PPC: E500: Add FSL I2C controller and integrate RTC with it
[qemu/ar7.git] / hw / vfio / pci-quirks.c
blob40a12001f58027ab620b04a1a25df021b3212fbb
1 /*
2 * device quirks for PCI devices
4 * Copyright Red Hat, Inc. 2012-2015
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qemu/units.h"
15 #include "qemu/error-report.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/range.h"
18 #include "qapi/error.h"
19 #include "qapi/visitor.h"
20 #include <sys/ioctl.h>
21 #include "hw/nvram/fw_cfg.h"
22 #include "pci.h"
23 #include "trace.h"
25 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
26 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
28 return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
29 (device == PCI_ANY_ID || device == vdev->device_id);
32 static bool vfio_is_vga(VFIOPCIDevice *vdev)
34 PCIDevice *pdev = &vdev->pdev;
35 uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
37 return class == PCI_CLASS_DISPLAY_VGA;
41 * List of device ids/vendor ids for which to disable
42 * option rom loading. This avoids the guest hangs during rom
43 * execution as noticed with the BCM 57810 card for lack of a
44 * more better way to handle such issues.
45 * The user can still override by specifying a romfile or
46 * rombar=1.
47 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
48 * for an analysis of the 57810 card hang. When adding
49 * a new vendor id/device id combination below, please also add
50 * your card/environment details and information that could
51 * help in debugging to the bug tracking this issue
53 static const struct {
54 uint32_t vendor;
55 uint32_t device;
56 } romblacklist[] = {
57 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
60 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
62 int i;
64 for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
65 if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
66 trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
67 romblacklist[i].vendor,
68 romblacklist[i].device);
69 return true;
72 return false;
76 * Device specific region quirks (mostly backdoors to PCI config space)
80 * The generic window quirks operate on an address and data register,
81 * vfio_generic_window_address_quirk handles the address register and
82 * vfio_generic_window_data_quirk handles the data register. These ops
83 * pass reads and writes through to hardware until a value matching the
84 * stored address match/mask is written. When this occurs, the data
85 * register access emulated PCI config space for the device rather than
86 * passing through accesses. This enables devices where PCI config space
87 * is accessible behind a window register to maintain the virtualization
88 * provided through vfio.
90 typedef struct VFIOConfigWindowMatch {
91 uint32_t match;
92 uint32_t mask;
93 } VFIOConfigWindowMatch;
95 typedef struct VFIOConfigWindowQuirk {
96 struct VFIOPCIDevice *vdev;
98 uint32_t address_val;
100 uint32_t address_offset;
101 uint32_t data_offset;
103 bool window_enabled;
104 uint8_t bar;
106 MemoryRegion *addr_mem;
107 MemoryRegion *data_mem;
109 uint32_t nr_matches;
110 VFIOConfigWindowMatch matches[];
111 } VFIOConfigWindowQuirk;
113 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
114 hwaddr addr,
115 unsigned size)
117 VFIOConfigWindowQuirk *window = opaque;
118 VFIOPCIDevice *vdev = window->vdev;
120 return vfio_region_read(&vdev->bars[window->bar].region,
121 addr + window->address_offset, size);
124 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
125 uint64_t data,
126 unsigned size)
128 VFIOConfigWindowQuirk *window = opaque;
129 VFIOPCIDevice *vdev = window->vdev;
130 int i;
132 window->window_enabled = false;
134 vfio_region_write(&vdev->bars[window->bar].region,
135 addr + window->address_offset, data, size);
137 for (i = 0; i < window->nr_matches; i++) {
138 if ((data & ~window->matches[i].mask) == window->matches[i].match) {
139 window->window_enabled = true;
140 window->address_val = data & window->matches[i].mask;
141 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
142 memory_region_name(window->addr_mem), data);
143 break;
148 static const MemoryRegionOps vfio_generic_window_address_quirk = {
149 .read = vfio_generic_window_quirk_address_read,
150 .write = vfio_generic_window_quirk_address_write,
151 .endianness = DEVICE_LITTLE_ENDIAN,
154 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
155 hwaddr addr, unsigned size)
157 VFIOConfigWindowQuirk *window = opaque;
158 VFIOPCIDevice *vdev = window->vdev;
159 uint64_t data;
161 /* Always read data reg, discard if window enabled */
162 data = vfio_region_read(&vdev->bars[window->bar].region,
163 addr + window->data_offset, size);
165 if (window->window_enabled) {
166 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
167 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
168 memory_region_name(window->data_mem), data);
171 return data;
174 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
175 uint64_t data, unsigned size)
177 VFIOConfigWindowQuirk *window = opaque;
178 VFIOPCIDevice *vdev = window->vdev;
180 if (window->window_enabled) {
181 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
182 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
183 memory_region_name(window->data_mem), data);
184 return;
187 vfio_region_write(&vdev->bars[window->bar].region,
188 addr + window->data_offset, data, size);
191 static const MemoryRegionOps vfio_generic_window_data_quirk = {
192 .read = vfio_generic_window_quirk_data_read,
193 .write = vfio_generic_window_quirk_data_write,
194 .endianness = DEVICE_LITTLE_ENDIAN,
198 * The generic mirror quirk handles devices which expose PCI config space
199 * through a region within a BAR. When enabled, reads and writes are
200 * redirected through to emulated PCI config space. XXX if PCI config space
201 * used memory regions, this could just be an alias.
203 typedef struct VFIOConfigMirrorQuirk {
204 struct VFIOPCIDevice *vdev;
205 uint32_t offset;
206 uint8_t bar;
207 MemoryRegion *mem;
208 uint8_t data[];
209 } VFIOConfigMirrorQuirk;
211 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
212 hwaddr addr, unsigned size)
214 VFIOConfigMirrorQuirk *mirror = opaque;
215 VFIOPCIDevice *vdev = mirror->vdev;
216 uint64_t data;
218 /* Read and discard in case the hardware cares */
219 (void)vfio_region_read(&vdev->bars[mirror->bar].region,
220 addr + mirror->offset, size);
222 data = vfio_pci_read_config(&vdev->pdev, addr, size);
223 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
224 memory_region_name(mirror->mem),
225 addr, data);
226 return data;
229 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
230 uint64_t data, unsigned size)
232 VFIOConfigMirrorQuirk *mirror = opaque;
233 VFIOPCIDevice *vdev = mirror->vdev;
235 vfio_pci_write_config(&vdev->pdev, addr, data, size);
236 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
237 memory_region_name(mirror->mem),
238 addr, data);
241 static const MemoryRegionOps vfio_generic_mirror_quirk = {
242 .read = vfio_generic_quirk_mirror_read,
243 .write = vfio_generic_quirk_mirror_write,
244 .endianness = DEVICE_LITTLE_ENDIAN,
247 /* Is range1 fully contained within range2? */
248 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
249 uint64_t first2, uint64_t len2) {
250 return (first1 >= first2 && first1 + len1 <= first2 + len2);
253 #define PCI_VENDOR_ID_ATI 0x1002
256 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
257 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
258 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
259 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
260 * I/O port BAR address. Originally this was coded to return the virtual BAR
261 * address only if the physical register read returns the actual BAR address,
262 * but users have reported greater success if we return the virtual address
263 * unconditionally.
