macio: don't set user_creatable to false
[qemu/ar7.git] / softmmu / memory.c
blob333e1ed7b05635e6904280b82fdb293751745f2b
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qemu/main-loop.h"
26 #include "qemu/qemu-print.h"
27 #include "qom/object.h"
28 #include "trace.h"
30 #include "exec/memory-internal.h"
31 #include "exec/ram_addr.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/runstate.h"
34 #include "sysemu/tcg.h"
35 #include "sysemu/accel.h"
36 #include "hw/boards.h"
37 #include "migration/vmstate.h"
39 //#define DEBUG_UNASSIGNED
41 static unsigned memory_region_transaction_depth;
42 static bool memory_region_update_pending;
43 static bool ioeventfd_update_pending;
44 bool global_dirty_log;
46 static QTAILQ_HEAD(, MemoryListener) memory_listeners
47 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
49 static QTAILQ_HEAD(, AddressSpace) address_spaces
50 = QTAILQ_HEAD_INITIALIZER(address_spaces);
52 static GHashTable *flat_views;
54 typedef struct AddrRange AddrRange;
57 * Note that signed integers are needed for negative offsetting in aliases
58 * (large MemoryRegion::alias_offset).
60 struct AddrRange {
61 Int128 start;
62 Int128 size;
65 static AddrRange addrrange_make(Int128 start, Int128 size)
67 return (AddrRange) { start, size };
70 static bool addrrange_equal(AddrRange r1, AddrRange r2)
72 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
75 static Int128 addrrange_end(AddrRange r)
77 return int128_add(r.start, r.size);
80 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
82 int128_addto(&range.start, delta);
83 return range;
86 static bool addrrange_contains(AddrRange range, Int128 addr)
88 return int128_ge(addr, range.start)
89 && int128_lt(addr, addrrange_end(range));
92 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
94 return addrrange_contains(r1, r2.start)
95 || addrrange_contains(r2, r1.start);
98 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
100 Int128 start = int128_max(r1.start, r2.start);
101 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
102 return addrrange_make(start, int128_sub(end, start));
105 enum ListenerDirection { Forward, Reverse };
107 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
108 do { \
109 MemoryListener *_listener; \
111 switch (_direction) { \
112 case Forward: \
113 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
114 if (_listener->_callback) { \
115 _listener->_callback(_listener, ##_args); \
118 break; \
119 case Reverse: \
120 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
121 if (_listener->_callback) { \
122 _listener->_callback(_listener, ##_args); \
125 break; \
126 default: \
127 abort(); \
129 } while (0)
131 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
132 do { \
133 MemoryListener *_listener; \
135 switch (_direction) { \
136 case Forward: \
137 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
138 if (_listener->_callback) { \
139 _listener->_callback(_listener, _section, ##_args); \
142 break; \
143 case Reverse: \
144 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
145 if (_listener->_callback) { \
146 _listener->_callback(_listener, _section, ##_args); \
149 break; \
150 default: \
151 abort(); \
153 } while (0)
155 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
156 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
157 do { \
158 MemoryRegionSection mrs = section_from_flat_range(fr, \
159 address_space_to_flatview(as)); \
160 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
161 } while(0)
163 struct CoalescedMemoryRange {
164 AddrRange addr;
165 QTAILQ_ENTRY(CoalescedMemoryRange) link;
168 struct MemoryRegionIoeventfd {
169 AddrRange addr;
170 bool match_data;
171 uint64_t data;
172 EventNotifier *e;
175 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
176 MemoryRegionIoeventfd *b)
178 if (int128_lt(a->addr.start, b->addr.start)) {
179 return true;
180 } else if (int128_gt(a->addr.start, b->addr.start)) {
181 return false;
182 } else if (int128_lt(a->addr.size, b->addr.size)) {
183 return true;
184 } else if (int128_gt(a->addr.size, b->addr.size)) {
185 return false;
186 } else if (a->match_data < b->match_data) {
187 return true;
188 } else if (a->match_data > b->match_data) {
189 return false;
190 } else if (a->match_data) {
191 if (a->data < b->data) {
192 return true;
193 } else if (a->data > b->data) {
194 return false;
197 if (a->e < b->e) {
198 return true;
199 } else if (a->e > b->e) {
200 return false;
202 return false;
205 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
206 MemoryRegionIoeventfd *b)
208 if (int128_eq(a->addr.start, b->addr.start) &&
209 (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
210 (int128_eq(a->addr.size, b->addr.size) &&
211 (a->match_data == b->match_data) &&
212 ((a->match_data && (a->data == b->data)) || !a->match_data) &&
213 (a->e == b->e))))
214 return true;
216 return false;
219 /* Range of memory in the global map. Addresses are absolute. */
220 struct FlatRange {
221 MemoryRegion *mr;
222 hwaddr offset_in_region;
223 AddrRange addr;
224 uint8_t dirty_log_mask;
225 bool romd_mode;
226 bool readonly;
227 bool nonvolatile;
230 #define FOR_EACH_FLAT_RANGE(var, view) \
231 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
233 static inline MemoryRegionSection
234 section_from_flat_range(FlatRange *fr, FlatView *fv)
236 return (MemoryRegionSection) {
237 .mr = fr->mr,
238 .fv = fv,
239 .offset_within_region = fr->offset_in_region,
240 .size = fr->addr.size,
241 .offset_within_address_space = int128_get64(fr->addr.start),
242 .readonly = fr->readonly,
243 .nonvolatile = fr->nonvolatile,
247 static bool flatrange_equal(FlatRange *a, FlatRange *b)
249 return a->mr == b->mr
250 && addrrange_equal(a->addr, b->addr)
251 && a->offset_in_region == b->offset_in_region
252 && a->romd_mode == b->romd_mode
253 && a->readonly == b->readonly
254 && a->nonvolatile == b->nonvolatile;
257 static FlatView *flatview_new(MemoryRegion *mr_root)
259 FlatView *view;
261 view = g_new0(FlatView, 1);
262 view->ref = 1;
263 view->root = mr_root;
264 memory_region_ref(mr_root);
265 trace_flatview_new(view, mr_root);
267 return view;
270 /* Insert a range into a given position. Caller is responsible for maintaining
271 * sorting order.
273 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
275 if (view->nr == view->nr_allocated) {
276 view->nr_allocated = MAX(2 * view->nr, 10);
277 view->ranges = g_realloc(view->ranges,
278 view->nr_allocated * sizeof(*view->ranges));
280 memmove(view->ranges + pos + 1, view->ranges + pos,
281 (view->nr - pos) * sizeof(FlatRange));
282 view->ranges[pos] = *range;
283 memory_region_ref(range->mr);
284 ++view->nr;
287 static void flatview_destroy(FlatView *view)
289 int i;
291 trace_flatview_destroy(view, view->root);
292 if (view->dispatch) {
293 address_space_dispatch_free(view->dispatch);
295 for (i = 0; i < view->nr; i++) {
296 memory_region_unref(view->ranges[i].mr);
298 g_free(view->ranges);
299 memory_region_unref(view->root);
300 g_free(view);
303 static bool flatview_ref(FlatView *view)
305 return qatomic_fetch_inc_nonzero(&view->ref) > 0;
308 void flatview_unref(FlatView *view)
310 if (qatomic_fetch_dec(&view->ref) == 1) {
311 trace_flatview_destroy_rcu(view, view->root);
312 assert(view->root);
313 call_rcu(view, flatview_destroy, rcu);
317 static bool can_merge(FlatRange *r1, FlatRange *r2)
319 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
320 && r1->mr == r2->mr
321 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
322 r1->addr.size),
323 int128_make64(r2->offset_in_region))
324 && r1->dirty_log_mask == r2->dirty_log_mask
325 && r1->romd_mode == r2->romd_mode
326 && r1->readonly == r2->readonly
327 && r1->nonvolatile == r2->nonvolatile;
330 /* Attempt to simplify a view by merging adjacent ranges */
331 static void flatview_simplify(FlatView *view)
333 unsigned i, j, k;
335 i = 0;
336 while (i < view->nr) {
337 j = i + 1;
338 while (j < view->nr
339 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
340 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
341 ++j;
343 ++i;
344 for (k = i; k < j; k++) {
345 memory_region_unref(view->ranges[k].mr);
347 memmove(&view->ranges[i], &view->ranges[j],
348 (view->nr - j) * sizeof(view->ranges[j]));
349 view->nr -= j - i;
353 static bool memory_region_big_endian(MemoryRegion *mr)
355 #ifdef TARGET_WORDS_BIGENDIAN
356 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
357 #else
358 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
359 #endif
362 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
364 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
365 switch (op & MO_SIZE) {
366 case MO_8:
367 break;
368 case MO_16:
369 *data = bswap16(*data);
370 break;
371 case MO_32:
372 *data = bswap32(*data);
373 break;
374 case MO_64:
375 *data = bswap64(*data);
376 break;
377 default:
378 g_assert_not_reached();
383 static inline void memory_region_shift_read_access(uint64_t *value,
384 signed shift,
385 uint64_t mask,
386 uint64_t tmp)
388 if (shift >= 0) {
389 *value |= (tmp & mask) << shift;
390 } else {
391 *value |= (tmp & mask) >> -shift;
395 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
396 signed shift,
397 uint64_t mask)
399 uint64_t tmp;
401 if (shift >= 0) {
402 tmp = (*value >> shift) & mask;
403 } else {
404 tmp = (*value << -shift) & mask;
407 return tmp;
410 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
412 MemoryRegion *root;
413 hwaddr abs_addr = offset;
415 abs_addr += mr->addr;
416 for (root = mr; root->container; ) {
417 root = root->container;
418 abs_addr += root->addr;
421 return abs_addr;
424 static int get_cpu_index(void)
426 if (current_cpu) {
427 return current_cpu->cpu_index;
429 return -1;
432 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
433 hwaddr addr,
434 uint64_t *value,
435 unsigned size,
436 signed shift,
437 uint64_t mask,
438 MemTxAttrs attrs)
440 uint64_t tmp;
442 tmp = mr->ops->read(mr->opaque, addr, size);
443 if (mr->subpage) {
444 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
445 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
446 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
447 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
449 memory_region_shift_read_access(value, shift, mask, tmp);
450 return MEMTX_OK;
453 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
454 hwaddr addr,
455 uint64_t *value,
456 unsigned size,
457 signed shift,
458 uint64_t mask,
459 MemTxAttrs attrs)
461 uint64_t tmp = 0;
462 MemTxResult r;
464 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
465 if (mr->subpage) {
466 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
467 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
468 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
469 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
471 memory_region_shift_read_access(value, shift, mask, tmp);
472 return r;
475 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
476 hwaddr addr,
477 uint64_t *value,
478 unsigned size,
479 signed shift,
480 uint64_t mask,
481 MemTxAttrs attrs)
483 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
485 if (mr->subpage) {
486 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
487 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
488 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
489 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
491 mr->ops->write(mr->opaque, addr, tmp, size);
492 return MEMTX_OK;
495 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
496 hwaddr addr,
497 uint64_t *value,
498 unsigned size,
499 signed shift,
500 uint64_t mask,
501 MemTxAttrs attrs)
503 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
505 if (mr->subpage) {
506 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
507 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
508 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
509 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
511 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
514 static MemTxResult access_with_adjusted_size(hwaddr addr,
515 uint64_t *value,
516 unsigned size,
517 unsigned access_size_min,
518 unsigned access_size_max,
519 MemTxResult (*access_fn)
520 (MemoryRegion *mr,
521 hwaddr addr,
522 uint64_t *value,
523 unsigned size,
524 signed shift,
525 uint64_t mask,
526 MemTxAttrs attrs),
527 MemoryRegion *mr,
528 MemTxAttrs attrs)
530 uint64_t access_mask;
531 unsigned access_size;
532 unsigned i;
533 MemTxResult r = MEMTX_OK;
535 if (!access_size_min) {
536 access_size_min = 1;
538 if (!access_size_max) {
539 access_size_max = 4;
542 /* FIXME: support unaligned access? */
543 access_size = MAX(MIN(size, access_size_max), access_size_min);
544 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
545 if (memory_region_big_endian(mr)) {
546 for (i = 0; i < size; i += access_size) {
547 r |= access_fn(mr, addr + i, value, access_size,
548 (size - access_size - i) * 8, access_mask, attrs);
550 } else {
551 for (i = 0; i < size; i += access_size) {
552 r |= access_fn(mr, addr + i, value, access_size, i * 8,
553 access_mask, attrs);
556 return r;
559 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
561 AddressSpace *as;
563 while (mr->container) {
564 mr = mr->container;
566 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
567 if (mr == as->root) {
568 return as;
571 return NULL;
574 /* Render a memory region into the global view. Ranges in @view obscure
575 * ranges in @mr.
