bcm2835_peripherals: add rollup device for bcm2835 peripherals
[qemu/ar7.git] / target-xtensa / op_helper.c
blob62fa33d8d4e95fcccb36ebe65303a600925b3d21
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "cpu.h"
30 #include "exec/helper-proto.h"
31 #include "qemu/host-utils.h"
32 #include "exec/cpu_ldst.h"
33 #include "exec/address-spaces.h"
34 #include "qemu/timer.h"
36 void xtensa_cpu_do_unaligned_access(CPUState *cs,
37 vaddr addr, int is_write, int is_user, uintptr_t retaddr)
39 XtensaCPU *cpu = XTENSA_CPU(cs);
40 CPUXtensaState *env = &cpu->env;
42 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
43 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
44 cpu_restore_state(CPU(cpu), retaddr);
45 HELPER(exception_cause_vaddr)(env,
46 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
50 void tlb_fill(CPUState *cs,
51 target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
53 XtensaCPU *cpu = XTENSA_CPU(cs);
54 CPUXtensaState *env = &cpu->env;
55 uint32_t paddr;
56 uint32_t page_size;
57 unsigned access;
58 int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
59 &paddr, &page_size, &access);
61 qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
62 __func__, vaddr, is_write, mmu_idx, paddr, ret);
64 if (ret == 0) {
65 tlb_set_page(cs,
66 vaddr & TARGET_PAGE_MASK,
67 paddr & TARGET_PAGE_MASK,
68 access, mmu_idx, page_size);
69 } else {
70 cpu_restore_state(cs, retaddr);
71 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
75 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
76 bool is_write, bool is_exec, int opaque,
77 unsigned size)
79 XtensaCPU *cpu = XTENSA_CPU(cs);
80 CPUXtensaState *env = &cpu->env;
82 HELPER(exception_cause_vaddr)(env, env->pc,
83 is_exec ?
84 INSTR_PIF_ADDR_ERROR_CAUSE :
85 LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
86 is_exec ? addr : cs->mem_io_vaddr);
89 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
91 uint32_t paddr;
92 uint32_t page_size;
93 unsigned access;
94 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
95 &paddr, &page_size, &access);
96 if (ret == 0) {
97 tb_invalidate_phys_addr(&address_space_memory, paddr);
101 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
103 CPUState *cs = CPU(xtensa_env_get_cpu(env));
105 cs->exception_index = excp;
106 if (excp == EXCP_DEBUG) {
107 env->exception_taken = 0;
109 cpu_loop_exit(cs);
112 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
114 uint32_t vector;
116 env->pc = pc;
117 if (env->sregs[PS] & PS_EXCM) {
118 if (env->config->ndepc) {
119 env->sregs[DEPC] = pc;
120 } else {
121 env->sregs[EPC1] = pc;
123 vector = EXC_DOUBLE;
124 } else {
125 env->sregs[EPC1] = pc;
126 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
129 env->sregs[EXCCAUSE] = cause;
130 env->sregs[PS] |= PS_EXCM;
132 HELPER(exception)(env, vector);
135 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
136 uint32_t pc, uint32_t cause, uint32_t vaddr)
138 env->sregs[EXCVADDR] = vaddr;
139 HELPER(exception_cause)(env, pc, cause);
142 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
144 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
145 HELPER(debug_exception)(env, env->pc, cause);
149 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
151 unsigned level = env->config->debug_level;
153 env->pc = pc;
154 env->sregs[DEBUGCAUSE] = cause;
155 env->sregs[EPC1 + level - 1] = pc;
156 env->sregs[EPS2 + level - 2] = env->sregs[PS];
157 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
158 (level << PS_INTLEVEL_SHIFT);
159 HELPER(exception)(env, EXC_DEBUG);
162 uint32_t HELPER(nsa)(uint32_t v)
164 if (v & 0x80000000) {
165 v = ~v;
167 return v ? clz32(v) - 1 : 31;
170 uint32_t HELPER(nsau)(uint32_t v)
172 return v ? clz32(v) : 32;
175 static void copy_window_from_phys(CPUXtensaState *env,
176 uint32_t window, uint32_t phys, uint32_t n)
178 assert(phys < env->config->nareg);
179 if (phys + n <= env->config->nareg) {
180 memcpy(env->regs + window, env->phys_regs + phys,
181 n * sizeof(uint32_t));
182 } else {
183 uint32_t n1 = env->config->nareg - phys;
184 memcpy(env->regs + window, env->phys_regs + phys,
185 n1 * sizeof(uint32_t));
186 memcpy(env->regs + window + n1, env->phys_regs,
187 (n - n1) * sizeof(uint32_t));
191 static void copy_phys_from_window(CPUXtensaState *env,
192 uint32_t phys, uint32_t window, uint32_t n)
194 assert(phys < env->config->nareg);
195 if (phys + n <= env->config->nareg) {
