2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
34 #include "hw/fw-path-provider.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
71 #include "hw/intc/intc.h"
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState
*spapr
, int cpu_index
)
110 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState
*spapr
,
116 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
129 .name
= "icp/server",
131 .minimum_version_id
= 1,
132 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
133 .fields
= (VMStateField
[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
141 static void pre_2_10_vmstate_register_dummy_icp(int i
)
143 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
144 (void *)(uintptr_t) i
);
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
149 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
150 (void *)(uintptr_t) i
);
153 static int xics_max_server_number(sPAPRMachineState
*spapr
)
156 return DIV_ROUND_UP(max_cpus
* spapr
->vsmt
, smp_threads
);
159 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
163 uint32_t servers_prop
[smt_threads
];
164 uint32_t gservers_prop
[smt_threads
* 2];
165 int index
= spapr_get_vcpu_id(cpu
);
167 if (cpu
->compat_pvr
) {
168 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
174 /* Build interrupt servers and gservers properties */
175 for (i
= 0; i
< smt_threads
; i
++) {
176 servers_prop
[i
] = cpu_to_be32(index
+ i
);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
179 gservers_prop
[i
*2 + 1] = 0;
181 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
182 servers_prop
, sizeof(servers_prop
));
186 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop
, sizeof(gservers_prop
));
192 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
)
194 int index
= spapr_get_vcpu_id(cpu
);
195 uint32_t associativity
[] = {cpu_to_be32(0x5),
199 cpu_to_be32(cpu
->node_id
),
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
204 sizeof(associativity
));
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(sPAPRMachineState
*spapr
,
210 void *fdt
, int offset
,
213 uint8_t pa_features_206
[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207
[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300
[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245 uint8_t *pa_features
= NULL
;
248 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
249 pa_features
= pa_features_206
;
250 pa_size
= sizeof(pa_features_206
);
252 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
253 pa_features
= pa_features_207
;
254 pa_size
= sizeof(pa_features_207
);
256 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
257 pa_features
= pa_features_300
;
258 pa_size
= sizeof(pa_features_300
);
264 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
272 pa_features
[3] |= 0x20;
274 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
275 pa_features
[24] |= 0x80; /* Transactional memory support */
277 if (legacy_guest
&& pa_size
> 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
284 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
287 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
289 int ret
= 0, offset
, cpus_offset
;
292 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
295 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
296 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
297 int index
= spapr_get_vcpu_id(cpu
);
298 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
300 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
304 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
306 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
307 if (cpus_offset
< 0) {
308 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
309 if (cpus_offset
< 0) {
313 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
315 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
321 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
322 pft_size_prop
, sizeof(pft_size_prop
));
327 if (nb_numa_nodes
> 1) {
328 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
);
334 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
);
339 spapr_populate_pa_features(spapr
, cpu
, fdt
, offset
,
340 spapr
->cas_legacy_guest_workaround
);
345 static hwaddr
spapr_node0_size(MachineState
*machine
)
349 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
350 if (numa_info
[i
].node_mem
) {
351 return MIN(pow2floor(numa_info
[i
].node_mem
),
356 return machine
->ram_size
;
359 static void add_str(GString
*s
, const gchar
*s1
)
361 g_string_append_len(s
, s1
, strlen(s1
) + 1);
364 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
367 uint32_t associativity
[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
373 uint64_t mem_reg_property
[2];
376 mem_reg_property
[0] = cpu_to_be64(start
);
377 mem_reg_property
[1] = cpu_to_be64(size
);
379 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
380 off
= fdt_add_subnode(fdt
, 0, mem_name
);
382 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
384 sizeof(mem_reg_property
))));
385 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
386 sizeof(associativity
))));
390 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
392 MachineState
*machine
= MACHINE(spapr
);
393 hwaddr mem_start
, node_size
;
394 int i
, nb_nodes
= nb_numa_nodes
;
395 NodeInfo
*nodes
= numa_info
;
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes
) {
401 ramnode
.node_mem
= machine
->ram_size
;
405 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
406 if (!nodes
[i
].node_mem
) {
409 if (mem_start
>= machine
->ram_size
) {
412 node_size
= nodes
[i
].node_mem
;
413 if (node_size
> machine
->ram_size
- mem_start
) {
414 node_size
= machine
->ram_size
- mem_start
;
418 /* spapr_machine_init() checks for rma_size <= node0_size
420 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
421 mem_start
+= spapr
->rma_size
;
422 node_size
-= spapr
->rma_size
;
424 for ( ; node_size
; ) {
425 hwaddr sizetmp
= pow2floor(node_size
);
427 /* mem_start != 0 here */
428 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
429 sizetmp
= 1ULL << ctzl(mem_start
);
432 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
433 node_size
-= sizetmp
;
434 mem_start
+= sizetmp
;
441 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
442 sPAPRMachineState
*spapr
)
444 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
445 CPUPPCState
*env
= &cpu
->env
;
446 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
447 int index
= spapr_get_vcpu_id(cpu
);
448 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ
;
452 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop
[64];
454 size_t page_sizes_prop_size
;
455 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
456 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
457 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
458 sPAPRDRConnector
*drc
;
460 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
463 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
465 drc_index
= spapr_drc_index(drc
);
466 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
469 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
470 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
472 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
473 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
474 env
->dcache_line_size
)));
475 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
476 env
->dcache_line_size
)));
477 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
478 env
->icache_line_size
)));
479 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
480 env
->icache_line_size
)));
482 if (pcc
->l1_dcache_size
) {
483 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
484 pcc
->l1_dcache_size
)));
486 warn_report("Unknown L1 dcache size for cpu");
488 if (pcc
->l1_icache_size
) {
489 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
490 pcc
->l1_icache_size
)));
492 warn_report("Unknown L1 icache size for cpu");
495 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
496 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
497 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
498 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
499 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
500 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
502 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
503 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
506 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
507 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
508 segs
, sizeof(segs
))));
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
518 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
520 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
527 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
530 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
531 sizeof(page_sizes_prop
));
532 if (page_sizes_prop_size
) {
533 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
534 page_sizes_prop
, page_sizes_prop_size
)));
537 spapr_populate_pa_features(spapr
, cpu
, fdt
, offset
, false);
539 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
540 cs
->cpu_index
/ vcpus_per_socket
)));
542 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
543 pft_size_prop
, sizeof(pft_size_prop
))));
545 if (nb_numa_nodes
> 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cpu
));
549 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
551 if (pcc
->radix_page_info
) {
552 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
553 radix_AP_encodings
[i
] =
554 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
556 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
558 pcc
->radix_page_info
->count
*
559 sizeof(radix_AP_encodings
[0]))));
563 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
572 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
574 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
575 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
578 * We walk the CPUs in reverse order to ensure that CPU DT nodes
579 * created by fdt_add_subnode() end up in the right order in FDT
580 * for the guest kernel the enumerate the CPUs correctly.
582 * The CPU list cannot be traversed in reverse order, so we need
588 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
592 for (i
= n_cpus
- 1; i
>= 0; i
--) {
593 CPUState
*cs
= rev
[i
];
594 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
595 int index
= spapr_get_vcpu_id(cpu
);
596 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
599 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
603 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
604 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
607 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
613 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
615 MemoryDeviceInfoList
*info
;
617 for (info
= list
; info
; info
= info
->next
) {
618 MemoryDeviceInfo
*value
= info
->value
;
620 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
621 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
623 if (addr
>= pcdimm_info
->addr
&&
624 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
625 return pcdimm_info
->node
;
633 struct sPAPRDrconfCellV2
{
641 typedef struct DrconfCellQueue
{
642 struct sPAPRDrconfCellV2 cell
;
643 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
646 static DrconfCellQueue
*
647 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
648 uint32_t drc_index
, uint32_t aa_index
,
651 DrconfCellQueue
*elem
;
653 elem
= g_malloc0(sizeof(*elem
));
654 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
655 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
656 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
657 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
658 elem
->cell
.flags
= cpu_to_be32(flags
);
663 /* ibm,dynamic-memory-v2 */
664 static int spapr_populate_drmem_v2(sPAPRMachineState
*spapr
, void *fdt
,
665 int offset
, MemoryDeviceInfoList
*dimms
)
667 MachineState
*machine
= MACHINE(spapr
);
668 uint8_t *int_buf
, *cur_index
, buf_len
;
670 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
671 uint64_t addr
, cur_addr
, size
;
672 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
673 uint64_t mem_end
= machine
->device_memory
->base
+
674 memory_region_size(&machine
->device_memory
->mr
);
675 uint32_t node
, nr_entries
= 0;
676 sPAPRDRConnector
*drc
;
677 DrconfCellQueue
*elem
, *next
;
678 MemoryDeviceInfoList
*info
;
679 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
680 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
682 /* Entry to cover RAM and the gap area */
683 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
684 SPAPR_LMB_FLAGS_RESERVED
|
685 SPAPR_LMB_FLAGS_DRC_INVALID
);
686 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
689 cur_addr
= machine
->device_memory
->base
;
690 for (info
= dimms
; info
; info
= info
->next
) {
691 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
697 /* Entry for hot-pluggable area */
698 if (cur_addr
< addr
) {
699 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
701 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
702 cur_addr
, spapr_drc_index(drc
), -1, 0);
703 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
708 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
710 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
711 spapr_drc_index(drc
), node
,
712 SPAPR_LMB_FLAGS_ASSIGNED
);
713 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
715 cur_addr
= addr
+ size
;
718 /* Entry for remaining hotpluggable area */
719 if (cur_addr
< mem_end
) {
720 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
722 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
723 cur_addr
, spapr_drc_index(drc
), -1, 0);
724 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
728 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
729 int_buf
= cur_index
= g_malloc0(buf_len
);
730 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
731 cur_index
+= sizeof(nr_entries
);
733 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
734 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
735 cur_index
+= sizeof(elem
->cell
);
736 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
740 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
748 /* ibm,dynamic-memory */
749 static int spapr_populate_drmem_v1(sPAPRMachineState
*spapr
, void *fdt
,
750 int offset
, MemoryDeviceInfoList
*dimms
)
752 MachineState
*machine
= MACHINE(spapr
);
754 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
755 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
756 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
757 memory_region_size(&machine
->device_memory
->mr
)) /
759 uint32_t *int_buf
, *cur_index
, buf_len
;
762 * Allocate enough buffer size to fit in ibm,dynamic-memory
764 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
765 cur_index
= int_buf
= g_malloc0(buf_len
);
766 int_buf
[0] = cpu_to_be32(nr_lmbs
);
768 for (i
= 0; i
< nr_lmbs
; i
++) {
769 uint64_t addr
= i
* lmb_size
;
770 uint32_t *dynamic_memory
= cur_index
;
772 if (i
>= device_lmb_start
) {
773 sPAPRDRConnector
*drc
;
775 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
778 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
779 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
780 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
781 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
782 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
783 if (memory_region_present(get_system_memory(), addr
)) {
784 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
786 dynamic_memory
[5] = cpu_to_be32(0);
790 * LMB information for RMA, boot time RAM and gap b/n RAM and
791 * device memory region -- all these are marked as reserved
792 * and as having no valid DRC.
