linux-user: init_guest_space: Clean up control flow a bit
[qemu/ar7.git] / linux-user / elfload.c
blobc6491a8d35c3c23a3e1e40e6e0c36b974ab7e220
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
93 #else
94 #define ELF_DATA ELFDATA2LSB
95 #endif
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t;
99 #define tswapreg(ptr) tswap64(ptr)
100 #else
101 typedef abi_ulong target_elf_greg_t;
102 #define tswapreg(ptr) tswapal(ptr)
103 #endif
105 #ifdef USE_UID16
106 typedef abi_ushort target_uid_t;
107 typedef abi_ushort target_gid_t;
108 #else
109 typedef abi_uint target_uid_t;
110 typedef abi_uint target_gid_t;
111 #endif
112 typedef abi_int target_pid_t;
114 #ifdef TARGET_I386
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform[] = "i386";
121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 X86CPU *cpu = X86_CPU(thread_cpu);
135 return cpu->env.features[FEAT_1_EDX];
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
151 #define ELF_NREG 27
152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
159 * See linux kernel: arch/x86/include/asm/elf.h
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
192 #else
194 #define ELF_START_MMAP 0x80000000
197 * This is used to ensure we don't load something for the wrong architecture.
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
202 * These are used to set parameters in the core dumps.
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
207 static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
223 #define ELF_NREG 17
224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
231 * See linux kernel: arch/x86/include/asm/elf.h
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
253 #endif
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
258 #endif
260 #ifdef TARGET_ARM
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
265 #define ELF_START_MMAP 0x80000000
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
273 abi_long stack = infop->start_stack;
274 memset(regs, 0, sizeof(*regs));
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
286 regs->uregs[0] = 0;
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs->uregs[10] = infop->start_data;
292 #define ELF_NREG 18
293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
321 enum
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
347 enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
355 /* The commpage only exists for 32 bit kernels */
357 /* Return 1 if the proposed guest space is suitable for the guest.
358 * Return 0 if the proposed guest space isn't suitable, but another
359 * address space should be tried.
360 * Return -1 if there is no way the proposed guest space can be
361 * valid regardless of the base.
362 * The guest code may leave a page mapped and populate it if the
363 * address is suitable.
365 static int init_guest_commpage(unsigned long guest_base,
366 unsigned long guest_size)
368 unsigned long real_start, test_page_addr;
370 /* We need to check that we can force a fault on access to the
371 * commpage at 0xffff0fxx
373 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
375 /* If the commpage lies within the already allocated guest space,
376 * then there is no way we can allocate it.
378 * You may be thinking that that this check is redundant because
379 * we already validated the guest size against MAX_RESERVED_VA;
380 * but if qemu_host_page_mask is unusually large, then
381 * test_page_addr may be lower.
383 if (test_page_addr >= guest_base
384 && test_page_addr < (guest_base + guest_size)) {
385 return -1;
388 /* Note it needs to be writeable to let us initialise it */
389 real_start = (unsigned long)
390 mmap((void *)test_page_addr, qemu_host_page_size,
391 PROT_READ | PROT_WRITE,
392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
394 /* If we can't map it then try another address */
395 if (real_start == -1ul) {
396 return 0;
399 if (real_start != test_page_addr) {
400 /* OS didn't put the page where we asked - unmap and reject */
401 munmap((void *)real_start, qemu_host_page_size);
402 return 0;
405 /* Leave the page mapped
406 * Populate it (mmap should have left it all 0'd)
409 /* Kernel helper versions */
410 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
412 /* Now it's populated make it RO */
413 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
414 perror("Protecting guest commpage");
415 exit(-1);
418 return 1; /* All good */
421 #define ELF_HWCAP get_elf_hwcap()
422 #define ELF_HWCAP2 get_elf_hwcap2()
424 static uint32_t get_elf_hwcap(void)
426 ARMCPU *cpu = ARM_CPU(thread_cpu);
427 uint32_t hwcaps = 0;
429 hwcaps |= ARM_HWCAP_ARM_SWP;
430 hwcaps |= ARM_HWCAP_ARM_HALF;
431 hwcaps |= ARM_HWCAP_ARM_THUMB;
432 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
434 /* probe for the extra features */
435 #define GET_FEATURE(feat, hwcap) \
436 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
437 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
438 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
439 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
440 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
441 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
442 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
443 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
444 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
445 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
446 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
447 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
448 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
449 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
450 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
451 * to our VFP_FP16 feature bit.
453 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
454 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
456 return hwcaps;
459 static uint32_t get_elf_hwcap2(void)
461 ARMCPU *cpu = ARM_CPU(thread_cpu);
462 uint32_t hwcaps = 0;
464 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
465 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
466 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
467 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
468 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
469 return hwcaps;
472 #undef GET_FEATURE
474 #else
475 /* 64 bit ARM definitions */
476 #define ELF_START_MMAP 0x80000000
478 #define ELF_ARCH EM_AARCH64
479 #define ELF_CLASS ELFCLASS64
480 #define ELF_PLATFORM "aarch64"
482 static inline void init_thread(struct target_pt_regs *regs,
483 struct image_info *infop)
485 abi_long stack = infop->start_stack;
486 memset(regs, 0, sizeof(*regs));
488 regs->pc = infop->entry & ~0x3ULL;
489 regs->sp = stack;
492 #define ELF_NREG 34
493 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
495 static void elf_core_copy_regs(target_elf_gregset_t *regs,
496 const CPUARMState *env)
498 int i;
500 for (i = 0; i < 32; i++) {
501 (*regs)[i] = tswapreg(env->xregs[i]);
503 (*regs)[32] = tswapreg(env->pc);
504 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
507 #define USE_ELF_CORE_DUMP
508 #define ELF_EXEC_PAGESIZE 4096
510 enum {
511 ARM_HWCAP_A64_FP = 1 << 0,
512 ARM_HWCAP_A64_ASIMD = 1 << 1,
513 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
514 ARM_HWCAP_A64_AES = 1 << 3,
515 ARM_HWCAP_A64_PMULL = 1 << 4,
516 ARM_HWCAP_A64_SHA1 = 1 << 5,
517 ARM_HWCAP_A64_SHA2 = 1 << 6,
518 ARM_HWCAP_A64_CRC32 = 1 << 7,
519 ARM_HWCAP_A64_ATOMICS = 1 << 8,
520 ARM_HWCAP_A64_FPHP = 1 << 9,
521 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
522 ARM_HWCAP_A64_CPUID = 1 << 11,
523 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
524 ARM_HWCAP_A64_JSCVT = 1 << 13,
525 ARM_HWCAP_A64_FCMA = 1 << 14,
526 ARM_HWCAP_A64_LRCPC = 1 << 15,
527 ARM_HWCAP_A64_DCPOP = 1 << 16,
528 ARM_HWCAP_A64_SHA3 = 1 << 17,
529 ARM_HWCAP_A64_SM3 = 1 << 18,
530 ARM_HWCAP_A64_SM4 = 1 << 19,
531 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
532 ARM_HWCAP_A64_SHA512 = 1 << 21,
533 ARM_HWCAP_A64_SVE = 1 << 22,
536 #define ELF_HWCAP get_elf_hwcap()
538 static uint32_t get_elf_hwcap(void)
540 ARMCPU *cpu = ARM_CPU(thread_cpu);
541 uint32_t hwcaps = 0;
543 hwcaps |= ARM_HWCAP_A64_FP;
544 hwcaps |= ARM_HWCAP_A64_ASIMD;
546 /* probe for the extra features */
547 #define GET_FEATURE(feat, hwcap) \
548 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
549 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
550 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
551 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
552 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
553 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
554 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
555 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
556 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
557 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
558 GET_FEATURE(ARM_FEATURE_V8_FP16,
559 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
560 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
561 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
562 #undef GET_FEATURE
564 return hwcaps;
567 #endif /* not TARGET_AARCH64 */
568 #endif /* TARGET_ARM */
570 #ifdef TARGET_SPARC
571 #ifdef TARGET_SPARC64
573 #define ELF_START_MMAP 0x80000000
574 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
575 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
576 #ifndef TARGET_ABI32
577 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
578 #else
579 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
580 #endif
582 #define ELF_CLASS ELFCLASS64
583 #define ELF_ARCH EM_SPARCV9
585 #define STACK_BIAS 2047
587 static inline void init_thread(struct target_pt_regs *regs,
588 struct image_info *infop)
590 #ifndef TARGET_ABI32
591 regs->tstate = 0;
592 #endif
593 regs->pc = infop->entry;
594 regs->npc = regs->pc + 4;
595 regs->y = 0;
596 #ifdef TARGET_ABI32
597 regs->u_regs[14] = infop->start_stack - 16 * 4;
598 #else
599 if (personality(infop->personality) == PER_LINUX32)
600 regs->u_regs[14] = infop->start_stack - 16 * 4;
601 else
602 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
603 #endif
606 #else
607 #define ELF_START_MMAP 0x80000000
608 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
609 | HWCAP_SPARC_MULDIV)
611 #define ELF_CLASS ELFCLASS32
612 #define ELF_ARCH EM_SPARC
614 static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
617 regs->psr = 0;
618 regs->pc = infop->entry;
619 regs->npc = regs->pc + 4;
620 regs->y = 0;
621 regs->u_regs[14] = infop->start_stack - 16 * 4;
624 #endif
625 #endif
627 #ifdef TARGET_PPC
629 #define ELF_MACHINE PPC_ELF_MACHINE
630 #define ELF_START_MMAP 0x80000000
632 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
634 #define elf_check_arch(x) ( (x) == EM_PPC64 )
636 #define ELF_CLASS ELFCLASS64
638 #else
640 #define ELF_CLASS ELFCLASS32
642 #endif
644 #define ELF_ARCH EM_PPC
646 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
647 See arch/powerpc/include/asm/cputable.h. */
648 enum {
649 QEMU_PPC_FEATURE_32 = 0x80000000,
650 QEMU_PPC_FEATURE_64 = 0x40000000,
651 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
652 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
653 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
654 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
655 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
656 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
657 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
658 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
659 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
660 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
661 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
662 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
663 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
664 QEMU_PPC_FEATURE_CELL = 0x00010000,
665 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
666 QEMU_PPC_FEATURE_SMT = 0x00004000,
667 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
668 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
669 QEMU_PPC_FEATURE_PA6T = 0x00000800,
670 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
671 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
672 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
673 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
674 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
676 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
677 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
679 /* Feature definitions in AT_HWCAP2. */
680 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
681 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
682 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
683 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
684 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
685 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
688 #define ELF_HWCAP get_elf_hwcap()
690 static uint32_t get_elf_hwcap(void)
692 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
693 uint32_t features = 0;
695 /* We don't have to be terribly complete here; the high points are
696 Altivec/FP/SPE support. Anything else is just a bonus. */
697 #define GET_FEATURE(flag, feature) \
698 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
699 #define GET_FEATURE2(flags, feature) \
700 do { \
701 if ((cpu->env.insns_flags2 & flags) == flags) { \
702 features |= feature; \
704 } while (0)
705 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
706 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
707 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
708 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
709 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
710 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
711 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
712 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
713 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
714 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
715 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
716 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
717 QEMU_PPC_FEATURE_ARCH_2_06);
718 #undef GET_FEATURE
719 #undef GET_FEATURE2
721 return features;
724 #define ELF_HWCAP2 get_elf_hwcap2()
726 static uint32_t get_elf_hwcap2(void)
728 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
729 uint32_t features = 0;
731 #define GET_FEATURE(flag, feature) \
732 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
733 #define GET_FEATURE2(flag, feature) \
734 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
736 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
737 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
738 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
739 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
741 #undef GET_FEATURE
742 #undef GET_FEATURE2
744 return features;
748 * The requirements here are:
749 * - keep the final alignment of sp (sp & 0xf)
750 * - make sure the 32-bit value at the first 16 byte aligned position of
751 * AUXV is greater than 16 for glibc compatibility.