577 static void render_memory_region(FlatView *view,
578 MemoryRegion *mr,
579 Int128 base,
580 AddrRange clip,
581 bool readonly,
582 bool nonvolatile)
584 MemoryRegion *subregion;
585 unsigned i;
586 hwaddr offset_in_region;
587 Int128 remain;
588 Int128 now;
589 FlatRange fr;
590 AddrRange tmp;
592 if (!mr->enabled) {
593 return;
596 int128_addto(&base, int128_make64(mr->addr));
597 readonly |= mr->readonly;
598 nonvolatile |= mr->nonvolatile;
600 tmp = addrrange_make(base, mr->size);
602 if (!addrrange_intersects(tmp, clip)) {
603 return;
606 clip = addrrange_intersection(tmp, clip);
608 if (mr->alias) {
609 int128_subfrom(&base, int128_make64(mr->alias->addr));
610 int128_subfrom(&base, int128_make64(mr->alias_offset));
611 render_memory_region(view, mr->alias, base, clip,
612 readonly, nonvolatile);
613 return;
616 /* Render subregions in priority order. */
617 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
618 render_memory_region(view, subregion, base, clip,
619 readonly, nonvolatile);
622 if (!mr->terminates) {
623 return;
626 offset_in_region = int128_get64(int128_sub(clip.start, base));
627 base = clip.start;
628 remain = clip.size;
630 fr.mr = mr;
631 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
632 fr.romd_mode = mr->romd_mode;
633 fr.readonly = readonly;
634 fr.nonvolatile = nonvolatile;
636 /* Render the region itself into any gaps left by the current view. */
637 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
638 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
639 continue;
641 if (int128_lt(base, view->ranges[i].addr.start)) {
642 now = int128_min(remain,
643 int128_sub(view->ranges[i].addr.start, base));
644 fr.offset_in_region = offset_in_region;
645 fr.addr = addrrange_make(base, now);
646 flatview_insert(view, i, &fr);
647 ++i;
648 int128_addto(&base, now);
649 offset_in_region += int128_get64(now);
650 int128_subfrom(&remain, now);
652 now = int128_sub(int128_min(int128_add(base, remain),
653 addrrange_end(view->ranges[i].addr)),
654 base);
655 int128_addto(&base, now);
656 offset_in_region += int128_get64(now);
657 int128_subfrom(&remain, now);
659 if (int128_nz(remain)) {
660 fr.offset_in_region = offset_in_region;
661 fr.addr = addrrange_make(base, remain);
662 flatview_insert(view, i, &fr);
666 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
668 FlatRange *fr;
670 assert(fv);
671 assert(cb);
673 FOR_EACH_FLAT_RANGE(fr, fv) {
674 if (cb(fr->addr.start, fr->addr.size, fr->mr, opaque))
675 break;
679 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
681 while (mr->enabled) {
682 if (mr->alias) {
683 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
684 /* The alias is included in its entirety. Use it as
685 * the "real" root, so that we can share more FlatViews.
687 mr = mr->alias;
688 continue;
690 } else if (!mr->terminates) {
691 unsigned int found = 0;
692 MemoryRegion *child, *next = NULL;
693 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
694 if (child->enabled) {
695 if (++found > 1) {
696 next = NULL;
697 break;
699 if (!child->addr && int128_ge(mr->size, child->size)) {
700 /* A child is included in its entirety. If it's the only
701 * enabled one, use it in the hope of finding an alias down the
702 * way. This will also let us share FlatViews.
704 next = child;
708 if (found == 0) {
709 return NULL;
711 if (next) {
712 mr = next;
713 continue;
717 return mr;
720 return NULL;
723 /* Render a memory topology into a list of disjoint absolute ranges. */
724 static FlatView *generate_memory_topology(MemoryRegion *mr)
726 int i;
727 FlatView *view;
729 view = flatview_new(mr);
731 if (mr) {
732 render_memory_region(view, mr, int128_zero(),
733 addrrange_make(int128_zero(), int128_2_64()),
734 false, false);
736 flatview_simplify(view);
738 view->dispatch = address_space_dispatch_new(view);
739 for (i = 0; i < view->nr; i++) {
740 MemoryRegionSection mrs =
741 section_from_flat_range(&view->ranges[i], view);
742 flatview_add_to_dispatch(view, &mrs);
744 address_space_dispatch_compact(view->dispatch);
745 g_hash_table_replace(flat_views, mr, view);
747 return view;
750 static void address_space_add_del_ioeventfds(AddressSpace *as,
751 MemoryRegionIoeventfd *fds_new,
752 unsigned fds_new_nb,
753 MemoryRegionIoeventfd *fds_old,
754 unsigned fds_old_nb)
756 unsigned iold, inew;
757 MemoryRegionIoeventfd *fd;
758 MemoryRegionSection section;
760 /* Generate a symmetric difference of the old and new fd sets, adding
761 * and deleting as necessary.
764 iold = inew = 0;
765 while (iold < fds_old_nb || inew < fds_new_nb) {
766 if (iold < fds_old_nb
767 && (inew == fds_new_nb
768 || memory_region_ioeventfd_before(&fds_old[iold],
769 &fds_new[inew]))) {
770 fd = &fds_old[iold];
771 section = (MemoryRegionSection) {
772 .fv = address_space_to_flatview(as),
773 .offset_within_address_space = int128_get64(fd->addr.start),
774 .size = fd->addr.size,
776 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
777 fd->match_data, fd->data, fd->e);
778 ++iold;
779 } else if (inew < fds_new_nb
780 && (iold == fds_old_nb
781 || memory_region_ioeventfd_before(&fds_new[inew],
782 &fds_old[iold]))) {
783 fd = &fds_new[inew];
784 section = (MemoryRegionSection) {
785 .fv = address_space_to_flatview(as),
786 .offset_within_address_space = int128_get64(fd->addr.start),
787 .size = fd->addr.size,
789 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
790 fd->match_data, fd->data, fd->e);
791 ++inew;
792 } else {
793 ++iold;
794 ++inew;
799 FlatView *address_space_get_flatview(AddressSpace *as)
801 FlatView *view;
803 RCU_READ_LOCK_GUARD();
804 do {
805 view = address_space_to_flatview(as);
806 /* If somebody has replaced as->current_map concurrently,
807 * flatview_ref returns false.
809 } while (!flatview_ref(view));
810 return view;
813 static void address_space_update_ioeventfds(AddressSpace *as)
815 FlatView *view;
816 FlatRange *fr;
817 unsigned ioeventfd_nb = 0;
818 unsigned ioeventfd_max;
819 MemoryRegionIoeventfd *ioeventfds;
820 AddrRange tmp;
821 unsigned i;
824 * It is likely that the number of ioeventfds hasn't changed much, so use
825 * the previous size as the starting value, with some headroom to avoid
826 * gratuitous reallocations.
828 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
829 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
831 view = address_space_get_flatview(as);
832 FOR_EACH_FLAT_RANGE(fr, view) {
833 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
834 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
835 int128_sub(fr->addr.start,
836 int128_make64(fr->offset_in_region)));
837 if (addrrange_intersects(fr->addr, tmp)) {
838 ++ioeventfd_nb;
839 if (ioeventfd_nb > ioeventfd_max) {
840 ioeventfd_max = MAX(ioeventfd_max * 2, 4);
841 ioeventfds = g_realloc(ioeventfds,
842 ioeventfd_max * sizeof(*ioeventfds));
844 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
845 ioeventfds[ioeventfd_nb-1].addr = tmp;
850 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
851 as->ioeventfds, as->ioeventfd_nb);
853 g_free(as->ioeventfds);
854 as->ioeventfds = ioeventfds;
855 as->ioeventfd_nb = ioeventfd_nb;
856 flatview_unref(view);
860 * Notify the memory listeners about the coalesced IO change events of
861 * range `cmr'. Only the part that has intersection of the specified
862 * FlatRange will be sent.