794 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
795 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
796 dynamic_memory
[2] = cpu_to_be32(0);
797 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
798 dynamic_memory
[4] = cpu_to_be32(-1);
799 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
800 SPAPR_LMB_FLAGS_DRC_INVALID
);
803 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
805 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
814 * Adds ibm,dynamic-reconfiguration-memory node.
815 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
816 * of this device tree node.
818 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
820 MachineState
*machine
= MACHINE(spapr
);
822 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
823 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
824 uint32_t *int_buf
, *cur_index
, buf_len
;
825 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
826 MemoryDeviceInfoList
*dimms
= NULL
;
829 * Don't create the node if there is no device memory
831 if (machine
->ram_size
== machine
->maxram_size
) {
835 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
837 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
838 sizeof(prop_lmb_size
));
843 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
848 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
853 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
854 dimms
= qmp_memory_device_list();
855 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
856 ret
= spapr_populate_drmem_v2(spapr
, fdt
, offset
, dimms
);
858 ret
= spapr_populate_drmem_v1(spapr
, fdt
, offset
, dimms
);
860 qapi_free_MemoryDeviceInfoList(dimms
);
866 /* ibm,associativity-lookup-arrays */
867 buf_len
= (nr_nodes
* 4 + 2) * sizeof(uint32_t);
868 cur_index
= int_buf
= g_malloc0(buf_len
);
871 int_buf
[0] = cpu_to_be32(nr_nodes
);
872 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
874 for (i
= 0; i
< nr_nodes
; i
++) {
875 uint32_t associativity
[] = {
881 memcpy(cur_index
, associativity
, sizeof(associativity
));
884 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
885 (cur_index
- int_buf
) * sizeof(uint32_t));
891 static int spapr_dt_cas_updates(sPAPRMachineState
*spapr
, void *fdt
,
892 sPAPROptionVector
*ov5_updates
)
894 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
897 /* Generate ibm,dynamic-reconfiguration-memory node if required */
898 if (spapr_ovec_test(ov5_updates
, OV5_DRCONF_MEMORY
)) {
899 g_assert(smc
->dr_lmb_enabled
);
900 ret
= spapr_populate_drconf_memory(spapr
, fdt
);
906 offset
= fdt_path_offset(fdt
, "/chosen");
908 offset
= fdt_add_subnode(fdt
, 0, "chosen");
913 ret
= spapr_ovec_populate_dt(fdt
, offset
, spapr
->ov5_cas
,
914 "ibm,architecture-vec-5");
920 static bool spapr_hotplugged_dev_before_cas(void)
922 Object
*drc_container
, *obj
;
923 ObjectProperty
*prop
;
924 ObjectPropertyIterator iter
;
926 drc_container
= container_get(object_get_root(), "/dr-connector");
927 object_property_iter_init(&iter
, drc_container
);
928 while ((prop
= object_property_iter_next(&iter
))) {
929 if (!strstart(prop
->type
, "link<", NULL
)) {
932 obj
= object_property_get_link(drc_container
, prop
->name
, NULL
);
933 if (spapr_drc_needed(obj
)) {
940 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
941 target_ulong addr
, target_ulong size
,
942 sPAPROptionVector
*ov5_updates
)
944 void *fdt
, *fdt_skel
;
945 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
947 if (spapr_hotplugged_dev_before_cas()) {
951 if (size
< sizeof(hdr
) || size
> FW_MAX_SIZE
) {
952 error_report("SLOF provided an unexpected CAS buffer size "
953 TARGET_FMT_lu
" (min: %zu, max: %u)",
954 size
, sizeof(hdr
), FW_MAX_SIZE
);
960 /* Create skeleton */
961 fdt_skel
= g_malloc0(size
);
962 _FDT((fdt_create(fdt_skel
, size
)));
963 _FDT((fdt_finish_reservemap(fdt_skel
)));
964 _FDT((fdt_begin_node(fdt_skel
, "")));
965 _FDT((fdt_end_node(fdt_skel
)));
966 _FDT((fdt_finish(fdt_skel
)));
967 fdt
= g_malloc0(size
);
968 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
971 /* Fixup cpu nodes */
972 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
974 if (spapr_dt_cas_updates(spapr
, fdt
, ov5_updates
)) {
978 /* Pack resulting tree */
979 _FDT((fdt_pack(fdt
)));
981 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
982 trace_spapr_cas_failed(size
);
986 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
987 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
988 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
994 static void spapr_dt_rtas(sPAPRMachineState
*spapr
, void *fdt
)
997 GString
*hypertas
= g_string_sized_new(256);
998 GString
*qemu_hypertas
= g_string_sized_new(256);
999 uint32_t refpoints
[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1000 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
1001 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
1002 uint32_t lrdr_capacity
[] = {
1003 cpu_to_be32(max_device_addr
>> 32),
1004 cpu_to_be32(max_device_addr
& 0xffffffff),
1005 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
),
1006 cpu_to_be32(max_cpus
/ smp_threads
),
1008 uint32_t maxdomains
[] = {
1013 cpu_to_be32(nb_numa_nodes
? nb_numa_nodes
- 1 : 0),
1016 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
1019 add_str(hypertas
, "hcall-pft");
1020 add_str(hypertas
, "hcall-term");
1021 add_str(hypertas
, "hcall-dabr");
1022 add_str(hypertas
, "hcall-interrupt");
1023 add_str(hypertas
, "hcall-tce");
1024 add_str(hypertas
, "hcall-vio");
1025 add_str(hypertas
, "hcall-splpar");
1026 add_str(hypertas
, "hcall-bulk");
1027 add_str(hypertas
, "hcall-set-mode");
1028 add_str(hypertas
, "hcall-sprg0");
1029 add_str(hypertas
, "hcall-copy");
1030 add_str(hypertas
, "hcall-debug");
1031 add_str(qemu_hypertas
, "hcall-memop1");
1033 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1034 add_str(hypertas
, "hcall-multi-tce");
1037 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
1038 add_str(hypertas
, "hcall-hpt-resize");
1041 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
1042 hypertas
->str
, hypertas
->len
));
1043 g_string_free(hypertas
, TRUE
);
1044 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
1045 qemu_hypertas
->str
, qemu_hypertas
->len
));
1046 g_string_free(qemu_hypertas
, TRUE
);
1048 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
1049 refpoints
, sizeof(refpoints
)));
1051 _FDT(fdt_setprop(fdt
, rtas
, "ibm,max-associativity-domains",
1052 maxdomains
, sizeof(maxdomains
)));
1054 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
1055 RTAS_ERROR_LOG_MAX
));
1056 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
1057 RTAS_EVENT_SCAN_RATE
));
1059 g_assert(msi_nonbroken
);
1060 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
1063 * According to PAPR, rtas ibm,os-term does not guarantee a return
1064 * back to the guest cpu.
1066 * While an additional ibm,extended-os-term property indicates
1067 * that rtas call return will always occur. Set this property.
1069 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
1071 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
1072 lrdr_capacity
, sizeof(lrdr_capacity
)));
1074 spapr_dt_rtas_tokens(fdt
, rtas
);
1077 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1078 * that the guest may request and thus the valid values for bytes 24..26 of
1079 * option vector 5: */
1080 static void spapr_dt_ov5_platform_support(void *fdt
, int chosen
)
1082 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1085 23, 0x00, /* Xive mode, filled in below. */
1086 24, 0x00, /* Hash/Radix, filled in below. */
1087 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1088 26, 0x40, /* Radix options: GTSE == yes. */
1091 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
1092 first_ppc_cpu
->compat_pvr
)) {
1093 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1094 val
[3] = 0x00; /* Hash */
1095 } else if (kvm_enabled()) {
1096 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1097 val
[3] = 0x80; /* OV5_MMU_BOTH */
1098 } else if (kvmppc_has_cap_mmu_radix()) {
1099 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
1101 val
[3] = 0x00; /* Hash */
1104 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1107 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1111 static void spapr_dt_chosen(sPAPRMachineState
*spapr
, void *fdt
)
1113 MachineState
*machine
= MACHINE(spapr
);
1115 const char *boot_device
= machine
->boot_order
;
1116 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1118 char *bootlist
= get_boot_devices_list(&cb
);
1120 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1122 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs", machine
->kernel_cmdline
));
1123 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1124 spapr
->initrd_base
));
1125 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1126 spapr
->initrd_base
+ spapr
->initrd_size
));
1128 if (spapr
->kernel_size
) {
1129 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
1130 cpu_to_be64(spapr
->kernel_size
) };
1132 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1133 &kprop
, sizeof(kprop
)));
1134 if (spapr
->kernel_le
) {
1135 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1139 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1141 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1142 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1143 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1145 if (cb
&& bootlist
) {
1148 for (i
= 0; i
< cb
; i
++) {
1149 if (bootlist
[i
] == '\n') {
1153 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1156 if (boot_device
&& strlen(boot_device
)) {
1157 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1160 if (!spapr
->has_graphics
&& stdout_path
) {
1162 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1163 * kernel. New platforms should only use the "stdout-path" property. Set
1164 * the new property and continue using older property to remain
1165 * compatible with the existing firmware.
1167 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1168 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1171 spapr_dt_ov5_platform_support(fdt
, chosen
);
1173 g_free(stdout_path
);
1177 static void spapr_dt_hypervisor(sPAPRMachineState
*spapr
, void *fdt
)
1179 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1180 * KVM to work under pHyp with some guest co-operation */
1182 uint8_t hypercall
[16];
1184 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1185 /* indicate KVM hypercall interface */
1186 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1187 if (kvmppc_has_cap_fixup_hcalls()) {
1189 * Older KVM versions with older guest kernels were broken
1190 * with the magic page, don't allow the guest to map it.