265 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
266 hwaddr addr, unsigned size)
268 VFIOPCIDevice *vdev = opaque;
269 uint64_t data = vfio_pci_read_config(&vdev->pdev,
270 PCI_BASE_ADDRESS_4 + 1, size);
272 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
274 return data;
277 static const MemoryRegionOps vfio_ati_3c3_quirk = {
278 .read = vfio_ati_3c3_quirk_read,
279 .endianness = DEVICE_LITTLE_ENDIAN,
282 static VFIOQuirk *vfio_quirk_alloc(int nr_mem)
284 VFIOQuirk *quirk = g_new0(VFIOQuirk, 1);
285 QLIST_INIT(&quirk->ioeventfds);
286 quirk->mem = g_new0(MemoryRegion, nr_mem);
287 quirk->nr_mem = nr_mem;
289 return quirk;
292 static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd)
294 QLIST_REMOVE(ioeventfd, next);
295 memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
296 true, ioeventfd->data, &ioeventfd->e);
298 if (ioeventfd->vfio) {
299 struct vfio_device_ioeventfd vfio_ioeventfd;
301 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
302 vfio_ioeventfd.flags = ioeventfd->size;
303 vfio_ioeventfd.data = ioeventfd->data;
304 vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
305 ioeventfd->region_addr;
306 vfio_ioeventfd.fd = -1;
308 if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) {
309 error_report("Failed to remove vfio ioeventfd for %s+0x%"
310 HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)",
311 memory_region_name(ioeventfd->mr), ioeventfd->addr,
312 ioeventfd->size, ioeventfd->data);
314 } else {
315 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
316 NULL, NULL, NULL);
319 event_notifier_cleanup(&ioeventfd->e);
320 trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr),
321 (uint64_t)ioeventfd->addr, ioeventfd->size,
322 ioeventfd->data);
323 g_free(ioeventfd);
326 static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
328 VFIOIOEventFD *ioeventfd, *tmp;
330 QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) {
331 if (ioeventfd->dynamic) {
332 vfio_ioeventfd_exit(vdev, ioeventfd);
337 static void vfio_ioeventfd_handler(void *opaque)
339 VFIOIOEventFD *ioeventfd = opaque;
341 if (event_notifier_test_and_clear(&ioeventfd->e)) {
342 vfio_region_write(ioeventfd->region, ioeventfd->region_addr,
343 ioeventfd->data, ioeventfd->size);
344 trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr),
345 (uint64_t)ioeventfd->addr, ioeventfd->size,
346 ioeventfd->data);
350 static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev,
351 MemoryRegion *mr, hwaddr addr,
352 unsigned size, uint64_t data,
353 VFIORegion *region,
354 hwaddr region_addr, bool dynamic)
356 VFIOIOEventFD *ioeventfd;
358 if (vdev->no_kvm_ioeventfd) {
359 return NULL;
362 ioeventfd = g_malloc0(sizeof(*ioeventfd));
364 if (event_notifier_init(&ioeventfd->e, 0)) {
365 g_free(ioeventfd);
366 return NULL;
370 * MemoryRegion and relative offset, plus additional ioeventfd setup
371 * parameters for configuring and later tearing down KVM ioeventfd.
373 ioeventfd->mr = mr;
374 ioeventfd->addr = addr;
375 ioeventfd->size = size;
376 ioeventfd->data = data;
377 ioeventfd->dynamic = dynamic;
379 * VFIORegion and relative offset for implementing the userspace
380 * handler. data & size fields shared for both uses.
382 ioeventfd->region = region;
383 ioeventfd->region_addr = region_addr;
385 if (!vdev->no_vfio_ioeventfd) {
386 struct vfio_device_ioeventfd vfio_ioeventfd;
388 vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
389 vfio_ioeventfd.flags = ioeventfd->size;
390 vfio_ioeventfd.data = ioeventfd->data;
391 vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
392 ioeventfd->region_addr;
393 vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e);
395 ioeventfd->vfio = !ioctl(vdev->vbasedev.fd,
396 VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd);
399 if (!ioeventfd->vfio) {
400 qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
401 vfio_ioeventfd_handler, NULL, ioeventfd);
404 memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
405 true, ioeventfd->data, &ioeventfd->e);
406 trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr,
407 size, data, ioeventfd->vfio);
409 return ioeventfd;
412 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
414 VFIOQuirk *quirk;
417 * As long as the BAR is >= 256 bytes it will be aligned such that the
418 * lower byte is always zero. Filter out anything else, if it exists.
420 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
421 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
422 return;
425 quirk = vfio_quirk_alloc(1);
427 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
428 "vfio-ati-3c3-quirk", 1);
429 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
430 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
432 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
433 quirk, next);
435 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
439 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
440 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
441 * the MMIO space directly, but a window to this space is provided through
442 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
443 * data register. When the address is programmed to a range of 0x4000-0x4fff
444 * PCI configuration space is available. Experimentation seems to indicate
445 * that read-only may be provided by hardware.
447 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
449 VFIOQuirk *quirk;
450 VFIOConfigWindowQuirk *window;
452 /* This windows doesn't seem to be used except by legacy VGA code */
453 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
454 !vdev->vga || nr != 4) {
455 return;
458 quirk = vfio_quirk_alloc(2);
459 window = quirk->data = g_malloc0(sizeof(*window) +
460 sizeof(VFIOConfigWindowMatch));
461 window->vdev = vdev;
462 window->address_offset = 0;
463 window->data_offset = 4;
464 window->nr_matches = 1;
465 window->matches[0].match = 0x4000;
466 window->matches[0].mask = vdev->config_size - 1;
467 window->bar = nr;
468 window->addr_mem = &quirk->mem[0];
469 window->data_mem = &quirk->mem[1];
471 memory_region_init_io(window->addr_mem, OBJECT(vdev),
472 &vfio_generic_window_address_quirk, window,
473 "vfio-ati-bar4-window-address-quirk", 4);
474 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
475 window->address_offset,
476 window->addr_mem, 1);
478 memory_region_init_io(window->data_mem, OBJECT(vdev),
479 &vfio_generic_window_data_quirk, window,
480 "vfio-ati-bar4-window-data-quirk", 4);
481 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
482 window->data_offset,
483 window->data_mem, 1);
485 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
487 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
491 * Trap the BAR2 MMIO mirror to config space as well.
493 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
495 VFIOQuirk *quirk;
496 VFIOConfigMirrorQuirk *mirror;
498 /* Only enable on newer devices where BAR2 is 64bit */
499 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
500 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
501 return;
504 quirk = vfio_quirk_alloc(1);
505 mirror = quirk->data = g_malloc0(sizeof(*mirror));
506 mirror->mem = quirk->mem;
507 mirror->vdev = vdev;
508 mirror->offset = 0x4000;
509 mirror->bar = nr;
511 memory_region_init_io(mirror->mem, OBJECT(vdev),
512 &vfio_generic_mirror_quirk, mirror,
513 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
514 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
515 mirror->offset, mirror->mem, 1);
517 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
519 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
523 * Older ATI/AMD cards like the X550 have a similar window to that above.
524 * I/O port BAR1 provides a window to a mirror of PCI config space located
525 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
526 * note it for future reference.
