * opened ufd, subsequent calls will lead to error.
236 * Returns: true on succes
238 * @ufd: fd obtained from userfaultfd syscall
239 * @features: bit mask see UFFD_API_FEATURES
241 static bool request_ufd_features(int ufd
, uint64_t features
)
243 struct uffdio_api api_struct
= {0};
246 api_struct
.api
= UFFD_API
;
247 api_struct
.features
= features
;
248 if (ioctl(ufd
, UFFDIO_API
, &api_struct
)) {
249 error_report("%s failed: UFFDIO_API failed: %s", __func__
,
254 ioctl_mask
= (__u64
)1 << _UFFDIO_REGISTER
|
255 (__u64
)1 << _UFFDIO_UNREGISTER
;
256 if ((api_struct
.ioctls
& ioctl_mask
) != ioctl_mask
) {
257 error_report("Missing userfault features: %" PRIx64
,
258 (uint64_t)(~api_struct
.ioctls
& ioctl_mask
));
265 static bool ufd_check_and_apply(int ufd
, MigrationIncomingState
*mis
)
267 uint64_t asked_features
= 0;
268 static uint64_t supported_features
;
271 * it's not possible to
272 * request UFFD_API twice per one fd
273 * userfault fd features is persistent
275 if (!supported_features
) {
276 if (!receive_ufd_features(&supported_features
)) {
277 error_report("%s failed", __func__
);
282 #ifdef UFFD_FEATURE_THREAD_ID
283 if (migrate_postcopy_blocktime() && mis
&&
284 UFFD_FEATURE_THREAD_ID
& supported_features
) {
285 /* kernel supports that feature */
286 /* don't create blocktime_context if it exists */
287 if (!mis
->blocktime_ctx
) {
288 mis
->blocktime_ctx
= blocktime_context_new();
291 asked_features
|= UFFD_FEATURE_THREAD_ID
;
296 * request features, even if asked_features is 0, due to
297 * kernel expects UFFD_API before UFFDIO_REGISTER, per
298 * userfault file descriptor
300 if (!request_ufd_features(ufd
, asked_features
)) {
301 error_report("%s failed: features %" PRIu64
, __func__
,
306 if (getpagesize() != ram_pagesize_summary()) {
307 bool have_hp
= false;
308 /* We've got a huge page */
309 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
310 have_hp
= supported_features
& UFFD_FEATURE_MISSING_HUGETLBFS
;
313 error_report("Userfault on this host does not support huge pages");
320 /* Callback from postcopy_ram_supported_by_host block iterator.
322 static int test_ramblock_postcopiable(const char *block_name
, void *host_addr
,
323 ram_addr_t offset
, ram_addr_t length
, void *opaque
)
325 RAMBlock
*rb
= qemu_ram_block_by_name(block_name
);
326 size_t pagesize
= qemu_ram_pagesize(rb
);
328 if (length
% pagesize
) {
329 error_report("Postcopy requires RAM blocks to be a page size multiple,"
330 " block %s is 0x" RAM_ADDR_FMT
" bytes with a "
331 "page size of 0x%zx", block_name
, length
, pagesize
);
338 * Note: This has the side effect of munlock'ing all of RAM, that's
339 * normally fine since if the postcopy succeeds it gets turned back on at the
342 bool postcopy_ram_supported_by_host(MigrationIncomingState
*mis
)
344 long pagesize
= getpagesize();
346 bool ret
= false; /* Error unless we change it */
347 void *testarea
= NULL
;
348 struct uffdio_register reg_struct
;
349 struct uffdio_range range_struct
;
350 uint64_t feature_mask
;
351 Error
*local_err
= NULL
;
353 if (qemu_target_page_size() > pagesize
) {
354 error_report("Target page size bigger than host page size");
358 ufd
= syscall(__NR_userfaultfd
, O_CLOEXEC
);
360 error_report("%s: userfaultfd not available: %s", __func__
,
365 /* Give devices a chance to object */
366 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE
, &local_err
)) {
367 error_report_err(local_err
);
371 /* Version and features check */
372 if (!ufd_check_and_apply(ufd
, mis
)) {
376 /* We don't support postcopy with shared RAM yet */
377 if (qemu_ram_foreach_migratable_block(test_ramblock_postcopiable
, NULL
)) {
382 * userfault and mlock don't go together; we'll put it back later if
386 error_report("%s: munlockall: %s", __func__
, strerror(errno
));
391 * We need to check that the ops we need are supported on anon memory
392 * To do that we need to register a chunk and see the flags that
395 testarea
= mmap(NULL
, pagesize
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
|
396 MAP_ANONYMOUS
, -1, 0);
397 if (testarea
== MAP_FAILED
) {
398 error_report("%s: Failed to map test area: %s", __func__
,
402 g_assert(((size_t)testarea
& (pagesize
-1)) == 0);
404 reg_struct
.range
.start
= (uintptr_t)testarea
;
405 reg_struct
.range
.len
= pagesize
;
406 reg_struct
.mode
= UFFDIO_REGISTER_MODE_MISSING
;
408 if (ioctl(ufd
, UFFDIO_REGISTER
, ®_struct
)) {
409 error_report("%s userfault register: %s", __func__
, strerror(errno
));
413 range_struct
.start
= (uintptr_t)testarea
;
414 range_struct
.len
= pagesize
;
415 if (ioctl(ufd
, UFFDIO_UNREGISTER
, &range_struct
)) {
416 error_report("%s userfault unregister: %s", __func__
, strerror(errno
));
420 feature_mask
= (__u64
)1 << _UFFDIO_WAKE
|
421 (__u64
)1 << _UFFDIO_COPY
|
422 (__u64
)1 << _UFFDIO_ZEROPAGE
;
423 if ((reg_struct
.ioctls
& feature_mask
) != feature_mask
) {
424 error_report("Missing userfault map features: %" PRIx64
,
425 (uint64_t)(~reg_struct
.ioctls
& feature_mask
));
433 munmap(testarea
, pagesize
);
442 * Setup an area of RAM so that it *can* be used for postcopy later; this
443 * must be done right at the start prior to pre-copy.