196 memcpy(env->phys_regs + phys, env->regs + window,
197 n * sizeof(uint32_t));
198 } else {
199 uint32_t n1 = env->config->nareg - phys;
200 memcpy(env->phys_regs + phys, env->regs + window,
201 n1 * sizeof(uint32_t));
202 memcpy(env->phys_regs, env->regs + window + n1,
203 (n - n1) * sizeof(uint32_t));
208 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
210 return a & (env->config->nareg / 4 - 1);
213 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
215 return 1 << windowbase_bound(a, env);
218 void xtensa_sync_window_from_phys(CPUXtensaState *env)
220 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
223 void xtensa_sync_phys_from_window(CPUXtensaState *env)
225 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
228 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
230 xtensa_sync_phys_from_window(env);
231 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
232 xtensa_sync_window_from_phys(env);
235 static void rotate_window(CPUXtensaState *env, uint32_t delta)
237 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
240 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
242 rotate_window_abs(env, v);
245 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
247 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
248 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
249 qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n",
250 pc, env->sregs[PS]);
251 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
252 } else {
253 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
254 (env->sregs[WINDOW_BASE] + 1);
256 if (windowstart & ((1 << callinc) - 1)) {
257 HELPER(window_check)(env, pc, callinc);
259 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
260 rotate_window(env, callinc);
261 env->sregs[WINDOW_START] |=
262 windowstart_bit(env->sregs[WINDOW_BASE], env);
266 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
268 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
269 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
270 (env->sregs[WINDOW_BASE] + 1);
271 uint32_t n = ctz32(windowstart) + 1;
273 assert(n <= w);
275 rotate_window(env, n);
276 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
277 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
278 env->sregs[EPC1] = env->pc = pc;
280 switch (ctz32(windowstart >> n)) {
281 case 0:
282 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
283 break;
284 case 1:
285 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
286 break;
287 default:
288 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
289 break;
293 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
295 int n = (env->regs[0] >> 30) & 0x3;
296 int m = 0;
297 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
298 uint32_t windowstart = env->sregs[WINDOW_START];
299 uint32_t ret_pc = 0;
301 if (windowstart & windowstart_bit(windowbase - 1, env)) {
302 m = 1;
303 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
304 m = 2;
305 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
306 m = 3;
309 if (n == 0 || (m != 0 && m != n) ||
310 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
311 qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
312 "PS = %08x, m = %d, n = %d\n",
313 pc, env->sregs[PS], m, n);
314 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
315 } else {
316 int owb = windowbase;
318 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
320 rotate_window(env, -n);
321 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
322 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
323 } else {
324 /* window underflow */
325 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
326 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
327 env->sregs[EPC1] = env->pc = pc;
329 if (n == 1) {
330 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
331 } else if (n == 2) {
332 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
333 } else if (n == 3) {
334 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
338 return ret_pc;
341 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
343 rotate_window(env, imm4);
346 void HELPER(restore_owb)(CPUXtensaState *env)
348 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
351 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
353 if ((env->sregs[WINDOW_START] &
354 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
355 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
356 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