530 * Nvidia has several different methods to get to config space, the
531 * nouveu project has several of these documented here:
532 * https://github.com/pathscale/envytools/tree/master/hwdocs
534 * The first quirk is actually not documented in envytools and is found
535 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
536 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
537 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
538 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
539 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
540 * is written for a write to 0x3d4. The BAR0 offset is then accessible
541 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
542 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
544 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
545 static const char *nv3d0_states[] = { "NONE", "SELECT",
546 "WINDOW", "READ", "WRITE" };
548 typedef struct VFIONvidia3d0Quirk {
549 VFIOPCIDevice *vdev;
550 VFIONvidia3d0State state;
551 uint32_t offset;
552 } VFIONvidia3d0Quirk;
554 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
555 hwaddr addr, unsigned size)
557 VFIONvidia3d0Quirk *quirk = opaque;
558 VFIOPCIDevice *vdev = quirk->vdev;
560 quirk->state = NONE;
562 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
563 addr + 0x14, size);
566 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
567 uint64_t data, unsigned size)
569 VFIONvidia3d0Quirk *quirk = opaque;
570 VFIOPCIDevice *vdev = quirk->vdev;
571 VFIONvidia3d0State old_state = quirk->state;
573 quirk->state = NONE;
575 switch (data) {
576 case 0x338:
577 if (old_state == NONE) {
578 quirk->state = SELECT;
579 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
580 nv3d0_states[quirk->state]);
582 break;
583 case 0x538:
584 if (old_state == WINDOW) {
585 quirk->state = READ;
586 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
587 nv3d0_states[quirk->state]);
589 break;
590 case 0x738:
591 if (old_state == WINDOW) {
592 quirk->state = WRITE;
593 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
594 nv3d0_states[quirk->state]);
596 break;
599 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
600 addr + 0x14, data, size);
603 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
604 .read = vfio_nvidia_3d4_quirk_read,
605 .write = vfio_nvidia_3d4_quirk_write,
606 .endianness = DEVICE_LITTLE_ENDIAN,
609 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
610 hwaddr addr, unsigned size)
612 VFIONvidia3d0Quirk *quirk = opaque;
613 VFIOPCIDevice *vdev = quirk->vdev;
614 VFIONvidia3d0State old_state = quirk->state;
615 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
616 addr + 0x10, size);
618 quirk->state = NONE;
620 if (old_state == READ &&
621 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
622 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
624 data = vfio_pci_read_config(&vdev->pdev, offset, size);
625 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
626 offset, size, data);
629 return data;
632 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
633 uint64_t data, unsigned size)
635 VFIONvidia3d0Quirk *quirk = opaque;
636 VFIOPCIDevice *vdev = quirk->vdev;
637 VFIONvidia3d0State old_state = quirk->state;
639 quirk->state = NONE;
641 if (old_state == SELECT) {
642 quirk->offset = (uint32_t)data;
643 quirk->state = WINDOW;
644 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
645 nv3d0_states[quirk->state]);
646 } else if (old_state == WRITE) {
647 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
648 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
650 vfio_pci_write_config(&vdev->pdev, offset, data, size);
651 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
652 offset, data, size);
653 return;
657 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
658 addr + 0x10, data, size);
661 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
662 .read = vfio_nvidia_3d0_quirk_read,
663 .write = vfio_nvidia_3d0_quirk_write,
664 .endianness = DEVICE_LITTLE_ENDIAN,
667 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
669 VFIOQuirk *quirk;
670 VFIONvidia3d0Quirk *data;
672 if (vdev->no_geforce_quirks ||
673 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
674 !vdev->bars[1].region.size) {
675 return;
678 quirk = vfio_quirk_alloc(2);
679 quirk->data = data = g_malloc0(sizeof(*data));
680 data->vdev = vdev;
682 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
683 data, "vfio-nvidia-3d4-quirk", 2);
684 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
685 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
687 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
688 data, "vfio-nvidia-3d0-quirk", 2);
689 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
690 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
692 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
693 quirk, next);
695 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
699 * The second quirk is documented in envytools. The I/O port BAR5 is just
700 * a set of address/data ports to the MMIO BARs. The BAR we care about is
701 * again BAR0. This backdoor is apparently a bit newer than the one above
702 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
703 * space, including extended space is available at the 4k @0x88000.
705 typedef struct VFIONvidiaBAR5Quirk {
706 uint32_t master;
707 uint32_t enable;
708 MemoryRegion *addr_mem;
709 MemoryRegion *data_mem;
710 bool enabled;
711 VFIOConfigWindowQuirk window; /* last for match data */
712 } VFIONvidiaBAR5Quirk;
714 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
716 VFIOPCIDevice *vdev = bar5->window.vdev;
718 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
719 return;
722 bar5->enabled = !bar5->enabled;
723 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
724 bar5->enabled ? "Enable" : "Disable");
725 memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
726 memory_region_set_enabled(bar5->data_mem, bar5->enabled);
729 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
730 hwaddr addr, unsigned size)
732 VFIONvidiaBAR5Quirk *bar5 = opaque;
733 VFIOPCIDevice *vdev = bar5->window.vdev;
735 return vfio_region_read(&vdev->bars[5].region, addr, size);
738 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
739 uint64_t data, unsigned size)
741 VFIONvidiaBAR5Quirk *bar5 = opaque;
742 VFIOPCIDevice *vdev = bar5->window.vdev;
744 vfio_region_write(&vdev->bars[5].region, addr, data, size);
746 bar5->master = data;
747 vfio_nvidia_bar5_enable(bar5);
750 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
751 .read = vfio_nvidia_bar5_quirk_master_read,
752 .write = vfio_nvidia_bar5_quirk_master_write,
753 .endianness = DEVICE_LITTLE_ENDIAN,
756 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
757 hwaddr addr, unsigned size)
759 VFIONvidiaBAR5Quirk *bar5 = opaque;
760 VFIOPCIDevice *vdev = bar5->window.vdev;
762 return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
765 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
766 uint64_t data, unsigned size)
768 VFIONvidiaBAR5Quirk *bar5 = opaque;
769 VFIOPCIDevice *vdev = bar5->window.vdev;
771 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
773 bar5->enable = data;
774 vfio_nvidia_bar5_enable(bar5);
777 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
778 .read = vfio_nvidia_bar5_quirk_enable_read,
779 .write = vfio_nvidia_bar5_quirk_enable_write,
780 .endianness = DEVICE_LITTLE_ENDIAN,
783 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
785 VFIOQuirk *quirk;
786 VFIONvidiaBAR5Quirk *bar5;
787 VFIOConfigWindowQuirk *window;
789 if (vdev->no_geforce_quirks ||
790 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
791 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
792 return;
795 quirk = vfio_quirk_alloc(4);
796 bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
797 (sizeof(VFIOConfigWindowMatch) * 2));
798 window = &bar5->window;
800 window->vdev = vdev;
801 window->address_offset = 0x8;
802 window->data_offset = 0xc;
803 window->nr_matches = 2;
804 window->matches[0].match = 0x1800;
805 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
806 window->matches[1].match = 0x88000;
807 window->matches[1].mask = vdev->config_size - 1;
808 window->bar = nr;
809 window->addr_mem = bar5->addr_mem = &quirk->mem[0];
810 window->data_mem = bar5->data_mem = &quirk->mem[1];
812 memory_region_init_io(window->addr_mem, OBJECT(vdev),
813 &vfio_generic_window_address_quirk, window,
814 "vfio-nvidia-bar5-window-address-quirk", 4);
815 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
816 window->address_offset,
817 window->addr_mem, 1);
818 memory_region_set_enabled(window->addr_mem, false);
820 memory_region_init_io(window->data_mem, OBJECT(vdev),
821 &vfio_generic_window_data_quirk, window,
822 "vfio-nvidia-bar5-window-data-quirk", 4);
823 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
824 window->data_offset,
825 window->data_mem, 1);
826 memory_region_set_enabled(window->data_mem, false);
828 memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
829 &vfio_nvidia_bar5_quirk_master, bar5,
830 "vfio-nvidia-bar5-master-quirk", 4);
831 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
832 0, &quirk->mem[2], 1);
834 memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
835 &vfio_nvidia_bar5_quirk_enable, bar5,
836 "vfio-nvidia-bar5-enable-quirk", 4);
837 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
838 4, &quirk->mem[3], 1);
840 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
842 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
845 typedef struct LastDataSet {
846 VFIOQuirk *quirk;
847 hwaddr addr;
848 uint64_t data;
849 unsigned size;
850 int hits;
851 int added;
852 } LastDataSet;
854 #define MAX_DYN_IOEVENTFD 10
855 #define HITS_FOR_IOEVENTFD 10
858 * Finally, BAR0 itself. We want to redirect any accesses to either
859 * 0x1800 or 0x88000 through the PCI config space access functions.