1192 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1193 sizeof(hypercall
))) {
1194 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1195 hypercall
, sizeof(hypercall
)));
1200 static void *spapr_build_fdt(sPAPRMachineState
*spapr
,
1204 MachineState
*machine
= MACHINE(spapr
);
1205 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1206 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1212 fdt
= g_malloc0(FDT_MAX_SIZE
);
1213 _FDT((fdt_create_empty_tree(fdt
, FDT_MAX_SIZE
)));
1216 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1217 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1218 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1221 * Add info to guest to indentify which host is it being run on
1222 * and what is the uuid of the guest
1224 if (kvmppc_get_host_model(&buf
)) {
1225 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1228 if (kvmppc_get_host_serial(&buf
)) {
1229 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1233 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1235 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1236 if (qemu_uuid_set
) {
1237 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1241 if (qemu_get_vm_name()) {
1242 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1243 qemu_get_vm_name()));
1246 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1247 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1249 /* /interrupt controller */
1250 spapr_dt_xics(xics_max_server_number(spapr
), fdt
, PHANDLE_XICP
);
1252 ret
= spapr_populate_memory(spapr
, fdt
);
1254 error_report("couldn't setup memory nodes in fdt");
1259 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1261 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1262 ret
= spapr_rng_populate_dt(fdt
);
1264 error_report("could not set up rng device in the fdt");
1269 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1270 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
, smc
->irq
->nr_msis
);
1272 error_report("couldn't setup PCI devices in fdt");
1278 spapr_populate_cpus_dt_node(fdt
, spapr
);
1280 if (smc
->dr_lmb_enabled
) {
1281 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
1284 if (mc
->has_hotpluggable_cpus
) {
1285 int offset
= fdt_path_offset(fdt
, "/cpus");
1286 ret
= spapr_drc_populate_dt(fdt
, offset
, NULL
,
1287 SPAPR_DR_CONNECTOR_TYPE_CPU
);
1289 error_report("Couldn't set up CPU DR device tree properties");
1294 /* /event-sources */
1295 spapr_dt_events(spapr
, fdt
);
1298 spapr_dt_rtas(spapr
, fdt
);
1301 spapr_dt_chosen(spapr
, fdt
);
1304 if (kvm_enabled()) {
1305 spapr_dt_hypervisor(spapr
, fdt
);
1308 /* Build memory reserve map */
1309 if (spapr
->kernel_size
) {
1310 _FDT((fdt_add_mem_rsv(fdt
, KERNEL_LOAD_ADDR
, spapr
->kernel_size
)));
1312 if (spapr
->initrd_size
) {
1313 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
, spapr
->initrd_size
)));
1316 /* ibm,client-architecture-support updates */
1317 ret
= spapr_dt_cas_updates(spapr
, fdt
, spapr
->ov5_cas
);
1319 error_report("couldn't setup CAS properties fdt");
1326 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1328 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
1331 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1334 CPUPPCState
*env
= &cpu
->env
;
1336 /* The TCG path should also be holding the BQL at this point */
1337 g_assert(qemu_mutex_iothread_locked());
1340 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1341 env
->gpr
[3] = H_PRIVILEGE
;
1343 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1347 static uint64_t spapr_get_patbe(PPCVirtualHypervisor
*vhyp
)
1349 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1351 return spapr
->patb_entry
;
1354 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1355 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1356 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1357 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1358 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1361 * Get the fd to access the kernel htab, re-opening it if necessary
1363 static int get_htab_fd(sPAPRMachineState
*spapr
)
1365 Error
*local_err
= NULL
;
1367 if (spapr
->htab_fd
>= 0) {
1368 return spapr
->htab_fd
;
1371 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1372 if (spapr
->htab_fd
< 0) {
1373 error_report_err(local_err
);
1376 return spapr
->htab_fd
;
1379 void close_htab_fd(sPAPRMachineState
*spapr
)
1381 if (spapr
->htab_fd
>= 0) {
1382 close(spapr
->htab_fd
);
1384 spapr
->htab_fd
= -1;
1387 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1389 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1391 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1394 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1396 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1398 assert(kvm_enabled());
1404 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1407 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1410 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1411 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1415 * HTAB is controlled by KVM. Fetch into temporary buffer
1417 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1418 kvmppc_read_hptes(hptes
, ptex
, n
);
1423 * HTAB is controlled by QEMU. Just point to the internally
1426 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1429 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1430 const ppc_hash_pte64_t
*hptes
,
1433 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1436 g_free((void *)hptes
);
1439 /* Nothing to do for qemu managed HPT */
1442 static void spapr_store_hpte(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1443 uint64_t pte0
, uint64_t pte1
)
1445 sPAPRMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1446 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1449 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1451 stq_p(spapr
->htab
+ offset
, pte0
);
1452 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1456 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1460 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1461 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1462 * that's much more than is needed for Linux guests */
1463 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1464 shift
= MAX(shift
, 18); /* Minimum architected size */
1465 shift
= MIN(shift
, 46); /* Maximum architected size */
1469 void spapr_free_hpt(sPAPRMachineState
*spapr
)
1471 g_free(spapr
->htab
);
1473 spapr
->htab_shift
= 0;
1474 close_htab_fd(spapr
);
1477 void spapr_reallocate_hpt(sPAPRMachineState
*spapr
, int shift
,
1482 /* Clean up any HPT info from a previous boot */
1483 spapr_free_hpt(spapr
);
1485 rc
= kvmppc_reset_htab(shift
);
1487 /* kernel-side HPT needed, but couldn't allocate one */
1488 error_setg_errno(errp
, errno
,
1489 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1491 /* This is almost certainly fatal, but if the caller really
1492 * wants to carry on with shift == 0, it's welcome to try */
1493 } else if (rc
> 0) {
1494 /* kernel-side HPT allocated */
1497 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1501 spapr
->htab_shift
= shift
;
1504 /* kernel-side HPT not needed, allocate in userspace instead */
1505 size_t size
= 1ULL << shift
;
1508 spapr
->htab
= qemu_memalign(size
, size
);
1510 error_setg_errno(errp
, errno
,
1511 "Could not allocate HPT of order %d", shift
);
1515 memset(spapr
->htab
, 0, size
);
1516 spapr
->htab_shift
= shift
;
1518 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1519 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1522 /* We're setting up a hash table, so that means we're not radix */
1523 spapr
->patb_entry
= 0;
1526 void spapr_setup_hpt_and_vrma(sPAPRMachineState
*spapr
)
1530 if ((spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
)
1531 || (spapr
->cas_reboot
1532 && !spapr_ovec_test(spapr
->ov5_cas
, OV5_HPT_RESIZE
))) {
1533 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1535 uint64_t current_ram_size
;
1537 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1538 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1540 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1542 if (spapr
->vrma_adjust
) {
1543 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(MACHINE(spapr
)),
1548 static int spapr_reset_drcs(Object
*child
, void *opaque
)
1550 sPAPRDRConnector
*drc
=
1551 (sPAPRDRConnector
*) object_dynamic_cast(child
,
1552 TYPE_SPAPR_DR_CONNECTOR
);
1555 spapr_drc_reset(drc
);
1561 static void spapr_machine_reset(void)
1563 MachineState
*machine
= MACHINE(qdev_get_machine());
1564 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1565 PowerPCCPU
*first_ppc_cpu
;
1566 uint32_t rtas_limit
;
1567 hwaddr rtas_addr
, fdt_addr
;
1571 spapr_caps_apply(spapr
);
1573 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1574 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1575 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1576 spapr
->max_compat_pvr
)) {
1577 /* If using KVM with radix mode available, VCPUs can be started
1578 * without a HPT because KVM will start them in radix mode.
1579 * Set the GR bit in PATB so that we know there is no HPT. */
1580 spapr
->patb_entry
= PATBE1_GR
;
1582 spapr_setup_hpt_and_vrma(spapr
);
1585 /* if this reset wasn't generated by CAS, we should reset our
1586 * negotiated options and start from scratch */
1587 if (!spapr
->cas_reboot
) {
1588 spapr_ovec_cleanup(spapr
->ov5_cas
);
1589 spapr
->ov5_cas
= spapr_ovec_new();
1591 ppc_set_compat(first_ppc_cpu
, spapr
->max_compat_pvr
, &error_fatal
);
1594 if (!SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
1595 spapr_irq_msi_reset(spapr
);
1598 qemu_devices_reset();
1600 /* DRC reset may cause a device to be unplugged. This will cause troubles
1601 * if this device is used by another device (eg, a running vhost backend
1602 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1603 * situations, we reset DRCs after all devices have been reset.
1605 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs
, NULL
);
1607 spapr_clear_pending_events(spapr
);
1610 * We place the device tree and RTAS just below either the top of the RMA,
1611 * or just below 2GB, whichever is lowere, so that it can be
1612 * processed with 32-bit real mode code if necessary
1614 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1615 rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1616 fdt_addr
= rtas_addr
- FDT_MAX_SIZE
;
1618 fdt
= spapr_build_fdt(spapr
, rtas_addr
, spapr
->rtas_size
);
1620 spapr_load_rtas(spapr
, fdt
, rtas_addr
);
1624 /* Should only fail if we've built a corrupted tree */
1627 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
1628 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1629 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
1634 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1635 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1638 /* Set up the entry state */
1639 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
, fdt_addr
);
1640 first_ppc_cpu
->env
.gpr
[5] = 0;
1642 spapr
->cas_reboot
= false;
1645 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1647 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1648 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1651 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1655 qdev_init_nofail(dev
);
1657 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1660 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1662 object_initialize(&spapr
->rtc
, sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
);
1663 object_property_add_child(OBJECT(spapr
), "rtc", OBJECT(&spapr
->rtc
),
1665 object_property_set_bool(OBJECT(&spapr
->rtc
), true, "realized",
1667 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1668 "date", &error_fatal
);
1671 /* Returns whether we want to use VGA or not */
1672 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1674 switch (vga_interface_type
) {
1681 return pci_vga_init(pci_bus
) != NULL
;
1684 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1689 static int spapr_pre_load(void *opaque
)
1693 rc
= spapr_caps_pre_load(opaque
);
1701 static int spapr_post_load(void *opaque
, int version_id
)
1703 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1706 err
= spapr_caps_post_migration(spapr
);
1711 if (!object_dynamic_cast(OBJECT(spapr
->ics
), TYPE_ICS_KVM
)) {
1714 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1715 icp_resend(ICP(cpu
->intc
));
1719 /* In earlier versions, there was no separate qdev for the PAPR
1720 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1721 * So when migrating from those versions, poke the incoming offset
1722 * value into the RTC device */
1723 if (version_id
< 3) {
1724 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1727 if (kvm_enabled() && spapr
->patb_entry
) {
1728 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1729 bool radix
= !!(spapr
->patb_entry
& PATBE1_GR
);
1730 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1732 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1734 error_report("Process table config unsupported by the host");
1742 static int spapr_pre_save(void *opaque
)
1746 rc
= spapr_caps_pre_save(opaque
);
1754 static bool version_before_3(void *opaque
, int version_id
)
1756 return version_id
< 3;
1759 static bool spapr_pending_events_needed(void *opaque
)
1761 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1762 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1765 static const VMStateDescription vmstate_spapr_event_entry
= {
1766 .name
= "spapr_event_log_entry",
1768 .minimum_version_id
= 1,
1769 .fields
= (VMStateField
[]) {
1770 VMSTATE_UINT32(summary
, sPAPREventLogEntry
),
1771 VMSTATE_UINT32(extended_length
, sPAPREventLogEntry
),
1772 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, sPAPREventLogEntry
, 0,
1773 NULL
, extended_length
),
1774 VMSTATE_END_OF_LIST()
1778 static const VMStateDescription vmstate_spapr_pending_events
= {
1779 .name
= "spapr_pending_events",
1781 .minimum_version_id
= 1,
1782 .needed
= spapr_pending_events_needed
,
1783 .fields
= (VMStateField
[]) {
1784 VMSTATE_QTAILQ_V(pending_events
, sPAPRMachineState
, 1,
1785 vmstate_spapr_event_entry
, sPAPREventLogEntry
, next
),
1786 VMSTATE_END_OF_LIST()
1790 static bool spapr_ov5_cas_needed(void *opaque
)
1792 sPAPRMachineState
*spapr
= opaque
;
1793 sPAPROptionVector
*ov5_mask
= spapr_ovec_new();
1794 sPAPROptionVector
*ov5_legacy
= spapr_ovec_new();
1795 sPAPROptionVector
*ov5_removed
= spapr_ovec_new();
1798 /* Prior to the introduction of sPAPROptionVector, we had two option
1799 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1800 * Both of these options encode machine topology into the device-tree
1801 * in such a way that the now-booted OS should still be able to interact
1802 * appropriately with QEMU regardless of what options were actually
1803 * negotiatied on the source side.