444 * opaque should be the MIS.
446 static int init_range(const char *block_name
, void *host_addr
,
447 ram_addr_t offset
, ram_addr_t length
, void *opaque
)
449 trace_postcopy_init_range(block_name
, host_addr
, offset
, length
);
452 * We need the whole of RAM to be truly empty for postcopy, so things
453 * like ROMs and any data tables built during init must be zero'd
454 * - we're going to get the copy from the source anyway.
455 * (Precopy will just overwrite this data, so doesn't need the discard)
457 if (ram_discard_range(block_name
, 0, length
)) {
465 * At the end of migration, undo the effects of init_range
466 * opaque should be the MIS.
468 static int cleanup_range(const char *block_name
, void *host_addr
,
469 ram_addr_t offset
, ram_addr_t length
, void *opaque
)
471 MigrationIncomingState
*mis
= opaque
;
472 struct uffdio_range range_struct
;
473 trace_postcopy_cleanup_range(block_name
, host_addr
, offset
, length
);
476 * We turned off hugepage for the precopy stage with postcopy enabled
477 * we can turn it back on now.
479 qemu_madvise(host_addr
, length
, QEMU_MADV_HUGEPAGE
);
482 * We can also turn off userfault now since we should have all the
483 * pages. It can be useful to leave it on to debug postcopy
484 * if you're not sure it's always getting every page.
486 range_struct
.start
= (uintptr_t)host_addr
;
487 range_struct
.len
= length
;
489 if (ioctl(mis
->userfault_fd
, UFFDIO_UNREGISTER
, &range_struct
)) {
490 error_report("%s: userfault unregister %s", __func__
, strerror(errno
));
499 * Initialise postcopy-ram, setting the RAM to a state where we can go into
500 * postcopy later; must be called prior to any precopy.
501 * called from arch_init's similarly named ram_postcopy_incoming_init
503 int postcopy_ram_incoming_init(MigrationIncomingState
*mis
)
505 if (qemu_ram_foreach_migratable_block(init_range
, NULL
)) {
513 * Manage a single vote to the QEMU balloon inhibitor for all postcopy usage,
516 static void postcopy_balloon_inhibit(bool state
)
518 static bool cur_state
= false;
520 if (state
!= cur_state
) {
521 qemu_balloon_inhibit(state
);
527 * At the end of a migration where postcopy_ram_incoming_init was called.
529 int postcopy_ram_incoming_cleanup(MigrationIncomingState
*mis
)
531 trace_postcopy_ram_incoming_cleanup_entry();
533 if (mis
->have_fault_thread
) {
534 Error
*local_err
= NULL
;
536 /* Let the fault thread quit */
537 atomic_set(&mis
->fault_thread_quit
, 1);
538 postcopy_fault_thread_notify(mis
);
539 trace_postcopy_ram_incoming_cleanup_join();
540 qemu_thread_join(&mis
->fault_thread
);
542 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END
, &local_err
)) {
543 error_report_err(local_err
);
547 if (qemu_ram_foreach_migratable_block(cleanup_range
, mis
)) {
551 trace_postcopy_ram_incoming_cleanup_closeuf();
552 close(mis
->userfault_fd
);
553 close(mis
->userfault_event_fd
);
554 mis
->have_fault_thread
= false;
557 postcopy_balloon_inhibit(false);
560 if (os_mlock() < 0) {
561 error_report("mlock: %s", strerror(errno
));
563 * It doesn't feel right to fail at this point, we have a valid
569 postcopy_state_set(POSTCOPY_INCOMING_END
);
571 if (mis
->postcopy_tmp_page
) {
572 munmap(mis
->postcopy_tmp_page
, mis
->largest_page_size
);
573 mis
->postcopy_tmp_page
= NULL
;
575 if (mis
->postcopy_tmp_zero_page
) {
576 munmap(mis
->postcopy_tmp_zero_page
, mis
->largest_page_size
);
577 mis
->postcopy_tmp_zero_page
= NULL
;
579 trace_postcopy_ram_incoming_cleanup_blocktime(
580 get_postcopy_total_blocktime());
582 trace_postcopy_ram_incoming_cleanup_exit();
587 * Disable huge pages on an area
589 static int nhp_range(const char *block_name
, void *host_addr
,
590 ram_addr_t offset
, ram_addr_t length
, void *opaque
)
592 trace_postcopy_nhp_range(block_name
, host_addr
, offset
, length
);
595 * Before we do discards we need to ensure those discards really
596 * do delete areas of the page, even if THP thinks a hugepage would
597 * be a good idea, so force hugepages off.