357 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
361 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
363 if (env->sregs[LBEG] != v) {
364 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
365 env->sregs[LBEG] = v;
369 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
371 if (env->sregs[LEND] != v) {
372 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
373 env->sregs[LEND] = v;
374 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
378 void HELPER(dump_state)(CPUXtensaState *env)
380 XtensaCPU *cpu = xtensa_env_get_cpu(env);
382 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
385 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
387 CPUState *cpu;
389 env->pc = pc;
390 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
391 (intlevel << PS_INTLEVEL_SHIFT);
392 check_interrupts(env);
393 if (env->pending_irq_level) {
394 cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
395 return;
398 cpu = CPU(xtensa_env_get_cpu(env));
399 env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
400 cpu->halted = 1;
401 if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
402 xtensa_rearm_ccompare_timer(env);
404 HELPER(exception)(env, EXCP_HLT);
407 void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
409 xtensa_timer_irq(env, id, active);
412 void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
414 xtensa_advance_ccount(env, d);
417 void HELPER(check_interrupts)(CPUXtensaState *env)
419 check_interrupts(env);
422 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
424 get_page_addr_code(env, vaddr);
428 * Check vaddr accessibility/cache attributes and raise an exception if
429 * specified by the ATOMCTL SR.
431 * Note: local memory exclusion is not implemented
433 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
435 uint32_t paddr, page_size, access;
436 uint32_t atomctl = env->sregs[ATOMCTL];
437 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
438 xtensa_get_cring(env), &paddr, &page_size, &access);
441 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
442 * see opcode description in the ISA
444 if (rc == 0 &&
445 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
446 rc = STORE_PROHIBITED_CAUSE;
449 if (rc) {
450 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
454 * When data cache is not configured use ATOMCTL bypass field.
455 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
456 * under the Conditional Store Option.
458 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
459 access = PAGE_CACHE_BYPASS;
462 switch (access & PAGE_CACHE_MASK) {
463 case PAGE_CACHE_WB:
464 atomctl >>= 2;
465 /* fall through */
466 case PAGE_CACHE_WT:
467 atomctl >>= 2;
468 /* fall through */
469 case PAGE_CACHE_BYPASS:
470 if ((atomctl & 0x3) == 0) {
471 HELPER(exception_cause_vaddr)(env, pc,
472 LOAD_STORE_ERROR_CAUSE, vaddr);
474 break;
476 case PAGE_CACHE_ISOLATE:
477 HELPER(exception_cause_vaddr)(env, pc,
478 LOAD_STORE_ERROR_CAUSE, vaddr);
479 break;
481 default:
482 break;
486 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
488 XtensaCPU *cpu = xtensa_env_get_cpu(env);
490 v = (v & 0xffffff00) | 0x1;
491 if (v != env->sregs[RASID]) {
492 env->sregs[RASID] = v;
493 tlb_flush(CPU(cpu), 1);
497 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
499 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
501 switch (way) {
502 case 4:
503 return (tlbcfg >> 16) & 0x3;
505 case 5:
506 return (tlbcfg >> 20) & 0x1;
508 case 6:
509 return (tlbcfg >> 24) & 0x1;
511 default:
512 return 0;
517 * Get bit mask for the virtual address bits translated by the TLB way
519 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
521 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
522 bool varway56 = dtlb ?
523 env->config->dtlb.varway56 :
524 env->config->itlb.varway56;
526 switch (way) {
527 case 4:
528 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
530 case 5:
531 if (varway56) {
532 return 0xf8000000 << get_page_size(env, dtlb, way);
533 } else {
534 return 0xf8000000;
537 case 6:
538 if (varway56) {
539 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
540 } else {
541 return 0xf0000000;
544 default:
545 return 0xfffff000;
547 } else {
548 return REGION_PAGE_MASK;
553 * Get bit mask for the 'VPN without index' field.
554 * See ISA, 4.6.5.6, data format for RxTLB0
556 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
558 if (way < 4) {
559 bool is32 = (dtlb ?