1805 * As such, we can avoid migrating the CAS-negotiated options if these
1806 * are the only options available on the current machine/platform.
1807 * Since these are the only options available for pseries-2.7 and
1808 * earlier, this allows us to maintain old->new/new->old migration
1811 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1812 * via default pseries-2.8 machines and explicit command-line parameters.
1813 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1814 * of the actual CAS-negotiated values to continue working properly. For
1815 * example, availability of memory unplug depends on knowing whether
1816 * OV5_HP_EVT was negotiated via CAS.
1818 * Thus, for any cases where the set of available CAS-negotiatable
1819 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1820 * include the CAS-negotiated options in the migration stream, unless
1821 * if they affect boot time behaviour only.
1823 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1824 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1825 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1827 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1828 * the mask itself since in the future it's possible "legacy" bits may be
1829 * removed via machine options, which could generate a false positive
1830 * that breaks migration.
1832 spapr_ovec_intersect(ov5_legacy
, spapr
->ov5
, ov5_mask
);
1833 cas_needed
= spapr_ovec_diff(ov5_removed
, spapr
->ov5
, ov5_legacy
);
1835 spapr_ovec_cleanup(ov5_mask
);
1836 spapr_ovec_cleanup(ov5_legacy
);
1837 spapr_ovec_cleanup(ov5_removed
);
1842 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1843 .name
= "spapr_option_vector_ov5_cas",
1845 .minimum_version_id
= 1,
1846 .needed
= spapr_ov5_cas_needed
,
1847 .fields
= (VMStateField
[]) {
1848 VMSTATE_STRUCT_POINTER_V(ov5_cas
, sPAPRMachineState
, 1,
1849 vmstate_spapr_ovec
, sPAPROptionVector
),
1850 VMSTATE_END_OF_LIST()
1854 static bool spapr_patb_entry_needed(void *opaque
)
1856 sPAPRMachineState
*spapr
= opaque
;
1858 return !!spapr
->patb_entry
;
1861 static const VMStateDescription vmstate_spapr_patb_entry
= {
1862 .name
= "spapr_patb_entry",
1864 .minimum_version_id
= 1,
1865 .needed
= spapr_patb_entry_needed
,
1866 .fields
= (VMStateField
[]) {
1867 VMSTATE_UINT64(patb_entry
, sPAPRMachineState
),
1868 VMSTATE_END_OF_LIST()
1872 static bool spapr_irq_map_needed(void *opaque
)
1874 sPAPRMachineState
*spapr
= opaque
;
1876 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
1879 static const VMStateDescription vmstate_spapr_irq_map
= {
1880 .name
= "spapr_irq_map",
1882 .minimum_version_id
= 1,
1883 .needed
= spapr_irq_map_needed
,
1884 .fields
= (VMStateField
[]) {
1885 VMSTATE_BITMAP(irq_map
, sPAPRMachineState
, 0, irq_map_nr
),
1886 VMSTATE_END_OF_LIST()
1890 static const VMStateDescription vmstate_spapr
= {
1893 .minimum_version_id
= 1,
1894 .pre_load
= spapr_pre_load
,
1895 .post_load
= spapr_post_load
,
1896 .pre_save
= spapr_pre_save
,
1897 .fields
= (VMStateField
[]) {
1898 /* used to be @next_irq */
1899 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1902 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1904 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1905 VMSTATE_END_OF_LIST()
1907 .subsections
= (const VMStateDescription
*[]) {
1908 &vmstate_spapr_ov5_cas
,
1909 &vmstate_spapr_patb_entry
,
1910 &vmstate_spapr_pending_events
,
1911 &vmstate_spapr_cap_htm
,
1912 &vmstate_spapr_cap_vsx
,
1913 &vmstate_spapr_cap_dfp
,
1914 &vmstate_spapr_cap_cfpc
,
1915 &vmstate_spapr_cap_sbbc
,
1916 &vmstate_spapr_cap_ibs
,
1917 &vmstate_spapr_irq_map
,
1922 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1924 sPAPRMachineState
*spapr
= opaque
;
1926 /* "Iteration" header */
1927 if (!spapr
->htab_shift
) {
1928 qemu_put_be32(f
, -1);
1930 qemu_put_be32(f
, spapr
->htab_shift
);
1934 spapr
->htab_save_index
= 0;
1935 spapr
->htab_first_pass
= true;
1937 if (spapr
->htab_shift
) {
1938 assert(kvm_enabled());
1946 static void htab_save_chunk(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1947 int chunkstart
, int n_valid
, int n_invalid
)
1949 qemu_put_be32(f
, chunkstart
);
1950 qemu_put_be16(f
, n_valid
);
1951 qemu_put_be16(f
, n_invalid
);
1952 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1953 HASH_PTE_SIZE_64
* n_valid
);
1956 static void htab_save_end_marker(QEMUFile
*f
)
1958 qemu_put_be32(f
, 0);
1959 qemu_put_be16(f
, 0);
1960 qemu_put_be16(f
, 0);
1963 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1966 bool has_timeout
= max_ns
!= -1;
1967 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1968 int index
= spapr
->htab_save_index
;
1969 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1971 assert(spapr
->htab_first_pass
);
1976 /* Consume invalid HPTEs */
1977 while ((index
< htabslots
)
1978 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1979 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1983 /* Consume valid HPTEs */
1985 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1986 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1987 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1991 if (index
> chunkstart
) {
1992 int n_valid
= index
- chunkstart
;
1994 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
1997 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2001 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2003 if (index
>= htabslots
) {
2004 assert(index
== htabslots
);
2006 spapr
->htab_first_pass
= false;
2008 spapr
->htab_save_index
= index
;
2011 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
2014 bool final
= max_ns
< 0;
2015 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2016 int examined
= 0, sent
= 0;
2017 int index
= spapr
->htab_save_index
;
2018 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2020 assert(!spapr
->htab_first_pass
);
2023 int chunkstart
, invalidstart
;
2025 /* Consume non-dirty HPTEs */
2026 while ((index
< htabslots
)
2027 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2033 /* Consume valid dirty HPTEs */
2034 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2035 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2036 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2037 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2042 invalidstart
= index
;
2043 /* Consume invalid dirty HPTEs */
2044 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2045 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2046 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2047 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2052 if (index
> chunkstart
) {
2053 int n_valid
= invalidstart
- chunkstart
;
2054 int n_invalid
= index
- invalidstart
;
2056 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2057 sent
+= index
- chunkstart
;
2059 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2064 if (examined
>= htabslots
) {
2068 if (index
>= htabslots
) {
2069 assert(index
== htabslots
);
2072 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2074 if (index
>= htabslots
) {
2075 assert(index
== htabslots
);
2079 spapr
->htab_save_index
= index
;
2081 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2084 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2085 #define MAX_KVM_BUF_SIZE 2048
2087 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2089 sPAPRMachineState
*spapr
= opaque
;
2093 /* Iteration header */
2094 if (!spapr
->htab_shift
) {
2095 qemu_put_be32(f
, -1);
2098 qemu_put_be32(f
, 0);
2102 assert(kvm_enabled());
2104 fd
= get_htab_fd(spapr
);
2109 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2113 } else if (spapr
->htab_first_pass
) {
2114 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2116 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2119 htab_save_end_marker(f
);
2124 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2126 sPAPRMachineState
*spapr
= opaque
;
2129 /* Iteration header */
2130 if (!spapr
->htab_shift
) {
2131 qemu_put_be32(f
, -1);
2134 qemu_put_be32(f
, 0);
2140 assert(kvm_enabled());
2142 fd
= get_htab_fd(spapr
);
2147 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2152 if (spapr
->htab_first_pass
) {
2153 htab_save_first_pass(f
, spapr
, -1);
2155 htab_save_later_pass(f
, spapr
, -1);
2159 htab_save_end_marker(f
);
2164 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2166 sPAPRMachineState
*spapr
= opaque
;
2167 uint32_t section_hdr
;
2169 Error
*local_err
= NULL
;
2171 if (version_id
< 1 || version_id
> 1) {
2172 error_report("htab_load() bad version");
2176 section_hdr
= qemu_get_be32(f
);
2178 if (section_hdr
== -1) {
2179 spapr_free_hpt(spapr
);
2184 /* First section gives the htab size */
2185 spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2187 error_report_err(local_err
);
2194 assert(kvm_enabled());
2196 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2198 error_report_err(local_err
);
2205 uint16_t n_valid
, n_invalid
;
2207 index
= qemu_get_be32(f
);
2208 n_valid
= qemu_get_be16(f
);
2209 n_invalid
= qemu_get_be16(f
);
2211 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2216 if ((index
+ n_valid
+ n_invalid
) >
2217 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2218 /* Bad index in stream */
2220 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2221 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2227 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2228 HASH_PTE_SIZE_64
* n_valid
);
2231 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2232 HASH_PTE_SIZE_64
* n_invalid
);
2239 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
2254 static void htab_save_cleanup(void *opaque
)
2256 sPAPRMachineState
*spapr
= opaque
;
2258 close_htab_fd(spapr
);
2261 static SaveVMHandlers savevm_htab_handlers
= {
2262 .save_setup
= htab_save_setup
,
2263 .save_live_iterate
= htab_save_iterate
,
2264 .save_live_complete_precopy
= htab_save_complete
,
2265 .save_cleanup
= htab_save_cleanup
,
2266 .load_state
= htab_load
,
2269 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2272 MachineState
*machine
= MACHINE(opaque
);
2273 machine
->boot_order
= g_strdup(boot_device
);
2276 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
2278 MachineState
*machine
= MACHINE(spapr
);
2279 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2280 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2283 for (i
= 0; i
< nr_lmbs
; i
++) {
2286 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2287 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2293 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2294 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2295 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2297 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2301 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2302 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2303 " is not aligned to %" PRIu64
" MiB",
2305 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2309 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2310 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2311 " is not aligned to %" PRIu64
" MiB",
2313 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2317 for (i
= 0; i
< nb_numa_nodes
; i
++) {
2318 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2320 "Node %d memory size 0x%" PRIx64
2321 " is not aligned to %" PRIu64
" MiB",
2322 i
, numa_info
[i
].node_mem
,
2323 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2329 /* find cpu slot in machine->possible_cpus by core_id */
2330 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2332 int index
= id
/ smp_threads
;
2334 if (index
>= ms
->possible_cpus
->len
) {
2340 return &ms
->possible_cpus
->cpus
[index
];
2343 static void spapr_set_vsmt_mode(sPAPRMachineState
*spapr
, Error
**errp
)
2345 Error
*local_err
= NULL
;
2346 bool vsmt_user
= !!spapr
->vsmt
;
2347 int kvm_smt
= kvmppc_smt_threads();
2350 if (!kvm_enabled() && (smp_threads
> 1)) {
2351 error_setg(&local_err
, "TCG cannot support more than 1 thread/core "
2352 "on a pseries machine");
2355 if (!is_power_of_2(smp_threads
)) {
2356 error_setg(&local_err
, "Cannot support %d threads/core on a pseries "
2357 "machine because it must be a power of 2", smp_threads
);
2361 /* Detemine the VSMT mode to use: */
2363 if (spapr
->vsmt
< smp_threads
) {
2364 error_setg(&local_err
, "Cannot support VSMT mode %d"
2365 " because it must be >= threads/core (%d)",
2366 spapr
->vsmt
, smp_threads
);
2369 /* In this case, spapr->vsmt has been set by the command line */
2372 * Default VSMT value is tricky, because we need it to be as
2373 * consistent as possible (for migration), but this requires
2374 * changing it for at least some existing cases. We pick 8 as
2375 * the value that we'd get with KVM on POWER8, the
2376 * overwhelmingly common case in production systems.