599 qemu_madvise(host_addr
, length
, QEMU_MADV_NOHUGEPAGE
);
605 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
606 * however leaving it until after precopy means that most of the precopy
609 int postcopy_ram_prepare_discard(MigrationIncomingState
*mis
)
611 if (qemu_ram_foreach_migratable_block(nhp_range
, mis
)) {
615 postcopy_state_set(POSTCOPY_INCOMING_DISCARD
);
621 * Mark the given area of RAM as requiring notification to unwritten areas
622 * Used as a callback on qemu_ram_foreach_migratable_block.
623 * host_addr: Base of area to mark
624 * offset: Offset in the whole ram arena
625 * length: Length of the section
626 * opaque: MigrationIncomingState pointer
627 * Returns 0 on success
629 static int ram_block_enable_notify(const char *block_name
, void *host_addr
,
630 ram_addr_t offset
, ram_addr_t length
,
633 MigrationIncomingState
*mis
= opaque
;
634 struct uffdio_register reg_struct
;
636 reg_struct
.range
.start
= (uintptr_t)host_addr
;
637 reg_struct
.range
.len
= length
;
638 reg_struct
.mode
= UFFDIO_REGISTER_MODE_MISSING
;
640 /* Now tell our userfault_fd that it's responsible for this area */
641 if (ioctl(mis
->userfault_fd
, UFFDIO_REGISTER
, ®_struct
)) {
642 error_report("%s userfault register: %s", __func__
, strerror(errno
));
645 if (!(reg_struct
.ioctls
& ((__u64
)1 << _UFFDIO_COPY
))) {
646 error_report("%s userfault: Region doesn't support COPY", __func__
);
649 if (reg_struct
.ioctls
& ((__u64
)1 << _UFFDIO_ZEROPAGE
)) {
650 RAMBlock
*rb
= qemu_ram_block_by_name(block_name
);
651 qemu_ram_set_uf_zeroable(rb
);
657 int postcopy_wake_shared(struct PostCopyFD
*pcfd
,
658 uint64_t client_addr
,
661 size_t pagesize
= qemu_ram_pagesize(rb
);
662 struct uffdio_range range
;
664 trace_postcopy_wake_shared(client_addr
, qemu_ram_get_idstr(rb
));
665 range
.start
= client_addr
& ~(pagesize
- 1);
666 range
.len
= pagesize
;
667 ret
= ioctl(pcfd
->fd
, UFFDIO_WAKE
, &range
);
669 error_report("%s: Failed to wake: %zx in %s (%s)",
670 __func__
, (size_t)client_addr
, qemu_ram_get_idstr(rb
),
677 * Callback from shared fault handlers to ask for a page,
678 * the page must be specified by a RAMBlock and an offset in that rb
679 * Note: Only for use by shared fault handlers (in fault thread)
681 int postcopy_request_shared_page(struct PostCopyFD
*pcfd
, RAMBlock
*rb
,
682 uint64_t client_addr
, uint64_t rb_offset
)
684 size_t pagesize
= qemu_ram_pagesize(rb
);
685 uint64_t aligned_rbo
= rb_offset
& ~(pagesize
- 1);
686 MigrationIncomingState
*mis
= migration_incoming_get_current();
688 trace_postcopy_request_shared_page(pcfd
->idstr
, qemu_ram_get_idstr(rb
),
690 if (ramblock_recv_bitmap_test_byte_offset(rb
, aligned_rbo
)) {
691 trace_postcopy_request_shared_page_present(pcfd
->idstr
,
692 qemu_ram_get_idstr(rb
), rb_offset
);
693 return postcopy_wake_shared(pcfd
, client_addr
, rb
);
695 if (rb
!= mis
->last_rb
) {
697 migrate_send_rp_req_pages(mis
, qemu_ram_get_idstr(rb
),
698 aligned_rbo
, pagesize
);
700 /* Save some space */
701 migrate_send_rp_req_pages(mis
, NULL
, aligned_rbo
, pagesize
);
706 static int get_mem_fault_cpu_index(uint32_t pid
)
710 CPU_FOREACH(cpu_iter
) {
711 if (cpu_iter
->thread_id
== pid
) {
712 trace_get_mem_fault_cpu_index(cpu_iter
->cpu_index
, pid
);
713 return cpu_iter
->cpu_index
;
716 trace_get_mem_fault_cpu_index(-1, pid
);
720 static uint32_t get_low_time_offset(PostcopyBlocktimeContext
*dc
)
722 int64_t start_time_offset
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
) -
724 return start_time_offset
< 1 ? 1 : start_time_offset
& UINT32_MAX
;
728 * This function is being called when pagefault occurs. It
729 * tracks down vCPU blocking time.