864 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
865 CoalescedMemoryRange *cmr, bool add)
867 AddrRange tmp;
869 tmp = addrrange_shift(cmr->addr,
870 int128_sub(fr->addr.start,
871 int128_make64(fr->offset_in_region)));
872 if (!addrrange_intersects(tmp, fr->addr)) {
873 return;
875 tmp = addrrange_intersection(tmp, fr->addr);
877 if (add) {
878 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
879 int128_get64(tmp.start),
880 int128_get64(tmp.size));
881 } else {
882 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
883 int128_get64(tmp.start),
884 int128_get64(tmp.size));
888 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
890 CoalescedMemoryRange *cmr;
892 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
893 flat_range_coalesced_io_notify(fr, as, cmr, false);
897 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
899 MemoryRegion *mr = fr->mr;
900 CoalescedMemoryRange *cmr;
902 if (QTAILQ_EMPTY(&mr->coalesced)) {
903 return;
906 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
907 flat_range_coalesced_io_notify(fr, as, cmr, true);
911 static void address_space_update_topology_pass(AddressSpace *as,
912 const FlatView *old_view,
913 const FlatView *new_view,
914 bool adding)
916 unsigned iold, inew;
917 FlatRange *frold, *frnew;
919 /* Generate a symmetric difference of the old and new memory maps.
920 * Kill ranges in the old map, and instantiate ranges in the new map.
922 iold = inew = 0;
923 while (iold < old_view->nr || inew < new_view->nr) {
924 if (iold < old_view->nr) {
925 frold = &old_view->ranges[iold];
926 } else {
927 frold = NULL;
929 if (inew < new_view->nr) {
930 frnew = &new_view->ranges[inew];
931 } else {
932 frnew = NULL;
935 if (frold
936 && (!frnew
937 || int128_lt(frold->addr.start, frnew->addr.start)
938 || (int128_eq(frold->addr.start, frnew->addr.start)
939 && !flatrange_equal(frold, frnew)))) {
940 /* In old but not in new, or in both but attributes changed. */
942 if (!adding) {
943 flat_range_coalesced_io_del(frold, as);
944 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
947 ++iold;
948 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
949 /* In both and unchanged (except logging may have changed) */
951 if (adding) {
952 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
953 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
954 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
955 frold->dirty_log_mask,
956 frnew->dirty_log_mask);
958 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
959 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
960 frold->dirty_log_mask,
961 frnew->dirty_log_mask);
965 ++iold;
966 ++inew;
967 } else {
968 /* In new */
970 if (adding) {
971 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
972 flat_range_coalesced_io_add(frnew, as);
975 ++inew;
980 static void flatviews_init(void)
982 static FlatView *empty_view;
984 if (flat_views) {
985 return;
988 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
989 (GDestroyNotify) flatview_unref);
990 if (!empty_view) {
991 empty_view = generate_memory_topology(NULL);
992 /* We keep it alive forever in the global variable. */
993 flatview_ref(empty_view);
994 } else {
995 g_hash_table_replace(flat_views, NULL, empty_view);
996 flatview_ref(empty_view);
1000 static void flatviews_reset(void)
1002 AddressSpace *as;
1004 if (flat_views) {
1005 g_hash_table_unref(flat_views);
1006 flat_views = NULL;
1008 flatviews_init();
1010 /* Render unique FVs */
1011 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1012 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1014 if (g_hash_table_lookup(flat_views, physmr)) {
1015 continue;
1018 generate_memory_topology(physmr);
1022 static void address_space_set_flatview(AddressSpace *as)
1024 FlatView *old_view = address_space_to_flatview(as);
1025 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1026 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1028 assert(new_view);
1030 if (old_view == new_view) {
1031 return;
1034 if (old_view) {
1035 flatview_ref(old_view);
1038 flatview_ref(new_view);
1040 if (!QTAILQ_EMPTY(&as->listeners)) {
1041 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1043 if (!old_view2) {
1044 old_view2 = &tmpview;
1046 address_space_update_topology_pass(as, old_view2, new_view, false);
1047 address_space_update_topology_pass(as, old_view2, new_view, true);
1050 /* Writes are protected by the BQL. */
1051 qatomic_rcu_set(&as->current_map, new_view);
1052 if (old_view) {
1053 flatview_unref(old_view);
1056 /* Note that all the old MemoryRegions are still alive up to this
1057 * point. This relieves most MemoryListeners from the need to
1058 * ref/unref the MemoryRegions they get---unless they use them
1059 * outside the iothread mutex, in which case precise reference
1060 * counting is necessary.
1062 if (old_view) {
1063 flatview_unref(old_view);
1067 static void address_space_update_topology(AddressSpace *as)
1069 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1071 flatviews_init();
1072 if (!g_hash_table_lookup(flat_views, physmr)) {
1073 generate_memory_topology(physmr);
1075 address_space_set_flatview(as);
1078 void memory_region_transaction_begin(void)
1080 qemu_flush_coalesced_mmio_buffer();
1081 ++memory_region_transaction_depth;
1084 void memory_region_transaction_commit(void)
1086 AddressSpace *as;
1088 assert(memory_region_transaction_depth);
1089 assert(qemu_mutex_iothread_locked());
1091 --memory_region_transaction_depth;
1092 if (!memory_region_transaction_depth) {
1093 if (memory_region_update_pending) {
1094 flatviews_reset();
1096 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1098 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1099 address_space_set_flatview(as);
1100 address_space_update_ioeventfds(as);
1102 memory_region_update_pending = false;
1103 ioeventfd_update_pending = false;
1104 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1105 } else if (ioeventfd_update_pending) {
1106 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1107 address_space_update_ioeventfds(as);
1109 ioeventfd_update_pending = false;
1114 static void memory_region_destructor_none(MemoryRegion *mr)
1118 static void memory_region_destructor_ram(MemoryRegion *mr)
1120 qemu_ram_free(mr->ram_block);
1123 static bool memory_region_need_escape(char c)
1125 return c == '/' || c == '[' || c == '\\' || c == ']';
1128 static char *memory_region_escape_name(const char *name)
1130 const char *p;
1131 char *escaped, *q;
1132 uint8_t c;
1133 size_t bytes = 0;
1135 for (p = name; *p; p++) {
1136 bytes += memory_region_need_escape(*p) ? 4 : 1;
1138 if (bytes == p - name) {
1139 return g_memdup(name, bytes + 1);
1142 escaped = g_malloc(bytes + 1);
1143 for (p = name, q = escaped; *p; p++) {
1144 c = *p;
1145 if (unlikely(memory_region_need_escape(c))) {
1146 *q++ = '\\';
1147 *q++ = 'x';
1148 *q++ = "0123456789abcdef"[c >> 4];
1149 c = "0123456789abcdef"[c & 15];
1151 *q++ = c;
1153 *q = 0;
1154 return escaped;
1157 static void memory_region_do_init(MemoryRegion *mr,
1158 Object *owner,
1159 const char *name,
1160 uint64_t size)
1162 mr->size = int128_make64(size);
1163 if (size == UINT64_MAX) {
1164 mr->size = int128_2_64();
1166 mr->name = g_strdup(name);
1167 mr->owner = owner;
1168 mr->ram_block = NULL;
1170 if (name) {
1171 char *escaped_name = memory_region_escape_name(name);
1172 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1174 if (!owner) {
1175 owner = container_get(qdev_get_machine(), "/unattached");
1178 object_property_add_child(owner, name_array, OBJECT(mr));
1179 object_unref(OBJECT(mr));
1180 g_free(name_array);
1181 g_free(escaped_name);
1185 void memory_region_init(MemoryRegion *mr,
1186 Object *owner,
1187 const char *name,
1188 uint64_t size)
1190 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1191 memory_region_do_init(mr, owner, name, size);
1194 static void memory_region_get_container(Object *obj, Visitor *v,
1195 const char *name, void *opaque,
1196 Error **errp)
1198 MemoryRegion *mr = MEMORY_REGION(obj);
1199 char *path = (char *)"";
1201 if (mr->container) {
1202 path = object_get_canonical_path(OBJECT(mr->container));
1204 visit_type_str(v, name, &path, errp);
1205 if (mr->container) {
1206 g_free(path);
1210 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1211 const char *part)
1213 MemoryRegion *mr = MEMORY_REGION(obj);
1215 return OBJECT(mr->container);
1218 static void memory_region_get_priority(Object *obj, Visitor *v,
1219 const char *name, void *opaque,
1220 Error **errp)
1222 MemoryRegion *mr = MEMORY_REGION(obj);
1223 int32_t value = mr->priority;
1225 visit_type_int32(v, name, &value, errp);
1228 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1229 void *opaque, Error **errp)
1231 MemoryRegion *mr = MEMORY_REGION(obj);
1232 uint64_t value = memory_region_size(mr);
1234 visit_type_uint64(v, name, &value, errp);
1237 static void memory_region_initfn(Object *obj)
1239 MemoryRegion *mr = MEMORY_REGION(obj);
1240 ObjectProperty *op;
1242 mr->ops = &unassigned_mem_ops;
1243 mr->enabled = true;
1244 mr->romd_mode = true;
1245 mr->destructor = memory_region_destructor_none;
1246 QTAILQ_INIT(&mr->subregions);
1247 QTAILQ_INIT(&mr->coalesced);
1249 op = object_property_add(OBJECT(mr), "container",
1250 "link<" TYPE_MEMORY_REGION ">",
1251 memory_region_get_container,
1252 NULL, /* memory_region_set_container */
1253 NULL, NULL);
1254 op->resolve = memory_region_resolve_container;
1256 object_property_add_uint64_ptr(OBJECT(mr), "addr",
1257 &mr->addr, OBJ_PROP_FLAG_READ);
1258 object_property_add(OBJECT(mr), "priority", "uint32",
1259 memory_region_get_priority,
1260 NULL, /* memory_region_set_priority */
1261 NULL, NULL);
1262 object_property_add(OBJECT(mr), "size", "uint64",
1263 memory_region_get_size,
1264 NULL, /* memory_region_set_size, */
1265 NULL, NULL);
1268 static void iommu_memory_region_initfn(Object *obj)
1270 MemoryRegion *mr = MEMORY_REGION(obj);
1272 mr->is_iommu = true;
1275 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1276 unsigned size)
1278 #ifdef DEBUG_UNASSIGNED
1279 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1280 #endif
1281 return 0;
1284 static void unassigned_mem_write(void *opaque, hwaddr addr,
1285 uint64_t val, unsigned size)
1287 #ifdef DEBUG_UNASSIGNED
1288 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1289 #endif
1292 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1293 unsigned size, bool is_write,
1294 MemTxAttrs attrs)
1296 return false;
1299 const MemoryRegionOps unassigned_mem_ops = {
1300 .valid.accepts = unassigned_mem_accepts,
1301 .endianness = DEVICE_NATIVE_ENDIAN,
1304 static uint64_t memory_region_ram_device_read(void *opaque,
1305 hwaddr addr, unsigned size)
1307 MemoryRegion *mr = opaque;
1308 uint64_t data = (uint64_t)~0;
1310 switch (size) {
