PPC: E500: Add FSL I2C controller and integrate RTC with it
[qemu/ar7.git] / hw / ppc / spapr.c
blobe764e89806d46653480d2a357b0c327226443eb5
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "sysemu/qtest.h"
33 #include "hw/hw.h"
34 #include "qemu/log.h"
35 #include "hw/fw-path-provider.h"
36 #include "elf.h"
37 #include "net/net.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_INTC 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
125 return false;
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
130 .version_id = 1,
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
153 int spapr_max_server_number(sPAPRMachineState *spapr)
155 assert(spapr->vsmt);
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160 int smt_threads)
162 int i, ret = 0;
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169 if (ret < 0) {
170 return ret;
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
183 if (ret < 0) {
184 return ret;
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
189 return ret;
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(cpu->node_id),
200 cpu_to_be32(index)};
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset,
211 bool legacy_guest)
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
260 if (!pa_features) {
261 return;
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
272 pa_features[3] |= 0x20;
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
289 int ret = 0, offset, cpus_offset;
290 CPUState *cs;
291 char cpu_model[32];
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301 continue;
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
310 return cpus_offset;
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314 if (offset < 0) {
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 return offset;
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
323 if (ret < 0) {
324 return ret;
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329 if (ret < 0) {
330 return ret;
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
342 return ret;
345 static hwaddr spapr_node0_size(MachineState *machine)
347 if (nb_numa_nodes) {
348 int i;
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
352 machine->ram_size);
356 return machine->ram_size;
359 static void add_str(GString *s, const gchar *s1)
361 g_string_append_len(s, s1, strlen(s1) + 1);
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365 hwaddr size)
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
372 char mem_name[32];
373 uint64_t mem_reg_property[2];
374 int off;
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
381 _FDT(off);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
387 return off;
390 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
396 NodeInfo ramnode;
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
400 nb_nodes = 1;
401 ramnode.node_mem = machine->ram_size;
402 nodes = &ramnode;
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
407 continue;
409 if (mem_start >= machine->ram_size) {
410 node_size = 0;
411 } else {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
417 if (!mem_start) {
418 /* spapr_machine_init() checks for rma_size <= node0_size
419 * already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
438 return 0;
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 sPAPRMachineState *spapr)
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458 sPAPRDRConnector *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 warn_report("Unknown L1 dcache size for cpu");
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 warn_report("Unknown L1 icache size for cpu");
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
513 * 2 == VSX available
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519 } else {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531 sizeof(page_sizes_prop));
532 if (page_sizes_prop_size) {
533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534 page_sizes_prop, page_sizes_prop_size)));
537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540 cs->cpu_index / vcpus_per_socket)));
542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543 pft_size_prop, sizeof(pft_size_prop))));
545 if (nb_numa_nodes > 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
551 if (pcc->radix_page_info) {
552 for (i = 0; i < pcc->radix_page_info->count; i++) {
553 radix_AP_encodings[i] =
554 cpu_to_be32(pcc->radix_page_info->entries[i]);
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557 radix_AP_encodings,
558 pcc->radix_page_info->count *
559 sizeof(radix_AP_encodings[0]))));
563 * We set this property to let the guest know that it can use the large
564 * decrementer and its width in bits.
566 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
567 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
568 pcc->lrg_decr_bits)));
571 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
573 CPUState **rev;
574 CPUState *cs;
575 int n_cpus;
576 int cpus_offset;
577 char *nodename;
578 int i;
580 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
581 _FDT(cpus_offset);
582 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
583 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
586 * We walk the CPUs in reverse order to ensure that CPU DT nodes
587 * created by fdt_add_subnode() end up in the right order in FDT
588 * for the guest kernel the enumerate the CPUs correctly.
590 * The CPU list cannot be traversed in reverse order, so we need
591 * to do extra work.