731 * @addr: faulted host virtual address
732 * @ptid: faulted process thread id
733 * @rb: ramblock appropriate to addr
735 static void mark_postcopy_blocktime_begin(uintptr_t addr
, uint32_t ptid
,
738 int cpu
, already_received
;
739 MigrationIncomingState
*mis
= migration_incoming_get_current();
740 PostcopyBlocktimeContext
*dc
= mis
->blocktime_ctx
;
741 uint32_t low_time_offset
;
743 if (!dc
|| ptid
== 0) {
746 cpu
= get_mem_fault_cpu_index(ptid
);
751 low_time_offset
= get_low_time_offset(dc
);
752 if (dc
->vcpu_addr
[cpu
] == 0) {
753 atomic_inc(&dc
->smp_cpus_down
);
756 atomic_xchg(&dc
->last_begin
, low_time_offset
);
757 atomic_xchg(&dc
->page_fault_vcpu_time
[cpu
], low_time_offset
);
758 atomic_xchg(&dc
->vcpu_addr
[cpu
], addr
);
760 /* check it here, not at the begining of the function,
761 * due to, check could accur early than bitmap_set in
762 * qemu_ufd_copy_ioctl */
763 already_received
= ramblock_recv_bitmap_test(rb
, (void *)addr
);
764 if (already_received
) {
765 atomic_xchg(&dc
->vcpu_addr
[cpu
], 0);
766 atomic_xchg(&dc
->page_fault_vcpu_time
[cpu
], 0);
767 atomic_dec(&dc
->smp_cpus_down
);
769 trace_mark_postcopy_blocktime_begin(addr
, dc
, dc
->page_fault_vcpu_time
[cpu
],
770 cpu
, already_received
);
774 * This function just provide calculated blocktime per cpu and trace it.
775 * Total blocktime is calculated in mark_postcopy_blocktime_end.
778 * Assume we have 3 CPU
781 * -----***********------------xxx***************------------------------> CPU1
784 * ------------****************xxx---------------------------------------> CPU2
787 * ------------------------****xxx********-------------------------------> CPU3
789 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
790 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
791 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
792 * it's a part of total blocktime.
793 * S1 - here is last_begin
794 * Legend of the picture is following:
795 * * - means blocktime per vCPU
796 * x - means overlapped blocktime (total blocktime)
798 * @addr: host virtual address
800 static void mark_postcopy_blocktime_end(uintptr_t addr
)
802 MigrationIncomingState
*mis
= migration_incoming_get_current();
803 PostcopyBlocktimeContext
*dc
= mis
->blocktime_ctx
;
804 int i
, affected_cpu
= 0;
805 bool vcpu_total_blocktime
= false;
806 uint32_t read_vcpu_time
, low_time_offset
;
812 low_time_offset
= get_low_time_offset(dc
);
813 /* lookup cpu, to clear it,
814 * that algorithm looks straighforward, but it's not
815 * optimal, more optimal algorithm is keeping tree or hash
816 * where key is address value is a list of */
817 for (i
= 0; i
< smp_cpus
; i
++) {
818 uint32_t vcpu_blocktime
= 0;
820 read_vcpu_time
= atomic_fetch_add(&dc
->page_fault_vcpu_time
[i
], 0);
821 if (atomic_fetch_add(&dc
->vcpu_addr
[i
], 0) != addr
||
822 read_vcpu_time
== 0) {
825 atomic_xchg(&dc
->vcpu_addr
[i
], 0);
826 vcpu_blocktime
= low_time_offset
- read_vcpu_time
;
828 /* we need to know is that mark_postcopy_end was due to
829 * faulted page, another possible case it's prefetched
830 * page and in that case we shouldn't be here */
831 if (!vcpu_total_blocktime
&&
832 atomic_fetch_add(&dc
->smp_cpus_down
, 0) == smp_cpus
) {
833 vcpu_total_blocktime
= true;
835 /* continue cycle, due to one page could affect several vCPUs */
836 dc
->vcpu_blocktime
[i
] += vcpu_blocktime
;
839 atomic_sub(&dc
->smp_cpus_down
, affected_cpu
);
840 if (vcpu_total_blocktime
) {
841 dc
->total_blocktime
+= low_time_offset
- atomic_fetch_add(
844 trace_mark_postcopy_blocktime_end(addr
, dc
, dc
->total_blocktime
,
848 static bool postcopy_pause_fault_thread(MigrationIncomingState
*mis
)
850 trace_postcopy_pause_fault_thread();
852 qemu_sem_wait(&mis
->postcopy_pause_sem_fault
);
854 trace_postcopy_pause_fault_thread_continued();
860 * Handle faults detected by the USERFAULT markings
862 static void *postcopy_ram_fault_thread(void *opaque
)
864 MigrationIncomingState
*mis
= opaque
;
870 trace_postcopy_ram_fault_thread_entry();
871 rcu_register_thread();
872 mis
->last_rb
= NULL
; /* last RAMBlock we sent part of */
873 qemu_sem_post(&mis
->fault_thread_sem
);
876 size_t pfd_len
= 2 + mis
->postcopy_remote_fds