752 * AT_IGNOREPPC is used for that.
753 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
754 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
756 #define DLINFO_ARCH_ITEMS 5
757 #define ARCH_DLINFO \
758 do { \
759 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
760 /* \
761 * Handle glibc compatibility: these magic entries must \
762 * be at the lowest addresses in the final auxv. \
763 */ \
764 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
765 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
766 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
767 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
768 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
769 } while (0)
771 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
773 _regs->gpr[1] = infop->start_stack;
774 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
775 if (get_ppc64_abi(infop) < 2) {
776 uint64_t val;
777 get_user_u64(val, infop->entry + 8);
778 _regs->gpr[2] = val + infop->load_bias;
779 get_user_u64(val, infop->entry);
780 infop->entry = val + infop->load_bias;
781 } else {
782 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
784 #endif
785 _regs->nip = infop->entry;
788 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
789 #define ELF_NREG 48
790 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
792 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
794 int i;
795 target_ulong ccr = 0;
797 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
798 (*regs)[i] = tswapreg(env->gpr[i]);
801 (*regs)[32] = tswapreg(env->nip);
802 (*regs)[33] = tswapreg(env->msr);
803 (*regs)[35] = tswapreg(env->ctr);
804 (*regs)[36] = tswapreg(env->lr);
805 (*regs)[37] = tswapreg(env->xer);
807 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
808 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
810 (*regs)[38] = tswapreg(ccr);
813 #define USE_ELF_CORE_DUMP
814 #define ELF_EXEC_PAGESIZE 4096
816 #endif
818 #ifdef TARGET_MIPS
820 #define ELF_START_MMAP 0x80000000
822 #ifdef TARGET_MIPS64
823 #define ELF_CLASS ELFCLASS64
824 #else
825 #define ELF_CLASS ELFCLASS32
826 #endif
827 #define ELF_ARCH EM_MIPS
829 static inline void init_thread(struct target_pt_regs *regs,
830 struct image_info *infop)
832 regs->cp0_status = 2 << CP0St_KSU;
833 regs->cp0_epc = infop->entry;
834 regs->regs[29] = infop->start_stack;
837 /* See linux kernel: arch/mips/include/asm/elf.h. */
838 #define ELF_NREG 45
839 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
841 /* See linux kernel: arch/mips/include/asm/reg.h. */
842 enum {
843 #ifdef TARGET_MIPS64
844 TARGET_EF_R0 = 0,
845 #else
846 TARGET_EF_R0 = 6,
847 #endif
848 TARGET_EF_R26 = TARGET_EF_R0 + 26,
849 TARGET_EF_R27 = TARGET_EF_R0 + 27,
850 TARGET_EF_LO = TARGET_EF_R0 + 32,
851 TARGET_EF_HI = TARGET_EF_R0 + 33,
852 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
853 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
854 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
855 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
858 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
859 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
861 int i;
863 for (i = 0; i < TARGET_EF_R0; i++) {
864 (*regs)[i] = 0;
866 (*regs)[TARGET_EF_R0] = 0;
868 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
869 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
872 (*regs)[TARGET_EF_R26] = 0;
873 (*regs)[TARGET_EF_R27] = 0;
874 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
875 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
876 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
877 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
878 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
879 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
882 #define USE_ELF_CORE_DUMP
883 #define ELF_EXEC_PAGESIZE 4096
885 #endif /* TARGET_MIPS */
887 #ifdef TARGET_MICROBLAZE
889 #define ELF_START_MMAP 0x80000000
891 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
893 #define ELF_CLASS ELFCLASS32
894 #define ELF_ARCH EM_MICROBLAZE
896 static inline void init_thread(struct target_pt_regs *regs,
897 struct image_info *infop)
899 regs->pc = infop->entry;
900 regs->r1 = infop->start_stack;
904 #define ELF_EXEC_PAGESIZE 4096
906 #define USE_ELF_CORE_DUMP
907 #define ELF_NREG 38
908 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
910 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
911 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
913 int i, pos = 0;
915 for (i = 0; i < 32; i++) {
916 (*regs)[pos++] = tswapreg(env->regs[i]);
919 for (i = 0; i < 6; i++) {
920 (*regs)[pos++] = tswapreg(env->sregs[i]);
924 #endif /* TARGET_MICROBLAZE */
926 #ifdef TARGET_NIOS2
928 #define ELF_START_MMAP 0x80000000
930 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
932 #define ELF_CLASS ELFCLASS32
933 #define ELF_ARCH EM_ALTERA_NIOS2
935 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
937 regs->ea = infop->entry;
938 regs->sp = infop->start_stack;
939 regs->estatus = 0x3;
942 #define ELF_EXEC_PAGESIZE 4096
944 #define USE_ELF_CORE_DUMP
945 #define ELF_NREG 49
946 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
948 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
949 static void elf_core_copy_regs(target_elf_gregset_t *regs,
950 const CPUNios2State *env)
952 int i;
954 (*regs)[0] = -1;
955 for (i = 1; i < 8; i++) /* r0-r7 */
956 (*regs)[i] = tswapreg(env->regs[i + 7]);
958 for (i = 8; i < 16; i++) /* r8-r15 */
959 (*regs)[i] = tswapreg(env->regs[i - 8]);
961 for (i = 16; i < 24; i++) /* r16-r23 */
962 (*regs)[i] = tswapreg(env->regs[i + 7]);
963 (*regs)[24] = -1; /* R_ET */
964 (*regs)[25] = -1; /* R_BT */
965 (*regs)[26] = tswapreg(env->regs[R_GP]);
966 (*regs)[27] = tswapreg(env->regs[R_SP]);
967 (*regs)[28] = tswapreg(env->regs[R_FP]);
968 (*regs)[29] = tswapreg(env->regs[R_EA]);
969 (*regs)[30] = -1; /* R_SSTATUS */
970 (*regs)[31] = tswapreg(env->regs[R_RA]);
972 (*regs)[32] = tswapreg(env->regs[R_PC]);
974 (*regs)[33] = -1; /* R_STATUS */
975 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
977 for (i = 35; i < 49; i++) /* ... */
978 (*regs)[i] = -1;
981 #endif /* TARGET_NIOS2 */
983 #ifdef TARGET_OPENRISC
985 #define ELF_START_MMAP 0x08000000
987 #define ELF_ARCH EM_OPENRISC
988 #define ELF_CLASS ELFCLASS32
989 #define ELF_DATA ELFDATA2MSB
991 static inline void init_thread(struct target_pt_regs *regs,
992 struct image_info *infop)
994 regs->pc = infop->entry;
995 regs->gpr[1] = infop->start_stack;
998 #define USE_ELF_CORE_DUMP
999 #define ELF_EXEC_PAGESIZE 8192
1001 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1002 #define ELF_NREG 34 /* gprs and pc, sr */
1003 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1005 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1006 const CPUOpenRISCState *env)
1008 int i;
1010 for (i = 0; i < 32; i++) {
1011 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1013 (*regs)[32] = tswapreg(env->pc);
1014 (*regs)[33] = tswapreg(cpu_get_sr(env));
1016 #define ELF_HWCAP 0
1017 #define ELF_PLATFORM NULL
1019 #endif /* TARGET_OPENRISC */
1021 #ifdef TARGET_SH4
1023 #define ELF_START_MMAP 0x80000000
1025 #define ELF_CLASS ELFCLASS32
1026 #define ELF_ARCH EM_SH
1028 static inline void init_thread(struct target_pt_regs *regs,
1029 struct image_info *infop)
1031 /* Check other registers XXXXX */
1032 regs->pc = infop->entry;
1033 regs->regs[15] = infop->start_stack;
1036 /* See linux kernel: arch/sh/include/asm/elf.h. */
1037 #define ELF_NREG 23
1038 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1040 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1041 enum {
1042 TARGET_REG_PC = 16,
1043 TARGET_REG_PR = 17,
1044 TARGET_REG_SR = 18,
1045 TARGET_REG_GBR = 19,
1046 TARGET_REG_MACH = 20,
1047 TARGET_REG_MACL = 21,
1048 TARGET_REG_SYSCALL = 22
1051 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1052 const CPUSH4State *env)
1054 int i;
1056 for (i = 0; i < 16; i++) {
1057 (*regs)[i] = tswapreg(env->gregs[i]);
1060 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1061 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1062 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1063 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1064 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1065 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1066 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1069 #define USE_ELF_CORE_DUMP
1070 #define ELF_EXEC_PAGESIZE 4096
1072 enum {
1073 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1074 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1075 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1076 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1077 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1078 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1079 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1080 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1081 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1082 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1085 #define ELF_HWCAP get_elf_hwcap()
1087 static uint32_t get_elf_hwcap(void)
1089 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1090 uint32_t hwcap = 0;
1092 hwcap |= SH_CPU_HAS_FPU;
1094 if (cpu->env.features & SH_FEATURE_SH4A) {
1095 hwcap |= SH_CPU_HAS_LLSC;
1098 return hwcap;
1101 #endif
1103 #ifdef TARGET_CRIS
1105 #define ELF_START_MMAP 0x80000000
1107 #define ELF_CLASS ELFCLASS32
1108 #define ELF_ARCH EM_CRIS
1110 static inline void init_thread(struct target_pt_regs *regs,
1111 struct image_info *infop)
1113 regs->erp = infop->entry;
1116 #define ELF_EXEC_PAGESIZE 8192
1118 #endif
1120 #ifdef TARGET_M68K
1122 #define ELF_START_MMAP 0x80000000
1124 #define ELF_CLASS ELFCLASS32
1125 #define ELF_ARCH EM_68K
1127 /* ??? Does this need to do anything?