1311 case 1:
1312 data = *(uint8_t *)(mr->ram_block->host + addr);
1313 break;
1314 case 2:
1315 data = *(uint16_t *)(mr->ram_block->host + addr);
1316 break;
1317 case 4:
1318 data = *(uint32_t *)(mr->ram_block->host + addr);
1319 break;
1320 case 8:
1321 data = *(uint64_t *)(mr->ram_block->host + addr);
1322 break;
1325 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1327 return data;
1330 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1331 uint64_t data, unsigned size)
1333 MemoryRegion *mr = opaque;
1335 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1337 switch (size) {
1338 case 1:
1339 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1340 break;
1341 case 2:
1342 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1343 break;
1344 case 4:
1345 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1346 break;
1347 case 8:
1348 *(uint64_t *)(mr->ram_block->host + addr) = data;
1349 break;
1353 static const MemoryRegionOps ram_device_mem_ops = {
1354 .read = memory_region_ram_device_read,
1355 .write = memory_region_ram_device_write,
1356 .endianness = DEVICE_HOST_ENDIAN,
1357 .valid = {
1358 .min_access_size = 1,
1359 .max_access_size = 8,
1360 .unaligned = true,
1362 .impl = {
1363 .min_access_size = 1,
1364 .max_access_size = 8,
1365 .unaligned = true,
1369 bool memory_region_access_valid(MemoryRegion *mr,
1370 hwaddr addr,
1371 unsigned size,
1372 bool is_write,
1373 MemTxAttrs attrs)
1375 if (mr->ops->valid.accepts
1376 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1377 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1378 "0x%" HWADDR_PRIX ", size %u, "
1379 "region '%s', reason: rejected\n",
1380 addr, size, memory_region_name(mr));
1381 return false;
1384 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1385 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1386 "0x%" HWADDR_PRIX ", size %u, "
1387 "region '%s', reason: unaligned\n",
1388 addr, size, memory_region_name(mr));
1389 return false;
1392 /* Treat zero as compatibility all valid */
1393 if (!mr->ops->valid.max_access_size) {
1394 return true;
1397 if (size > mr->ops->valid.max_access_size
1398 || size < mr->ops->valid.min_access_size) {
1399 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1400 "0x%" HWADDR_PRIX ", size %u, "
1401 "region '%s', reason: invalid size "
1402 "(min:%u max:%u)\n",
1403 addr, size, memory_region_name(mr),
1404 mr->ops->valid.min_access_size,
1405 mr->ops->valid.max_access_size);
1406 return false;
1408 return true;
1411 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1412 hwaddr addr,
1413 uint64_t *pval,
1414 unsigned size,
1415 MemTxAttrs attrs)
1417 *pval = 0;
1419 if (mr->ops->read) {
1420 return access_with_adjusted_size(addr, pval, size,
1421 mr->ops->impl.min_access_size,
1422 mr->ops->impl.max_access_size,
1423 memory_region_read_accessor,
1424 mr, attrs);
1425 } else {
1426 return access_with_adjusted_size(addr, pval, size,
1427 mr->ops->impl.min_access_size,
1428 mr->ops->impl.max_access_size,
1429 memory_region_read_with_attrs_accessor,
1430 mr, attrs);
1434 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1435 hwaddr addr,
1436 uint64_t *pval,
1437 MemOp op,
1438 MemTxAttrs attrs)
1440 unsigned size = memop_size(op);
1441 MemTxResult r;
1443 fuzz_dma_read_cb(addr, size, mr, false);
1444 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1445 *pval = unassigned_mem_read(mr, addr, size);
1446 return MEMTX_DECODE_ERROR;
1449 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1450 adjust_endianness(mr, pval, op);
1451 return r;
1454 /* Return true if an eventfd was signalled */
1455 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1456 hwaddr addr,
1457 uint64_t data,
1458 unsigned size,
1459 MemTxAttrs attrs)
1461 MemoryRegionIoeventfd ioeventfd = {
1462 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1463 .data = data,
1465 unsigned i;
1467 for (i = 0; i < mr->ioeventfd_nb; i++) {
1468 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1469 ioeventfd.e = mr->ioeventfds[i].e;
1471 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1472 event_notifier_set(ioeventfd.e);
1473 return true;
1477 return false;
1480 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1481 hwaddr addr,
1482 uint64_t data,
1483 MemOp op,
1484 MemTxAttrs attrs)
1486 unsigned size = memop_size(op);
1488 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1489 unassigned_mem_write(mr, addr, data, size);
1490 return MEMTX_DECODE_ERROR;
1493 adjust_endianness(mr, &data, op);
1495 if ((!kvm_eventfds_enabled()) &&
1496 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1497 return MEMTX_OK;
1500 if (mr->ops->write) {
1501 return access_with_adjusted_size(addr, &data, size,
1502 mr->ops->impl.min_access_size,
1503 mr->ops->impl.max_access_size,
1504 memory_region_write_accessor, mr,
1505 attrs);
1506 } else {
1507 return
1508 access_with_adjusted_size(addr, &data, size,
1509 mr->ops->impl.min_access_size,
1510 mr->ops->impl.max_access_size,
1511 memory_region_write_with_attrs_accessor,
1512 mr, attrs);
1516 void memory_region_init_io(MemoryRegion *mr,
1517 Object *owner,
1518 const MemoryRegionOps *ops,
1519 void *opaque,
1520 const char *name,
1521 uint64_t size)
1523 memory_region_init(mr, owner, name, size);
1524 mr->ops = ops ? ops : &unassigned_mem_ops;
1525 mr->opaque = opaque;
1526 mr->terminates = true;
1529 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1530 Object *owner,
1531 const char *name,
1532 uint64_t size,
1533 Error **errp)
1535 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1538 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1539 Object *owner,
1540 const char *name,
1541 uint64_t size,
1542 bool share,
1543 Error **errp)
1545 Error *err = NULL;
1546 memory_region_init(mr, owner, name, size);
1547 mr->ram = true;
1548 mr->terminates = true;
1549 mr->destructor = memory_region_destructor_ram;
1550 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1551 if (err) {
1552 mr->size = int128_zero();
1553 object_unparent(OBJECT(mr));
1554 error_propagate(errp, err);
1558 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1559 Object *owner,
1560 const char *name,
1561 uint64_t size,
1562 uint64_t max_size,
1563 void (*resized)(const char*,
1564 uint64_t length,
1565 void *host),
1566 Error **errp)
1568 Error *err = NULL;
1569 memory_region_init(mr, owner, name, size);
1570 mr->ram = true;
1571 mr->terminates = true;
1572 mr->destructor = memory_region_destructor_ram;
1573 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1574 mr, &err);
1575 if (err) {
1576 mr->size = int128_zero();
1577 object_unparent(OBJECT(mr));
1578 error_propagate(errp, err);
1582 #ifdef CONFIG_POSIX
1583 void memory_region_init_ram_from_file(MemoryRegion *mr,
1584 struct Object *owner,
1585 const char *name,
1586 uint64_t size,
1587 uint64_t align,
1588 uint32_t ram_flags,
1589 const char *path,
1590 Error **errp)
1592 Error *err = NULL;
1593 memory_region_init(mr, owner, name, size);
1594 mr->ram = true;
1595 mr->terminates = true;
1596 mr->destructor = memory_region_destructor_ram;
1597 mr->align = align;
1598 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
1599 if (err) {
1600 mr->size = int128_zero();
1601 object_unparent(OBJECT(mr));
1602 error_propagate(errp, err);
1606 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1607 struct Object *owner,
1608 const char *name,
1609 uint64_t size,
1610 bool share,
1611 int fd,
1612 Error **errp)
1614 Error *err = NULL;
1615 memory_region_init(mr, owner, name, size);
1616 mr->ram = true;
1617 mr->terminates = true;
1618 mr->destructor = memory_region_destructor_ram;
1619 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1620 share ? RAM_SHARED : 0,
1621 fd, &err);
1622 if (err) {
1623 mr->size = int128_zero();
1624 object_unparent(OBJECT(mr));
1625 error_propagate(errp, err);
1628 #endif
1630 void memory_region_init_ram_ptr(MemoryRegion *mr,
1631 Object *owner,
1632 const char *name,
1633 uint64_t size,
1634 void *ptr)
1636 memory_region_init(mr, owner, name, size);
1637 mr->ram = true;
1638 mr->terminates = true;
1639 mr->destructor = memory_region_destructor_ram;
1641 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1642 assert(ptr != NULL);
1643 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1646 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1647 Object *owner,
1648 const char *name,
1649 uint64_t size,
1650 void *ptr)
1652 memory_region_init(mr, owner, name, size);
1653 mr->ram = true;
1654 mr->terminates = true;
1655 mr->ram_device = true;
1656 mr->ops = &ram_device_mem_ops;
1657 mr->opaque = mr;
1658 mr->destructor = memory_region_destructor_ram;
1660 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1661 assert(ptr != NULL);
1662 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1665 void memory_region_init_alias(MemoryRegion *mr,
1666 Object *owner,
1667 const char *name,
1668 MemoryRegion *orig,
1669 hwaddr offset,
1670 uint64_t size)
1672 memory_region_init(mr, owner, name, size);
1673 mr->alias = orig;
1674 mr->alias_offset = offset;
1677 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1678 struct Object *owner,
1679 const char *name,
1680 uint64_t size,
1681 Error **errp)
1683 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1684 mr->readonly = true;
1687 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1688 Object *owner,
1689 const MemoryRegionOps *ops,
1690 void *opaque,
1691 const char *name,
1692 uint64_t size,
1693 Error **errp)
1695 Error *err = NULL;
1696 assert(ops);
1697 memory_region_init(mr, owner, name, size);
1698 mr->ops = ops;
1699 mr->opaque = opaque;
1700 mr->terminates = true;
1701 mr->rom_device = true;
1702 mr->destructor = memory_region_destructor_ram;
1703 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1704 if (err) {
1705 mr->size = int128_zero();
1706 object_unparent(OBJECT(mr));
1707 error_propagate(errp, err);
1711 void memory_region_init_iommu(void *_iommu_mr,
1712 size_t instance_size,
1713 const char *mrtypename,
1714 Object *owner,
1715 const char *name,
1716 uint64_t size)
1718 struct IOMMUMemoryRegion *iommu_mr;
1719 struct MemoryRegion *mr;
1721 object_initialize(_iommu_mr, instance_size, mrtypename);
1722 mr = MEMORY_REGION(_iommu_mr);
1723 memory_region_do_init(mr, owner, name, size);
1724 iommu_mr = IOMMU_MEMORY_REGION(mr);
1725 mr->terminates = true; /* then re-forwards */
1726 QLIST_INIT(&iommu_mr->iommu_notify);
1727 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1730 static void memory_region_finalize(Object *obj)
1732 MemoryRegion *mr = MEMORY_REGION(obj);
1734 assert(!mr->container);
1736 /* We know the region is not visible in any address space (it
1737 * does not have a container and cannot be a root either because
1738 * it has no references, so we can blindly clear mr->enabled.