->len
;
878 pfd
= g_new0(struct pollfd
, pfd_len
);
880 pfd
[0].fd
= mis
->userfault_fd
;
881 pfd
[0].events
= POLLIN
;
882 pfd
[1].fd
= mis
->userfault_event_fd
;
883 pfd
[1].events
= POLLIN
; /* Waiting for eventfd to go positive */
884 trace_postcopy_ram_fault_thread_fds_core(pfd
[0].fd
, pfd
[1].fd
);
885 for (index
= 0; index
< mis
->postcopy_remote_fds
->len
; index
++) {
886 struct PostCopyFD
*pcfd
= &g_array_index(mis
->postcopy_remote_fds
,
887 struct PostCopyFD
, index
);
888 pfd
[2 + index
].fd
= pcfd
->fd
;
889 pfd
[2 + index
].events
= POLLIN
;
890 trace_postcopy_ram_fault_thread_fds_extra(2 + index
, pcfd
->idstr
,
895 ram_addr_t rb_offset
;
899 * We're mainly waiting for the kernel to give us a faulting HVA,
900 * however we can be told to quit via userfault_quit_fd which is
904 poll_result
= poll(pfd
, pfd_len
, -1 /* Wait forever */);
905 if (poll_result
== -1) {
906 error_report("%s: userfault poll: %s", __func__
, strerror(errno
));
910 if (!mis
->to_src_file
) {
912 * Possibly someone tells us that the return path is
913 * broken already using the event. We should hold until
914 * the channel is rebuilt.
916 if (postcopy_pause_fault_thread(mis
)) {
918 /* Continue to read the userfaultfd */
920 error_report("%s: paused but don't allow to continue",
926 if (pfd
[1].revents
) {
929 /* Consume the signal */
930 if (read(mis
->userfault_event_fd
, &tmp64
, 8) != 8) {
931 /* Nothing obviously nicer than posting this error. */
932 error_report("%s: read() failed", __func__
);
935 if (atomic_read(&mis
->fault_thread_quit
)) {
936 trace_postcopy_ram_fault_thread_quit();
941 if (pfd
[0].revents
) {
943 ret
= read(mis
->userfault_fd
, &msg
, sizeof(msg
));
944 if (ret
!= sizeof(msg
)) {
945 if (errno
== EAGAIN
) {
947 * if a wake up happens on the other thread just after
948 * the poll, there is nothing to read.
953 error_report("%s: Failed to read full userfault "
955 __func__
, strerror(errno
));
958 error_report("%s: Read %d bytes from userfaultfd "
960 __func__
, ret
, sizeof(msg
));
961 break; /* Lost alignment, don't know what we'd read next */
964 if (msg
.event
!= UFFD_EVENT_PAGEFAULT
) {
965 error_report("%s: Read unexpected event %ud from userfaultfd",
966 __func__
, msg
.event
);
967 continue; /* It's not a page fault, shouldn't happen */
970 rb
= qemu_ram_block_from_host(
971 (void *)(uintptr_t)msg
.arg
.pagefault
.address
,
974 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
975 PRIx64
, (uint64_t)msg
.arg
.pagefault
.address
);
979 rb_offset
&= ~(qemu_ram_pagesize(rb
) - 1);
980 trace_postcopy_ram_fault_thread_request(msg
.arg
.pagefault
.address
,
981 qemu_ram_get_idstr(rb
),
983 msg
.arg
.pagefault
.feat
.ptid
);
984 mark_postcopy_blocktime_begin(
985 (uintptr_t)(msg
.arg
.pagefault
.address
),
986 msg
.arg
.pagefault
.feat
.ptid
, rb
);
990 * Send the request to the source - we want to request one
991 * of our host page sizes (which is >= TPS)
993 if (rb
!= mis
->last_rb
) {
995 ret
= migrate_send_rp_req_pages(mis
,
996 qemu_ram_get_idstr(rb
),
998 qemu_ram_pagesize(rb
));
1000 /* Save some space */
1001 ret
= migrate_send_rp_req_pages(mis
,
1004 qemu_ram_pagesize(rb
));
1008 /* May be network failure, try to wait for recovery */
1009 if (ret
== -EIO
&& postcopy_pause_fault_thread(mis
)) {
1010 /* We got reconnected somehow, try to continue */
1011 mis
->last_rb
= NULL
;
1014 /* This is a unavoidable fault */
1015 error_report("%s: migrate_send_rp_req_pages() get %d",
1022 /* Now handle any requests from external processes on shared memory */
1023 /* TODO: May need to handle devices deregistering during postcopy */
1024 for (index
= 2; index
< pfd_len
&& poll_result
; index
++) {
1025 if (pfd
[index
].revents
) {
1026 struct PostCopyFD
*pcfd
=
1027 &g_array_index(mis
->postcopy_remote_fds
,
1028 struct PostCopyFD
, index
- 2);
1031 if (pfd
[index
].revents
& POLLERR
) {
1032 error_report("%s: POLLERR on poll %zd fd=%d",
1033 __func__
, index
, pcfd
->fd
);
1034 pfd
[index
].events
= 0;
1038 ret
= read(pcfd
->fd
, &msg
, sizeof(msg
));
1039 if (ret
!= sizeof(msg
)) {
1040 if (errno
== EAGAIN
) {
1042 * if a wake up happens on the other thread just after
1043 * the poll, there is nothing to read.