2378 spapr
->vsmt
= MAX(8, smp_threads
);
2381 /* KVM: If necessary, set the SMT mode: */
2382 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2383 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2385 /* Looks like KVM isn't able to change VSMT mode */
2386 error_setg(&local_err
,
2387 "Failed to set KVM's VSMT mode to %d (errno %d)",
2389 /* We can live with that if the default one is big enough
2390 * for the number of threads, and a submultiple of the one
2391 * we want. In this case we'll waste some vcpu ids, but
2392 * behaviour will be correct */
2393 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2394 warn_report_err(local_err
);
2399 error_append_hint(&local_err
,
2400 "On PPC, a VM with %d threads/core"
2401 " on a host with %d threads/core"
2402 " requires the use of VSMT mode %d.\n",
2403 smp_threads
, kvm_smt
, spapr
->vsmt
);
2405 kvmppc_hint_smt_possible(&local_err
);
2410 /* else TCG: nothing to do currently */
2412 error_propagate(errp
, local_err
);
2415 static void spapr_init_cpus(sPAPRMachineState
*spapr
)
2417 MachineState
*machine
= MACHINE(spapr
);
2418 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2419 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2420 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2421 const CPUArchIdList
*possible_cpus
;
2422 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2425 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2426 if (mc
->has_hotpluggable_cpus
) {
2427 if (smp_cpus
% smp_threads
) {
2428 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2429 smp_cpus
, smp_threads
);
2432 if (max_cpus
% smp_threads
) {
2433 error_report("max_cpus (%u) must be multiple of threads (%u)",
2434 max_cpus
, smp_threads
);
2438 if (max_cpus
!= smp_cpus
) {
2439 error_report("This machine version does not support CPU hotplug");
2442 boot_cores_nr
= possible_cpus
->len
;
2445 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2446 * call xics_max_server_number() or spapr_vcpu_id().
2448 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2450 if (smc
->pre_2_10_has_unused_icps
) {
2453 for (i
= 0; i
< xics_max_server_number(spapr
); i
++) {
2454 /* Dummy entries get deregistered when real ICPState objects
2455 * are registered during CPU core hotplug.
2457 pre_2_10_vmstate_register_dummy_icp(i
);
2461 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2462 int core_id
= i
* smp_threads
;
2464 if (mc
->has_hotpluggable_cpus
) {
2465 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2466 spapr_vcpu_id(spapr
, core_id
));
2469 if (i
< boot_cores_nr
) {
2470 Object
*core
= object_new(type
);
2471 int nr_threads
= smp_threads
;
2473 /* Handle the partially filled core for older machine types */
2474 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2475 nr_threads
= smp_cpus
- i
* smp_threads
;
2478 object_property_set_int(core
, nr_threads
, "nr-threads",
2480 object_property_set_int(core
, core_id
, CPU_CORE_PROP_CORE_ID
,
2482 object_property_set_bool(core
, true, "realized", &error_fatal
);
2489 /* pSeries LPAR / sPAPR hardware init */
2490 static void spapr_machine_init(MachineState
*machine
)
2492 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
2493 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2494 const char *kernel_filename
= machine
->kernel_filename
;
2495 const char *initrd_filename
= machine
->initrd_filename
;
2498 MemoryRegion
*sysmem
= get_system_memory();
2499 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
2500 hwaddr node0_size
= spapr_node0_size(machine
);
2501 long load_limit
, fw_size
;
2503 Error
*resize_hpt_err
= NULL
;
2505 msi_nonbroken
= true;
2507 QLIST_INIT(&spapr
->phbs
);
2508 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2510 /* Determine capabilities to run with */
2511 spapr_caps_init(spapr
);
2513 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2514 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2516 * If the user explicitly requested a mode we should either
2517 * supply it, or fail completely (which we do below). But if
2518 * it's not set explicitly, we reset our mode to something
2521 if (resize_hpt_err
) {
2522 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2523 error_free(resize_hpt_err
);
2524 resize_hpt_err
= NULL
;
2526 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2530 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2532 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2534 * User requested HPT resize, but this host can't supply it. Bail out
2536 error_report_err(resize_hpt_err
);
2540 spapr
->rma_size
= node0_size
;
2542 /* With KVM, we don't actually know whether KVM supports an
2543 * unbounded RMA (PR KVM) or is limited by the hash table size
2544 * (HV KVM using VRMA), so we always assume the latter
2546 * In that case, we also limit the initial allocations for RTAS
2547 * etc... to 256M since we have no way to know what the VRMA size
2548 * is going to be as it depends on the size of the hash table
2549 * which isn't determined yet.
2551 if (kvm_enabled()) {
2552 spapr
->vrma_adjust
= 1;
2553 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
2556 /* Actually we don't support unbounded RMA anymore since we added
2557 * proper emulation of HV mode. The max we can get is 16G which
2558 * also happens to be what we configure for PAPR mode so make sure
2559 * we don't do anything bigger than that
2561 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x400000000ull
);
2563 if (spapr
->rma_size
> node0_size
) {
2564 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")",
2569 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2570 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2572 /* Set up Interrupt Controller before we create the VCPUs */
2573 smc
->irq
->init(spapr
, &error_fatal
);
2575 /* Set up containers for ibm,client-architecture-support negotiated options
2577 spapr
->ov5
= spapr_ovec_new();
2578 spapr
->ov5_cas
= spapr_ovec_new();
2580 if (smc
->dr_lmb_enabled
) {
2581 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2582 spapr_validate_node_memory(machine
, &error_fatal
);
2585 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2587 /* advertise support for dedicated HP event source to guests */
2588 if (spapr
->use_hotplug_event_source
) {
2589 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2592 /* advertise support for HPT resizing */
2593 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2594 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2597 /* advertise support for ibm,dyamic-memory-v2 */
2598 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2601 spapr_init_cpus(spapr
);
2603 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2604 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2605 spapr
->max_compat_pvr
)) {
2606 /* KVM and TCG always allow GTSE with radix... */
2607 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2609 /* ... but not with hash (currently). */
2611 if (kvm_enabled()) {
2612 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2613 kvmppc_enable_logical_ci_hcalls();
2614 kvmppc_enable_set_mode_hcall();
2616 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2617 kvmppc_enable_clear_ref_mod_hcalls();
2621 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
2623 memory_region_add_subregion(sysmem
, 0, ram
);
2625 /* always allocate the device memory information */
2626 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2628 /* initialize hotplug memory address space */
2629 if (machine
->ram_size
< machine
->maxram_size
) {
2630 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2632 * Limit the number of hotpluggable memory slots to half the number
2633 * slots that KVM supports, leaving the other half for PCI and other
2634 * devices. However ensure that number of slots doesn't drop below 32.
2636 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2637 SPAPR_MAX_RAM_SLOTS
;
2639 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2640 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2642 if (machine
->ram_slots
> max_memslots
) {
2643 error_report("Specified number of memory slots %"
2644 PRIu64
" exceeds max supported %d",
2645 machine
->ram_slots
, max_memslots
);
2649 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2650 SPAPR_DEVICE_MEM_ALIGN
);
2651 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2652 "device-memory", device_mem_size
);
2653 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2654 &machine
->device_memory
->mr
);
2657 if (smc
->dr_lmb_enabled
) {
2658 spapr_create_lmb_dr_connectors(spapr
);
2661 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
2663 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2666 spapr
->rtas_size
= get_image_size(filename
);
2667 if (spapr
->rtas_size
< 0) {
2668 error_report("Could not get size of LPAR rtas '%s'", filename
);
2671 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
2672 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
2673 error_report("Could not load LPAR rtas '%s'", filename
);
2676 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
2677 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2678 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
2683 /* Set up RTAS event infrastructure */
2684 spapr_events_init(spapr
);
2686 /* Set up the RTC RTAS interfaces */
2687 spapr_rtc_create(spapr
);
2689 /* Set up VIO bus */
2690 spapr
->vio_bus
= spapr_vio_bus_init();
2692 for (i
= 0; i
< serial_max_hds(); i
++) {
2694 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2698 /* We always have at least the nvram device on VIO */
2699 spapr_create_nvram(spapr
);
2702 spapr_pci_rtas_init();
2704 phb
= spapr_create_phb(spapr
, 0);
2706 for (i
= 0; i
< nb_nics
; i
++) {
2707 NICInfo
*nd
= &nd_table
[i
];
2710 nd
->model
= g_strdup("spapr-vlan");
2713 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2714 g_str_equal(nd
->model
, "ibmveth")) {
2715 spapr_vlan_create(spapr
->vio_bus
, nd
);
2717 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2721 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2722 spapr_vscsi_create(spapr
->vio_bus
);
2726 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2727 spapr
->has_graphics
= true;
2728 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2732 if (smc
->use_ohci_by_default
) {
2733 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2735 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2738 if (spapr
->has_graphics
) {
2739 USBBus
*usb_bus
= usb_bus_find(-1);
2741 usb_create_simple(usb_bus
, "usb-kbd");
2742 usb_create_simple(usb_bus
, "usb-mouse");
2746 if (spapr
->rma_size
< (MIN_RMA_SLOF
* MiB
)) {
2748 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2753 if (kernel_filename
) {
2754 uint64_t lowaddr
= 0;
2756 spapr
->kernel_size
= load_elf(kernel_filename
, translate_kernel_address
,
2757 NULL
, NULL
, &lowaddr
, NULL
, 1,
2758 PPC_ELF_MACHINE
, 0, 0);
2759 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2760 spapr
->kernel_size
= load_elf(kernel_filename
,
2761 translate_kernel_address
, NULL
, NULL
,
2762 &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
,
2764 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2766 if (spapr
->kernel_size
< 0) {
2767 error_report("error loading %s: %s", kernel_filename
,
2768 load_elf_strerror(spapr
->kernel_size
));
2773 if (initrd_filename
) {
2774 /* Try to locate the initrd in the gap between the kernel
2775 * and the firmware. Add a bit of space just in case
2777 spapr
->initrd_base
= (KERNEL_LOAD_ADDR
+ spapr
->kernel_size
2778 + 0x1ffff) & ~0xffff;
2779 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2782 - spapr
->initrd_base
);
2783 if (spapr
->initrd_size
< 0) {
2784 error_report("could not load initial ram disk '%s'",
2791 if (bios_name
== NULL
) {
2792 bios_name
= FW_FILE_NAME
;
2794 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2796 error_report("Could not find LPAR firmware '%s'", bios_name
);
2799 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2801 error_report("Could not load LPAR firmware '%s'", filename
);
2806 /* FIXME: Should register things through the MachineState's qdev
2807 * interface, this is a legacy from the sPAPREnvironment structure
2808 * which predated MachineState but had a similar function */
2809 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2810 register_savevm_live(NULL
, "spapr/htab", -1, 1,
2811 &savevm_htab_handlers
, spapr
);
2813 qemu_register_boot_set(spapr_boot_set
, spapr
);
2815 if (kvm_enabled()) {
2816 /* to stop and start vmclock */
2817 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
2820 kvmppc_spapr_enable_inkernel_multitce();
2824 static int spapr_kvm_type(const char *vm_type
)
2830 if (!strcmp(vm_type
, "HV")) {
2834 if (!strcmp(vm_type
, "PR")) {
2838 error_report("Unknown kvm-type specified '%s'", vm_type
);
2843 * Implementation of an interface to adjust firmware path
2844 * for the bootindex property handling.