593 n_cpus = 0;
594 rev = NULL;
595 CPU_FOREACH(cs) {
596 rev = g_renew(CPUState *, rev, n_cpus + 1);
597 rev[n_cpus++] = cs;
600 for (i = n_cpus - 1; i >= 0; i--) {
601 CPUState *cs = rev[i];
602 PowerPCCPU *cpu = POWERPC_CPU(cs);
603 int index = spapr_get_vcpu_id(cpu);
604 DeviceClass *dc = DEVICE_GET_CLASS(cs);
605 int offset;
607 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
608 continue;
611 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
612 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
613 g_free(nodename);
614 _FDT(offset);
615 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
618 g_free(rev);
621 static int spapr_rng_populate_dt(void *fdt)
623 int node;
624 int ret;
626 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
627 if (node <= 0) {
628 return -1;
630 ret = fdt_setprop_string(fdt, node, "device_type",
631 "ibm,platform-facilities");
632 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
633 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
635 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
636 if (node <= 0) {
637 return -1;
639 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
641 return ret ? -1 : 0;
644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
646 MemoryDeviceInfoList *info;
648 for (info = list; info; info = info->next) {
649 MemoryDeviceInfo *value = info->value;
651 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
652 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
654 if (addr >= pcdimm_info->addr &&
655 addr < (pcdimm_info->addr + pcdimm_info->size)) {
656 return pcdimm_info->node;
661 return -1;
664 struct sPAPRDrconfCellV2 {
665 uint32_t seq_lmbs;
666 uint64_t base_addr;
667 uint32_t drc_index;
668 uint32_t aa_index;
669 uint32_t flags;
670 } QEMU_PACKED;
672 typedef struct DrconfCellQueue {
673 struct sPAPRDrconfCellV2 cell;
674 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
675 } DrconfCellQueue;
677 static DrconfCellQueue *
678 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
679 uint32_t drc_index, uint32_t aa_index,
680 uint32_t flags)
682 DrconfCellQueue *elem;
684 elem = g_malloc0(sizeof(*elem));
685 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
686 elem->cell.base_addr = cpu_to_be64(base_addr);
687 elem->cell.drc_index = cpu_to_be32(drc_index);
688 elem->cell.aa_index = cpu_to_be32(aa_index);
689 elem->cell.flags = cpu_to_be32(flags);
691 return elem;
694 /* ibm,dynamic-memory-v2 */
695 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
696 int offset, MemoryDeviceInfoList *dimms)
698 MachineState *machine = MACHINE(spapr);
699 uint8_t *int_buf, *cur_index;
700 int ret;
701 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
702 uint64_t addr, cur_addr, size;
703 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
704 uint64_t mem_end = machine->device_memory->base +
705 memory_region_size(&machine->device_memory->mr);
706 uint32_t node, buf_len, nr_entries = 0;
707 sPAPRDRConnector *drc;
708 DrconfCellQueue *elem, *next;
709 MemoryDeviceInfoList *info;
710 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
711 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
713 /* Entry to cover RAM and the gap area */
714 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
715 SPAPR_LMB_FLAGS_RESERVED |
716 SPAPR_LMB_FLAGS_DRC_INVALID);
717 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
718 nr_entries++;
720 cur_addr = machine->device_memory->base;
721 for (info = dimms; info; info = info->next) {
722 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
724 addr = di->addr;
725 size = di->size;
726 node = di->node;
728 /* Entry for hot-pluggable area */
729 if (cur_addr < addr) {
730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
731 g_assert(drc);
732 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
733 cur_addr, spapr_drc_index(drc), -1, 0);
734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735 nr_entries++;
738 /* Entry for DIMM */
739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
740 g_assert(drc);
741 elem = spapr_get_drconf_cell(size / lmb_size, addr,
742 spapr_drc_index(drc), node,
743 SPAPR_LMB_FLAGS_ASSIGNED);
744 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
745 nr_entries++;
746 cur_addr = addr + size;
749 /* Entry for remaining hotpluggable area */
750 if (cur_addr < mem_end) {
751 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
752 g_assert(drc);
753 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
754 cur_addr, spapr_drc_index(drc), -1, 0);
755 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
756 nr_entries++;
759 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
760 int_buf = cur_index = g_malloc0(buf_len);
761 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
762 cur_index += sizeof(nr_entries);
764 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
765 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
766 cur_index += sizeof(elem->cell);
767 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
768 g_free(elem);
771 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
772 g_free(int_buf);
773 if (ret < 0) {
774 return -1;
776 return 0;
779 /* ibm,dynamic-memory */
780 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
781 int offset, MemoryDeviceInfoList *dimms)
783 MachineState *machine = MACHINE(spapr);
784 int i, ret;
785 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
786 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
787 uint32_t nr_lmbs = (machine->device_memory->base +
788 memory_region_size(&machine->device_memory->mr)) /
789 lmb_size;
790 uint32_t *int_buf, *cur_index, buf_len;
793 * Allocate enough buffer size to fit in ibm,dynamic-memory
795 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
796 cur_index = int_buf = g_malloc0(buf_len);
797 int_buf[0] = cpu_to_be32(nr_lmbs);
798 cur_index++;
799 for (i = 0; i < nr_lmbs; i++) {
800 uint64_t addr = i * lmb_size;
801 uint32_t *dynamic_memory = cur_index;
803 if (i >= device_lmb_start) {
804 sPAPRDRConnector *drc;
806 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
807 g_assert(drc);
809 dynamic_memory[0] = cpu_to_be32(addr >> 32);
810 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
811 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
812 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
813 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
814 if (memory_region_present(get_system_memory(), addr)) {
815 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
816 } else {
817 dynamic_memory[5] = cpu_to_be32(0);
819 } else {
821 * LMB information for RMA, boot time RAM and gap b/n RAM and
822 * device memory region -- all these are marked as reserved
823 * and as having no valid DRC.