1048 error_report("%s: Failed to read full userfault "
1049 "message: %s (shared) revents=%d",
1050 __func__
, strerror(errno
),
1051 pfd
[index
].revents
);
1052 /*TODO: Could just disable this sharer */
1055 error_report("%s: Read %d bytes from userfaultfd "
1056 "expected %zd (shared)",
1057 __func__
, ret
, sizeof(msg
));
1058 /*TODO: Could just disable this sharer */
1059 break; /*Lost alignment,don't know what we'd read next*/
1062 if (msg
.event
!= UFFD_EVENT_PAGEFAULT
) {
1063 error_report("%s: Read unexpected event %ud "
1064 "from userfaultfd (shared)",
1065 __func__
, msg
.event
);
1066 continue; /* It's not a page fault, shouldn't happen */
1068 /* Call the device handler registered with us */
1069 ret
= pcfd
->handler(pcfd
, &msg
);
1071 error_report("%s: Failed to resolve shared fault on %zd/%s",
1072 __func__
, index
, pcfd
->idstr
);
1073 /* TODO: Fail? Disable this sharer? */
1078 rcu_unregister_thread();
1079 trace_postcopy_ram_fault_thread_exit();
1084 int postcopy_ram_enable_notify(MigrationIncomingState
*mis
)
1086 /* Open the fd for the kernel to give us userfaults */
1087 mis
->userfault_fd
= syscall(__NR_userfaultfd
, O_CLOEXEC
| O_NONBLOCK
);
1088 if (mis
->userfault_fd
== -1) {
1089 error_report("%s: Failed to open userfault fd: %s", __func__
,
1095 * Although the host check already tested the API, we need to
1096 * do the check again as an ABI handshake on the new fd.
1098 if (!ufd_check_and_apply(mis
->userfault_fd
, mis
)) {
1102 /* Now an eventfd we use to tell the fault-thread to quit */
1103 mis
->userfault_event_fd
= eventfd(0, EFD_CLOEXEC
);
1104 if (mis
->userfault_event_fd
== -1) {
1105 error_report("%s: Opening userfault_event_fd: %s", __func__
,
1107 close(mis
->userfault_fd
);
1111 qemu_sem_init(&mis
->fault_thread_sem
, 0);
1112 qemu_thread_create(&mis
->fault_thread
, "postcopy/fault",
1113 postcopy_ram_fault_thread
, mis
, QEMU_THREAD_JOINABLE
);
1114 qemu_sem_wait(&mis
->fault_thread_sem
);
1115 qemu_sem_destroy(&mis
->fault_thread_sem
);
1116 mis
->have_fault_thread
= true;
1118 /* Mark so that we get notified of accesses to unwritten areas */
1119 if (qemu_ram_foreach_migratable_block(ram_block_enable_notify
, mis
)) {
1124 * Ballooning can mark pages as absent while we're postcopying
1125 * that would cause false userfaults.