1128 #define ELF_PLAT_INIT(_r) */
1130 static inline void init_thread(struct target_pt_regs *regs,
1131 struct image_info *infop)
1133 regs->usp = infop->start_stack;
1134 regs->sr = 0;
1135 regs->pc = infop->entry;
1138 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1139 #define ELF_NREG 20
1140 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1142 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1144 (*regs)[0] = tswapreg(env->dregs[1]);
1145 (*regs)[1] = tswapreg(env->dregs[2]);
1146 (*regs)[2] = tswapreg(env->dregs[3]);
1147 (*regs)[3] = tswapreg(env->dregs[4]);
1148 (*regs)[4] = tswapreg(env->dregs[5]);
1149 (*regs)[5] = tswapreg(env->dregs[6]);
1150 (*regs)[6] = tswapreg(env->dregs[7]);
1151 (*regs)[7] = tswapreg(env->aregs[0]);
1152 (*regs)[8] = tswapreg(env->aregs[1]);
1153 (*regs)[9] = tswapreg(env->aregs[2]);
1154 (*regs)[10] = tswapreg(env->aregs[3]);
1155 (*regs)[11] = tswapreg(env->aregs[4]);
1156 (*regs)[12] = tswapreg(env->aregs[5]);
1157 (*regs)[13] = tswapreg(env->aregs[6]);
1158 (*regs)[14] = tswapreg(env->dregs[0]);
1159 (*regs)[15] = tswapreg(env->aregs[7]);
1160 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1161 (*regs)[17] = tswapreg(env->sr);
1162 (*regs)[18] = tswapreg(env->pc);
1163 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1166 #define USE_ELF_CORE_DUMP
1167 #define ELF_EXEC_PAGESIZE 8192
1169 #endif
1171 #ifdef TARGET_ALPHA
1173 #define ELF_START_MMAP (0x30000000000ULL)
1175 #define ELF_CLASS ELFCLASS64
1176 #define ELF_ARCH EM_ALPHA
1178 static inline void init_thread(struct target_pt_regs *regs,
1179 struct image_info *infop)
1181 regs->pc = infop->entry;
1182 regs->ps = 8;
1183 regs->usp = infop->start_stack;
1186 #define ELF_EXEC_PAGESIZE 8192
1188 #endif /* TARGET_ALPHA */
1190 #ifdef TARGET_S390X
1192 #define ELF_START_MMAP (0x20000000000ULL)
1194 #define ELF_CLASS ELFCLASS64
1195 #define ELF_DATA ELFDATA2MSB
1196 #define ELF_ARCH EM_S390
1198 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1200 regs->psw.addr = infop->entry;
1201 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1202 regs->gprs[15] = infop->start_stack;
1205 #endif /* TARGET_S390X */
1207 #ifdef TARGET_TILEGX
1209 /* 42 bits real used address, a half for user mode */
1210 #define ELF_START_MMAP (0x00000020000000000ULL)
1212 #define elf_check_arch(x) ((x) == EM_TILEGX)
1214 #define ELF_CLASS ELFCLASS64
1215 #define ELF_DATA ELFDATA2LSB
1216 #define ELF_ARCH EM_TILEGX
1218 static inline void init_thread(struct target_pt_regs *regs,
1219 struct image_info *infop)
1221 regs->pc = infop->entry;
1222 regs->sp = infop->start_stack;
1226 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1228 #endif /* TARGET_TILEGX */
1230 #ifdef TARGET_RISCV
1232 #define ELF_START_MMAP 0x80000000
1233 #define ELF_ARCH EM_RISCV
1235 #ifdef TARGET_RISCV32
1236 #define ELF_CLASS ELFCLASS32
1237 #else
1238 #define ELF_CLASS ELFCLASS64
1239 #endif
1241 static inline void init_thread(struct target_pt_regs *regs,
1242 struct image_info *infop)
1244 regs->sepc = infop->entry;
1245 regs->sp = infop->start_stack;
1248 #define ELF_EXEC_PAGESIZE 4096
1250 #endif /* TARGET_RISCV */
1252 #ifdef TARGET_HPPA
1254 #define ELF_START_MMAP 0x80000000
1255 #define ELF_CLASS ELFCLASS32
1256 #define ELF_ARCH EM_PARISC
1257 #define ELF_PLATFORM "PARISC"
1258 #define STACK_GROWS_DOWN 0
1259 #define STACK_ALIGNMENT 64
1261 static inline void init_thread(struct target_pt_regs *regs,
1262 struct image_info *infop)
1264 regs->iaoq[0] = infop->entry;
1265 regs->iaoq[1] = infop->entry + 4;
1266 regs->gr[23] = 0;
1267 regs->gr[24] = infop->arg_start;
1268 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1269 /* The top-of-stack contains a linkage buffer. */
1270 regs->gr[30] = infop->start_stack + 64;
1271 regs->gr[31] = infop->entry;
1274 #endif /* TARGET_HPPA */
1276 #ifndef ELF_PLATFORM
1277 #define ELF_PLATFORM (NULL)
1278 #endif
1280 #ifndef ELF_MACHINE
1281 #define ELF_MACHINE ELF_ARCH
1282 #endif
1284 #ifndef elf_check_arch
1285 #define elf_check_arch(x) ((x) == ELF_ARCH)
1286 #endif
1288 #ifndef ELF_HWCAP
1289 #define ELF_HWCAP 0
1290 #endif
1292 #ifndef STACK_GROWS_DOWN
1293 #define STACK_GROWS_DOWN 1
1294 #endif
1296 #ifndef STACK_ALIGNMENT
1297 #define STACK_ALIGNMENT 16
1298 #endif
1300 #ifdef TARGET_ABI32
1301 #undef ELF_CLASS
1302 #define ELF_CLASS ELFCLASS32
1303 #undef bswaptls
1304 #define bswaptls(ptr) bswap32s(ptr)
1305 #endif
1307 #include "elf.h"
1309 struct exec
1311 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1312 unsigned int a_text; /* length of text, in bytes */
1313 unsigned int a_data; /* length of data, in bytes */
1314 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1315 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1316 unsigned int a_entry; /* start address */
1317 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1318 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1322 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1323 #define OMAGIC 0407
1324 #define NMAGIC 0410
1325 #define ZMAGIC 0413
1326 #define QMAGIC 0314
1328 /* Necessary parameters */
1329 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1330 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1331 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1332 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1334 #define DLINFO_ITEMS 15
1336 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1338 memcpy(to, from, n);
1341 #ifdef BSWAP_NEEDED
1342 static void bswap_ehdr(struct elfhdr *ehdr)
1344 bswap16s(&ehdr->e_type); /* Object file type */
1345 bswap16s(&ehdr->e_machine); /* Architecture */
1346 bswap32s(&ehdr->e_version); /* Object file version */
1347 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1348 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1349 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1350 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1351 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1352 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1353 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1354 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1355 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1356 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1359 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1361 int i;
1362 for (i = 0; i < phnum; ++i, ++phdr) {
1363 bswap32s(&phdr->p_type); /* Segment type */
1364 bswap32s(&phdr->p_flags); /* Segment flags */
1365 bswaptls(&phdr->p_offset); /* Segment file offset */
1366 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1367 bswaptls(&phdr->p_paddr); /* Segment physical address */
1368 bswaptls(&phdr->p_filesz); /* Segment size in file */
1369 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1370 bswaptls(&phdr->p_align); /* Segment alignment */
1374 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1376 int i;
1377 for (i = 0; i < shnum; ++i, ++shdr) {
1378 bswap32s(&shdr->sh_name);
1379 bswap32s(&shdr->sh_type);
1380 bswaptls(&shdr->sh_flags);
1381 bswaptls(&shdr->sh_addr);
1382 bswaptls(&shdr->sh_offset);
1383 bswaptls(&shdr->sh_size);
1384 bswap32s(&shdr->sh_link);
1385 bswap32s(&shdr->sh_info);
1386 bswaptls(&shdr->sh_addralign);
1387 bswaptls(&shdr->sh_entsize);
1391 static void bswap_sym(struct elf_sym *sym)
1393 bswap32s(&sym->st_name);
1394 bswaptls(&sym->st_value);
1395 bswaptls(&sym->st_size);
1396 bswap16s(&sym->st_shndx);
1398 #else
1399 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1400 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1401 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1402 static inline void bswap_sym(struct elf_sym *sym) { }
1403 #endif
1405 #ifdef USE_ELF_CORE_DUMP
1406 static int elf_core_dump(int, const CPUArchState *);
1407 #endif /* USE_ELF_CORE_DUMP */
1408 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1410 /* Verify the portions of EHDR within E_IDENT for the target.
1411 This can be performed before bswapping the entire header. */
1412 static bool elf_check_ident(struct elfhdr *ehdr)
1414 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1415 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1416 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1417 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1418 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1419 && ehdr->e_ident[EI_DATA] == ELF_DATA
1420 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1423 /* Verify the portions of EHDR outside of E_IDENT for the target.
1424 This has to wait until after bswapping the header. */
1425 static bool elf_check_ehdr(struct elfhdr *ehdr)
1427 return (elf_check_arch(ehdr->e_machine)
1428 && ehdr->e_ehsize == sizeof(struct elfhdr)
1429 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1430 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1434 * 'copy_elf_strings()' copies argument/envelope strings from user
1435 * memory to free pages in kernel mem. These are in a format ready
1436 * to be put directly into the top of new user memory.