861 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
862 uint64_t data, unsigned size)
864 VFIOConfigMirrorQuirk *mirror = opaque;
865 VFIOPCIDevice *vdev = mirror->vdev;
866 PCIDevice *pdev = &vdev->pdev;
867 LastDataSet *last = (LastDataSet *)&mirror->data;
869 vfio_generic_quirk_mirror_write(opaque, addr, data, size);
872 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
873 * MSI capability ID register. Both the ID and next register are
874 * read-only, so we allow writes covering either of those to real hw.
876 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
877 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
878 vfio_region_write(&vdev->bars[mirror->bar].region,
879 addr + mirror->offset, data, size);
880 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
884 * Automatically add an ioeventfd to handle any repeated write with the
885 * same data and size above the standard PCI config space header. This is
886 * primarily expected to accelerate the MSI-ACK behavior, such as noted
887 * above. Current hardware/drivers should trigger an ioeventfd at config
888 * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
890 * The criteria of 10 successive hits is arbitrary but reliably adds the
891 * MSI-ACK region. Note that as some writes are bypassed via the ioeventfd,
892 * the remaining ones have a greater chance of being seen successively.
893 * To avoid the pathological case of burning up all of QEMU's open file
894 * handles, arbitrarily limit this algorithm from adding no more than 10
895 * ioeventfds, print an error if we would have added an 11th, and then
896 * stop counting.
898 if (!vdev->no_kvm_ioeventfd &&
899 addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) {
900 if (addr != last->addr || data != last->data || size != last->size) {
901 last->addr = addr;
902 last->data = data;
903 last->size = size;
904 last->hits = 1;
905 } else if (++last->hits >= HITS_FOR_IOEVENTFD) {
906 if (last->added < MAX_DYN_IOEVENTFD) {
907 VFIOIOEventFD *ioeventfd;
908 ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size,
909 data, &vdev->bars[mirror->bar].region,
910 mirror->offset + addr, true);
911 if (ioeventfd) {
912 VFIOQuirk *quirk = last->quirk;
914 QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next);
915 last->added++;
917 } else {
918 last->added++;
919 warn_report("NVIDIA ioeventfd queue full for %s, unable to "
920 "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", "
921 "size %u", vdev->vbasedev.name, addr, data, size);
927 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
928 .read = vfio_generic_quirk_mirror_read,
929 .write = vfio_nvidia_quirk_mirror_write,
930 .endianness = DEVICE_LITTLE_ENDIAN,
933 static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
935 VFIOConfigMirrorQuirk *mirror = quirk->data;
936 LastDataSet *last = (LastDataSet *)&mirror->data;
938 last->addr = last->data = last->size = last->hits = last->added = 0;
940 vfio_drop_dynamic_eventfds(vdev, quirk);
943 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
945 VFIOQuirk *quirk;
946 VFIOConfigMirrorQuirk *mirror;
947 LastDataSet *last;
949 if (vdev->no_geforce_quirks ||
950 !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
951 !vfio_is_vga(vdev) || nr != 0) {
952 return;
955 quirk = vfio_quirk_alloc(1);
956 quirk->reset = vfio_nvidia_bar0_quirk_reset;
957 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
958 mirror->mem = quirk->mem;
959 mirror->vdev = vdev;
960 mirror->offset = 0x88000;
961 mirror->bar = nr;
962 last = (LastDataSet *)&mirror->data;
963 last->quirk = quirk;
965 memory_region_init_io(mirror->mem, OBJECT(vdev),
966 &vfio_nvidia_mirror_quirk, mirror,
967 "vfio-nvidia-bar0-88000-mirror-quirk",
968 vdev->config_size);
969 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
970 mirror->offset, mirror->mem, 1);
972 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
974 /* The 0x1800 offset mirror only seems to get used by legacy VGA */
975 if (vdev->vga) {
976 quirk = vfio_quirk_alloc(1);
977 quirk->reset = vfio_nvidia_bar0_quirk_reset;
978 mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
979 mirror->mem = quirk->mem;
980 mirror->vdev = vdev;
981 mirror->offset = 0x1800;
982 mirror->bar = nr;
983 last = (LastDataSet *)&mirror->data;
984 last->quirk = quirk;
986 memory_region_init_io(mirror->mem, OBJECT(vdev),
987 &vfio_nvidia_mirror_quirk, mirror,
988 "vfio-nvidia-bar0-1800-mirror-quirk",
989 PCI_CONFIG_SPACE_SIZE);
990 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
991 mirror->offset, mirror->mem, 1);
993 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
996 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
1000 * TODO - Some Nvidia devices provide config access to their companion HDA
1001 * device and even to their parent bridge via these config space mirrors.
1002 * Add quirks for those regions.
1005 #define PCI_VENDOR_ID_REALTEK 0x10ec
1008 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
1009 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1010 * register. According to the Linux r8169 driver, the MSI-X table is addressed
1011 * when the "type" portion of the address register is set to 0x1. This appears
1012 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
1013 * "address latched" indicator. Bits 12:15 are a mask field, which we can
1014 * ignore because the MSI-X table should always be accessed as a dword (full
1015 * mask). Bits 0:11 is offset within the type.
