2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
24 #include "hw/arm/arm.h"
26 static inline void set_feature(uint64_t *features
, int feature
)
28 *features
|= 1ULL << feature
;
31 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass
*ahcc
)
33 /* Identify the feature bits corresponding to the host CPU, and
34 * fill out the ARMHostCPUClass fields accordingly. To do this
35 * we have to create a scratch VM, create a single CPU inside it,
36 * and then query that CPU for the relevant ID registers.
38 int i
, ret
, fdarray
[3];
39 uint32_t midr
, id_pfr0
, id_isar0
, mvfr1
;
40 uint64_t features
= 0;
41 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
42 * we know these will only support creating one kind of guest CPU,
43 * which is its preferred CPU type.
45 static const uint32_t cpus_to_try
[] = {
46 QEMU_KVM_ARM_TARGET_CORTEX_A15
,
47 QEMU_KVM_ARM_TARGET_NONE
49 struct kvm_vcpu_init init
;
50 struct kvm_one_reg idregs
[] = {
52 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
53 | ENCODE_CP_REG(15, 0, 0, 0, 0, 0),
54 .addr
= (uintptr_t)&midr
,
57 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
58 | ENCODE_CP_REG(15, 0, 0, 1, 0, 0),
59 .addr
= (uintptr_t)&id_pfr0
,
62 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
63 | ENCODE_CP_REG(15, 0, 0, 2, 0, 0),
64 .addr
= (uintptr_t)&id_isar0
,
67 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
68 | KVM_REG_ARM_VFP
| KVM_REG_ARM_VFP_MVFR1
,
69 .addr
= (uintptr_t)&mvfr1
,
73 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
77 ahcc
->target
= init
.target
;
79 /* This is not strictly blessed by the device tree binding docs yet,
80 * but in practice the kernel does not care about this string so
81 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
83 ahcc
->dtb_compatible
= "arm,arm-v7";
85 for (i
= 0; i
< ARRAY_SIZE(idregs
); i
++) {
86 ret
= ioctl(fdarray
[2], KVM_GET_ONE_REG
, &idregs
[i
]);
92 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
98 /* Now we've retrieved all the register information we can
99 * set the feature bits based on the ID register fields.
100 * We can assume any KVM supporting CPU is at least a v7
101 * with VFPv3, LPAE and the generic timers; this in turn implies
102 * most of the other feature bits, but a few must be tested.
104 set_feature(&features
, ARM_FEATURE_V7
);
105 set_feature(&features
, ARM_FEATURE_VFP3
);
106 set_feature(&features
, ARM_FEATURE_LPAE
);
107 set_feature(&features
, ARM_FEATURE_GENERIC_TIMER
);
109 switch (extract32(id_isar0
, 24, 4)) {
111 set_feature(&features
, ARM_FEATURE_THUMB_DIV
);
114 set_feature(&features
, ARM_FEATURE_ARM_DIV
);
115 set_feature(&features
, ARM_FEATURE_THUMB_DIV
);
121 if (extract32(id_pfr0
, 12, 4) == 1) {
122 set_feature(&features
, ARM_FEATURE_THUMB2EE
);
124 if (extract32(mvfr1
, 20, 4) == 1) {
125 set_feature(&features
, ARM_FEATURE_VFP_FP16
);
127 if (extract32(mvfr1
, 12, 4) == 1) {
128 set_feature(&features
, ARM_FEATURE_NEON
);
130 if (extract32(mvfr1
, 28, 4) == 1) {
131 /* FMAC support implies VFPv4 */
132 set_feature(&features
, ARM_FEATURE_VFP4
);
135 ahcc
->features
= features
;
140 static bool reg_syncs_via_tuple_list(uint64_t regidx
)
142 /* Return true if the regidx is a register we should synchronize
143 * via the cpreg_tuples array (ie is not a core reg we sync by
144 * hand in kvm_arch_get/put_registers())
146 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
147 case KVM_REG_ARM_CORE
:
148 case KVM_REG_ARM_VFP
:
155 static int compare_u64(const void *a
, const void *b
)
157 if (*(uint64_t *)a
> *(uint64_t *)b
) {
160 if (*(uint64_t *)a
< *(uint64_t *)b
) {
166 int kvm_arch_init_vcpu(CPUState
*cs
)
168 struct kvm_vcpu_init init
;
169 int i
, ret
, arraylen
;
171 struct kvm_one_reg r
;
172 struct kvm_reg_list rl
;
173 struct kvm_reg_list
*rlp
;
174 ARMCPU
*cpu
= ARM_CPU(cs
);
176 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
) {
177 fprintf(stderr
, "KVM is not supported for this guest CPU type\n");
181 init
.target
= cpu
->kvm_target
;
182 memset(init
.features
, 0, sizeof(init
.features
));
183 if (cpu
->start_powered_off
) {
184 init
.features
[0] = 1 << KVM_ARM_VCPU_POWER_OFF
;
186 ret
= kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_INIT
, &init
);
190 /* Query the kernel to make sure it supports 32 VFP
191 * registers: QEMU's "cortex-a15" CPU is always a
192 * VFP-D32 core. The simplest way to do this is just
193 * to attempt to read register d31.