825 dynamic_memory[0] = cpu_to_be32(addr >> 32);
826 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
827 dynamic_memory[2] = cpu_to_be32(0);
828 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
829 dynamic_memory[4] = cpu_to_be32(-1);
830 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
831 SPAPR_LMB_FLAGS_DRC_INVALID);
834 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
836 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
837 g_free(int_buf);
838 if (ret < 0) {
839 return -1;
841 return 0;
845 * Adds ibm,dynamic-reconfiguration-memory node.
846 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
847 * of this device tree node.
849 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
851 MachineState *machine = MACHINE(spapr);
852 int ret, i, offset;
853 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
854 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
855 uint32_t *int_buf, *cur_index, buf_len;
856 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
857 MemoryDeviceInfoList *dimms = NULL;
860 * Don't create the node if there is no device memory
862 if (machine->ram_size == machine->maxram_size) {
863 return 0;
866 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
868 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
869 sizeof(prop_lmb_size));
870 if (ret < 0) {
871 return ret;
874 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
875 if (ret < 0) {
876 return ret;
879 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
880 if (ret < 0) {
881 return ret;
884 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
885 dimms = qmp_memory_device_list();
886 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
887 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
888 } else {
889 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
891 qapi_free_MemoryDeviceInfoList(dimms);
893 if (ret < 0) {
894 return ret;
897 /* ibm,associativity-lookup-arrays */
898 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
899 cur_index = int_buf = g_malloc0(buf_len);
900 int_buf[0] = cpu_to_be32(nr_nodes);
901 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
902 cur_index += 2;
903 for (i = 0; i < nr_nodes; i++) {
904 uint32_t associativity[] = {
905 cpu_to_be32(0x0),
906 cpu_to_be32(0x0),
907 cpu_to_be32(0x0),
908 cpu_to_be32(i)
910 memcpy(cur_index, associativity, sizeof(associativity));
911 cur_index += 4;
913 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
914 (cur_index - int_buf) * sizeof(uint32_t));
915 g_free(int_buf);
917 return ret;
920 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
921 sPAPROptionVector *ov5_updates)
923 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
924 int ret = 0, offset;
926 /* Generate ibm,dynamic-reconfiguration-memory node if required */
927 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
928 g_assert(smc->dr_lmb_enabled);
929 ret = spapr_populate_drconf_memory(spapr, fdt);
930 if (ret) {
931 goto out;
935 offset = fdt_path_offset(fdt, "/chosen");
936 if (offset < 0) {
937 offset = fdt_add_subnode(fdt, 0, "chosen");
938 if (offset < 0) {
939 return offset;
942 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
943 "ibm,architecture-vec-5");
945 out:
946 return ret;
949 static bool spapr_hotplugged_dev_before_cas(void)
951 Object *drc_container, *obj;
952 ObjectProperty *prop;
953 ObjectPropertyIterator iter;
955 drc_container = container_get(object_get_root(), "/dr-connector");
956 object_property_iter_init(&iter, drc_container);
957 while ((prop = object_property_iter_next(&iter))) {
958 if (!strstart(prop->type, "link<", NULL)) {
959 continue;
961 obj = object_property_get_link(drc_container, prop->name, NULL);
962 if (spapr_drc_needed(obj)) {
963 return true;
966 return false;
969 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
970 target_ulong addr, target_ulong size,
971 sPAPROptionVector *ov5_updates)
973 void *fdt, *fdt_skel;
974 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
976 if (spapr_hotplugged_dev_before_cas()) {
977 return 1;
980 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
981 error_report("SLOF provided an unexpected CAS buffer size "
982 TARGET_FMT_lu " (min: %zu, max: %u)",
983 size, sizeof(hdr), FW_MAX_SIZE);
984 exit(EXIT_FAILURE);
987 size -= sizeof(hdr);
989 /* Create skeleton */
990 fdt_skel = g_malloc0(size);
991 _FDT((fdt_create(fdt_skel, size)));
992 _FDT((fdt_finish_reservemap(fdt_skel)));
993 _FDT((fdt_begin_node(fdt_skel, "")));
994 _FDT((fdt_end_node(fdt_skel)));
995 _FDT((fdt_finish(fdt_skel)));
996 fdt = g_malloc0(size);
997 _FDT((fdt_open_into(fdt_skel, fdt, size)));
998 g_free(fdt_skel);
1000 /* Fixup cpu nodes */
1001 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1003 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1004 return -1;
1007 /* Pack resulting tree */
1008 _FDT((fdt_pack(fdt)));
1010 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1011 trace_spapr_cas_failed(size);
1012 return -1;
1015 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1016 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1017 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1018 g_free(fdt);
1020 return 0;
1023 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1025 int rtas;
1026 GString *hypertas = g_string_sized_new(256);