2846 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2849 #define CAST(type, obj, name) \
2850 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2851 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2852 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2853 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
2856 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2857 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2858 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2862 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2863 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2864 * in the top 16 bits of the 64-bit LUN
2866 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2867 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2868 (uint64_t)id
<< 48);
2869 } else if (virtio
) {
2871 * We use SRP luns of the form 01000000 | (target << 8) | lun
2872 * in the top 32 bits of the 64-bit LUN
2873 * Note: the quote above is from SLOF and it is wrong,
2874 * the actual binding is:
2875 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2877 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2878 if (d
->lun
>= 256) {
2879 /* Use the LUN "flat space addressing method" */
2882 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2883 (uint64_t)id
<< 32);
2886 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2887 * in the top 32 bits of the 64-bit LUN
2889 unsigned usb_port
= atoi(usb
->port
->path
);
2890 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2891 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2892 (uint64_t)id
<< 32);
2897 * SLOF probes the USB devices, and if it recognizes that the device is a
2898 * storage device, it changes its name to "storage" instead of "usb-host",
2899 * and additionally adds a child node for the SCSI LUN, so the correct
2900 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2902 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
2903 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
2904 if (usb_host_dev_is_scsi_storage(usbdev
)) {
2905 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
2910 /* Replace "pci" with "pci@800000020000000" */
2911 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2915 /* Same logic as virtio above */
2916 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
2917 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
2920 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
2921 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2922 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
2923 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
2929 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2931 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2933 return g_strdup(spapr
->kvm_type
);
2936 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2938 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2940 g_free(spapr
->kvm_type
);
2941 spapr
->kvm_type
= g_strdup(value
);
2944 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
2946 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2948 return spapr
->use_hotplug_event_source
;
2951 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
2954 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2956 spapr
->use_hotplug_event_source
= value
;
2959 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
2964 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
2966 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2968 switch (spapr
->resize_hpt
) {
2969 case SPAPR_RESIZE_HPT_DEFAULT
:
2970 return g_strdup("default");
2971 case SPAPR_RESIZE_HPT_DISABLED
:
2972 return g_strdup("disabled");
2973 case SPAPR_RESIZE_HPT_ENABLED
:
2974 return g_strdup("enabled");
2975 case SPAPR_RESIZE_HPT_REQUIRED
:
2976 return g_strdup("required");
2978 g_assert_not_reached();
2981 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
2983 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2985 if (strcmp(value
, "default") == 0) {
2986 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
2987 } else if (strcmp(value
, "disabled") == 0) {
2988 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2989 } else if (strcmp(value
, "enabled") == 0) {
2990 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
2991 } else if (strcmp(value
, "required") == 0) {
2992 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
2994 error_setg(errp
, "Bad value for \"resize-hpt\" property");
2998 static void spapr_get_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
2999 void *opaque
, Error
**errp
)
3001 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
3004 static void spapr_set_vsmt(Object
*obj
, Visitor
*v
, const char *name
,
3005 void *opaque
, Error
**errp
)
3007 visit_type_uint32(v
, name
, (uint32_t *)opaque
, errp
);
3010 static void spapr_instance_init(Object
*obj
)
3012 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3014 spapr
->htab_fd
= -1;
3015 spapr
->use_hotplug_event_source
= true;
3016 object_property_add_str(obj
, "kvm-type",
3017 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
3018 object_property_set_description(obj
, "kvm-type",
3019 "Specifies the KVM virtualization mode (HV, PR)",
3021 object_property_add_bool(obj
, "modern-hotplug-events",
3022 spapr_get_modern_hotplug_events
,
3023 spapr_set_modern_hotplug_events
,
3025 object_property_set_description(obj
, "modern-hotplug-events",
3026 "Use dedicated hotplug event mechanism in"
3027 " place of standard EPOW events when possible"
3028 " (required for memory hot-unplug support)",
3030 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3031 "Maximum permitted CPU compatibility mode",
3034 object_property_add_str(obj
, "resize-hpt",
3035 spapr_get_resize_hpt
, spapr_set_resize_hpt
, NULL
);
3036 object_property_set_description(obj
, "resize-hpt",
3037 "Resizing of the Hash Page Table (enabled, disabled, required)",
3039 object_property_add(obj
, "vsmt", "uint32", spapr_get_vsmt
,
3040 spapr_set_vsmt
, NULL
, &spapr
->vsmt
, &error_abort
);
3041 object_property_set_description(obj
, "vsmt",
3042 "Virtual SMT: KVM behaves as if this were"
3043 " the host's SMT mode", &error_abort
);
3044 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3045 spapr_get_msix_emulation
, NULL
, NULL
);
3048 static void spapr_machine_finalizefn(Object
*obj
)
3050 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3052 g_free(spapr
->kvm_type
);
3055 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3057 cpu_synchronize_state(cs
);
3058 ppc_cpu_do_system_reset(cs
);
3061 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3066 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3070 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3071 uint32_t node
, bool dedicated_hp_event_source
,
3074 sPAPRDRConnector
*drc
;
3075 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3076 int i
, fdt_offset
, fdt_size
;
3078 uint64_t addr
= addr_start
;
3079 bool hotplugged
= spapr_drc_hotplugged(dev
);
3080 Error
*local_err
= NULL
;
3082 for (i
= 0; i
< nr_lmbs
; i
++) {
3083 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3084 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3087 fdt
= create_device_tree(&fdt_size
);
3088 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
3089 SPAPR_MEMORY_BLOCK_SIZE
);
3091 spapr_drc_attach(drc
, dev
, fdt
, fdt_offset
, &local_err
);
3093 while (addr
> addr_start
) {
3094 addr
-= SPAPR_MEMORY_BLOCK_SIZE
;
3095 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3096 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3097 spapr_drc_detach(drc
);
3100 error_propagate(errp
, local_err
);
3104 spapr_drc_reset(drc
);
3106 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3108 /* send hotplug notification to the
3109 * guest only in case of hotplugged memory
3112 if (dedicated_hp_event_source
) {
3113 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3114 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3115 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3117 spapr_drc_index(drc
));
3119 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3125 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3128 Error
*local_err
= NULL
;
3129 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3130 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3131 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3132 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
, &error_abort
);
3133 uint64_t size
, addr
;
3136 size
= memory_region_size(mr
);
3138 pc_dimm_plug(dev
, MACHINE(ms
), &local_err
);
3143 addr
= object_property_get_uint(OBJECT(dimm
),
3144 PC_DIMM_ADDR_PROP
, &local_err
);
3149 node
= object_property_get_uint(OBJECT(dev
), PC_DIMM_NODE_PROP
,
3151 spapr_add_lmbs(dev
, addr
, size
, node
,
3152 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
),
3161 pc_dimm_unplug(dev
, MACHINE(ms
));
3163 error_propagate(errp
, local_err
);
3166 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3169 const sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3170 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3171 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3172 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3173 Error
*local_err
= NULL
;
3179 if (!smc
->dr_lmb_enabled
) {
3180 error_setg(errp
, "Memory hotplug not supported for this machine");
3184 mr
= ddc
->get_memory_region(dimm
, errp
);
3188 size
= memory_region_size(mr
);
3190 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3191 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3192 "%" PRIu64
" MB", SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
3196 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3198 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3199 spapr_check_pagesize(spapr
, pagesize
, &local_err
);
3201 error_propagate(errp
, local_err
);
3205 pc_dimm_pre_plug(dev
, MACHINE(hotplug_dev
), NULL
, errp
);
3208 struct sPAPRDIMMState
{
3211 QTAILQ_ENTRY(sPAPRDIMMState
) next
;
3214 static sPAPRDIMMState
*spapr_pending_dimm_unplugs_find(sPAPRMachineState
*s
,
3217 sPAPRDIMMState
*dimm_state
= NULL
;
3219 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3220 if (dimm_state
->dimm
== dimm
) {
3227 static sPAPRDIMMState
*spapr_pending_dimm_unplugs_add(sPAPRMachineState
*spapr
,
3231 sPAPRDIMMState
*ds
= NULL
;
3234 * If this request is for a DIMM whose removal had failed earlier
3235 * (due to guest's refusal to remove the LMBs), we would have this
3236 * dimm already in the pending_dimm_unplugs list. In that
3237 * case don't add again.
3239 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3241 ds
= g_malloc0(sizeof(sPAPRDIMMState
));
3242 ds
->nr_lmbs
= nr_lmbs
;
3244 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3249 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState
*spapr
,
3250 sPAPRDIMMState
*dimm_state
)
3252 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3256 static sPAPRDIMMState
*spapr_recover_pending_dimm_state(sPAPRMachineState
*ms
,
3259 sPAPRDRConnector
*drc
;
3260 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3261 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
, &error_abort
);
3262 uint64_t size
= memory_region_size(mr
);
3263 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3264 uint32_t avail_lmbs
= 0;
3265 uint64_t addr_start
, addr
;
3268 addr_start
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3272 for (i
= 0; i
< nr_lmbs
; i
++) {
3273 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3274 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3279 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3282 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3285 /* Callback to be called during DRC release. */
3286 void spapr_lmb_release(DeviceState
*dev
)
3288 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3289 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3290 sPAPRDIMMState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3292 /* This information will get lost if a migration occurs
3293 * during the unplug process. In this case recover it. */
3295 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3297 /* The DRC being examined by the caller at least must be counted */
3298 g_assert(ds
->nr_lmbs
);
3301 if (--ds
->nr_lmbs
) {
3306 * Now that all the LMBs have been removed by the guest, call the
3307 * unplug handler chain. This can never fail.