1017 * Example trace:
1019 * Read from MSI-X table offset 0
1020 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1021 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1022 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1024 * Write 0xfee00000 to MSI-X table offset 0
1025 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1026 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1027 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1029 typedef struct VFIOrtl8168Quirk {
1030 VFIOPCIDevice *vdev;
1031 uint32_t addr;
1032 uint32_t data;
1033 bool enabled;
1034 } VFIOrtl8168Quirk;
1036 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
1037 hwaddr addr, unsigned size)
1039 VFIOrtl8168Quirk *rtl = opaque;
1040 VFIOPCIDevice *vdev = rtl->vdev;
1041 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
1043 if (rtl->enabled) {
1044 data = rtl->addr ^ 0x80000000U; /* latch/complete */
1045 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
1048 return data;
1051 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
1052 uint64_t data, unsigned size)
1054 VFIOrtl8168Quirk *rtl = opaque;
1055 VFIOPCIDevice *vdev = rtl->vdev;
1057 rtl->enabled = false;
1059 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
1060 rtl->enabled = true;
1061 rtl->addr = (uint32_t)data;
1063 if (data & 0x80000000U) { /* Do write */
1064 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1065 hwaddr offset = data & 0xfff;
1066 uint64_t val = rtl->data;
1068 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
1069 (uint16_t)offset, val);
1071 /* Write to the proper guest MSI-X table instead */
1072 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1073 offset, val, size,
1074 MEMTXATTRS_UNSPECIFIED);
1076 return; /* Do not write guest MSI-X data to hardware */
1080 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
1083 static const MemoryRegionOps vfio_rtl_address_quirk = {
1084 .read = vfio_rtl8168_quirk_address_read,
1085 .write = vfio_rtl8168_quirk_address_write,
1086 .valid = {
1087 .min_access_size = 4,
1088 .max_access_size = 4,
1089 .unaligned = false,
1091 .endianness = DEVICE_LITTLE_ENDIAN,
1094 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
1095 hwaddr addr, unsigned size)
1097 VFIOrtl8168Quirk *rtl = opaque;
1098 VFIOPCIDevice *vdev = rtl->vdev;
1099 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
1101 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1102 hwaddr offset = rtl->addr & 0xfff;
1103 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
1104 &data, size, MEMTXATTRS_UNSPECIFIED);
1105 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
1108 return data;
1111 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
1112 uint64_t data, unsigned size)
1114 VFIOrtl8168Quirk *rtl = opaque;
1115 VFIOPCIDevice *vdev = rtl->vdev;
1117 rtl->data = (uint32_t)data;
1119 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
1122 static const MemoryRegionOps vfio_rtl_data_quirk = {
1123 .read = vfio_rtl8168_quirk_data_read,
1124 .write = vfio_rtl8168_quirk_data_write,
1125 .valid = {
1126 .min_access_size = 4,
1127 .max_access_size = 4,
1128 .unaligned = false,
1130 .endianness = DEVICE_LITTLE_ENDIAN,
1133 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
1135 VFIOQuirk *quirk;
1136 VFIOrtl8168Quirk *rtl;
1138 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
1139 return;
1142 quirk = vfio_quirk_alloc(2);
1143 quirk->data = rtl = g_malloc0(sizeof(*rtl));
1144 rtl->vdev = vdev;
1146 memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
1147 &vfio_rtl_address_quirk, rtl,
1148 "vfio-rtl8168-window-address-quirk", 4);
1149 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1150 0x74, &quirk->mem[0], 1);
1152 memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
1153 &vfio_rtl_data_quirk, rtl,
1154 "vfio-rtl8168-window-data-quirk", 4);
1155 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1156 0x70, &quirk->mem[1], 1);
1158 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1160 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
1164 * Intel IGD support
1166 * Obviously IGD is not a discrete device, this is evidenced not only by it
1167 * being integrated into the CPU, but by the various chipset and BIOS
1168 * dependencies that it brings along with it. Intel is trying to move away
1169 * from this and Broadwell and newer devices can run in what Intel calls
1170 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing
1171 * more is required beyond assigning the IGD device to a VM. There are
1172 * however support limitations to this mode. It only supports IGD as a
1173 * secondary graphics device in the VM and it doesn't officially support any
1174 * physical outputs.
1176 * The code here attempts to enable what we'll call legacy mode assignment,
1177 * IGD retains most of the capabilities we expect for it to have on bare
1178 * metal. To enable this mode, the IGD device must be assigned to the VM
1179 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
1180 * support, we must have VM BIOS support for reserving and populating some
1181 * of the required tables, and we need to tweak the chipset with revisions
1182 * and IDs and an LPC/ISA bridge device. The intention is to make all of
1183 * this happen automatically by installing the device at the correct VM PCI
1184 * bus address. If any of the conditions are not met, we cross our fingers
1185 * and hope the user knows better.
1187 * NB - It is possible to enable physical outputs in UPT mode by supplying
1188 * an OpRegion table. We don't do this by default because the guest driver
1189 * behaves differently if an OpRegion is provided and no monitor is attached
1190 * vs no OpRegion and a monitor being attached or not. Effectively, if a
1191 * headless setup is desired, the OpRegion gets in the way of that.
1195 * This presumes the device is already known to be an Intel VGA device, so we
1196 * take liberties in which device ID bits match which generation. This should
1197 * not be taken as an indication that all the devices are supported, or even
1198 * supportable, some of them don't even support VT-d.
1199 * See linux:include/drm/i915_pciids.h for IDs.
1201 static int igd_gen(VFIOPCIDevice *vdev)
1203 if ((vdev->device_id & 0xfff) == 0xa84) {
1204 return 8; /* Broxton */
1207 switch (vdev->device_id & 0xff00) {
1208 /* Old, untested, unavailable, unknown */
1209 case 0x0000:
1210 case 0x2500:
1211 case 0x2700:
1212 case 0x2900:
1213 case 0x2a00:
1214 case 0x2e00:
1215 case 0x3500:
1216 case 0xa000:
1217 return -1;
1218 /* SandyBridge, IvyBridge, ValleyView, Haswell */
1219 case 0x0100:
1220 case 0x0400:
1221 case 0x0a00:
1222 case 0x0c00:
1223 case 0x0d00:
1224 case 0x0f00:
1225 return 6;
1226 /* BroadWell, CherryView, SkyLake, KabyLake */
1227 case 0x1600:
1228 case 0x1900:
1229 case 0x2200:
1230 case 0x5900:
1231 return 8;
1234 return 8; /* Assume newer is compatible */
1237 typedef struct VFIOIGDQuirk {
1238 struct VFIOPCIDevice *vdev;
1239 uint32_t index;
1240 uint32_t bdsm;
1241 } VFIOIGDQuirk;
1243 #define IGD_GMCH 0x50 /* Graphics Control Register */
1244 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1245 #define IGD_ASLS 0xfc /* ASL Storage Register */
1248 * The OpRegion includes the Video BIOS Table, which seems important for
1249 * telling the driver what sort of outputs it has. Without this, the device
1250 * may work in the guest, but we may not get output. This also requires BIOS
1251 * support to reserve and populate a section of guest memory sufficient for
1252 * the table and to write the base address of that memory to the ASLS register
1253 * of the IGD device.
1255 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1256 struct vfio_region_info *info, Error **errp)
1258 int ret;
1260 vdev->igd_opregion = g_malloc0(info->size);
1261 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1262 info->size, info->offset);
1263 if (ret != info->size) {
1264 error_setg(errp, "failed to read IGD OpRegion");
1265 g_free(vdev->igd_opregion);
1266 vdev->igd_opregion = NULL;
1267 return -EINVAL;
1271 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1272 * allocate 32bit reserved memory for, copy these contents into, and write
1273 * the reserved memory base address to the device ASLS register at 0xFC.
1274 * Alignment of this reserved region seems flexible, but using a 4k page
1275 * alignment seems to work well. This interface assumes a single IGD
1276 * device, which may be at VM address 00:02.0 in legacy mode or another
1277 * address in UPT mode.
1279 * NB, there may be future use cases discovered where the VM should have
1280 * direct interaction with the host OpRegion, in which case the write to
1281 * the ASLS register would trigger MemoryRegion setup to enable that.
1283 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1284 vdev->igd_opregion, info->size);
1286 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1288 pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1289 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1290 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1292 return 0;
1296 * The rather short list of registers that we copy from the host devices.
1297 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1298 * host bridge values may or may not be needed depending on the guest OS.
1299 * Since we're only munging revision and subsystem values on the host bridge,
1300 * we don't require our own device. The LPC/ISA bridge needs to be our very
1301 * own though.