1739 * memory_region_set_enabled instead could trigger a transaction
1740 * and cause an infinite loop.
1742 mr->enabled = false;
1743 memory_region_transaction_begin();
1744 while (!QTAILQ_EMPTY(&mr->subregions)) {
1745 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1746 memory_region_del_subregion(mr, subregion);
1748 memory_region_transaction_commit();
1750 mr->destructor(mr);
1751 memory_region_clear_coalescing(mr);
1752 g_free((char *)mr->name);
1753 g_free(mr->ioeventfds);
1756 Object *memory_region_owner(MemoryRegion *mr)
1758 Object *obj = OBJECT(mr);
1759 return obj->parent;
1762 void memory_region_ref(MemoryRegion *mr)
1764 /* MMIO callbacks most likely will access data that belongs
1765 * to the owner, hence the need to ref/unref the owner whenever
1766 * the memory region is in use.
1768 * The memory region is a child of its owner. As long as the
1769 * owner doesn't call unparent itself on the memory region,
1770 * ref-ing the owner will also keep the memory region alive.
1771 * Memory regions without an owner are supposed to never go away;
1772 * we do not ref/unref them because it slows down DMA sensibly.
1774 if (mr && mr->owner) {
1775 object_ref(mr->owner);
1779 void memory_region_unref(MemoryRegion *mr)
1781 if (mr && mr->owner) {
1782 object_unref(mr->owner);
1786 uint64_t memory_region_size(MemoryRegion *mr)
1788 if (int128_eq(mr->size, int128_2_64())) {
1789 return UINT64_MAX;
1791 return int128_get64(mr->size);
1794 const char *memory_region_name(const MemoryRegion *mr)
1796 if (!mr->name) {
1797 ((MemoryRegion *)mr)->name =
1798 g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1800 return mr->name;
1803 bool memory_region_is_ram_device(MemoryRegion *mr)
1805 return mr->ram_device;
1808 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1810 uint8_t mask = mr->dirty_log_mask;
1811 RAMBlock *rb = mr->ram_block;
1813 if (global_dirty_log && ((rb && qemu_ram_is_migratable(rb)) ||
1814 memory_region_is_iommu(mr))) {
1815 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1818 if (tcg_enabled() && rb) {
1819 /* TCG only cares about dirty memory logging for RAM, not IOMMU. */
1820 mask |= (1 << DIRTY_MEMORY_CODE);
1822 return mask;
1825 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1827 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1830 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1831 Error **errp)
1833 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1834 IOMMUNotifier *iommu_notifier;
1835 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1836 int ret = 0;
1838 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1839 flags |= iommu_notifier->notifier_flags;
1842 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1843 ret = imrc->notify_flag_changed(iommu_mr,
1844 iommu_mr->iommu_notify_flags,
1845 flags, errp);
1848 if (!ret) {
1849 iommu_mr->iommu_notify_flags = flags;
1851 return ret;
1854 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1855 uint64_t page_size_mask,
1856 Error **errp)
1858 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1859 int ret = 0;
1861 if (imrc->iommu_set_page_size_mask) {
1862 ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1864 return ret;
1867 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1868 IOMMUNotifier *n, Error **errp)
1870 IOMMUMemoryRegion *iommu_mr;
1871 int ret;
1873 if (mr->alias) {
1874 return memory_region_register_iommu_notifier(mr->alias, n, errp);
1877 /* We need to register for at least one bitfield */
1878 iommu_mr = IOMMU_MEMORY_REGION(mr);
1879 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1880 assert(n->start <= n->end);
1881 assert(n->iommu_idx >= 0 &&
1882 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1884 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1885 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1886 if (ret) {
1887 QLIST_REMOVE(n, node);
1889 return ret;
1892 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1894 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1896 if (imrc->get_min_page_size) {
1897 return imrc->get_min_page_size(iommu_mr);
1899 return TARGET_PAGE_SIZE;
1902 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1904 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1905 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1906 hwaddr addr, granularity;
1907 IOMMUTLBEntry iotlb;
1909 /* If the IOMMU has its own replay callback, override */
1910 if (imrc->replay) {
1911 imrc->replay(iommu_mr, n);
1912 return;
1915 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1917 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1918 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1919 if (iotlb.perm != IOMMU_NONE) {
1920 n->notify(n, &iotlb);
1923 /* if (2^64 - MR size) < granularity, it's possible to get an
1924 * infinite loop here. This should catch such a wraparound */
1925 if ((addr + granularity) < addr) {
1926 break;
1931 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1932 IOMMUNotifier *n)
1934 IOMMUMemoryRegion *iommu_mr;
1936 if (mr->alias) {
1937 memory_region_unregister_iommu_notifier(mr->alias, n);
1938 return;
1940 QLIST_REMOVE(n, node);
1941 iommu_mr = IOMMU_MEMORY_REGION(mr);
1942 memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1945 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1946 IOMMUTLBEvent *event)
1948 IOMMUTLBEntry *entry = &event->entry;
1949 hwaddr entry_end = entry->iova + entry->addr_mask;
1950 IOMMUTLBEntry tmp = *entry;
1952 if (event->type == IOMMU_NOTIFIER_UNMAP) {
1953 assert(entry->perm == IOMMU_NONE);
1957 * Skip the notification if the notification does not overlap
1958 * with registered range.
1960 if (notifier->start > entry_end || notifier->end < entry->iova) {
1961 return;
1964 if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1965 /* Crop (iova, addr_mask) to range */
1966 tmp.iova = MAX(tmp.iova, notifier->start);
1967 tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
1968 } else {
1969 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1972 if (event->type & notifier->notifier_flags) {
1973 notifier->notify(notifier, &tmp);
1977 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1978 int iommu_idx,
1979 IOMMUTLBEvent event)
1981 IOMMUNotifier *iommu_notifier;
1983 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1985 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1986 if (iommu_notifier->iommu_idx == iommu_idx) {
1987 memory_region_notify_iommu_one(iommu_notifier, &event);
1992 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1993 enum IOMMUMemoryRegionAttr attr,
1994 void *data)
1996 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1998 if (!imrc->get_attr) {
1999 return -EINVAL;
2002 return imrc->get_attr(iommu_mr, attr, data);
2005 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2006 MemTxAttrs attrs)
2008 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2010 if (!imrc->attrs_to_index) {
2011 return 0;
2014 return imrc->attrs_to_index(iommu_mr, attrs);
2017 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2019 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2021 if (!imrc->num_indexes) {
2022 return 1;
2025 return imrc->num_indexes(iommu_mr);
2028 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2030 uint8_t mask = 1 << client;
2031 uint8_t old_logging;
2033 assert(client == DIRTY_MEMORY_VGA);
2034 old_logging = mr->vga_logging_count;
2035 mr->vga_logging_count += log ? 1 : -1;
2036 if (!!old_logging == !!mr->vga_logging_count) {
2037 return;
2040 memory_region_transaction_begin();
2041 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2042 memory_region_update_pending |= mr->enabled;
2043 memory_region_transaction_commit();
2046 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2047 hwaddr size)
2049 assert(mr->ram_block);
2050 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2051 size,
2052 memory_region_get_dirty_log_mask(mr));
2055 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2057 MemoryListener *listener;
2058 AddressSpace *as;
2059 FlatView *view;
2060 FlatRange *fr;
2062 /* If the same address space has multiple log_sync listeners, we
2063 * visit that address space's FlatView multiple times. But because
2064 * log_sync listeners are rare, it's still cheaper than walking each
2065 * address space once.