3309 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3312 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3314 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3315 sPAPRDIMMState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3317 pc_dimm_unplug(dev
, MACHINE(hotplug_dev
));
3318 object_unparent(OBJECT(dev
));
3319 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3322 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3323 DeviceState
*dev
, Error
**errp
)
3325 sPAPRMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3326 Error
*local_err
= NULL
;
3327 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3328 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
3329 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
, &error_abort
);
3331 uint64_t size
, addr_start
, addr
;
3333 sPAPRDRConnector
*drc
;
3335 size
= memory_region_size(mr
);
3336 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3338 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3345 * An existing pending dimm state for this DIMM means that there is an
3346 * unplug operation in progress, waiting for the spapr_lmb_release
3347 * callback to complete the job (BQL can't cover that far). In this case,
3348 * bail out to avoid detaching DRCs that were already released.
3350 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3351 error_setg(&local_err
,
3352 "Memory unplug already in progress for device %s",
3357 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3360 for (i
= 0; i
< nr_lmbs
; i
++) {
3361 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3362 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3365 spapr_drc_detach(drc
);
3366 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3369 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3370 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3371 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3372 nr_lmbs
, spapr_drc_index(drc
));
3374 error_propagate(errp
, local_err
);
3377 static void *spapr_populate_hotplug_cpu_dt(CPUState
*cs
, int *fdt_offset
,
3378 sPAPRMachineState
*spapr
)
3380 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3381 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3382 int id
= spapr_get_vcpu_id(cpu
);
3384 int offset
, fdt_size
;
3387 fdt
= create_device_tree(&fdt_size
);
3388 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3389 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3391 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
3394 *fdt_offset
= offset
;
3398 /* Callback to be called during DRC release. */
3399 void spapr_core_release(DeviceState
*dev
)
3401 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3403 /* Call the unplug handler chain. This can never fail. */
3404 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3407 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3409 MachineState
*ms
= MACHINE(hotplug_dev
);
3410 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3411 CPUCore
*cc
= CPU_CORE(dev
);
3412 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3414 if (smc
->pre_2_10_has_unused_icps
) {
3415 sPAPRCPUCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3418 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3419 CPUState
*cs
= CPU(sc
->threads
[i
]);
3421 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3426 core_slot
->cpu
= NULL
;
3427 object_unparent(OBJECT(dev
));
3431 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3434 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3436 sPAPRDRConnector
*drc
;
3437 CPUCore
*cc
= CPU_CORE(dev
);
3439 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3440 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3445 error_setg(errp
, "Boot CPU core may not be unplugged");
3449 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3450 spapr_vcpu_id(spapr
, cc
->core_id
));
3453 spapr_drc_detach(drc
);
3455 spapr_hotplug_req_remove_by_index(drc
);
3458 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3461 sPAPRMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3462 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3463 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3464 sPAPRCPUCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3465 CPUCore
*cc
= CPU_CORE(dev
);
3466 CPUState
*cs
= CPU(core
->threads
[0]);
3467 sPAPRDRConnector
*drc
;
3468 Error
*local_err
= NULL
;
3469 CPUArchId
*core_slot
;
3471 bool hotplugged
= spapr_drc_hotplugged(dev
);
3473 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3475 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3479 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3480 spapr_vcpu_id(spapr
, cc
->core_id
));
3482 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3488 fdt
= spapr_populate_hotplug_cpu_dt(cs
, &fdt_offset
, spapr
);
3490 spapr_drc_attach(drc
, dev
, fdt
, fdt_offset
, &local_err
);
3493 error_propagate(errp
, local_err
);
3499 * Send hotplug notification interrupt to the guest only
3500 * in case of hotplugged CPUs.
3502 spapr_hotplug_req_add_by_index(drc
);
3504 spapr_drc_reset(drc
);
3508 core_slot
->cpu
= OBJECT(dev
);
3510 if (smc
->pre_2_10_has_unused_icps
) {
3513 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3514 cs
= CPU(core
->threads
[i
]);
3515 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3520 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3523 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3524 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3525 Error
*local_err
= NULL
;
3526 CPUCore
*cc
= CPU_CORE(dev
);
3527 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3528 const char *type
= object_get_typename(OBJECT(dev
));
3529 CPUArchId
*core_slot
;
3532 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3533 error_setg(&local_err
, "CPU hotplug not supported for this machine");
3537 if (strcmp(base_core_type
, type
)) {
3538 error_setg(&local_err
, "CPU core type should be %s", base_core_type
);
3542 if (cc
->core_id
% smp_threads
) {
3543 error_setg(&local_err
, "invalid core id %d", cc
->core_id
);
3548 * In general we should have homogeneous threads-per-core, but old
3549 * (pre hotplug support) machine types allow the last core to have
3550 * reduced threads as a compatibility hack for when we allowed
3551 * total vcpus not a multiple of threads-per-core.
3553 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3554 error_setg(&local_err
, "invalid nr-threads %d, must be %d",
3555 cc
->nr_threads
, smp_threads
);
3559 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3561 error_setg(&local_err
, "core id %d out of range", cc
->core_id
);
3565 if (core_slot
->cpu
) {
3566 error_setg(&local_err
, "core %d already populated", cc
->core_id
);
3570 numa_cpu_pre_plug(core_slot
, dev
, &local_err
);
3573 error_propagate(errp
, local_err
);
3576 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
3577 DeviceState
*dev
, Error
**errp
)
3579 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3580 spapr_memory_plug(hotplug_dev
, dev
, errp
);
3581 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3582 spapr_core_plug(hotplug_dev
, dev
, errp
);
3586 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
3587 DeviceState
*dev
, Error
**errp
)
3589 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3590 spapr_memory_unplug(hotplug_dev
, dev
);
3591 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3592 spapr_core_unplug(hotplug_dev
, dev
);
3596 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
3597 DeviceState
*dev
, Error
**errp
)
3599 sPAPRMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3600 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
3602 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3603 if (spapr_ovec_test(sms
->ov5_cas
, OV5_HP_EVT
)) {
3604 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
3606 /* NOTE: this means there is a window after guest reset, prior to
3607 * CAS negotiation, where unplug requests will fail due to the
3608 * capability not being detected yet. This is a bit different than
3609 * the case with PCI unplug, where the events will be queued and
3610 * eventually handled by the guest after boot
3612 error_setg(errp
, "Memory hot unplug not supported for this guest");
3614 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3615 if (!mc
->has_hotpluggable_cpus
) {
3616 error_setg(errp
, "CPU hot unplug not supported on this machine");
3619 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
3623 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
3624 DeviceState
*dev
, Error
**errp
)
3626 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
3627 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
3628 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3629 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
3633 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
3636 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
3637 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
3638 return HOTPLUG_HANDLER(machine
);
3643 static CpuInstanceProperties
3644 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
3646 CPUArchId
*core_slot
;
3647 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
3649 /* make sure possible_cpu are intialized */
3650 mc
->possible_cpu_arch_ids(machine
);
3651 /* get CPU core slot containing thread that matches cpu_index */
3652 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
3654 return core_slot
->props
;
3657 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
3659 return idx
/ smp_cores
% nb_numa_nodes
;
3662 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
3665 const char *core_type
;
3666 int spapr_max_cores
= max_cpus
/ smp_threads
;
3667 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
3669 if (!mc
->has_hotpluggable_cpus
) {
3670 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
3672 if (machine
->possible_cpus
) {
3673 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
3674 return machine
->possible_cpus
;
3677 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3679 error_report("Unable to find sPAPR CPU Core definition");
3683 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
3684 sizeof(CPUArchId
) * spapr_max_cores
);
3685 machine
->possible_cpus
->len
= spapr_max_cores
;
3686 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
3687 int core_id
= i
* smp_threads
;
3689 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
3690 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
3691 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
3692 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
3693 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
3695 return machine
->possible_cpus
;
3698 static void spapr_phb_placement(sPAPRMachineState
*spapr
, uint32_t index
,
3699 uint64_t *buid
, hwaddr
*pio
,
3700 hwaddr
*mmio32
, hwaddr
*mmio64
,
3701 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
3704 * New-style PHB window placement.
3706 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3707 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3710 * Some guest kernels can't work with MMIO windows above 1<<46
3711 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3713 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3714 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3715 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3716 * 1TiB 64-bit MMIO windows for each PHB.