1303 typedef struct {
1304 uint8_t offset;
1305 uint8_t len;
1306 } IGDHostInfo;
1308 static const IGDHostInfo igd_host_bridge_infos[] = {
1309 {PCI_REVISION_ID, 2},
1310 {PCI_SUBSYSTEM_VENDOR_ID, 2},
1311 {PCI_SUBSYSTEM_ID, 2},
1314 static const IGDHostInfo igd_lpc_bridge_infos[] = {
1315 {PCI_VENDOR_ID, 2},
1316 {PCI_DEVICE_ID, 2},
1317 {PCI_REVISION_ID, 2},
1318 {PCI_SUBSYSTEM_VENDOR_ID, 2},
1319 {PCI_SUBSYSTEM_ID, 2},
1322 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1323 struct vfio_region_info *info,
1324 const IGDHostInfo *list, int len)
1326 int i, ret;
1328 for (i = 0; i < len; i++) {
1329 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1330 list[i].len, info->offset + list[i].offset);
1331 if (ret != list[i].len) {
1332 error_report("IGD copy failed: %m");
1333 return -errno;
1337 return 0;
1341 * Stuff a few values into the host bridge.
1343 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1344 struct vfio_region_info *info)
1346 PCIBus *bus;
1347 PCIDevice *host_bridge;
1348 int ret;
1350 bus = pci_device_root_bus(&vdev->pdev);
1351 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1353 if (!host_bridge) {
1354 error_report("Can't find host bridge");
1355 return -ENODEV;
1358 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1359 ARRAY_SIZE(igd_host_bridge_infos));
1360 if (!ret) {
1361 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1364 return ret;
1368 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write
1369 * arbitrary values into just any bridge, so we must create our own. We try
1370 * to handle if the user has created it for us, which they might want to do
1371 * to enable multifunction so we don't occupy the whole PCI slot.
1373 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1375 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1376 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1380 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1382 DeviceClass *dc = DEVICE_CLASS(klass);
1383 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1385 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1386 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1387 dc->hotpluggable = false;
1388 k->realize = vfio_pci_igd_lpc_bridge_realize;
1389 k->class_id = PCI_CLASS_BRIDGE_ISA;
1392 static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1393 .name = "vfio-pci-igd-lpc-bridge",
1394 .parent = TYPE_PCI_DEVICE,
1395 .class_init = vfio_pci_igd_lpc_bridge_class_init,
1396 .interfaces = (InterfaceInfo[]) {
1397 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1398 { },
1402 static void vfio_pci_igd_register_types(void)
1404 type_register_static(&vfio_pci_igd_lpc_bridge_info);
1407 type_init(vfio_pci_igd_register_types)
1409 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1410 struct vfio_region_info *info)
1412 PCIDevice *lpc_bridge;
1413 int ret;
1415 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1416 0, PCI_DEVFN(0x1f, 0));
1417 if (!lpc_bridge) {
1418 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1419 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1422 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1423 ARRAY_SIZE(igd_lpc_bridge_infos));
1424 if (!ret) {
1425 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1428 return ret;
1432 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1433 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore
1434 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1435 * for programming the GTT.
1437 * See linux:include/drm/i915_drm.h for shift and mask values.
1439 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1441 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1442 int ggms, gen = igd_gen(vdev);
1444 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1445 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1446 if (gen > 6) {
1447 ggms = 1 << ggms;
1450 ggms *= MiB;
1452 return (ggms / (4 * KiB)) * (gen < 8 ? 4 : 8);
1456 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1457 * Somehow the host stolen memory range is used for this, but how the ROM gets
1458 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it
1459 * reprograms the GTT through the IOBAR where we can trap it and transpose the
1460 * programming to the VM allocated buffer. That buffer gets reserved by the VM
1461 * firmware via the fw_cfg entry added below. Here we're just monitoring the
1462 * IOBAR address and data registers to detect a write sequence targeting the
1463 * GTTADR. This code is developed by observed behavior and doesn't have a
1464 * direct spec reference, unfortunately.
1466 static uint64_t vfio_igd_quirk_data_read(void *opaque,
1467 hwaddr addr, unsigned size)
1469 VFIOIGDQuirk *igd = opaque;
1470 VFIOPCIDevice *vdev = igd->vdev;
1472 igd->index = ~0;
1474 return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1477 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1478 uint64_t data, unsigned size)
1480 VFIOIGDQuirk *igd = opaque;
1481 VFIOPCIDevice *vdev = igd->vdev;
1482 uint64_t val = data;
1483 int gen = igd_gen(vdev);
1486 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1487 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE
1488 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so
1489 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points
1490 * to a 4k page, which we translate to a page from the VM allocated region,
1491 * pointed to by the BDSM register. If this is not set, we fail.
1493 * We trap writes to the full configured GTT size, but we typically only
1494 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often
1495 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous
1496 * write of that last entry does work, but is hopefully unnecessary since
1497 * we clear the previous GTT on initialization.
1499 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1500 if (gen < 8 || (igd->index % 8 == 1)) {
1501 uint32_t base;
1503 base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1504 if (!base) {
1505 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1506 "BIOS reserved stolen memory. Unsupported BIOS?");
1509 val = data - igd->bdsm + base;
1510 } else {
1511 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1514 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1515 igd->index, data, val);
1518 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1520 igd->index = ~0;
1523 static const MemoryRegionOps vfio_igd_data_quirk = {
1524 .read = vfio_igd_quirk_data_read,
1525 .write = vfio_igd_quirk_data_write,
1526 .endianness = DEVICE_LITTLE_ENDIAN,
1529 static uint64_t vfio_igd_quirk_index_read(void *opaque,
1530 hwaddr addr, unsigned size)
1532 VFIOIGDQuirk *igd = opaque;
1533 VFIOPCIDevice *vdev = igd->vdev;
1535 igd->index = ~0;
1537 return vfio_region_read(&vdev->bars[4].region, addr, size);
1540 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1541 uint64_t data, unsigned size)
1543 VFIOIGDQuirk *igd = opaque;
1544 VFIOPCIDevice *vdev = igd->vdev;
1546 igd->index = data;
1548 vfio_region_write(&vdev->bars[4].region, addr, data, size);
1551 static const MemoryRegionOps vfio_igd_index_quirk = {
1552 .read = vfio_igd_quirk_index_read,
1553 .write = vfio_igd_quirk_index_write,
1554 .endianness = DEVICE_LITTLE_ENDIAN,
1557 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1559 struct vfio_region_info *rom = NULL, *opregion = NULL,
1560 *host = NULL, *lpc = NULL;
1561 VFIOQuirk *quirk;
1562 VFIOIGDQuirk *igd;
1563 PCIDevice *lpc_bridge;
1564 int i, ret, ggms_mb, gms_mb = 0, gen;
1565 uint64_t *bdsm_size;
1566 uint32_t gmch;
1567 uint16_t cmd_orig, cmd;
1568 Error *err = NULL;
1571 * This must be an Intel VGA device at address 00:02.0 for us to even
1572 * consider enabling legacy mode. The vBIOS has dependencies on the
1573 * PCI bus address.
1575 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1576 !vfio_is_vga(vdev) || nr != 4 ||
1577 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1578 0, PCI_DEVFN(0x2, 0))) {
1579 return;
1583 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1584 * can stuff host values into, so if there's already one there and it's not
1585 * one we can hack on, legacy mode is no-go. Sorry Q35.