2067 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2068 if (!listener->log_sync) {
2069 continue;
2071 as = listener->address_space;
2072 view = address_space_get_flatview(as);
2073 FOR_EACH_FLAT_RANGE(fr, view) {
2074 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2075 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2076 listener->log_sync(listener, &mrs);
2079 flatview_unref(view);
2083 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2084 hwaddr len)
2086 MemoryRegionSection mrs;
2087 MemoryListener *listener;
2088 AddressSpace *as;
2089 FlatView *view;
2090 FlatRange *fr;
2091 hwaddr sec_start, sec_end, sec_size;
2093 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2094 if (!listener->log_clear) {
2095 continue;
2097 as = listener->address_space;
2098 view = address_space_get_flatview(as);
2099 FOR_EACH_FLAT_RANGE(fr, view) {
2100 if (!fr->dirty_log_mask || fr->mr != mr) {
2102 * Clear dirty bitmap operation only applies to those
2103 * regions whose dirty logging is at least enabled
2105 continue;
2108 mrs = section_from_flat_range(fr, view);
2110 sec_start = MAX(mrs.offset_within_region, start);
2111 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2112 sec_end = MIN(sec_end, start + len);
2114 if (sec_start >= sec_end) {
2116 * If this memory region section has no intersection
2117 * with the requested range, skip.
2119 continue;
2122 /* Valid case; shrink the section if needed */
2123 mrs.offset_within_address_space +=
2124 sec_start - mrs.offset_within_region;
2125 mrs.offset_within_region = sec_start;
2126 sec_size = sec_end - sec_start;
2127 mrs.size = int128_make64(sec_size);
2128 listener->log_clear(listener, &mrs);
2130 flatview_unref(view);
2134 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2135 hwaddr addr,
2136 hwaddr size,
2137 unsigned client)
2139 DirtyBitmapSnapshot *snapshot;
2140 assert(mr->ram_block);
2141 memory_region_sync_dirty_bitmap(mr);
2142 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2143 memory_global_after_dirty_log_sync();
2144 return snapshot;
2147 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2148 hwaddr addr, hwaddr size)
2150 assert(mr->ram_block);
2151 return cpu_physical_memory_snapshot_get_dirty(snap,
2152 memory_region_get_ram_addr(mr) + addr, size);
2155 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2157 if (mr->readonly != readonly) {
2158 memory_region_transaction_begin();
2159 mr->readonly = readonly;
2160 memory_region_update_pending |= mr->enabled;
2161 memory_region_transaction_commit();
2165 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2167 if (mr->nonvolatile != nonvolatile) {
2168 memory_region_transaction_begin();
2169 mr->nonvolatile = nonvolatile;
2170 memory_region_update_pending |= mr->enabled;
2171 memory_region_transaction_commit();
2175 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2177 if (mr->romd_mode != romd_mode) {
2178 memory_region_transaction_begin();
2179 mr->romd_mode = romd_mode;
2180 memory_region_update_pending |= mr->enabled;
2181 memory_region_transaction_commit();
2185 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2186 hwaddr size, unsigned client)
2188 assert(mr->ram_block);
2189 cpu_physical_memory_test_and_clear_dirty(
2190 memory_region_get_ram_addr(mr) + addr, size, client);
2193 int memory_region_get_fd(MemoryRegion *mr)
2195 int fd;
2197 RCU_READ_LOCK_GUARD();
2198 while (mr->alias) {
2199 mr = mr->alias;
2201 fd = mr->ram_block->fd;
2203 return fd;
2206 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2208 void *ptr;
2209 uint64_t offset = 0;
2211 RCU_READ_LOCK_GUARD();
2212 while (mr->alias) {
2213 offset += mr->alias_offset;
2214 mr = mr->alias;
2216 assert(mr->ram_block);
2217 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2219 return ptr;
2222 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2224 RAMBlock *block;
2226 block = qemu_ram_block_from_host(ptr, false, offset);
2227 if (!block) {
2228 return NULL;
2231 return block->mr;
2234 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2236 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2239 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2241 assert(mr->ram_block);
2243 qemu_ram_resize(mr->ram_block, newsize, errp);
2246 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2248 if (mr->ram_block) {
2249 qemu_ram_msync(mr->ram_block, addr, size);
2253 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2256 * Might be extended case needed to cover
2257 * different types of memory regions
2259 if (mr->dirty_log_mask) {
2260 memory_region_msync(mr, addr, size);
2265 * Call proper memory listeners about the change on the newly
2266 * added/removed CoalescedMemoryRange.
2268 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2269 CoalescedMemoryRange *cmr,
2270 bool add)
2272 AddressSpace *as;
2273 FlatView *view;
2274 FlatRange *fr;
2276 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2277 view = address_space_get_flatview(as);
2278 FOR_EACH_FLAT_RANGE(fr, view) {
2279 if (fr->mr == mr) {
2280 flat_range_coalesced_io_notify(fr, as, cmr, add);
2283 flatview_unref(view);
2287 void memory_region_set_coalescing(MemoryRegion *mr)
2289 memory_region_clear_coalescing(mr);
2290 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2293 void memory_region_add_coalescing(MemoryRegion *mr,
2294 hwaddr offset,
2295 uint64_t size)
2297 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2299 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2300 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2301 memory_region_update_coalesced_range(mr, cmr, true);
2302 memory_region_set_flush_coalesced(mr);
2305 void memory_region_clear_coalescing(MemoryRegion *mr)
2307 CoalescedMemoryRange *cmr;
2309 if (QTAILQ_EMPTY(&mr->coalesced)) {
2310 return;
2313 qemu_flush_coalesced_mmio_buffer();
2314 mr->flush_coalesced_mmio = false;
2316 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2317 cmr = QTAILQ_FIRST(&mr->coalesced);
2318 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2319 memory_region_update_coalesced_range(mr, cmr, false);
2320 g_free(cmr);
2324 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2326 mr->flush_coalesced_mmio = true;
2329 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2331 qemu_flush_coalesced_mmio_buffer();
2332 if (QTAILQ_EMPTY(&mr->coalesced)) {
2333 mr->flush_coalesced_mmio = false;
2337 static bool userspace_eventfd_warning;
2339 void memory_region_add_eventfd(MemoryRegion *mr,
2340 hwaddr addr,
2341 unsigned size,
2342 bool match_data,
2343 uint64_t data,
2344 EventNotifier *e)
2346 MemoryRegionIoeventfd mrfd = {
2347 .addr.start = int128_make64(addr),
2348 .addr.size = int128_make64(size),
2349 .match_data = match_data,
2350 .data = data,
2351 .e = e,
2353 unsigned i;
2355 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2356 userspace_eventfd_warning))) {
2357 userspace_eventfd_warning = true;
2358 error_report("Using eventfd without MMIO binding in KVM. "
2359 "Suboptimal performance expected");
2362 if (size) {
2363 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2365 memory_region_transaction_begin();
2366 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2367 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2368 break;
2371 ++mr->ioeventfd_nb;
2372 mr->ioeventfds = g_realloc(mr->ioeventfds,
2373 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2374 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2375 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2376 mr->ioeventfds[i] = mrfd;
2377 ioeventfd_update_pending |= mr->enabled;
2378 memory_region_transaction_commit();
2381 void memory_region_del_eventfd(MemoryRegion *mr,
2382 hwaddr addr,
2383 unsigned size,
2384 bool match_data,
2385 uint64_t data,
2386 EventNotifier *e)
2388 MemoryRegionIoeventfd mrfd = {
2389 .addr.start = int128_make64(addr),
2390 .addr.size = int128_make64(size),
2391 .match_data = match_data,
2392 .data = data,
2393 .e = e,
2395 unsigned i;
2397 if (size) {
2398 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2400 memory_region_transaction_begin();
2401 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2402 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2403 break;
2406 assert(i != mr->ioeventfd_nb);
2407 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2408 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2409 --mr->ioeventfd_nb;
2410 mr->ioeventfds = g_realloc(mr->ioeventfds,
2411 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2412 ioeventfd_update_pending |= mr->enabled;
2413 memory_region_transaction_commit();
2416 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2418 MemoryRegion *mr = subregion->container;
2419 MemoryRegion *other;
2421 memory_region_transaction_begin();
2423 memory_region_ref(subregion);
2424 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2425 if (subregion->priority >= other->priority) {
2426 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2427 goto done;
2430 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2431 done:
2432 memory_region_update_pending |= mr->enabled && subregion->enabled;
2433 memory_region_transaction_commit();
2436 static void memory_region_add_subregion_common(MemoryRegion *mr,
2437 hwaddr offset,
2438 MemoryRegion *subregion)
2440 assert(!subregion->container);
2441 subregion->container = mr;
2442 subregion->addr = offset;
2443 memory_region_update_container_subregions(subregion);
2446 void memory_region_add_subregion(MemoryRegion *mr,
2447 hwaddr offset,
2448 MemoryRegion *subregion)
2450 subregion->priority = 0;
2451 memory_region_add_subregion_common(mr, offset, subregion);
2454 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2455 hwaddr offset,
2456 MemoryRegion *subregion,
2457 int priority)
2459 subregion->priority = priority;
2460 memory_region_add_subregion_common(mr, offset, subregion);
2463 void memory_region_del_subregion(MemoryRegion *mr,
2464 MemoryRegion *subregion)
2466 memory_region_transaction_begin();
2467 assert(subregion->container == mr);
2468 subregion->container = NULL;
2469 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2470 memory_region_unref(subregion);
2471 memory_region_update_pending |= mr->enabled && subregion->enabled;
2472 memory_region_transaction_commit();
2475 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2477 if (enabled == mr->enabled) {
2478 return;
2480 memory_region_transaction_begin();
2481 mr->enabled = enabled;
2482 memory_region_update_pending = true;
2483 memory_region_transaction_commit();
2486 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2488 Int128 s = int128_make64(size);
2490 if (size == UINT64_MAX) {
2491 s = int128_2_64();
2493 if (int128_eq(s, mr->size)) {
2494 return;
2496 memory_region_transaction_begin();
2497 mr->size = s;
2498 memory_region_update_pending = true;
2499 memory_region_transaction_commit();
2502 static void memory_region_readd_subregion(MemoryRegion *mr)
2504 MemoryRegion *container = mr->container;
2506 if (container) {
2507 memory_region_transaction_begin();
2508 memory_region_ref(mr);
2509 memory_region_del_subregion(container, mr);
2510 mr->container = container;
2511 memory_region_update_container_subregions(mr);
2512 memory_region_unref(mr);
2513 memory_region_transaction_commit();
2517 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2519 if (addr != mr->addr) {
2520 mr->addr = addr;
2521 memory_region_readd_subregion(mr);
2525 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2527 assert(mr->alias);
2529 if (offset == mr->alias_offset) {
2530 return;
2533 memory_region_transaction_begin();
2534 mr->alias_offset = offset;
2535 memory_region_update_pending |= mr->enabled;
2536 memory_region_transaction_commit();
2539 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2541 return mr->align;
2544 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2546 const AddrRange *addr = addr_;
2547 const FlatRange *fr = fr_;
2549 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2550 return -1;
2551 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2552 return 1;
2554 return 0;
2557 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2559 return bsearch(&addr, view->ranges, view->nr,
2560 sizeof(FlatRange), cmp_flatrange_addr);
2563 bool memory_region_is_mapped(MemoryRegion *mr)
2565 return mr->container ? true : false;
2568 /* Same as memory_region_find, but it does not add a reference to the
2569 * returned region. It must be called from an RCU critical section.