3718 const uint64_t base_buid
= 0x800000020000000ULL
;
3719 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3720 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3723 /* Sanity check natural alignments */
3724 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
3725 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
3726 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
3727 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
3728 /* Sanity check bounds */
3729 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
3730 SPAPR_PCI_MEM32_WIN_SIZE
);
3731 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
3732 SPAPR_PCI_MEM64_WIN_SIZE
);
3734 if (index
>= SPAPR_MAX_PHBS
) {
3735 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
3736 SPAPR_MAX_PHBS
- 1);
3740 *buid
= base_buid
+ index
;
3741 for (i
= 0; i
< n_dma
; ++i
) {
3742 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
3745 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
3746 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
3747 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
3750 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
3752 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3754 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
3757 static void spapr_ics_resend(XICSFabric
*dev
)
3759 sPAPRMachineState
*spapr
= SPAPR_MACHINE(dev
);
3761 ics_resend(spapr
->ics
);
3764 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
3766 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
3768 return cpu
? ICP(cpu
->intc
) : NULL
;
3771 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
3774 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
3775 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3777 smc
->irq
->print_info(spapr
, mon
);
3780 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
3782 return cpu
->vcpu_id
;
3785 void spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
3787 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
3790 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
3792 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
3793 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
3794 error_append_hint(errp
, "Adjust the number of cpus to %d "
3795 "or try to raise the number of threads per core\n",
3796 vcpu_id
* smp_threads
/ spapr
->vsmt
);
3800 cpu
->vcpu_id
= vcpu_id
;
3803 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
3808 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3810 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
3818 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
3820 MachineClass
*mc
= MACHINE_CLASS(oc
);
3821 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
3822 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
3823 NMIClass
*nc
= NMI_CLASS(oc
);
3824 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
3825 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
3826 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
3827 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
3829 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
3830 mc
->ignore_boot_device_suffixes
= true;
3833 * We set up the default / latest behaviour here. The class_init
3834 * functions for the specific versioned machine types can override
3835 * these details for backwards compatibility
3837 mc
->init
= spapr_machine_init
;
3838 mc
->reset
= spapr_machine_reset
;
3839 mc
->block_default_type
= IF_SCSI
;
3840 mc
->max_cpus
= 1024;
3841 mc
->no_parallel
= 1;
3842 mc
->default_boot_order
= "";
3843 mc
->default_ram_size
= 512 * MiB
;
3844 mc
->default_display
= "std";
3845 mc
->kvm_type
= spapr_kvm_type
;
3846 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3847 mc
->pci_allow_0_address
= true;
3848 assert(!mc
->get_hotplug_handler
);
3849 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
3850 hc
->pre_plug
= spapr_machine_device_pre_plug
;
3851 hc
->plug
= spapr_machine_device_plug
;
3852 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
3853 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
3854 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
3855 hc
->unplug_request
= spapr_machine_device_unplug_request
;
3856 hc
->unplug
= spapr_machine_device_unplug
;
3858 smc
->dr_lmb_enabled
= true;
3859 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
3860 mc
->has_hotpluggable_cpus
= true;
3861 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
3862 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
3863 nc
->nmi_monitor_handler
= spapr_nmi
;
3864 smc
->phb_placement
= spapr_phb_placement
;
3865 vhc
->hypercall
= emulate_spapr_hypercall
;
3866 vhc
->hpt_mask
= spapr_hpt_mask
;
3867 vhc
->map_hptes
= spapr_map_hptes
;
3868 vhc
->unmap_hptes
= spapr_unmap_hptes
;
3869 vhc
->store_hpte
= spapr_store_hpte
;
3870 vhc
->get_patbe
= spapr_get_patbe
;
3871 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
3872 xic
->ics_get
= spapr_ics_get
;
3873 xic
->ics_resend
= spapr_ics_resend
;
3874 xic
->icp_get
= spapr_icp_get
;
3875 ispc
->print_info
= spapr_pic_print_info
;
3876 /* Force NUMA node memory size to be a multiple of
3877 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3878 * in which LMBs are represented and hot-added
3880 mc
->numa_mem_align_shift
= 28;
3882 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
3883 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
3884 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
3885 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
3886 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
3887 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
3888 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
3889 spapr_caps_add_properties(smc
, &error_abort
);
3890 smc
->irq
= &spapr_irq_xics
;
3893 static const TypeInfo spapr_machine_info
= {
3894 .name
= TYPE_SPAPR_MACHINE
,
3895 .parent
= TYPE_MACHINE
,
3897 .instance_size
= sizeof(sPAPRMachineState
),
3898 .instance_init
= spapr_instance_init
,
3899 .instance_finalize
= spapr_machine_finalizefn
,
3900 .class_size
= sizeof(sPAPRMachineClass
),
3901 .class_init
= spapr_machine_class_init
,
3902 .interfaces
= (InterfaceInfo
[]) {
3903 { TYPE_FW_PATH_PROVIDER
},
3905 { TYPE_HOTPLUG_HANDLER
},
3906 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
3907 { TYPE_XICS_FABRIC
},
3908 { TYPE_INTERRUPT_STATS_PROVIDER
},
3913 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3914 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3917 MachineClass *mc = MACHINE_CLASS(oc); \
3918 spapr_machine_##suffix##_class_options(mc); \
3920 mc->alias = "pseries"; \
3921 mc->is_default = 1; \
3924 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3926 MachineState *machine = MACHINE(obj); \
3927 spapr_machine_##suffix##_instance_options(machine); \
3929 static const TypeInfo spapr_machine_##suffix##_info = { \
3930 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3931 .parent = TYPE_SPAPR_MACHINE, \
3932 .class_init = spapr_machine_##suffix##_class_init, \
3933 .instance_init = spapr_machine_##suffix##_instance_init, \
3935 static void spapr_machine_register_##suffix(void) \
3937 type_register(&spapr_machine_##suffix##_info); \
3939 type_init(spapr_machine_register_##suffix)
3944 static void spapr_machine_3_1_instance_options(MachineState
*machine
)
3948 static void spapr_machine_3_1_class_options(MachineClass
*mc
)
3950 /* Defaults for the latest behaviour inherited from the base class */
3953 DEFINE_SPAPR_MACHINE(3_1
, "3.1", true);
3958 #define SPAPR_COMPAT_3_0 \
3961 static void spapr_machine_3_0_instance_options(MachineState
*machine
)
3963 spapr_machine_3_1_instance_options(machine
);
3966 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
3968 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3970 spapr_machine_3_1_class_options(mc
);
3971 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_3_0
);
3973 smc
->legacy_irq_allocation
= true;
3974 smc
->irq
= &spapr_irq_xics_legacy
;
3977 DEFINE_SPAPR_MACHINE(3_0
, "3.0", false);
3982 #define SPAPR_COMPAT_2_12 \
3985 .driver = TYPE_POWERPC_CPU, \
3986 .property = "pre-3.0-migration", \
3990 .driver = TYPE_SPAPR_CPU_CORE, \
3991 .property = "pre-3.0-migration", \
3995 static void spapr_machine_2_12_instance_options(MachineState
*machine
)
3997 spapr_machine_3_0_instance_options(machine
);
4000 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4002 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4004 spapr_machine_3_0_class_options(mc
);
4005 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_12
);
4007 /* We depend on kvm_enabled() to choose a default value for the
4008 * hpt-max-page-size capability. Of course we can't do it here
4009 * because this is too early and the HW accelerator isn't initialzed
4010 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4012 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4015 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4017 static void spapr_machine_2_12_sxxm_instance_options(MachineState
*machine
)
4019 spapr_machine_2_12_instance_options(machine
);
4022 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4024 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4026 spapr_machine_2_12_class_options(mc
);
4027 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4028 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4029 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4032 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4037 #define SPAPR_COMPAT_2_11 \
4040 static void spapr_machine_2_11_instance_options(MachineState
*machine
)
4042 spapr_machine_2_12_instance_options(machine
);
4045 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4047 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4049 spapr_machine_2_12_class_options(mc
);
4050 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4051 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_11
);
4054 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4059 #define SPAPR_COMPAT_2_10 \
4062 static void spapr_machine_2_10_instance_options(MachineState
*machine
)
4064 spapr_machine_2_11_instance_options(machine
);
4067 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
4069 spapr_machine_2_11_class_options(mc
);
4070 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_10
);
4073 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
4078 #define SPAPR_COMPAT_2_9 \
4081 .driver = TYPE_POWERPC_CPU, \
4082 .property = "pre-2.10-migration", \
4086 static void spapr_machine_2_9_instance_options(MachineState *machine)
4088 spapr_machine_2_10_instance_options(machine
);
4091 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
4093 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4095 spapr_machine_2_10_class_options(mc
);
4096 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_9
);
4097 mc
->numa_auto_assign_ram
= numa_legacy_auto_assign_ram
;
4098 smc
->pre_2_10_has_unused_icps
= true;
4099 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
4102 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
4107 #define SPAPR_COMPAT_2_8 \
4110 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4111 .property = "pcie-extended-configuration-space", \
4115 static void spapr_machine_2_8_instance_options(MachineState
*machine
)
4117 spapr_machine_2_9_instance_options(machine
);
4120 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
4122 spapr_machine_2_9_class_options(mc
);
4123 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_8
);
4124 mc
->numa_mem_align_shift
= 23;
4127 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
4132 #define SPAPR_COMPAT_2_7 \
4135 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4136 .property = "mem_win_size", \
4137 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4140 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4141 .property = "mem64_win_size", \
4145 .driver = TYPE_POWERPC_CPU, \
4146 .property = "pre-2.8-migration", \
4150 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4151 .property = "pre-2.8-migration", \
4155 static void phb_placement_2_7(sPAPRMachineState
*spapr
, uint32_t index
,
4156 uint64_t *buid
, hwaddr
*pio
,
4157 hwaddr
*mmio32
, hwaddr
*mmio64
,
4158 unsigned n_dma
, uint32_t *liobns
, Error
**errp
)
4160 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4161 const uint64_t base_buid
= 0x800000020000000ULL
;
4162 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
4163 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
4164 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
4165 const uint32_t max_index
= 255;
4166 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
4168 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
4169 hwaddr phb0_base
, phb_base
;
4172 /* Do we have device memory? */
4173 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
4174 /* Can't just use maxram_size, because there may be an
4175 * alignment gap between normal and device memory regions
4177 ram_top
= MACHINE(spapr
)->device_memory
->base
+
4178 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
4181 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
4183 if (index
> max_index
) {
4184 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
4189 *buid
= base_buid
+ index
;
4190 for (i
= 0; i
< n_dma
; ++i
) {
4191 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4194 phb_base
= phb0_base
+ index
* phb_spacing
;
4195 *pio
= phb_base
+ pio_offset
;
4196 *mmio32
= phb_base
+ mmio_offset
;
4198 * We don't set the 64-bit MMIO window, relying on the PHB's
4199 * fallback behaviour of automatically splitting a large "32-bit"
4200 * window into contiguous 32-bit and 64-bit windows
4204 static void spapr_machine_2_7_instance_options(MachineState
*machine
)
4206 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
4208 spapr_machine_2_8_instance_options(machine
);
4209 spapr
->use_hotplug_event_source
= false;
4212 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
4214 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4216 spapr_machine_2_8_class_options(mc
);
4217 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
4218 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_7
);
4219 smc
->phb_placement
= phb_placement_2_7
;
4222 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
4227 #define SPAPR_COMPAT_2_6 \
4230 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4232 .value = stringify(off),\
4235 static void spapr_machine_2_6_instance_options(MachineState
*machine
)
4237 spapr_machine_2_7_instance_options(machine
);
4240 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
4242 spapr_machine_2_7_class_options(mc
);
4243 mc
->has_hotpluggable_cpus
= false;
4244 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_6
);
4247 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
4252 #define SPAPR_COMPAT_2_5 \
4255 .driver = "spapr-vlan", \
4256 .property = "use-rx-buffer-pools", \
4260 static void spapr_machine_2_5_instance_options(MachineState
*machine
)
4262 spapr_machine_2_6_instance_options(machine
);
4265 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
4267 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4269 spapr_machine_2_6_class_options(mc
);
4270 smc
->use_ohci_by_default
= true;
4271 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_5
);
4274 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
4279 #define SPAPR_COMPAT_2_4 \
4282 static void spapr_machine_2_4_instance_options(MachineState
*machine
)
4284 spapr_machine_2_5_instance_options(machine
);
4287 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
4289 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4291 spapr_machine_2_5_class_options(mc
);
4292 smc
->dr_lmb_enabled
= false;
4293 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_4
);
4296 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
4301 #define SPAPR_COMPAT_2_3 \
4304 .driver = "spapr-pci-host-bridge",\
4305 .property = "dynamic-reconfiguration",\
4309 static void spapr_machine_2_3_instance_options(MachineState
*machine
)
4311 spapr_machine_2_4_instance_options(machine
);
4314 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
4316 spapr_machine_2_4_class_options(mc
);
4317 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_3
);
4319 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
4325 #define SPAPR_COMPAT_2_2 \
4328 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4329 .property = "mem_win_size",\
4330 .value = "0x20000000",\
4333 static void spapr_machine_2_2_instance_options(MachineState
*machine
)
4335 spapr_machine_2_3_instance_options(machine
);
4336 machine
->suppress_vmdesc
= true;
4339 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
4341 spapr_machine_2_3_class_options(mc
);
4342 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_2
);
4344 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
4349 #define SPAPR_COMPAT_2_1 \
4352 static void spapr_machine_2_1_instance_options(MachineState
*machine
)
4354 spapr_machine_2_2_instance_options(machine
);
4357 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
4359 spapr_machine_2_2_class_options(mc
);
4360 SET_MACHINE_COMPAT(mc
, SPAPR_COMPAT_2_1
);
4362 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
4364 static void spapr_machine_register_types(void)
4366 type_register_static(&spapr_machine_info
);
4369 type_init(spapr_machine_register_types
)