1587 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1588 0, PCI_DEVFN(0x1f, 0));
1589 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1590 "vfio-pci-igd-lpc-bridge")) {
1591 error_report("IGD device %s cannot support legacy mode due to existing "
1592 "devices at address 1f.0", vdev->vbasedev.name);
1593 return;
1597 * IGD is not a standard, they like to change their specs often. We
1598 * only attempt to support back to SandBridge and we hope that newer
1599 * devices maintain compatibility with generation 8.
1601 gen = igd_gen(vdev);
1602 if (gen != 6 && gen != 8) {
1603 error_report("IGD device %s is unsupported in legacy mode, "
1604 "try SandyBridge or newer", vdev->vbasedev.name);
1605 return;
1609 * Most of what we're doing here is to enable the ROM to run, so if
1610 * there's no ROM, there's no point in setting up this quirk.
1611 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1613 ret = vfio_get_region_info(&vdev->vbasedev,
1614 VFIO_PCI_ROM_REGION_INDEX, &rom);
1615 if ((ret || !rom->size) && !vdev->pdev.romfile) {
1616 error_report("IGD device %s has no ROM, legacy mode disabled",
1617 vdev->vbasedev.name);
1618 goto out;
1622 * Ignore the hotplug corner case, mark the ROM failed, we can't
1623 * create the devices we need for legacy mode in the hotplug scenario.
1625 if (vdev->pdev.qdev.hotplugged) {
1626 error_report("IGD device %s hotplugged, ROM disabled, "
1627 "legacy mode disabled", vdev->vbasedev.name);
1628 vdev->rom_read_failed = true;
1629 goto out;
1633 * Check whether we have all the vfio device specific regions to
1634 * support legacy mode (added in Linux v4.6). If not, bail.
1636 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1637 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1638 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1639 if (ret) {
1640 error_report("IGD device %s does not support OpRegion access,"
1641 "legacy mode disabled", vdev->vbasedev.name);
1642 goto out;
1645 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1646 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1647 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1648 if (ret) {
1649 error_report("IGD device %s does not support host bridge access,"
1650 "legacy mode disabled", vdev->vbasedev.name);
1651 goto out;
1654 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1655 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1656 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1657 if (ret) {
1658 error_report("IGD device %s does not support LPC bridge access,"
1659 "legacy mode disabled", vdev->vbasedev.name);
1660 goto out;
1663 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1666 * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1667 * try to enable it. Probably shouldn't be using legacy mode without VGA,
1668 * but also no point in us enabling VGA if disabled in hardware.
1670 if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1671 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1672 error_report("IGD device %s failed to enable VGA access, "
1673 "legacy mode disabled", vdev->vbasedev.name);
1674 goto out;
1677 /* Create our LPC/ISA bridge */
1678 ret = vfio_pci_igd_lpc_init(vdev, lpc);
1679 if (ret) {
1680 error_report("IGD device %s failed to create LPC bridge, "
1681 "legacy mode disabled", vdev->vbasedev.name);
1682 goto out;
1685 /* Stuff some host values into the VM PCI host bridge */
1686 ret = vfio_pci_igd_host_init(vdev, host);
1687 if (ret) {
1688 error_report("IGD device %s failed to modify host bridge, "
1689 "legacy mode disabled", vdev->vbasedev.name);
1690 goto out;
1693 /* Setup OpRegion access */
1694 ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1695 if (ret) {
1696 error_append_hint(&err, "IGD legacy mode disabled\n");
1697 error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1698 goto out;
1701 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1702 quirk = vfio_quirk_alloc(2);
1703 igd = quirk->data = g_malloc0(sizeof(*igd));
1704 igd->vdev = vdev;
1705 igd->index = ~0;
1706 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1707 igd->bdsm &= ~((1 * MiB) - 1); /* 1MB aligned */
1709 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1710 igd, "vfio-igd-index-quirk", 4);
1711 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1712 0, &quirk->mem[0], 1);
1714 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1715 igd, "vfio-igd-data-quirk", 4);
1716 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1717 4, &quirk->mem[1], 1);
1719 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1721 /* Determine the size of stolen memory needed for GTT */
1722 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1723 if (gen > 6) {
1724 ggms_mb = 1 << ggms_mb;
1728 * Assume we have no GMS memory, but allow it to be overrided by device
1729 * option (experimental). The spec doesn't actually allow zero GMS when
1730 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1731 * so let's not waste VM memory for it.
1733 gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1735 if (vdev->igd_gms) {
1736 if (vdev->igd_gms <= 0x10) {
1737 gms_mb = vdev->igd_gms * 32;
1738 gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1739 } else {
1740 error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1741 vdev->igd_gms = 0;
1746 * Request reserved memory for stolen memory via fw_cfg. VM firmware
1747 * must allocate a 1MB aligned reserved memory region below 4GB with
1748 * the requested size (in bytes) for use by the Intel PCI class VGA
1749 * device at VM address 00:02.0. The base address of this reserved
1750 * memory region must be written to the device BDSM regsiter at PCI
1751 * config offset 0x5C.
1753 bdsm_size = g_malloc(sizeof(*bdsm_size));
1754 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * MiB);
1755 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1756 bdsm_size, sizeof(*bdsm_size));
1758 /* GMCH is read-only, emulated */
1759 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1760 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1761 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1763 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */
1764 pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1765 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1766 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1769 * This IOBAR gives us access to GTTADR, which allows us to write to
1770 * the GTT itself. So let's go ahead and write zero to all the GTT
1771 * entries to avoid spurious DMA faults. Be sure I/O access is enabled
1772 * before talking to the device.
1774 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1775 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1776 error_report("IGD device %s - failed to read PCI command register",
1777 vdev->vbasedev.name);
1780 cmd = cmd_orig | PCI_COMMAND_IO;
1782 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1783 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1784 error_report("IGD device %s - failed to write PCI command register",
1785 vdev->vbasedev.name);
1788 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1789 vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1790 vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1793 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1794 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1795 error_report("IGD device %s - failed to restore PCI command register",
1796 vdev->vbasedev.name);
1799 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1801 out:
1802 g_free(rom);
1803 g_free(opregion);
1804 g_free(host);
1805 g_free(lpc);
1809 * Common quirk probe entry points.