1439 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1440 abi_ulong p, abi_ulong stack_limit)
1442 char *tmp;
1443 int len, i;
1444 abi_ulong top = p;
1446 if (!p) {
1447 return 0; /* bullet-proofing */
1450 if (STACK_GROWS_DOWN) {
1451 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1452 for (i = argc - 1; i >= 0; --i) {
1453 tmp = argv[i];
1454 if (!tmp) {
1455 fprintf(stderr, "VFS: argc is wrong");
1456 exit(-1);
1458 len = strlen(tmp) + 1;
1459 tmp += len;
1461 if (len > (p - stack_limit)) {
1462 return 0;
1464 while (len) {
1465 int bytes_to_copy = (len > offset) ? offset : len;
1466 tmp -= bytes_to_copy;
1467 p -= bytes_to_copy;
1468 offset -= bytes_to_copy;
1469 len -= bytes_to_copy;
1471 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1473 if (offset == 0) {
1474 memcpy_to_target(p, scratch, top - p);
1475 top = p;
1476 offset = TARGET_PAGE_SIZE;
1480 if (p != top) {
1481 memcpy_to_target(p, scratch + offset, top - p);
1483 } else {
1484 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1485 for (i = 0; i < argc; ++i) {
1486 tmp = argv[i];
1487 if (!tmp) {
1488 fprintf(stderr, "VFS: argc is wrong");
1489 exit(-1);
1491 len = strlen(tmp) + 1;
1492 if (len > (stack_limit - p)) {
1493 return 0;
1495 while (len) {
1496 int bytes_to_copy = (len > remaining) ? remaining : len;
1498 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1500 tmp += bytes_to_copy;
1501 remaining -= bytes_to_copy;
1502 p += bytes_to_copy;
1503 len -= bytes_to_copy;
1505 if (remaining == 0) {
1506 memcpy_to_target(top, scratch, p - top);
1507 top = p;
1508 remaining = TARGET_PAGE_SIZE;
1512 if (p != top) {
1513 memcpy_to_target(top, scratch, p - top);
1517 return p;
1520 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1521 * argument/environment space. Newer kernels (>2.6.33) allow more,
1522 * dependent on stack size, but guarantee at least 32 pages for
1523 * backwards compatibility.
1525 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1527 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1528 struct image_info *info)
1530 abi_ulong size, error, guard;
1532 size = guest_stack_size;
1533 if (size < STACK_LOWER_LIMIT) {
1534 size = STACK_LOWER_LIMIT;
1536 guard = TARGET_PAGE_SIZE;
1537 if (guard < qemu_real_host_page_size) {
1538 guard = qemu_real_host_page_size;
1541 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1542 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1543 if (error == -1) {
1544 perror("mmap stack");
1545 exit(-1);
1548 /* We reserve one extra page at the top of the stack as guard. */
1549 if (STACK_GROWS_DOWN) {
1550 target_mprotect(error, guard, PROT_NONE);
1551 info->stack_limit = error + guard;
1552 return info->stack_limit + size - sizeof(void *);
1553 } else {
1554 target_mprotect(error + size, guard, PROT_NONE);
1555 info->stack_limit = error + size;
1556 return error;
1560 /* Map and zero the bss. We need to explicitly zero any fractional pages
1561 after the data section (i.e. bss). */
1562 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1564 uintptr_t host_start, host_map_start, host_end;
1566 last_bss = TARGET_PAGE_ALIGN(last_bss);
1568 /* ??? There is confusion between qemu_real_host_page_size and
1569 qemu_host_page_size here and elsewhere in target_mmap, which
1570 may lead to the end of the data section mapping from the file
1571 not being mapped. At least there was an explicit test and
1572 comment for that here, suggesting that "the file size must
1573 be known". The comment probably pre-dates the introduction
1574 of the fstat system call in target_mmap which does in fact
1575 find out the size. What isn't clear is if the workaround
1576 here is still actually needed. For now, continue with it,
1577 but merge it with the "normal" mmap that would allocate the bss. */
1579 host_start = (uintptr_t) g2h(elf_bss);
1580 host_end = (uintptr_t) g2h(last_bss);
1581 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1583 if (host_map_start < host_end) {
1584 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1585 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1586 if (p == MAP_FAILED) {
1587 perror("cannot mmap brk");
1588 exit(-1);
1592 /* Ensure that the bss page(s) are valid */
1593 if ((page_get_flags(last_bss-1) & prot) != prot) {
1594 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1597 if (host_start < host_map_start) {
1598 memset((void *)host_start, 0, host_map_start - host_start);
1602 #ifdef CONFIG_USE_FDPIC
1603 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1605 uint16_t n;
1606 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1608 /* elf32_fdpic_loadseg */
1609 n = info->nsegs;
1610 while (n--) {
1611 sp -= 12;
1612 put_user_u32(loadsegs[n].addr, sp+0);
1613 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1614 put_user_u32(loadsegs[n].p_memsz, sp+8);
1617 /* elf32_fdpic_loadmap */
1618 sp -= 4;
1619 put_user_u16(0, sp+0); /* version */
1620 put_user_u16(info->nsegs, sp+2); /* nsegs */
1622 info->personality = PER_LINUX_FDPIC;
1623 info->loadmap_addr = sp;
1625 return sp;
1627 #endif
1629 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1630 struct elfhdr *exec,
1631 struct image_info *info,
1632 struct image_info *interp_info)
1634 abi_ulong sp;
1635 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1636 int size;
1637 int i;
1638 abi_ulong u_rand_bytes;
1639 uint8_t k_rand_bytes[16];
1640 abi_ulong u_platform;
1641 const char *k_platform;
1642 const int n = sizeof(elf_addr_t);
1644 sp = p;
1646 #ifdef CONFIG_USE_FDPIC
1647 /* Needs to be before we load the env/argc/... */
1648 if (elf_is_fdpic(exec)) {
1649 /* Need 4 byte alignment for these structs */
1650 sp &= ~3;
1651 sp = loader_build_fdpic_loadmap(info, sp);
1652 info->other_info = interp_info;
1653 if (interp_info) {
1654 interp_info->other_info = info;
1655 sp = loader_build_fdpic_loadmap(interp_info, sp);
1658 #endif
1660 u_platform = 0;
1661 k_platform = ELF_PLATFORM;
1662 if (k_platform) {
1663 size_t len = strlen(k_platform) + 1;
1664 if (STACK_GROWS_DOWN) {
1665 sp -= (len + n - 1) & ~(n - 1);
1666 u_platform = sp;
1667 /* FIXME - check return value of memcpy_to_target() for failure */
1668 memcpy_to_target(sp, k_platform, len);
1669 } else {
1670 memcpy_to_target(sp, k_platform, len);
1671 u_platform = sp;
1672 sp += len + 1;
1676 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1677 * the argv and envp pointers.
1679 if (STACK_GROWS_DOWN) {
1680 sp = QEMU_ALIGN_DOWN(sp, 16);
1681 } else {
1682 sp = QEMU_ALIGN_UP(sp, 16);
1686 * Generate 16 random bytes for userspace PRNG seeding (not
1687 * cryptically secure but it's not the aim of QEMU).
1689 for (i = 0; i < 16; i++) {
1690 k_rand_bytes[i] = rand();
1692 if (STACK_GROWS_DOWN) {
1693 sp -= 16;
1694 u_rand_bytes = sp;
1695 /* FIXME - check return value of memcpy_to_target() for failure */
1696 memcpy_to_target(sp, k_rand_bytes, 16);
1697 } else {
1698 memcpy_to_target(sp, k_rand_bytes, 16);
1699 u_rand_bytes = sp;
1700 sp += 16;
1703 size = (DLINFO_ITEMS + 1) * 2;
1704 if (k_platform)
1705 size += 2;
1706 #ifdef DLINFO_ARCH_ITEMS
1707 size += DLINFO_ARCH_ITEMS * 2;
1708 #endif
1709 #ifdef ELF_HWCAP2
1710 size += 2;
1711 #endif
1712 info->auxv_len = size * n;
1714 size += envc + argc + 2;
1715 size += 1; /* argc itself */
1716 size *= n;
1718 /* Allocate space and finalize stack alignment for entry now. */
1719 if (STACK_GROWS_DOWN) {
1720 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1721 sp = u_argc;
1722 } else {
1723 u_argc = sp;
1724 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1727 u_argv = u_argc + n;
1728 u_envp = u_argv + (argc + 1) * n;
1729 u_auxv = u_envp + (envc + 1) * n;
1730 info->saved_auxv = u_auxv;
1731 info->arg_start = u_argv;
1732 info->arg_end = u_argv + argc * n;
1734 /* This is correct because Linux defines
1735 * elf_addr_t as Elf32_Off / Elf64_Off
1737 #define NEW_AUX_ENT(id, val) do { \
1738 put_user_ual(id, u_auxv); u_auxv += n; \
1739 put_user_ual(val, u_auxv); u_auxv += n; \
1740 } while(0)
1742 #ifdef ARCH_DLINFO
1744 * ARCH_DLINFO must come first so platform specific code can enforce
1745 * special alignment requirements on the AUXV if necessary (eg. PPC).
1747 ARCH_DLINFO;
1748 #endif
1749 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1750 * on info->auxv_len will trigger.
1752 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1753 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1754 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1755 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1756 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1757 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1758 NEW_AUX_ENT(AT_ENTRY, info->entry);
1759 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1760 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1761 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1762 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1763 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1764 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1765 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1766 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1768 #ifdef ELF_HWCAP2
1769 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1770 #endif
1772 if (u_platform) {
1773 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1775 NEW_AUX_ENT (AT_NULL, 0);
1776 #undef NEW_AUX_ENT
1778 /* Check that our initial calculation of the auxv length matches how much
1779 * we actually put into it.
1781 assert(info->auxv_len == u_auxv - info->saved_auxv);
1783 put_user_ual(argc, u_argc);
1785 p = info->arg_strings;
1786 for (i = 0; i < argc; ++i) {
1787 put_user_ual(p, u_argv);
1788 u_argv += n;
1789 p += target_strlen(p) + 1;
1791 put_user_ual(0, u_argv);
1793 p = info->env_strings;
1794 for (i = 0; i < envc; ++i) {
1795 put_user_ual(p, u_envp);
1796 u_envp += n;
1797 p += target_strlen(p) + 1;
1799 put_user_ual(0, u_envp);
1801 return sp;
1804 unsigned long init_guest_space(unsigned long host_start,
1805 unsigned long host_size,
1806 unsigned long guest_start,
1807 bool fixed)
1809 unsigned long current_start, aligned_start;
1810 int flags;
1812 assert(host_start || host_size);
1814 /* If just a starting address is given, then just verify that
1815 * address. */
1816 if (host_start && !host_size) {
1817 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1818 if (init_guest_commpage(host_start, host_size) != 1) {
1819 return (unsigned long)-1;
1821 #endif
1822 return host_start;
1825 /* Setup the initial flags and start address. */
1826 current_start = host_start & qemu_host_page_mask;
1827 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1828 if (fixed) {
1829 flags |= MAP_FIXED;
1832 /* Otherwise, a non-zero size region of memory needs to be mapped
1833 * and validated. */
1834 while (1) {
1835 unsigned long real_start, real_size, aligned_size;
1836 aligned_size = real_size = host_size;
1838 /* Do not use mmap_find_vma here because that is limited to the
1839 * guest address space. We are going to make the
1840 * guest address space fit whatever we're given.