195 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
| 31;
196 r
.addr
= (uintptr_t)(&v
);
197 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
198 if (ret
== -ENOENT
) {
202 /* Populate the cpreg list based on the kernel's idea
203 * of what registers exist (and throw away the TCG-created list).
206 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
210 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
212 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
216 /* Sort the list we get back from the kernel, since cpreg_tuples
217 * must be in strictly ascending order.
219 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
221 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
222 if (!reg_syncs_via_tuple_list(rlp
->reg
[i
])) {
225 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
226 case KVM_REG_SIZE_U32
:
227 case KVM_REG_SIZE_U64
:
230 fprintf(stderr
, "Can't handle size of register in kernel list\n");
238 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
239 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
240 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
242 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
244 cpu
->cpreg_array_len
= arraylen
;
245 cpu
->cpreg_vmstate_array_len
= arraylen
;
247 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
248 uint64_t regidx
= rlp
->reg
[i
];
249 if (!reg_syncs_via_tuple_list(regidx
)) {
252 cpu
->cpreg_indexes
[arraylen
] = regidx
;
255 assert(cpu
->cpreg_array_len
== arraylen
);
257 if (!write_kvmstate_to_list(cpu
)) {
258 /* Shouldn't happen unless kernel is inconsistent about
259 * what registers exist.
261 fprintf(stderr
, "Initial read of kernel register state failed\n");
266 /* Save a copy of the initial register values so that we can
267 * feed it back to the kernel on VCPU reset.
269 cpu
->cpreg_reset_values
= g_memdup(cpu
->cpreg_values
,
270 cpu
->cpreg_array_len
*
271 sizeof(cpu
->cpreg_values
[0]));
283 #define COREREG(KERNELNAME, QEMUFIELD) \
285 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
286 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
287 offsetof(CPUARMState, QEMUFIELD) \
290 #define VFPSYSREG(R) \
292 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
293 KVM_REG_ARM_VFP_##R, \
294 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
297 static const Reg regs
[] = {
298 /* R0_usr .. R14_usr */
299 COREREG(usr_regs
.uregs
[0], regs
[0]),
300 COREREG(usr_regs
.uregs
[1], regs
[1]),
301 COREREG(usr_regs
.uregs
[2], regs
[2]),
302 COREREG(usr_regs
.uregs
[3], regs
[3]),
303 COREREG(usr_regs
.uregs
[4], regs
[4]),
304 COREREG(usr_regs
.uregs
[5], regs
[5]),
305 COREREG(usr_regs
.uregs
[6], regs
[6]),
306 COREREG(usr_regs
.uregs
[7], regs
[7]),
307 COREREG(usr_regs
.uregs
[8], usr_regs
[0]),
308 COREREG(usr_regs
.uregs
[9], usr_regs
[1]),
309 COREREG(usr_regs
.uregs
[10], usr_regs
[2]),
310 COREREG(usr_regs
.uregs
[11], usr_regs
[3]),
311 COREREG(usr_regs
.uregs
[12], usr_regs
[4]),
312 COREREG(usr_regs
.uregs
[13], banked_r13
[0]),
313 COREREG(usr_regs
.uregs
[14], banked_r14
[0]),
314 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
315 COREREG(svc_regs
[0], banked_r13
[1]),
316 COREREG(svc_regs
[1], banked_r14
[1]),
317 COREREG(svc_regs
[2], banked_spsr
[1]),
318 COREREG(abt_regs
[0], banked_r13
[2]),
319 COREREG(abt_regs
[1], banked_r14
[2]),
320 COREREG(abt_regs
[2], banked_spsr
[2]),
321 COREREG(und_regs
[0], banked_r13
[3]),
322 COREREG(und_regs
[1], banked_r14
[3]),
323 COREREG(und_regs
[2], banked_spsr
[3]),
324 COREREG(irq_regs
[0], banked_r13
[4]),
325 COREREG(irq_regs
[1], banked_r14
[4]),
326 COREREG(irq_regs
[2], banked_spsr
[4]),
327 /* R8_fiq .. R14_fiq and SPSR_fiq */
328 COREREG(fiq_regs
[0], fiq_regs
[0]),
329 COREREG(fiq_regs
[1], fiq_regs
[1]),
330 COREREG(fiq_regs
[2], fiq_regs
[2]),
331 COREREG(fiq_regs
[3], fiq_regs
[3]),
332 COREREG(fiq_regs
[4], fiq_regs
[4]),
333 COREREG(fiq_regs
[5], banked_r13
[5]),
334 COREREG(fiq_regs
[6], banked_r14
[5]),
335 COREREG(fiq_regs
[7], banked_spsr
[5]),
337 COREREG(usr_regs
.uregs
[15], regs
[15]),
338 /* VFP system registers */
347 int kvm_arch_put_registers(CPUState
*cs
, int level
)
349 ARMCPU
*cpu
= ARM_CPU(cs
);
350 CPUARMState
*env
= &cpu
->env
;
351 struct kvm_one_reg r
;
354 uint32_t cpsr
, fpscr
;
356 /* Make sure the banked regs are properly set */
357 mode
= env
->uncached_cpsr
& CPSR_M