1811 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1813 vfio_vga_probe_ati_3c3_quirk(vdev);
1814 vfio_vga_probe_nvidia_3d0_quirk(vdev);
1817 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1819 VFIOQuirk *quirk;
1820 int i, j;
1822 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1823 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1824 for (j = 0; j < quirk->nr_mem; j++) {
1825 memory_region_del_subregion(&vdev->vga->region[i].mem,
1826 &quirk->mem[j]);
1832 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1834 int i, j;
1836 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1837 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1838 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1839 QLIST_REMOVE(quirk, next);
1840 for (j = 0; j < quirk->nr_mem; j++) {
1841 object_unparent(OBJECT(&quirk->mem[j]));
1843 g_free(quirk->mem);
1844 g_free(quirk->data);
1845 g_free(quirk);
1850 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1852 vfio_probe_ati_bar4_quirk(vdev, nr);
1853 vfio_probe_ati_bar2_quirk(vdev, nr);
1854 vfio_probe_nvidia_bar5_quirk(vdev, nr);
1855 vfio_probe_nvidia_bar0_quirk(vdev, nr);
1856 vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1857 vfio_probe_igd_bar4_quirk(vdev, nr);
1860 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1862 VFIOBAR *bar = &vdev->bars[nr];
1863 VFIOQuirk *quirk;
1864 int i;
1866 QLIST_FOREACH(quirk, &bar->quirks, next) {
1867 while (!QLIST_EMPTY(&quirk->ioeventfds)) {
1868 vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds));
1871 for (i = 0; i < quirk->nr_mem; i++) {
1872 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1877 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1879 VFIOBAR *bar = &vdev->bars[nr];
1880 int i;
1882 while (!QLIST_EMPTY(&bar->quirks)) {
1883 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1884 QLIST_REMOVE(quirk, next);
1885 for (i = 0; i < quirk->nr_mem; i++) {
1886 object_unparent(OBJECT(&quirk->mem[i]));
1888 g_free(quirk->mem);
1889 g_free(quirk->data);
1890 g_free(quirk);
1895 * Reset quirks
1897 void vfio_quirk_reset(VFIOPCIDevice *vdev)
1899 int i;
1901 for (i = 0; i < PCI_ROM_SLOT; i++) {
1902 VFIOQuirk *quirk;
1903 VFIOBAR *bar = &vdev->bars[i];
1905 QLIST_FOREACH(quirk, &bar->quirks, next) {
1906 if (quirk->reset) {
1907 quirk->reset(vdev, quirk);
1914 * AMD Radeon PCI config reset, based on Linux:
1915 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1916 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1917 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1918 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1919 * IDs: include/drm/drm_pciids.h
1920 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1922 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
1923 * hardware that should be fixed on future ASICs. The symptom of this is that
1924 * once the accerlated driver loads, Windows guests will bsod on subsequent
1925 * attmpts to load the driver, such as after VM reset or shutdown/restart. To
1926 * work around this, we do an AMD specific PCI config reset, followed by an SMC
1927 * reset. The PCI config reset only works if SMC firmware is running, so we
1928 * have a dependency on the state of the device as to whether this reset will
1929 * be effective. There are still cases where we won't be able to kick the
1930 * device into working, but this greatly improves the usability overall. The
1931 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1932 * poking is largely ASIC specific.
1934 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1936 uint32_t clk, pc_c;
1939 * Registers 200h and 204h are index and data registers for accessing
1940 * indirect configuration registers within the device.
1942 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1943 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1944 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1945 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1947 return (!(clk & 1) && (0x20100 <= pc_c));
1951 * The scope of a config reset is controlled by a mode bit in the misc register
1952 * and a fuse, exposed as a bit in another register. The fuse is the default
1953 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1954 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1955 * the fuse. A truth table therefore tells us that if misc == fuse, we need
1956 * to flip the value of the bit in the misc register.
1958 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1960 uint32_t misc, fuse;
1961 bool a, b;
1963 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1964 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1965 b = fuse & 64;
1967 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1968 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1969 a = misc & 2;
1971 if (a == b) {
1972 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1973 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1977 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1979 PCIDevice *pdev = &vdev->pdev;
1980 int i, ret = 0;
1981 uint32_t data;
1983 /* Defer to a kernel implemented reset */
1984 if (vdev->vbasedev.reset_works) {
1985 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1986 return -ENODEV;
1989 /* Enable only memory BAR access */
1990 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1992 /* Reset only works if SMC firmware is loaded and running */
1993 if (!vfio_radeon_smc_is_running(vdev)) {
1994 ret = -EINVAL;
1995 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1996 goto out;
1999 /* Make sure only the GFX function is reset */
2000 vfio_radeon_set_gfx_only_reset(vdev);
2002 /* AMD PCI config reset */
2003 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
2004 usleep(100);
2006 /* Read back the memory size to make sure we're out of reset */
2007 for (i = 0; i < 100000; i++) {
2008 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
2009 goto reset_smc;
2011 usleep(1);
2014 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
2016 reset_smc:
2017 /* Reset SMC */
2018 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
2019 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2020 data |= 1;
2021 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2023 /* Disable SMC clock */
2024 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
2025 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2026 data |= 1;
2027 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2029 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
2031 out:
2032 /* Restore PCI command register */
2033 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
2035 return ret;
2038 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
2040 switch (vdev->vendor_id) {
2041 case 0x1002:
2042 switch (vdev->device_id) {
2043 /* Bonaire */
2044 case 0x6649: /* Bonaire [FirePro W5100] */
2045 case 0x6650:
2046 case 0x6651:
2047 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
2048 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
2049 case 0x665d: /* Bonaire [Radeon R7 200 Series] */
2050 /* Hawaii */
2051 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
2052 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
2053 case 0x67A2:
2054 case 0x67A8:
2055 case 0x67A9:
2056 case 0x67AA:
2057 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
2058 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
2059 case 0x67B8:
2060 case 0x67B9:
2061 case 0x67BA:
2062 case 0x67BE:
2063 vdev->resetfn = vfio_radeon_reset;
2064 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
2065 break;
2067 break;
2072 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
2073 * devices as a member of a clique. Devices within the same clique ID
2074 * are capable of direct P2P. It's the user's responsibility that this
2075 * is correct. The spec says that this may reside at any unused config
2076 * offset, but reserves and recommends hypervisors place this at C8h.
2077 * The spec also states that the hypervisor should place this capability
2078 * at the end of the capability list, thus next is defined as 0h.
2080 * +----------------+----------------+----------------+----------------+
2081 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) |
2082 * +----------------+----------------+----------------+----------------+
2083 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') |
2084 * +---------------------------------+---------------------------------+
2086 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
2088 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2089 const char *name, void *opaque,
2090 Error **errp)
2092 DeviceState *dev = DEVICE(obj);
2093 Property *prop = opaque;
2094 uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
2096 visit_type_uint8(v, name, ptr, errp);
2099 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2100 const char *name, void *opaque,
2101 Error **errp)
2103 DeviceState *dev = DEVICE(obj);
2104 Property *prop = opaque;
2105 uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
2106 Error *local_err = NULL;
2108 if (dev->realized) {
2109 qdev_prop_set_after_realize(dev, name, errp);
2110 return;
2113 visit_type_uint8(v, name, &value, &local_err);
2114 if (local_err) {
2115 error_propagate(errp, local_err);
2116 return;
2119 if (value & ~0xF) {
2120 error_setg(errp, "Property %s: valid range 0-15", name);
2121 return;
2124 *ptr = value;
2127 const PropertyInfo qdev_prop_nv_gpudirect_clique = {
2128 .name = "uint4",
2129 .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
2130 .get = get_nv_gpudirect_clique_id,
2131 .set = set_nv_gpudirect_clique_id,
2134 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
2136 PCIDevice *pdev = &vdev->pdev;
2137 int ret, pos = 0xC8;
2139 if (vdev->nv_gpudirect_clique == 0xFF) {
2140 return 0;
2143 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
2144 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
2145 return -EINVAL;
2148 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
2149 PCI_BASE_CLASS_DISPLAY) {
2150 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
2151 return -EINVAL;
2154 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
2155 if (ret < 0) {
2156 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
2157 return ret;
2160 memset(vdev->emulated_config_bits + pos, 0xFF, 8);
2161 pos += PCI_CAP_FLAGS;
2162 pci_set_byte(pdev->config + pos++, 8);
2163 pci_set_byte(pdev->config + pos++, 'P');
2164 pci_set_byte(pdev->config + pos++, '2');
2165 pci_set_byte(pdev->config + pos++, 'P');
2166 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
2167 pci_set_byte(pdev->config + pos, 0);
2169 return 0;
2172 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
2174 int ret;
2176 ret = vfio_add_nv_gpudirect_cap(vdev, errp);
2177 if (ret) {
2178 return ret;
2181 return 0;