560 env->config->dtlb.nrefillentries :
561 env->config->itlb.nrefillentries) == 32;
562 return is32 ? 0xffff8000 : 0xffffc000;
563 } else if (way == 4) {
564 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
565 } else if (way <= 6) {
566 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
567 bool varway56 = dtlb ?
568 env->config->dtlb.varway56 :
569 env->config->itlb.varway56;
571 if (varway56) {
572 return mask << (way == 5 ? 2 : 3);
573 } else {
574 return mask << 1;
576 } else {
577 return 0xfffff000;
582 * Split virtual address into VPN (with index) and entry index
583 * for the given TLB way
585 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
586 uint32_t *vpn, uint32_t wi, uint32_t *ei)
588 bool varway56 = dtlb ?
589 env->config->dtlb.varway56 :
590 env->config->itlb.varway56;
592 if (!dtlb) {
593 wi &= 7;
596 if (wi < 4) {
597 bool is32 = (dtlb ?
598 env->config->dtlb.nrefillentries :
599 env->config->itlb.nrefillentries) == 32;
600 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
601 } else {
602 switch (wi) {
603 case 4:
605 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
606 *ei = (v >> eibase) & 0x3;
608 break;
610 case 5:
611 if (varway56) {
612 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
613 *ei = (v >> eibase) & 0x3;
614 } else {
615 *ei = (v >> 27) & 0x1;
617 break;
619 case 6:
620 if (varway56) {
621 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
622 *ei = (v >> eibase) & 0x7;
623 } else {
624 *ei = (v >> 28) & 0x1;
626 break;
628 default:
629 *ei = 0;
630 break;
633 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
637 * Split TLB address into TLB way, entry index and VPN (with index).
638 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
640 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
641 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
643 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
644 *wi = v & (dtlb ? 0xf : 0x7);
645 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
646 } else {
647 *vpn = v & REGION_PAGE_MASK;
648 *wi = 0;
649 *ei = (v >> 29) & 0x7;
653 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
654 uint32_t v, bool dtlb, uint32_t *pwi)
656 uint32_t vpn;
657 uint32_t wi;
658 uint32_t ei;
660 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
661 if (pwi) {
662 *pwi = wi;
664 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
667 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
669 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
670 uint32_t wi;
671 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
672 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
673 } else {
674 return v & REGION_PAGE_MASK;
678 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
680 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
681 return entry->paddr | entry->attr;
684 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
686 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
687 uint32_t wi;
688 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
689 if (entry->variable && entry->asid) {
690 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
691 entry->asid = 0;
696 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
698 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
699 uint32_t wi;
700 uint32_t ei;
701 uint8_t ring;
702 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
704 switch (res) {
705 case 0:
706 if (ring >= xtensa_get_ring(env)) {
707 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
709 break;
711 case INST_TLB_MULTI_HIT_CAUSE:
712 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
713 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
714 break;
716 return 0;
717 } else {
718 return (v & REGION_PAGE_MASK) | 0x1;
722 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
723 xtensa_tlb_entry *entry, bool dtlb,
724 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
726 entry->vaddr = vpn;
727 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
728 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
729 entry->attr = pte & 0xf;
732 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
733 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
735 XtensaCPU *cpu = xtensa_env_get_cpu(env);
736 CPUState *cs = CPU(cpu);
737 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
739 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
740 if (entry->variable) {
741 if (entry->asid) {
742 tlb_flush_page(cs, entry->vaddr);
744 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
745 tlb_flush_page(cs, entry->vaddr);
746 } else {
747 qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
748 __func__, dtlb, wi, ei);
750 } else {
751 tlb_flush_page(cs, entry->vaddr);
752 if (xtensa_option_enabled(env->config,
753 XTENSA_OPTION_REGION_TRANSLATION)) {
754 entry->paddr = pte & REGION_PAGE_MASK;
756 entry->attr = pte & 0xf;
760 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
762 uint32_t vpn;
763 uint32_t wi;
764 uint32_t ei;
765 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
766 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
770 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