1127 postcopy_balloon_inhibit(true);
1129 trace_postcopy_ram_enable_notify();
1134 static int qemu_ufd_copy_ioctl(int userfault_fd
, void *host_addr
,
1135 void *from_addr
, uint64_t pagesize
, RAMBlock
*rb
)
1139 struct uffdio_copy copy_struct
;
1140 copy_struct
.dst
= (uint64_t)(uintptr_t)host_addr
;
1141 copy_struct
.src
= (uint64_t)(uintptr_t)from_addr
;
1142 copy_struct
.len
= pagesize
;
1143 copy_struct
.mode
= 0;
1144 ret
= ioctl(userfault_fd
, UFFDIO_COPY
, ©_struct
);
1146 struct uffdio_zeropage zero_struct
;
1147 zero_struct
.range
.start
= (uint64_t)(uintptr_t)host_addr
;
1148 zero_struct
.range
.len
= pagesize
;
1149 zero_struct
.mode
= 0;
1150 ret
= ioctl(userfault_fd
, UFFDIO_ZEROPAGE
, &zero_struct
);
1153 ramblock_recv_bitmap_set_range(rb
, host_addr
,
1154 pagesize
/ qemu_target_page_size());
1155 mark_postcopy_blocktime_end((uintptr_t)host_addr
);
1161 int postcopy_notify_shared_wake(RAMBlock
*rb
, uint64_t offset
)
1164 MigrationIncomingState
*mis
= migration_incoming_get_current();
1165 GArray
*pcrfds
= mis
->postcopy_remote_fds
;
1167 for (i
= 0; i
< pcrfds
->len
; i
++) {
1168 struct PostCopyFD
*cur
= &g_array_index(pcrfds
, struct PostCopyFD
, i
);
1169 int ret
= cur
->waker(cur
, rb
, offset
);
1178 * Place a host page (from) at (host) atomically
1179 * returns 0 on success
1181 int postcopy_place_page(MigrationIncomingState
*mis
, void *host
, void *from
,
1184 size_t pagesize
= qemu_ram_pagesize(rb
);
1186 /* copy also acks to the kernel waking the stalled thread up
1187 * TODO: We can inhibit that ack and only do it if it was requested
1188 * which would be slightly cheaper, but we'd have to be careful
1189 * of the order of updating our page state.
1191 if (qemu_ufd_copy_ioctl(mis
->userfault_fd
, host
, from
, pagesize
, rb
)) {
1193 error_report("%s: %s copy host: %p from: %p (size: %zd)",
1194 __func__
, strerror(e
), host
, from
, pagesize
);
1199 trace_postcopy_place_page(host
);
1200 return postcopy_notify_shared_wake(rb
,
1201 qemu_ram_block_host_offset(rb
, host
));
1205 * Place a zero page at (host) atomically
1206 * returns 0 on success
1208 int postcopy_place_page_zero(MigrationIncomingState
*mis
, void *host
,
1211 size_t pagesize
= qemu_ram_pagesize(rb
);
1212 trace_postcopy_place_page_zero(host
);
1214 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1215 * but it's not available for everything (e.g. hugetlbpages)
1217 if (qemu_ram_is_uf_zeroable(rb
)) {
1218 if (qemu_ufd_copy_ioctl(mis
->userfault_fd
, host
, NULL
, pagesize
, rb
)) {
1220 error_report("%s: %s zero host: %p",
1221 __func__
, strerror(e
), host
);
1225 return postcopy_notify_shared_wake(rb
,
1226 qemu_ram_block_host_offset(rb
,
1229 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1230 if (!mis
->postcopy_tmp_zero_page
) {
1231 mis
->postcopy_tmp_zero_page
= mmap(NULL
, mis
->largest_page_size
,
1232 PROT_READ
| PROT_WRITE
,
1233 MAP_PRIVATE
| MAP_ANONYMOUS
,
1235 if (mis
->postcopy_tmp_zero_page
== MAP_FAILED
) {
1237 mis
->postcopy_tmp_zero_page
= NULL
;
1238 error_report("%s: %s mapping large zero page",
1239 __func__
, strerror(e
));
1242 memset(mis
->postcopy_tmp_zero_page
, '\0', mis
->largest_page_size
);
1244 return postcopy_place_page(mis
, host
, mis
->postcopy_tmp_zero_page
,
1250 * Returns a target page of memory that can be mapped at a later point in time
1251 * using postcopy_place_page
1252 * The same address is used repeatedly, postcopy_place_page just takes the
1253 * backing page away.