2571 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2572 hwaddr addr, uint64_t size)
2574 MemoryRegionSection ret = { .mr = NULL };
2575 MemoryRegion *root;
2576 AddressSpace *as;
2577 AddrRange range;
2578 FlatView *view;
2579 FlatRange *fr;
2581 addr += mr->addr;
2582 for (root = mr; root->container; ) {
2583 root = root->container;
2584 addr += root->addr;
2587 as = memory_region_to_address_space(root);
2588 if (!as) {
2589 return ret;
2591 range = addrrange_make(int128_make64(addr), int128_make64(size));
2593 view = address_space_to_flatview(as);
2594 fr = flatview_lookup(view, range);
2595 if (!fr) {
2596 return ret;
2599 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2600 --fr;
2603 ret.mr = fr->mr;
2604 ret.fv = view;
2605 range = addrrange_intersection(range, fr->addr);
2606 ret.offset_within_region = fr->offset_in_region;
2607 ret.offset_within_region += int128_get64(int128_sub(range.start,
2608 fr->addr.start));
2609 ret.size = range.size;
2610 ret.offset_within_address_space = int128_get64(range.start);
2611 ret.readonly = fr->readonly;
2612 ret.nonvolatile = fr->nonvolatile;
2613 return ret;
2616 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2617 hwaddr addr, uint64_t size)
2619 MemoryRegionSection ret;
2620 RCU_READ_LOCK_GUARD();
2621 ret = memory_region_find_rcu(mr, addr, size);
2622 if (ret.mr) {
2623 memory_region_ref(ret.mr);
2625 return ret;
2628 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2630 MemoryRegion *mr;
2632 RCU_READ_LOCK_GUARD();
2633 mr = memory_region_find_rcu(container, addr, 1).mr;
2634 return mr && mr != container;
2637 void memory_global_dirty_log_sync(void)
2639 memory_region_sync_dirty_bitmap(NULL);
2642 void memory_global_after_dirty_log_sync(void)
2644 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2647 static VMChangeStateEntry *vmstate_change;
2649 void memory_global_dirty_log_start(void)
2651 if (vmstate_change) {
2652 qemu_del_vm_change_state_handler(vmstate_change);
2653 vmstate_change = NULL;
2656 global_dirty_log = true;
2658 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2660 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2661 memory_region_transaction_begin();
2662 memory_region_update_pending = true;
2663 memory_region_transaction_commit();
2666 static void memory_global_dirty_log_do_stop(void)
2668 global_dirty_log = false;
2670 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2671 memory_region_transaction_begin();
2672 memory_region_update_pending = true;
2673 memory_region_transaction_commit();
2675 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2678 static void memory_vm_change_state_handler(void *opaque, int running,
2679 RunState state)
2681 if (running) {
2682 memory_global_dirty_log_do_stop();
2684 if (vmstate_change) {
2685 qemu_del_vm_change_state_handler(vmstate_change);
2686 vmstate_change = NULL;
2691 void memory_global_dirty_log_stop(void)
2693 if (!runstate_is_running()) {
2694 if (vmstate_change) {
2695 return;
2697 vmstate_change = qemu_add_vm_change_state_handler(
2698 memory_vm_change_state_handler, NULL);
2699 return;
2702 memory_global_dirty_log_do_stop();
2705 static void listener_add_address_space(MemoryListener *listener,
2706 AddressSpace *as)
2708 FlatView *view;
2709 FlatRange *fr;
2711 if (listener->begin) {
2712 listener->begin(listener);
2714 if (global_dirty_log) {
2715 if (listener->log_global_start) {
2716 listener->log_global_start(listener);
2720 view = address_space_get_flatview(as);
2721 FOR_EACH_FLAT_RANGE(fr, view) {
2722 MemoryRegionSection section = section_from_flat_range(fr, view);
2724 if (listener->region_add) {
2725 listener->region_add(listener, &section);
2727 if (fr->dirty_log_mask && listener->log_start) {
2728 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2731 if (listener->commit) {
2732 listener->commit(listener);
2734 flatview_unref(view);
2737 static void listener_del_address_space(MemoryListener *listener,
2738 AddressSpace *as)
2740 FlatView *view;
2741 FlatRange *fr;
2743 if (listener->begin) {
2744 listener->begin(listener);
2746 view = address_space_get_flatview(as);
2747 FOR_EACH_FLAT_RANGE(fr, view) {
2748 MemoryRegionSection section = section_from_flat_range(fr, view);
2750 if (fr->dirty_log_mask && listener->log_stop) {
2751 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2753 if (listener->region_del) {
2754 listener->region_del(listener, &section);
2757 if (listener->commit) {
2758 listener->commit(listener);
2760 flatview_unref(view);
2763 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2765 MemoryListener *other = NULL;
2767 listener->address_space = as;
2768 if (QTAILQ_EMPTY(&memory_listeners)
2769 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2770 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2771 } else {
2772 QTAILQ_FOREACH(other, &memory_listeners, link) {
2773 if (listener->priority < other->priority) {
2774 break;
2777 QTAILQ_INSERT_BEFORE(other, listener, link);
2780 if (QTAILQ_EMPTY(&as->listeners)
2781 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2782 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2783 } else {
2784 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2785 if (listener->priority < other->priority) {
2786 break;
2789 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2792 listener_add_address_space(listener, as);
2795 void memory_listener_unregister(MemoryListener *listener)
2797 if (!listener->address_space) {
2798 return;
2801 listener_del_address_space(listener, listener->address_space);
2802 QTAILQ_REMOVE(&memory_listeners, listener, link);
2803 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2804 listener->address_space = NULL;
2807 void address_space_remove_listeners(AddressSpace *as)
2809 while (!QTAILQ_EMPTY(&as->listeners)) {
2810 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2814 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2816 memory_region_ref(root);
2817 as->root = root;
2818 as->current_map = NULL;
2819 as->ioeventfd_nb = 0;
2820 as->ioeventfds = NULL;
2821 QTAILQ_INIT(&as->listeners);
2822 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2823 as->name = g_strdup(name ? name : "anonymous");
2824 address_space_update_topology(as);
2825 address_space_update_ioeventfds(as);
2828 static void do_address_space_destroy(AddressSpace *as)
2830 assert(QTAILQ_EMPTY(&as->listeners));
2832 flatview_unref(as->current_map);
2833 g_free(as->name);
2834 g_free(as->ioeventfds);
2835 memory_region_unref(as->root);
2838 void address_space_destroy(AddressSpace *as)
2840 MemoryRegion *root = as->root;
2842 /* Flush out anything from MemoryListeners listening in on this */
2843 memory_region_transaction_begin();
2844 as->root = NULL;
2845 memory_region_transaction_commit();
2846 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2848 /* At this point, as->dispatch and as->current_map are dummy
2849 * entries that the guest should never use. Wait for the old
2850 * values to expire before freeing the data.
2852 as->root = root;
2853 call_rcu(as, do_address_space_destroy, rcu);
2856 static const char *memory_region_type(MemoryRegion *mr)
2858 if (mr->alias) {
2859 return memory_region_type(mr->alias);
2861 if (memory_region_is_ram_device(mr)) {
2862 return "ramd";
2863 } else if (memory_region_is_romd(mr)) {
2864 return "romd";
2865 } else if (memory_region_is_rom(mr)) {
2866 return "rom";
2867 } else if (memory_region_is_ram(mr)) {
2868 return "ram";
2869 } else {
2870 return "i/o";
2874 typedef struct MemoryRegionList MemoryRegionList;
2876 struct MemoryRegionList {
2877 const MemoryRegion *mr;
2878 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2881 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2883 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2884 int128_sub((size), int128_one())) : 0)
2885 #define MTREE_INDENT " "
2887 static void mtree_expand_owner(const char *label, Object *obj)
2889 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2891 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2892 if (dev && dev->id) {
2893 qemu_printf(" id=%s", dev->id);
2894 } else {
2895 char *canonical_path = object_get_canonical_path(obj);
2896 if (canonical_path) {
2897 qemu_printf(" path=%s", canonical_path);
2898 g_free(canonical_path);
2899 } else {
2900 qemu_printf(" type=%s", object_get_typename(obj));
2903 qemu_printf("}");
2906 static void mtree_print_mr_owner(const MemoryRegion *mr)
2908 Object *owner = mr->owner;
2909 Object *parent = memory_region_owner((MemoryRegion *)mr);
2911 if (!owner && !parent) {
2912 qemu_printf(" orphan");
2913 return;
2915 if (owner) {
2916 mtree_expand_owner("owner", owner);
2918 if (parent && parent != owner) {
2919 mtree_expand_owner("parent", parent);
2923 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2924 hwaddr base,
2925 MemoryRegionListHead *alias_print_queue,
2926 bool owner, bool display_disabled)
2928 MemoryRegionList *new_ml, *ml, *next_ml;
2929 MemoryRegionListHead submr_print_queue;
2930 const MemoryRegion *submr;
2931 unsigned int i;
2932 hwaddr cur_start, cur_end;
2934 if (!mr) {
2935 return;
2938 cur_start = base + mr->addr;
2939 cur_end = cur_start + MR_SIZE(mr->size);
2942 * Try to detect overflow of memory region. This should never
2943 * happen normally. When it happens, we dump something to warn the
2944 * user who is observing this.