772 uint32_t change = v ^ env->sregs[IBREAKENABLE];
773 unsigned i;
775 for (i = 0; i < env->config->nibreak; ++i) {
776 if (change & (1 << i)) {
777 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
780 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
783 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
785 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
786 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
787 tb_invalidate_virtual_addr(env, v);
789 env->sregs[IBREAKA + i] = v;
792 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
793 uint32_t dbreakc)
795 CPUState *cs = CPU(xtensa_env_get_cpu(env));
796 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
797 uint32_t mask = dbreakc | ~DBREAKC_MASK;
799 if (env->cpu_watchpoint[i]) {
800 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
802 if (dbreakc & DBREAKC_SB) {
803 flags |= BP_MEM_WRITE;
805 if (dbreakc & DBREAKC_LB) {
806 flags |= BP_MEM_READ;
808 /* contiguous mask after inversion is one less than some power of 2 */
809 if ((~mask + 1) & ~mask) {
810 qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
811 /* cut mask after the first zero bit */
812 mask = 0xffffffff << (32 - clo32(mask));
814 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
815 flags, &env->cpu_watchpoint[i])) {
816 env->cpu_watchpoint[i] = NULL;
817 qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
818 dbreaka & mask, ~mask + 1);
822 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
824 uint32_t dbreakc = env->sregs[DBREAKC + i];
826 if ((dbreakc & DBREAKC_SB_LB) &&
827 env->sregs[DBREAKA + i] != v) {
828 set_dbreak(env, i, v, dbreakc);
830 env->sregs[DBREAKA + i] = v;
833 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
835 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
836 if (v & DBREAKC_SB_LB) {
837 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
838 } else {
839 if (env->cpu_watchpoint[i]) {
840 CPUState *cs = CPU(xtensa_env_get_cpu(env));
842 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
843 env->cpu_watchpoint[i] = NULL;
847 env->sregs[DBREAKC + i] = v;
850 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
852 static const int rounding_mode[] = {
853 float_round_nearest_even,
854 float_round_to_zero,
855 float_round_up,
856 float_round_down,
859 env->uregs[FCR] = v & 0xfffff07f;
860 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
863 float32 HELPER(abs_s)(float32 v)
865 return float32_abs(v);
868 float32 HELPER(neg_s)(float32 v)
870 return float32_chs(v);
873 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
875 return float32_add(a, b, &env->fp_status);
878 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
880 return float32_sub(a, b, &env->fp_status);
883 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
885 return float32_mul(a, b, &env->fp_status);
888 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
890 return float32_muladd(b, c, a, 0,
891 &env->fp_status);
894 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
896 return float32_muladd(b, c, a, float_muladd_negate_product,
897 &env->fp_status);
900 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
902 float_status fp_status = {0};
904 set_float_rounding_mode(rounding_mode, &fp_status);
905 return float32_to_int32(
906 float32_scalbn(v, scale, &fp_status), &fp_status);
909 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
911 float_status fp_status = {0};
912 float32 res;
914 set_float_rounding_mode(rounding_mode, &fp_status);
916 res = float32_scalbn(v, scale, &fp_status);
918 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
919 return float32_to_int32(res, &fp_status);
920 } else {
921 return float32_to_uint32(res, &fp_status);
925 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
927 return float32_scalbn(int32_to_float32(v, &env->fp_status),
928 (int32_t)scale, &env->fp_status);
931 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
933 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
934 (int32_t)scale, &env->fp_status);
937 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
939 if (v) {
940 env->sregs[BR] |= br;
941 } else {
942 env->sregs[BR] &= ~br;
946 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
948 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
951 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
953 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
956 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
958 int v = float32_compare_quiet(a, b, &env->fp_status);
959 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
962 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
964 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
967 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
969 int v = float32_compare_quiet(a, b, &env->fp_status);
970 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
973 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
975 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
978 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
980 int v = float32_compare_quiet(a, b, &env->fp_status);
981 set_br(env, v != float_relation_greater, br);