;
358 bn
= bank_number(mode
);
359 if (mode
== ARM_CPU_MODE_FIQ
) {
360 memcpy(env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
362 memcpy(env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
364 env
->banked_r13
[bn
] = env
->regs
[13];
365 env
->banked_r14
[bn
] = env
->regs
[14];
366 env
->banked_spsr
[bn
] = env
->spsr
;
368 /* Now we can safely copy stuff down to the kernel */
369 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
371 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
372 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
378 /* Special cases which aren't a single CPUARMState field */
379 cpsr
= cpsr_read(env
);
380 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
381 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
382 r
.addr
= (uintptr_t)(&cpsr
);
383 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
389 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
390 for (i
= 0; i
< 32; i
++) {
391 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
392 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
399 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
400 KVM_REG_ARM_VFP_FPSCR
;
401 fpscr
= vfp_get_fpscr(env
);
402 r
.addr
= (uintptr_t)&fpscr
;
403 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
408 /* Note that we do not call write_cpustate_to_list()
409 * here, so we are only writing the tuple list back to
410 * KVM. This is safe because nothing can change the
411 * CPUARMState cp15 fields (in particular gdb accesses cannot)
412 * and so there are no changes to sync. In fact syncing would
413 * be wrong at this point: for a constant register where TCG and
414 * KVM disagree about its value, the preceding write_list_to_cpustate()
415 * would not have had any effect on the CPUARMState value (since the
416 * register is read-only), and a write_cpustate_to_list() here would
417 * then try to write the TCG value back into KVM -- this would either
418 * fail or incorrectly change the value the guest sees.
420 * If we ever want to allow the user to modify cp15 registers via
421 * the gdb stub, we would need to be more clever here (for instance
422 * tracking the set of registers kvm_arch_get_registers() successfully
423 * managed to update the CPUARMState with, and only allowing those
424 * to be written back up into the kernel).
426 if (!write_list_to_kvmstate(cpu
)) {
433 int kvm_arch_get_registers(CPUState
*cs
)
435 ARMCPU
*cpu
= ARM_CPU(cs
);
436 CPUARMState
*env
= &cpu
->env
;
437 struct kvm_one_reg r
;
440 uint32_t cpsr
, fpscr
;
442 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
444 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
445 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
451 /* Special cases which aren't a single CPUARMState field */
452 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
453 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
454 r
.addr
= (uintptr_t)(&cpsr
);
455 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
459 cpsr_write(env
, cpsr
, 0xffffffff);
461 /* Make sure the current mode regs are properly set */
462 mode
= env
->uncached_cpsr
& CPSR_M
;
463 bn
= bank_number(mode
);
464 if (mode
== ARM_CPU_MODE_FIQ
) {
465 memcpy(env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
467 memcpy(env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
469 env
->regs
[13] = env
->banked_r13
[bn
];
470 env
->regs
[14] = env
->banked_r14
[bn
];
471 env
->spsr
= env
->banked_spsr
[bn
];
474 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
475 for (i
= 0; i
< 32; i
++) {
476 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
477 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
484 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
485 KVM_REG_ARM_VFP_FPSCR
;
486 r
.addr
= (uintptr_t)&fpscr
;
487 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
491 vfp_set_fpscr(env
, fpscr
);
493 if (!write_kvmstate_to_list(cpu
)) {
496 /* Note that it's OK to have registers which aren't in CPUState,
497 * so we can ignore a failure return here.
499 write_list_to_cpustate(cpu
);
504 void kvm_arch_reset_vcpu(CPUState
*cs
)
506 /* Feed the kernel back its initial register state */
507 ARMCPU
*cpu
= ARM_CPU(cs
);
509 memmove(cpu
->cpreg_values
, cpu
->cpreg_reset_values
,
510 cpu
->cpreg_array_len
* sizeof(cpu
->cpreg_values
[0]));
512 if (!write_list_to_kvmstate(cpu
)) {