2946 if (cur_start < base || cur_end < cur_start) {
2947 qemu_printf("[DETECTED OVERFLOW!] ");
2950 if (mr->alias) {
2951 MemoryRegionList *ml;
2952 bool found = false;
2954 /* check if the alias is already in the queue */
2955 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2956 if (ml->mr == mr->alias) {
2957 found = true;
2961 if (!found) {
2962 ml = g_new(MemoryRegionList, 1);
2963 ml->mr = mr->alias;
2964 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2966 if (mr->enabled || display_disabled) {
2967 for (i = 0; i < level; i++) {
2968 qemu_printf(MTREE_INDENT);
2970 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2971 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2972 "-" TARGET_FMT_plx "%s",
2973 cur_start, cur_end,
2974 mr->priority,
2975 mr->nonvolatile ? "nv-" : "",
2976 memory_region_type((MemoryRegion *)mr),
2977 memory_region_name(mr),
2978 memory_region_name(mr->alias),
2979 mr->alias_offset,
2980 mr->alias_offset + MR_SIZE(mr->size),
2981 mr->enabled ? "" : " [disabled]");
2982 if (owner) {
2983 mtree_print_mr_owner(mr);
2985 qemu_printf("\n");
2987 } else {
2988 if (mr->enabled || display_disabled) {
2989 for (i = 0; i < level; i++) {
2990 qemu_printf(MTREE_INDENT);
2992 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2993 " (prio %d, %s%s): %s%s",
2994 cur_start, cur_end,
2995 mr->priority,
2996 mr->nonvolatile ? "nv-" : "",
2997 memory_region_type((MemoryRegion *)mr),
2998 memory_region_name(mr),
2999 mr->enabled ? "" : " [disabled]");
3000 if (owner) {
3001 mtree_print_mr_owner(mr);
3003 qemu_printf("\n");
3007 QTAILQ_INIT(&submr_print_queue);
3009 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3010 new_ml = g_new(MemoryRegionList, 1);
3011 new_ml->mr = submr;
3012 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3013 if (new_ml->mr->addr < ml->mr->addr ||
3014 (new_ml->mr->addr == ml->mr->addr &&
3015 new_ml->mr->priority > ml->mr->priority)) {
3016 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3017 new_ml = NULL;
3018 break;
3021 if (new_ml) {
3022 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3026 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3027 mtree_print_mr(ml->mr, level + 1, cur_start,
3028 alias_print_queue, owner, display_disabled);
3031 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3032 g_free(ml);
3036 struct FlatViewInfo {
3037 int counter;
3038 bool dispatch_tree;
3039 bool owner;
3040 AccelClass *ac;
3043 static void mtree_print_flatview(gpointer key, gpointer value,
3044 gpointer user_data)
3046 FlatView *view = key;
3047 GArray *fv_address_spaces = value;
3048 struct FlatViewInfo *fvi = user_data;
3049 FlatRange *range = &view->ranges[0];
3050 MemoryRegion *mr;
3051 int n = view->nr;
3052 int i;
3053 AddressSpace *as;
3055 qemu_printf("FlatView #%d\n", fvi->counter);
3056 ++fvi->counter;
3058 for (i = 0; i < fv_address_spaces->len; ++i) {
3059 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3060 qemu_printf(" AS \"%s\", root: %s",
3061 as->name, memory_region_name(as->root));
3062 if (as->root->alias) {
3063 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3065 qemu_printf("\n");
3068 qemu_printf(" Root memory region: %s\n",
3069 view->root ? memory_region_name(view->root) : "(none)");
3071 if (n <= 0) {
3072 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3073 return;
3076 while (n--) {
3077 mr = range->mr;
3078 if (range->offset_in_region) {
3079 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3080 " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3081 int128_get64(range->addr.start),
3082 int128_get64(range->addr.start)
3083 + MR_SIZE(range->addr.size),
3084 mr->priority,
3085 range->nonvolatile ? "nv-" : "",
3086 range->readonly ? "rom" : memory_region_type(mr),
3087 memory_region_name(mr),
3088 range->offset_in_region);
3089 } else {
3090 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3091 " (prio %d, %s%s): %s",
3092 int128_get64(range->addr.start),
3093 int128_get64(range->addr.start)
3094 + MR_SIZE(range->addr.size),
3095 mr->priority,
3096 range->nonvolatile ? "nv-" : "",
3097 range->readonly ? "rom" : memory_region_type(mr),
3098 memory_region_name(mr));
3100 if (fvi->owner) {
3101 mtree_print_mr_owner(mr);
3104 if (fvi->ac) {
3105 for (i = 0; i < fv_address_spaces->len; ++i) {
3106 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3107 if (fvi->ac->has_memory(current_machine, as,
3108 int128_get64(range->addr.start),
3109 MR_SIZE(range->addr.size) + 1)) {
3110 qemu_printf(" %s", fvi->ac->name);
3114 qemu_printf("\n");
3115 range++;
3118 #if !defined(CONFIG_USER_ONLY)
3119 if (fvi->dispatch_tree && view->root) {
3120 mtree_print_dispatch(view->dispatch, view->root);
3122 #endif
3124 qemu_printf("\n");
3127 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3128 gpointer user_data)
3130 FlatView *view = key;
3131 GArray *fv_address_spaces = value;
3133 g_array_unref(fv_address_spaces);
3134 flatview_unref(view);
3136 return true;
3139 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3141 MemoryRegionListHead ml_head;
3142 MemoryRegionList *ml, *ml2;
3143 AddressSpace *as;
3145 if (flatview) {
3146 FlatView *view;
3147 struct FlatViewInfo fvi = {
3148 .counter = 0,
3149 .dispatch_tree = dispatch_tree,
3150 .owner = owner,
3152 GArray *fv_address_spaces;
3153 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3154 AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3156 if (ac->has_memory) {
3157 fvi.ac = ac;
3160 /* Gather all FVs in one table */
3161 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3162 view = address_space_get_flatview(as);
3164 fv_address_spaces = g_hash_table_lookup(views, view);
3165 if (!fv_address_spaces) {
3166 fv_address_spaces = g_array_new(false, false, sizeof(as));
3167 g_hash_table_insert(views, view, fv_address_spaces);
3170 g_array_append_val(fv_address_spaces, as);
3173 /* Print */
3174 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3176 /* Free */
3177 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3178 g_hash_table_unref(views);
3180 return;
3183 QTAILQ_INIT(&ml_head);
3185 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3186 qemu_printf("address-space: %s\n", as->name);
3187 mtree_print_mr(as->root, 1, 0, &ml_head, owner, disabled);
3188 qemu_printf("\n");
3191 /* print aliased regions */
3192 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3193 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3194 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3195 qemu_printf("\n");
3198 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3199 g_free(ml);
3203 void memory_region_init_ram(MemoryRegion *mr,
3204 struct Object *owner,
3205 const char *name,
3206 uint64_t size,
3207 Error **errp)
3209 DeviceState *owner_dev;
3210 Error *err = NULL;
3212 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3213 if (err) {
3214 error_propagate(errp, err);
3215 return;
3217 /* This will assert if owner is neither NULL nor a DeviceState.
3218 * We only want the owner here for the purposes of defining a
3219 * unique name for migration. TODO: Ideally we should implement
3220 * a naming scheme for Objects which are not DeviceStates, in
3221 * which case we can relax this restriction.
3223 owner_dev = DEVICE(owner);
3224 vmstate_register_ram(mr, owner_dev);
3227 void memory_region_init_rom(MemoryRegion *mr,
3228 struct Object *owner,
3229 const char *name,
3230 uint64_t size,
3231 Error **errp)
3233 DeviceState *owner_dev;
3234 Error *err = NULL;
3236 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3237 if (err) {
3238 error_propagate(errp, err);
3239 return;
3241 /* This will assert if owner is neither NULL nor a DeviceState.
3242 * We only want the owner here for the purposes of defining a
3243 * unique name for migration. TODO: Ideally we should implement
3244 * a naming scheme for Objects which are not DeviceStates, in
3245 * which case we can relax this restriction.
3247 owner_dev = DEVICE(owner);
3248 vmstate_register_ram(mr, owner_dev);
3251 void memory_region_init_rom_device(MemoryRegion *mr,
3252 struct Object *owner,
3253 const MemoryRegionOps *ops,
3254 void *opaque,
3255 const char *name,
3256 uint64_t size,
3257 Error **errp)
3259 DeviceState *owner_dev;
3260 Error *err = NULL;
3262 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3263 name, size, &err);
3264 if (err) {
3265 error_propagate(errp, err);
3266 return;
3268 /* This will assert if owner is neither NULL nor a DeviceState.
3269 * We only want the owner here for the purposes of defining a
3270 * unique name for migration. TODO: Ideally we should implement
3271 * a naming scheme for Objects which are not DeviceStates, in
3272 * which case we can relax this restriction.
3274 owner_dev = DEVICE(owner);
3275 vmstate_register_ram(mr, owner_dev);
3279 * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
3280 * the fuzz_dma_read_cb callback
3282 #ifdef CONFIG_FUZZ
3283 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3284 size_t len,
3285 MemoryRegion *mr,
3286 bool is_write)
3289 #endif
3291 static const TypeInfo memory_region_info = {
3292 .parent = TYPE_OBJECT,
3293 .name = TYPE_MEMORY_REGION,
3294 .class_size = sizeof(MemoryRegionClass),
3295 .instance_size = sizeof(MemoryRegion),
3296 .instance_init = memory_region_initfn,
3297 .instance_finalize = memory_region_finalize,
3300 static const TypeInfo iommu_memory_region_info = {
3301 .parent = TYPE_MEMORY_REGION,
3302 .name = TYPE_IOMMU_MEMORY_REGION,
3303 .class_size = sizeof(IOMMUMemoryRegionClass),
3304 .instance_size = sizeof(IOMMUMemoryRegion),
3305 .instance_init = iommu_memory_region_initfn,
3306 .abstract = true,
3309 static void memory_register_types(void)
3311 type_register_static(&memory_region_info);
3312 type_register_static(&iommu_memory_region_info);
3315 type_init(memory_register_types)