1842 real_start = (unsigned long)
1843 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1844 if (real_start == (unsigned long)-1) {
1845 return (unsigned long)-1;
1848 /* Ensure the address is properly aligned. */
1849 if (real_start & ~qemu_host_page_mask) {
1850 /* Ideally, we adjust like
1852 * pages: [ ][ ][ ][ ][ ]
1853 * old: [ real ]
1854 * [ aligned ]
1855 * new: [ real ]
1856 * [ aligned ]
1858 * But if there is something else mapped right after it,
1859 * then obviously it won't have room to grow, and the
1860 * kernel will put the new larger real someplace else with
1861 * unknown alignment (if we made it to here, then
1862 * fixed=false). Which is why we grow real by a full page
1863 * size, instead of by part of one; so that even if we get
1864 * moved, we can still guarantee alignment. But this does
1865 * mean that there is a padding of < 1 page both before
1866 * and after the aligned range; the "after" could could
1867 * cause problems for ARM emulation where it could butt in
1868 * to where we need to put the commpage.
1870 munmap((void *)real_start, host_size);
1871 real_size = aligned_size + qemu_host_page_size;
1872 real_start = (unsigned long)
1873 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1874 if (real_start == (unsigned long)-1) {
1875 return (unsigned long)-1;
1877 aligned_start = HOST_PAGE_ALIGN(real_start);
1878 } else {
1879 aligned_start = real_start;
1882 /* Check to see if the address is valid. */
1883 if (host_start && aligned_start != current_start) {
1884 goto try_again;
1887 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1888 /* On 32-bit ARM, we need to also be able to map the commpage. */
1889 int valid = init_guest_commpage(aligned_start - guest_start,
1890 aligned_size + guest_start);
1891 if (valid == -1) {
1892 munmap((void *)real_start, real_size);
1893 return (unsigned long)-1;
1894 } else if (valid == 0) {
1895 goto try_again;
1897 #endif
1899 /* If nothing has said `return -1` or `goto try_again` yet,
1900 * then the address we have is good.
1902 break;
1904 try_again:
1905 /* That address didn't work. Unmap and try a different one.
1906 * The address the host picked because is typically right at
1907 * the top of the host address space and leaves the guest with
1908 * no usable address space. Resort to a linear search. We
1909 * already compensated for mmap_min_addr, so this should not
1910 * happen often. Probably means we got unlucky and host
1911 * address space randomization put a shared library somewhere
1912 * inconvenient.
1914 munmap((void *)real_start, real_size);
1915 current_start += qemu_host_page_size;
1916 if (host_start == current_start) {
1917 /* Theoretically possible if host doesn't have any suitably
1918 * aligned areas. Normally the first mmap will fail.
1920 return (unsigned long)-1;
1924 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1926 return aligned_start;
1929 static void probe_guest_base(const char *image_name,
1930 abi_ulong loaddr, abi_ulong hiaddr)
1932 /* Probe for a suitable guest base address, if the user has not set
1933 * it explicitly, and set guest_base appropriately.
1934 * In case of error we will print a suitable message and exit.
1936 const char *errmsg;
1937 if (!have_guest_base && !reserved_va) {
1938 unsigned long host_start, real_start, host_size;
1940 /* Round addresses to page boundaries. */
1941 loaddr &= qemu_host_page_mask;
1942 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1944 if (loaddr < mmap_min_addr) {
1945 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1946 } else {
1947 host_start = loaddr;
1948 if (host_start != loaddr) {
1949 errmsg = "Address overflow loading ELF binary";
1950 goto exit_errmsg;
1953 host_size = hiaddr - loaddr;
1955 /* Setup the initial guest memory space with ranges gleaned from
1956 * the ELF image that is being loaded.
1958 real_start = init_guest_space(host_start, host_size, loaddr, false);
1959 if (real_start == (unsigned long)-1) {
1960 errmsg = "Unable to find space for application";
1961 goto exit_errmsg;
1963 guest_base = real_start - loaddr;
1965 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1966 TARGET_ABI_FMT_lx " to 0x%lx\n",
1967 loaddr, real_start);
1969 return;
1971 exit_errmsg:
1972 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1973 exit(-1);
1977 /* Load an ELF image into the address space.
1979 IMAGE_NAME is the filename of the image, to use in error messages.
1980 IMAGE_FD is the open file descriptor for the image.
1982 BPRM_BUF is a copy of the beginning of the file; this of course
1983 contains the elf file header at offset 0. It is assumed that this
1984 buffer is sufficiently aligned to present no problems to the host
1985 in accessing data at aligned offsets within the buffer.
1987 On return: INFO values will be filled in, as necessary or available. */
1989 static void load_elf_image(const char *image_name, int image_fd,
1990 struct image_info *info, char **pinterp_name,
1991 char bprm_buf[BPRM_BUF_SIZE])
1993 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1994 struct elf_phdr *phdr;
1995 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1996 int i, retval;
1997 const char *errmsg;
1999 /* First of all, some simple consistency checks */
2000 errmsg = "Invalid ELF image for this architecture";
2001 if (!elf_check_ident(ehdr)) {
2002 goto exit_errmsg;
2004 bswap_ehdr(ehdr);
2005 if (!elf_check_ehdr(ehdr)) {
2006 goto exit_errmsg;
2009 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2010 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2011 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2012 } else {
2013 phdr = (struct elf_phdr *) alloca(i);
2014 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2015 if (retval != i) {
2016 goto exit_read;
2019 bswap_phdr(phdr, ehdr->e_phnum);
2021 #ifdef CONFIG_USE_FDPIC
2022 info->nsegs = 0;
2023 info->pt_dynamic_addr = 0;
2024 #endif
2026 mmap_lock();
2028 /* Find the maximum size of the image and allocate an appropriate
2029 amount of memory to handle that. */
2030 loaddr = -1, hiaddr = 0;
2031 for (i = 0; i < ehdr->e_phnum; ++i) {
2032 if (phdr[i].p_type == PT_LOAD) {
2033 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2034 if (a < loaddr) {
2035 loaddr = a;
2037 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2038 if (a > hiaddr) {
2039 hiaddr = a;
2041 #ifdef CONFIG_USE_FDPIC
2042 ++info->nsegs;
2043 #endif
2047 load_addr = loaddr;
2048 if (ehdr->e_type == ET_DYN) {
2049 /* The image indicates that it can be loaded anywhere. Find a
2050 location that can hold the memory space required. If the
2051 image is pre-linked, LOADDR will be non-zero. Since we do
2052 not supply MAP_FIXED here we'll use that address if and
2053 only if it remains available. */
2054 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2055 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2056 -1, 0);
2057 if (load_addr == -1) {
2058 goto exit_perror;
2060 } else if (pinterp_name != NULL) {
2061 /* This is the main executable. Make sure that the low
2062 address does not conflict with MMAP_MIN_ADDR or the
2063 QEMU application itself. */
2064 probe_guest_base(image_name, loaddr, hiaddr);
2066 load_bias = load_addr - loaddr;
2068 #ifdef CONFIG_USE_FDPIC
2070 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2071 g_malloc(sizeof(*loadsegs) * info->nsegs);
2073 for (i = 0; i < ehdr->e_phnum; ++i) {
2074 switch (phdr[i].p_type) {
2075 case PT_DYNAMIC:
2076 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2077 break;
2078 case PT_LOAD:
2079 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2080 loadsegs->p_vaddr = phdr[i].p_vaddr;
2081 loadsegs->p_memsz = phdr[i].p_memsz;
2082 ++loadsegs;
2083 break;
2087 #endif
2089 info->load_bias = load_bias;
2090 info->load_addr = load_addr;
2091 info->entry = ehdr->e_entry + load_bias;
2092 info->start_code = -1;
2093 info->end_code = 0;
2094 info->start_data = -1;
2095 info->end_data = 0;
2096 info->brk = 0;
2097 info->elf_flags = ehdr->e_flags;
2099 for (i = 0; i < ehdr->e_phnum; i++) {
2100 struct elf_phdr *eppnt = phdr + i;
2101 if (eppnt->p_type == PT_LOAD) {
2102 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2103 int elf_prot = 0;
2105 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2106 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2107 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2109 vaddr = load_bias + eppnt->p_vaddr;
2110 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2111 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2113 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2114 elf_prot, MAP_PRIVATE | MAP_FIXED,
2115 image_fd, eppnt->p_offset - vaddr_po);
2116 if (error == -1) {
2117 goto exit_perror;
2120 vaddr_ef = vaddr + eppnt->p_filesz;
2121 vaddr_em = vaddr + eppnt->p_memsz;
2123 /* If the load segment requests extra zeros (e.g. bss), map it. */
2124 if (vaddr_ef < vaddr_em) {
2125 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2128 /* Find the full program boundaries. */
2129 if (elf_prot & PROT_EXEC) {
2130 if (vaddr < info->start_code) {
2131 info->start_code = vaddr;
2133 if (vaddr_ef > info->end_code) {
2134 info->end_code = vaddr_ef;
2137 if (elf_prot & PROT_WRITE) {
2138 if (vaddr < info->start_data) {
2139 info->start_data = vaddr;
2141 if (vaddr_ef > info->end_data) {
2142 info->end_data = vaddr_ef;
2144 if (vaddr_em > info->brk) {
2145 info->brk = vaddr_em;
2148 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2149 char *interp_name;
2151 if (*pinterp_name) {
2152 errmsg = "Multiple PT_INTERP entries";
2153 goto exit_errmsg;
2155 interp_name = malloc(eppnt->p_filesz);
2156 if (!interp_name) {
2157 goto exit_perror;
2160 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2161 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2162 eppnt->p_filesz);
2163 } else {
2164 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2165 eppnt->p_offset);
2166 if (retval != eppnt->p_filesz) {
2167 goto exit_perror;
2170 if (interp_name[eppnt->p_filesz - 1] != 0) {
2171 errmsg = "Invalid PT_INTERP entry";
2172 goto exit_errmsg;
2174 *pinterp_name = interp_name;