1254 * Returns: Pointer to allocated page
1257 void *postcopy_get_tmp_page(MigrationIncomingState
*mis
)
1259 if (!mis
->postcopy_tmp_page
) {
1260 mis
->postcopy_tmp_page
= mmap(NULL
, mis
->largest_page_size
,
1261 PROT_READ
| PROT_WRITE
, MAP_PRIVATE
|
1262 MAP_ANONYMOUS
, -1, 0);
1263 if (mis
->postcopy_tmp_page
== MAP_FAILED
) {
1264 mis
->postcopy_tmp_page
= NULL
;
1265 error_report("%s: %s", __func__
, strerror(errno
));
1270 return mis
->postcopy_tmp_page
;
1274 /* No target OS support, stubs just fail */
1275 void fill_destination_postcopy_migration_info(MigrationInfo
*info
)
1279 bool postcopy_ram_supported_by_host(MigrationIncomingState
*mis
)
1281 error_report("%s: No OS support", __func__
);
1285 int postcopy_ram_incoming_init(MigrationIncomingState
*mis
)
1287 error_report("postcopy_ram_incoming_init: No OS support");
1291 int postcopy_ram_incoming_cleanup(MigrationIncomingState
*mis
)
1297 int postcopy_ram_prepare_discard(MigrationIncomingState
*mis
)
1303 int postcopy_request_shared_page(struct PostCopyFD
*pcfd
, RAMBlock
*rb
,
1304 uint64_t client_addr
, uint64_t rb_offset
)
1310 int postcopy_ram_enable_notify(MigrationIncomingState
*mis
)
1316 int postcopy_place_page(MigrationIncomingState
*mis
, void *host
, void *from
,
1323 int postcopy_place_page_zero(MigrationIncomingState
*mis
, void *host
,
1330 void *postcopy_get_tmp_page(MigrationIncomingState
*mis
)
1336 int postcopy_wake_shared(struct PostCopyFD
*pcfd
,
1337 uint64_t client_addr
,
1345 /* ------------------------------------------------------------------------- */
1347 void postcopy_fault_thread_notify(MigrationIncomingState
*mis
)
1352 * Wakeup the fault_thread. It's an eventfd that should currently
1353 * be at 0, we're going to increment it to 1
1355 if (write(mis
->userfault_event_fd
, &tmp64
, 8) != 8) {
1356 /* Not much we can do here, but may as well report it */
1357 error_report("%s: incrementing failed: %s", __func__
,
1363 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1364 * asking to discard individual ranges.
1366 * @ms: The current migration state.
1367 * @offset: the bitmap offset of the named RAMBlock in the migration
1369 * @name: RAMBlock that discards will operate on.
1371 * returns: a new PDS.
1373 PostcopyDiscardState
*postcopy_discard_send_init(MigrationState
*ms
,
1376 PostcopyDiscardState
*res
= g_malloc0(sizeof(PostcopyDiscardState
));
1379 res
->ramblock_name
= name
;
1386 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1387 * discard. May send a discard message, may just leave it queued to
1390 * @ms: Current migration state.
1391 * @pds: Structure initialised by postcopy_discard_send_init().
1392 * @start,@length: a range of pages in the migration bitmap in the
1393 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1395 void postcopy_discard_send_range(MigrationState
*ms
, PostcopyDiscardState
*pds
,
1396 unsigned long start
, unsigned long length
)
1398 size_t tp_size
= qemu_target_page_size();
1399 /* Convert to byte offsets within the RAM block */
1400 pds
->start_list
[pds
->cur_entry
] = start
* tp_size
;
1401 pds
->length_list
[pds
->cur_entry
] = length
* tp_size
;
1402 trace_postcopy_discard_send_range(pds
->ramblock_name
, start
, length
);
1406 if (pds
->cur_entry
== MAX_DISCARDS_PER_COMMAND
) {
1407 /* Full set, ship it! */
1408 qemu_savevm_send_postcopy_ram_discard(ms
->to_dst_file
,
1419 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1420 * bitmap code. Sends any outstanding discard messages, frees the PDS
1422 * @ms: Current migration state.
1423 * @pds: Structure initialised by postcopy_discard_send_init().
1425 void postcopy_discard_send_finish(MigrationState
*ms
, PostcopyDiscardState
*pds
)
1427 /* Anything unsent? */
1428 if (pds
->cur_entry
) {
1429 qemu_savevm_send_postcopy_ram_discard(ms
->to_dst_file
,
1437 trace_postcopy_discard_send_finish(pds
->ramblock_name
, pds
->nsentwords
,
1444 * Current state of incoming postcopy; note this is not part of
1445 * MigrationIncomingState since it's state is used during cleanup
1446 * at the end as MIS is being freed.
1448 static PostcopyState incoming_postcopy_state
;
1450 PostcopyState
postcopy_state_get(void)
1452 return atomic_mb_read(&incoming_postcopy_state
);
1455 /* Set the state and return the old state */
1456 PostcopyState
postcopy_state_set(PostcopyState new_state
)
1458 return atomic_xchg(&incoming_postcopy_state
, new_state
);
1461 /* Register a handler for external shared memory postcopy
1462 * called on the destination.
1464 void postcopy_register_shared_ufd(struct PostCopyFD
*pcfd
)
1466 MigrationIncomingState
*mis
= migration_incoming_get_current();
1468 mis
->postcopy_remote_fds
= g_array_append_val(mis
->postcopy_remote_fds
,
1472 /* Unregister a handler for external shared memory postcopy
1474 void postcopy_unregister_shared_ufd(struct PostCopyFD
*pcfd
)
1477 MigrationIncomingState
*mis
= migration_incoming_get_current();
1478 GArray
*pcrfds
= mis
->postcopy_remote_fds
;
1480 for (i
= 0; i
< pcrfds
->len
; i
++) {
1481 struct PostCopyFD
*cur
= &g_array_index(pcrfds
, struct PostCopyFD
, i
);
1482 if (cur
->fd
== pcfd
->fd
) {
1483 mis
->postcopy_remote_fds
= g_array_remove_index(pcrfds
, i
);