2178 if (info->end_data == 0) {
2179 info->start_data = info->end_code;
2180 info->end_data = info->end_code;
2181 info->brk = info->end_code;
2184 if (qemu_log_enabled()) {
2185 load_symbols(ehdr, image_fd, load_bias);
2188 mmap_unlock();
2190 close(image_fd);
2191 return;
2193 exit_read:
2194 if (retval >= 0) {
2195 errmsg = "Incomplete read of file header";
2196 goto exit_errmsg;
2198 exit_perror:
2199 errmsg = strerror(errno);
2200 exit_errmsg:
2201 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2202 exit(-1);
2205 static void load_elf_interp(const char *filename, struct image_info *info,
2206 char bprm_buf[BPRM_BUF_SIZE])
2208 int fd, retval;
2210 fd = open(path(filename), O_RDONLY);
2211 if (fd < 0) {
2212 goto exit_perror;
2215 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2216 if (retval < 0) {
2217 goto exit_perror;
2219 if (retval < BPRM_BUF_SIZE) {
2220 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2223 load_elf_image(filename, fd, info, NULL, bprm_buf);
2224 return;
2226 exit_perror:
2227 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2228 exit(-1);
2231 static int symfind(const void *s0, const void *s1)
2233 target_ulong addr = *(target_ulong *)s0;
2234 struct elf_sym *sym = (struct elf_sym *)s1;
2235 int result = 0;
2236 if (addr < sym->st_value) {
2237 result = -1;
2238 } else if (addr >= sym->st_value + sym->st_size) {
2239 result = 1;
2241 return result;
2244 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2246 #if ELF_CLASS == ELFCLASS32
2247 struct elf_sym *syms = s->disas_symtab.elf32;
2248 #else
2249 struct elf_sym *syms = s->disas_symtab.elf64;
2250 #endif
2252 // binary search
2253 struct elf_sym *sym;
2255 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2256 if (sym != NULL) {
2257 return s->disas_strtab + sym->st_name;
2260 return "";
2263 /* FIXME: This should use elf_ops.h */
2264 static int symcmp(const void *s0, const void *s1)
2266 struct elf_sym *sym0 = (struct elf_sym *)s0;
2267 struct elf_sym *sym1 = (struct elf_sym *)s1;
2268 return (sym0->st_value < sym1->st_value)
2269 ? -1
2270 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2273 /* Best attempt to load symbols from this ELF object. */
2274 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2276 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2277 uint64_t segsz;
2278 struct elf_shdr *shdr;
2279 char *strings = NULL;
2280 struct syminfo *s = NULL;
2281 struct elf_sym *new_syms, *syms = NULL;
2283 shnum = hdr->e_shnum;
2284 i = shnum * sizeof(struct elf_shdr);
2285 shdr = (struct elf_shdr *)alloca(i);
2286 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2287 return;
2290 bswap_shdr(shdr, shnum);
2291 for (i = 0; i < shnum; ++i) {
2292 if (shdr[i].sh_type == SHT_SYMTAB) {
2293 sym_idx = i;
2294 str_idx = shdr[i].sh_link;
2295 goto found;
2299 /* There will be no symbol table if the file was stripped. */
2300 return;
2302 found:
2303 /* Now know where the strtab and symtab are. Snarf them. */
2304 s = g_try_new(struct syminfo, 1);
2305 if (!s) {
2306 goto give_up;
2309 segsz = shdr[str_idx].sh_size;
2310 s->disas_strtab = strings = g_try_malloc(segsz);
2311 if (!strings ||
2312 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2313 goto give_up;
2316 segsz = shdr[sym_idx].sh_size;
2317 syms = g_try_malloc(segsz);
2318 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2319 goto give_up;
2322 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2323 /* Implausibly large symbol table: give up rather than ploughing
2324 * on with the number of symbols calculation overflowing
2326 goto give_up;
2328 nsyms = segsz / sizeof(struct elf_sym);
2329 for (i = 0; i < nsyms; ) {
2330 bswap_sym(syms + i);
2331 /* Throw away entries which we do not need. */
2332 if (syms[i].st_shndx == SHN_UNDEF
2333 || syms[i].st_shndx >= SHN_LORESERVE
2334 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2335 if (i < --nsyms) {
2336 syms[i] = syms[nsyms];
2338 } else {
2339 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2340 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2341 syms[i].st_value &= ~(target_ulong)1;
2342 #endif
2343 syms[i].st_value += load_bias;
2344 i++;
2348 /* No "useful" symbol. */
2349 if (nsyms == 0) {
2350 goto give_up;
2353 /* Attempt to free the storage associated with the local symbols
2354 that we threw away. Whether or not this has any effect on the
2355 memory allocation depends on the malloc implementation and how
2356 many symbols we managed to discard. */
2357 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2358 if (new_syms == NULL) {
2359 goto give_up;
2361 syms = new_syms;
2363 qsort(syms, nsyms, sizeof(*syms), symcmp);
2365 s->disas_num_syms = nsyms;
2366 #if ELF_CLASS == ELFCLASS32
2367 s->disas_symtab.elf32 = syms;
2368 #else
2369 s->disas_symtab.elf64 = syms;
2370 #endif
2371 s->lookup_symbol = lookup_symbolxx;
2372 s->next = syminfos;
2373 syminfos = s;
2375 return;
2377 give_up:
2378 g_free(s);
2379 g_free(strings);
2380 g_free(syms);
2383 uint32_t get_elf_eflags(int fd)
2385 struct elfhdr ehdr;
2386 off_t offset;
2387 int ret;
2389 /* Read ELF header */
2390 offset = lseek(fd, 0, SEEK_SET);
2391 if (offset == (off_t) -1) {
2392 return 0;
2394 ret = read(fd, &ehdr, sizeof(ehdr));
2395 if (ret < sizeof(ehdr)) {
2396 return 0;
2398 offset = lseek(fd, offset, SEEK_SET);
2399 if (offset == (off_t) -1) {
2400 return 0;
2403 /* Check ELF signature */
2404 if (!elf_check_ident(&ehdr)) {
2405 return 0;
2408 /* check header */
2409 bswap_ehdr(&ehdr);
2410 if (!elf_check_ehdr(&ehdr)) {
2411 return 0;
2414 /* return architecture id */
2415 return ehdr.e_flags;
2418 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2420 struct image_info interp_info;
2421 struct elfhdr elf_ex;
2422 char *elf_interpreter = NULL;
2423 char *scratch;
2425 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2427 load_elf_image(bprm->filename, bprm->fd, info,
2428 &elf_interpreter, bprm->buf);
2430 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2431 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2432 when we load the interpreter. */
2433 elf_ex = *(struct elfhdr *)bprm->buf;
2435 /* Do this so that we can load the interpreter, if need be. We will
2436 change some of these later */
2437 bprm->p = setup_arg_pages(bprm, info);
2439 scratch = g_new0(char, TARGET_PAGE_SIZE);
2440 if (STACK_GROWS_DOWN) {
2441 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2442 bprm->p, info->stack_limit);
2443 info->file_string = bprm->p;
2444 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2445 bprm->p, info->stack_limit);
2446 info->env_strings = bprm->p;
2447 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2448 bprm->p, info->stack_limit);
2449 info->arg_strings = bprm->p;
2450 } else {
2451 info->arg_strings = bprm->p;
2452 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2453 bprm->p, info->stack_limit);
2454 info->env_strings = bprm->p;
2455 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2456 bprm->p, info->stack_limit);
2457 info->file_string = bprm->p;
2458 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2459 bprm->p, info->stack_limit);
2462 g_free(scratch);
2464 if (!bprm->p) {
2465 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2466 exit(-1);
2469 if (elf_interpreter) {
2470 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2472 /* If the program interpreter is one of these two, then assume
2473 an iBCS2 image. Otherwise assume a native linux image. */
2475 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2476 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2477 info->personality = PER_SVR4;
2479 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2480 and some applications "depend" upon this behavior. Since
2481 we do not have the power to recompile these, we emulate
2482 the SVr4 behavior. Sigh. */
2483 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2484 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2488 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2489 info, (elf_interpreter ? &interp_info : NULL));
2490 info->start_stack = bprm->p;
2492 /* If we have an interpreter, set that as the program's entry point.
2493 Copy the load_bias as well, to help PPC64 interpret the entry
2494 point as a function descriptor. Do this after creating elf tables
2495 so that we copy the original program entry point into the AUXV. */
2496 if (elf_interpreter) {
2497 info->load_bias = interp_info.load_bias;
2498 info->entry = interp_info.entry;
2499 free(elf_interpreter);
2502 #ifdef USE_ELF_CORE_DUMP
2503 bprm->core_dump = &elf_core_dump;
2504 #endif
2506 return 0;
2509 #ifdef USE_ELF_CORE_DUMP
2511 * Definitions to generate Intel SVR4-like core files.
2512 * These mostly have the same names as the SVR4 types with "target_elf_"
2513 * tacked on the front to prevent clashes with linux definitions,
2514 * and the typedef forms have been avoided. This is mostly like
2515 * the SVR4 structure, but more Linuxy, with things that Linux does
2516 * not support and which gdb doesn't really use excluded.
2518 * Fields we don't dump (their contents is zero) in linux-user qemu
2519 * are marked with XXX.
2521 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2523 * Porting ELF coredump for target is (quite) simple process. First you
2524 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2525 * the target resides):
2527 * #define USE_ELF_CORE_DUMP
2529 * Next you define type of register set used for dumping. ELF specification
2530 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2532 * typedef <target_regtype> target_elf_greg_t;
2533 * #define ELF_NREG <number of registers>
2534 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2536 * Last step is to implement target specific function that copies registers
2537 * from given cpu into just specified register set. Prototype is:
2539 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2540 * const CPUArchState *env);
2542 * Parameters:
2543 * regs - copy register values into here (allocated and zeroed by caller)
2544 * env - copy registers from here
2546 * Example for ARM target is provided in this file.
2549 /* An ELF note in memory */
2550 struct memelfnote {
2551 const char *name;
2552 size_t namesz;
2553 size_t namesz_rounded;
2554 int type;
2555 size_t datasz;
2556 size_t datasz_rounded;
2557 void *data;
2558 size_t notesz;
2561 struct target_elf_siginfo {
2562 abi_int si_signo; /* signal number */
2563 abi_int si_code; /* extra code */
2564 abi_int si_errno; /* errno */
2567 struct target_elf_prstatus {
2568 struct target_elf_siginfo pr_info; /* Info associated with signal */
2569 abi_short pr_cursig; /* Current signal */
2570 abi_ulong pr_sigpend; /* XXX */
2571 abi_ulong pr_sighold; /* XXX */
2572 target_pid_t pr_pid;
2573 target_pid_t pr_ppid;
2574 target_pid_t pr_pgrp;
2575 target_pid_t pr_sid;
2576 struct target_timeval pr_utime; /* XXX User time */
2577 struct target_timeval pr_stime; /* XXX System time */
2578 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2579 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2580 target_elf_gregset_t pr_reg; /* GP registers */
2581 abi_int pr_fpvalid; /* XXX */
2584 #define ELF_PRARGSZ (80) /* Number of chars for args */
2586 struct target_elf_prpsinfo {
2587 char pr_state; /* numeric process state */
2588 char pr_sname; /* char for pr_state */
2589 char pr_zomb; /* zombie */
2590 char pr_nice; /* nice val */
2591 abi_ulong pr_flag; /* flags */
2592 target_uid_t pr_uid;
2593 target_gid_t pr_gid;
2594 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2595 /* Lots missing */
2596 char pr_fname[16]; /* filename of executable */
2597 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2600 /* Here is the structure in which status of each thread is captured. */
2601 struct elf_thread_status {
2602 QTAILQ_ENTRY(elf_thread_status) ets_link;
2603 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2604 #if 0
2605 elf_fpregset_t fpu; /* NT_PRFPREG */
2606 struct task_struct *thread;
2607 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2608 #endif
2609 struct memelfnote notes[1];
2610 int num_notes;
2613 struct elf_note_info {
2614 struct memelfnote *notes;
2615 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2616 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2618 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2619 #if 0
2621 * Current version of ELF coredump doesn't support
2622 * dumping fp regs etc.
2624 elf_fpregset_t *fpu;
2625 elf_fpxregset_t *xfpu;
2626 int thread_status_size;
2627 #endif
2628 int notes_size;
2629 int numnote;
2632 struct vm_area_struct {
2633 target_ulong vma_start; /* start vaddr of memory region */
2634 target_ulong vma_end; /* end vaddr of memory region */
2635 abi_ulong vma_flags; /* protection etc. flags for the region */
2636 QTAILQ_ENTRY(vm_area_struct) vma_link;
2639 struct mm_struct {
2640 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2641 int mm_count; /* number of mappings */
2644 static struct mm_struct *vma_init(void);
2645 static void vma_delete(struct mm_struct *);
2646 static int vma_add_mapping(struct mm_struct *, target_ulong,
2647 target_ulong, abi_ulong);
2648 static int vma_get_mapping_count(const struct mm_struct *);
2649 static struct vm_area_struct *vma_first(const struct mm_struct *);
2650 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2651 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2652 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2653 unsigned long flags);
2655 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2656 static void fill_note(struct memelfnote *, const char *, int,
2657 unsigned int, void *);
2658 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2659 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2660 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2661 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2662 static size_t note_size(const struct memelfnote *);
2663 static void free_note_info(struct elf_note_info *);
2664 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2665 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2666 static int core_dump_filename(const TaskState *, char *, size_t);
2668 static int dump_write(int, const void *, size_t);
2669 static int write_note(struct memelfnote *, int);
2670 static int write_note_info(struct elf_note_info *, int);
2672 #ifdef BSWAP_NEEDED
2673 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2675 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2676 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2677 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2678 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2679 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2680 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2681 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2682 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2683 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2684 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2685 /* cpu times are not filled, so we skip them */
2686 /* regs should be in correct format already */
2687 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2690 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2692 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2693 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2694 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2695 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2696 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2697 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2698 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2701 static void bswap_note(struct elf_note *en)
2703 bswap32s(&en->n_namesz);
2704 bswap32s(&en->n_descsz);
2705 bswap32s(&en->n_type);
2707 #else
2708 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2709 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2710 static inline void bswap_note(struct elf_note *en) { }
2711 #endif /* BSWAP_NEEDED */
2714 * Minimal support for linux memory regions. These are needed
2715 * when we are finding out what memory exactly belongs to
2716 * emulated process. No locks needed here, as long as
2717 * thread that received the signal is stopped.
2720 static struct mm_struct *vma_init(void)
2722 struct mm_struct *mm;
2724 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2725 return (NULL);
2727 mm->mm_count = 0;
2728 QTAILQ_INIT(&mm->mm_mmap);
2730 return (mm);
2733 static void vma_delete(struct mm_struct *mm)
2735 struct vm_area_struct *vma;
2737 while ((vma = vma_first(mm)) != NULL) {
2738 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2739 g_free(vma);
2741 g_free(mm);
2744 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2745 target_ulong end, abi_ulong flags)
2747 struct vm_area_struct *vma;
2749 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2750 return (-1);
2752 vma->vma_start = start;
2753 vma->vma_end = end;
2754 vma->vma_flags = flags;
2756 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2757 mm->mm_count++;
2759 return (0);
2762 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2764 return (QTAILQ_FIRST(&mm->mm_mmap));
2767 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2769 return (QTAILQ_NEXT(vma, vma_link));
2772 static int vma_get_mapping_count(const struct mm_struct *mm)
2774 return (mm->mm_count);
2778 * Calculate file (dump) size of given memory region.
2780 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2782 /* if we cannot even read the first page, skip it */
2783 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2784 return (0);
2787 * Usually we don't dump executable pages as they contain
2788 * non-writable code that debugger can read directly from
2789 * target library etc. However, thread stacks are marked
2790 * also executable so we read in first page of given region
2791 * and check whether it contains elf header. If there is
2792 * no elf header, we dump it.
2794 if (vma->vma_flags & PROT_EXEC) {
2795 char page[TARGET_PAGE_SIZE];
2797 copy_from_user(page, vma->vma_start, sizeof (page));
2798 if ((page[EI_MAG0] == ELFMAG0) &&
2799 (page[EI_MAG1] == ELFMAG1) &&
2800 (page[EI_MAG2] == ELFMAG2) &&
2801 (page[EI_MAG3] == ELFMAG3)) {
2803 * Mappings are possibly from ELF binary. Don't dump
2804 * them.
2806 return (0);
2810 return (vma->vma_end - vma->vma_start);
2813 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2814 unsigned long flags)
2816 struct mm_struct *mm = (struct mm_struct *)priv;
2818 vma_add_mapping(mm, start, end, flags);
2819 return (0);
2822 static void fill_note(struct memelfnote *note, const char *name, int type,
2823 unsigned int sz, void *data)
2825 unsigned int namesz;
2827 namesz = strlen(name) + 1;
2828 note->name = name;
2829 note->namesz = namesz;
2830 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2831 note->type = type;
2832 note->datasz = sz;
2833 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2835 note->data = data;
2838 * We calculate rounded up note size here as specified by
2839 * ELF document.
2841 note->notesz = sizeof (struct elf_note) +
2842 note->namesz_rounded + note->datasz_rounded;
2845 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2846 uint32_t flags)
2848 (void) memset(elf, 0, sizeof(*elf));
2850 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2851 elf->e_ident[EI_CLASS] = ELF_CLASS;
2852 elf->e_ident[EI_DATA] = ELF_DATA;
2853 elf->e_ident[EI_VERSION] = EV_CURRENT;
2854 elf->e_ident[EI_OSABI] = ELF_OSABI;
2856 elf->e_type = ET_CORE;
2857 elf->e_machine = machine;
2858 elf->e_version = EV_CURRENT;
2859 elf->e_phoff = sizeof(struct elfhdr);
2860 elf->e_flags = flags;
2861 elf->e_ehsize = sizeof(struct elfhdr);
2862 elf->e_phentsize = sizeof(struct elf_phdr);
2863 elf->e_phnum = segs;
2865 bswap_ehdr(elf);
2868 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2870 phdr->p_type = PT_NOTE;
2871 phdr->p_offset = offset;
2872 phdr->p_vaddr = 0;
2873 phdr->p_paddr = 0;
2874 phdr->p_filesz = sz;
2875 phdr->p_memsz = 0;
2876 phdr->p_flags = 0;
2877 phdr->p_align = 0;
2879 bswap_phdr(phdr, 1);
2882 static size_t note_size(const struct memelfnote *note)
2884 return (note->notesz);
2887 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2888 const TaskState *ts, int signr)
2890 (void) memset(prstatus, 0, sizeof (*prstatus));
2891 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2892 prstatus->pr_pid = ts->ts_tid;
2893 prstatus->pr_ppid = getppid();
2894 prstatus->pr_pgrp = getpgrp();
2895 prstatus->pr_sid = getsid(0);
2897 bswap_prstatus(prstatus);
2900 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2902 char *base_filename;
2903 unsigned int i, len;
2905 (void) memset(psinfo, 0, sizeof (*psinfo));
2907 len = ts->info->arg_end - ts->info->arg_start;
2908 if (len >= ELF_PRARGSZ)
2909 len = ELF_PRARGSZ - 1;
2910 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2911 return -EFAULT;
2912 for (i = 0; i < len; i++)
2913 if (psinfo->pr_psargs[i] == 0)
2914 psinfo->pr_psargs[i] = ' ';
2915 psinfo->pr_psargs[len] = 0;
2917 psinfo->pr_pid = getpid();
2918 psinfo->pr_ppid = getppid();
2919 psinfo->pr_pgrp = getpgrp();
2920 psinfo->pr_sid = getsid(0);
2921 psinfo->pr_uid = getuid();
2922 psinfo->pr_gid = getgid();
2924 base_filename = g_path_get_basename(ts->bprm->filename);
2926 * Using strncpy here is fine: at max-length,
2927 * this field is not NUL-terminated.
2929 (void) strncpy(psinfo->pr_fname, base_filename,
2930 sizeof(psinfo->pr_fname));
2932 g_free(base_filename);
2933 bswap_psinfo(psinfo);
2934 return (0);
2937 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2939 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2940 elf_addr_t orig_auxv = auxv;
2941 void *ptr;
2942 int len = ts->info->auxv_len;
2945 * Auxiliary vector is stored in target process stack. It contains
2946 * {type, value} pairs that we need to dump into note. This is not
2947 * strictly necessary but we do it here for sake of completeness.
2950 /* read in whole auxv vector and copy it to memelfnote */
2951 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2952 if (ptr != NULL) {
2953 fill_note(note, "CORE", NT_AUXV, len, ptr);
2954 unlock_user(ptr, auxv, len);
2959 * Constructs name of coredump file. We have following convention
2960 * for the name:
2961 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2963 * Returns 0 in case of success, -1 otherwise (errno is set).
2965 static int core_dump_filename(const TaskState *ts, char *buf,
2966 size_t bufsize)
2968 char timestamp[64];
2969 char *base_filename = NULL;
2970 struct timeval tv;
2971 struct tm tm;
2973 assert(bufsize >= PATH_MAX);
2975 if (gettimeofday(&tv, NULL) < 0) {
2976 (void) fprintf(stderr, "unable to get current timestamp: %s",
2977 strerror(errno));
2978 return (-1);
2981 base_filename = g_path_get_basename(ts->bprm->filename);
2982 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2983 localtime_r(&tv.tv_sec, &tm));
2984 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2985 base_filename, timestamp, (int)getpid());
2986 g_free(base_filename);
2988 return (0);
2991 static int dump_write(int fd, const void *ptr, size_t size)
2993 const char *bufp = (const char *)ptr;
2994 ssize_t bytes_written, bytes_left;
2995 struct rlimit dumpsize;
2996 off_t pos;
2998 bytes_written = 0;
2999 getrlimit(RLIMIT_CORE, &dumpsize);
3000 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3001 if (errno == ESPIPE) { /* not a seekable stream */
3002 bytes_left = size;
3003 } else {
3004 return pos;
3006 } else {
3007 if (dumpsize.rlim_cur <= pos) {
3008 return -1;
3009 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3010 bytes_left = size;
3011 } else {
3012 size_t limit_left=dumpsize.rlim_cur - pos;
3013 bytes_left = limit_left >= size ? size : limit_left ;
3018 * In normal conditions, single write(2) should do but
3019 * in case of socket etc. this mechanism is more portable.
3021 do {
3022 bytes_written = write(fd, bufp, bytes_left);
3023 if (bytes_written < 0) {
3024 if (errno == EINTR)
3025 continue;
3026 return (-1);
3027 } else if (bytes_written == 0) { /* eof */
3028 return (-1);
3030 bufp += bytes_written;
3031 bytes_left -= bytes_written;
3032 } while (bytes_left > 0);
3034 return (0);
3037 static int write_note(struct memelfnote *men, int fd)
3039 struct elf_note en;
3041 en.n_namesz = men->namesz;
3042 en.n_type = men->type;
3043 en.n_descsz = men->datasz;
3045 bswap_note(&en);
3047 if (dump_write(fd, &en, sizeof(en)) != 0)
3048 return (-1);
3049 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3050 return (-1);
3051 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3052 return (-1);
3054 return (0);
3057 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3059 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3060 TaskState *ts = (TaskState *)cpu->opaque;
3061 struct elf_thread_status *ets;
3063 ets = g_malloc0(sizeof (*ets));
3064 ets->num_notes = 1; /* only prstatus is dumped */
3065 fill_prstatus(&ets->prstatus, ts, 0);
3066 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3067 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3068 &ets->prstatus);
3070 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3072 info->notes_size += note_size(&ets->notes[0]);
3075 static void init_note_info(struct elf_note_info *info)
3077 /* Initialize the elf_note_info structure so that it is at
3078 * least safe to call free_note_info() on it. Must be
3079 * called before calling fill_note_info().
3081 memset(info, 0, sizeof (*info));
3082 QTAILQ_INIT(&info->thread_list);
3085 static int fill_note_info(struct elf_note_info *info,
3086 long signr, const CPUArchState *env)
3088 #define NUMNOTES 3
3089 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3090 TaskState *ts = (TaskState *)cpu->opaque;
3091 int i;
3093 info->notes = g_new0(struct memelfnote, NUMNOTES);
3094 if (info->notes == NULL)
3095 return (-ENOMEM);
3096 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3097 if (info->prstatus == NULL)
3098 return (-ENOMEM);
3099 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3100 if (info->prstatus == NULL)
3101 return (-ENOMEM);
3104 * First fill in status (and registers) of current thread
3105 * including process info & aux vector.
3107 fill_prstatus(info->prstatus, ts, signr);
3108 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3109 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3110 sizeof (*info->prstatus), info->prstatus);
3111 fill_psinfo(info->psinfo, ts);
3112 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3113 sizeof (*info->psinfo), info->psinfo);
3114 fill_auxv_note(&info->notes[2], ts);
3115 info->numnote = 3;
3117 info->notes_size = 0;
3118 for (i = 0; i < info->numnote; i++)
3119 info->notes_size += note_size(&info->notes[i]);
3121 /* read and fill status of all threads */
3122 cpu_list_lock();
3123 CPU_FOREACH(cpu) {
3124 if (cpu == thread_cpu) {
3125 continue;
3127 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3129 cpu_list_unlock();
3131 return (0);
3134 static void free_note_info(struct elf_note_info *info)
3136 struct elf_thread_status *ets;
3138 while (!QTAILQ_EMPTY(&info->thread_list)) {
3139 ets = QTAILQ_FIRST(&info->thread_list);
3140 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3141 g_free(ets);
3144 g_free(info->prstatus);
3145 g_free(info->psinfo);
3146 g_free(info->notes);
3149 static int write_note_info(struct elf_note_info *info, int fd)
3151 struct elf_thread_status *ets;
3152 int i, error = 0;
3154 /* write prstatus, psinfo and auxv for current thread */
3155 for (i = 0; i < info->numnote; i++)
3156 if ((error = write_note(&info->notes[i], fd)) != 0)
3157 return (error);
3159 /* write prstatus for each thread */
3160 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3161 if ((error = write_note(&ets->notes[0], fd)) != 0)
3162 return (error);
3165 return (0);
3169 * Write out ELF coredump.
3171 * See documentation of ELF object file format in:
3172 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3174 * Coredump format in linux is following:
3176 * 0 +----------------------+ \
3177 * | ELF header | ET_CORE |
3178 * +----------------------+ |
3179 * | ELF program headers | |--- headers
3180 * | - NOTE section | |
3181 * | - PT_LOAD sections | |
3182 * +----------------------+ /
3183 * | NOTEs: |
3184 * | - NT_PRSTATUS |
3185 * | - NT_PRSINFO |
3186 * | - NT_AUXV |
3187 * +----------------------+ <-- aligned to target page
3188 * | Process memory dump |
3189 * : :
3190 * . .
3191 * : :
3192 * | |
3193 * +----------------------+
3195 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3196 * NT_PRSINFO -> struct elf_prpsinfo
3197 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3199 * Format follows System V format as close as possible. Current
3200 * version limitations are as follows:
3201 * - no floating point registers are dumped
3203 * Function returns 0 in case of success, negative errno otherwise.
3205 * TODO: make this work also during runtime: it should be
3206 * possible to force coredump from running process and then
3207 * continue processing. For example qemu could set up SIGUSR2
3208 * handler (provided that target process haven't registered
3209 * handler for that) that does the dump when signal is received.
3211 static int elf_core_dump(int signr, const CPUArchState *env)
3213 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3214 const TaskState *ts = (const TaskState *)cpu->opaque;
3215 struct vm_area_struct *vma = NULL;
3216 char corefile[PATH_MAX];
3217 struct elf_note_info info;
3218 struct elfhdr elf;
3219 struct elf_phdr phdr;
3220 struct rlimit dumpsize;
3221 struct mm_struct *mm = NULL;
3222 off_t offset = 0, data_offset = 0;
3223 int segs = 0;
3224 int fd = -1;
3226 init_note_info(&info);
3228 errno = 0;
3229 getrlimit(RLIMIT_CORE, &dumpsize);
3230 if (dumpsize.rlim_cur == 0)
3231 return 0;
3233 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3234 return (-errno);
3236 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3237 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3238 return (-errno);
3241 * Walk through target process memory mappings and
3242 * set up structure containing this information. After
3243 * this point vma_xxx functions can be used.
3245 if ((mm = vma_init()) == NULL)
3246 goto out;
3248 walk_memory_regions(mm, vma_walker);
3249 segs = vma_get_mapping_count(mm);
3252 * Construct valid coredump ELF header. We also
3253 * add one more segment for notes.
3255 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3256 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3257 goto out;
3259 /* fill in the in-memory version of notes */
3260 if (fill_note_info(&info, signr, env) < 0)
3261 goto out;
3263 offset += sizeof (elf); /* elf header */
3264 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3266 /* write out notes program header */
3267 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3269 offset += info.notes_size;
3270 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3271 goto out;
3274 * ELF specification wants data to start at page boundary so
3275 * we align it here.
3277 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3280 * Write program headers for memory regions mapped in
3281 * the target process.
3283 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3284 (void) memset(&phdr, 0, sizeof (phdr));
3286 phdr.p_type = PT_LOAD;
3287 phdr.p_offset = offset;
3288 phdr.p_vaddr = vma->vma_start;
3289 phdr.p_paddr = 0;
3290 phdr.p_filesz = vma_dump_size(vma);
3291 offset += phdr.p_filesz;
3292 phdr.p_memsz = vma->vma_end - vma->vma_start;
3293 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3294 if (vma->vma_flags & PROT_WRITE)
3295 phdr.p_flags |= PF_W;
3296 if (vma->vma_flags & PROT_EXEC)
3297 phdr.p_flags |= PF_X;
3298 phdr.p_align = ELF_EXEC_PAGESIZE;
3300 bswap_phdr(&phdr, 1);
3301 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3302 goto out;
3307 * Next we write notes just after program headers. No
3308 * alignment needed here.
3310 if (write_note_info(&info, fd) < 0)
3311 goto out;
3313 /* align data to page boundary */
3314 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3315 goto out;
3318 * Finally we can dump process memory into corefile as well.
3320 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3321 abi_ulong addr;
3322 abi_ulong end;
3324 end = vma->vma_start + vma_dump_size(vma);
3326 for (addr = vma->vma_start; addr < end;
3327 addr += TARGET_PAGE_SIZE) {
3328 char page[TARGET_PAGE_SIZE];
3329 int error;
3332 * Read in page from target process memory and
3333 * write it to coredump file.
3335 error = copy_from_user(page, addr, sizeof (page));
3336 if (error != 0) {
3337 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3338 addr);
3339 errno = -error;
3340 goto out;
3342 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3343 goto out;
3347 out:
3348 free_note_info(&info);
3349 if (mm != NULL)
3350 vma_delete(mm);
3351 (void) close(fd);
3353 if (errno != 0)
3354 return (-errno);
3355 return (0);
3357 #endif /* USE_ELF_CORE_DUMP */
3359 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3361 init_thread(regs, infop);