1027 GString *qemu_hypertas = g_string_sized_new(256);
1028 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1029 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1030 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1031 uint32_t lrdr_capacity[] = {
1032 cpu_to_be32(max_device_addr >> 32),
1033 cpu_to_be32(max_device_addr & 0xffffffff),
1034 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1035 cpu_to_be32(max_cpus / smp_threads),
1037 uint32_t maxdomains[] = {
1038 cpu_to_be32(4),
1039 cpu_to_be32(0),
1040 cpu_to_be32(0),
1041 cpu_to_be32(0),
1042 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1045 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1047 /* hypertas */
1048 add_str(hypertas, "hcall-pft");
1049 add_str(hypertas, "hcall-term");
1050 add_str(hypertas, "hcall-dabr");
1051 add_str(hypertas, "hcall-interrupt");
1052 add_str(hypertas, "hcall-tce");
1053 add_str(hypertas, "hcall-vio");
1054 add_str(hypertas, "hcall-splpar");
1055 add_str(hypertas, "hcall-bulk");
1056 add_str(hypertas, "hcall-set-mode");
1057 add_str(hypertas, "hcall-sprg0");
1058 add_str(hypertas, "hcall-copy");
1059 add_str(hypertas, "hcall-debug");
1060 add_str(hypertas, "hcall-vphn");
1061 add_str(qemu_hypertas, "hcall-memop1");
1063 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1064 add_str(hypertas, "hcall-multi-tce");
1067 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1068 add_str(hypertas, "hcall-hpt-resize");
1071 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1072 hypertas->str, hypertas->len));
1073 g_string_free(hypertas, TRUE);
1074 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1075 qemu_hypertas->str, qemu_hypertas->len));
1076 g_string_free(qemu_hypertas, TRUE);
1078 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1079 refpoints, sizeof(refpoints)));
1081 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1082 maxdomains, sizeof(maxdomains)));
1084 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1085 RTAS_ERROR_LOG_MAX));
1086 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1087 RTAS_EVENT_SCAN_RATE));
1089 g_assert(msi_nonbroken);
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1093 * According to PAPR, rtas ibm,os-term does not guarantee a return
1094 * back to the guest cpu.
1096 * While an additional ibm,extended-os-term property indicates
1097 * that rtas call return will always occur. Set this property.
1099 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1101 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1102 lrdr_capacity, sizeof(lrdr_capacity)));
1104 spapr_dt_rtas_tokens(fdt, rtas);
1108 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1109 * and the XIVE features that the guest may request and thus the valid
1110 * values for bytes 23..26 of option vector 5:
1112 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt,
1113 int chosen)
1115 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1117 char val[2 * 4] = {
1118 23, spapr->irq->ov5, /* Xive mode. */
1119 24, 0x00, /* Hash/Radix, filled in below. */
1120 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1121 26, 0x40, /* Radix options: GTSE == yes. */
1124 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1125 first_ppc_cpu->compat_pvr)) {
1127 * If we're in a pre POWER9 compat mode then the guest should
1128 * do hash and use the legacy interrupt mode
1130 val[1] = 0x00; /* XICS */
1131 val[3] = 0x00; /* Hash */
1132 } else if (kvm_enabled()) {
1133 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1134 val[3] = 0x80; /* OV5_MMU_BOTH */
1135 } else if (kvmppc_has_cap_mmu_radix()) {
1136 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1137 } else {
1138 val[3] = 0x00; /* Hash */
1140 } else {
1141 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1142 val[3] = 0xC0;
1144 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1145 val, sizeof(val)));
1148 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1150 MachineState *machine = MACHINE(spapr);
1151 int chosen;
1152 const char *boot_device = machine->boot_order;
1153 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1154 size_t cb = 0;
1155 char *bootlist = get_boot_devices_list(&cb);
1157 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1159 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1160 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1161 spapr->initrd_base));
1162 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1163 spapr->initrd_base + spapr->initrd_size));
1165 if (spapr->kernel_size) {
1166 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1167 cpu_to_be64(spapr->kernel_size) };
1169 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1170 &kprop, sizeof(kprop)));
1171 if (spapr->kernel_le) {
1172 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1175 if (boot_menu) {
1176 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1178 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1179 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1180 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1182 if (cb && bootlist) {
1183 int i;
1185 for (i = 0; i < cb; i++) {
1186 if (bootlist[i] == '\n') {
1187 bootlist[i] = ' ';
1190 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1193 if (boot_device && strlen(boot_device)) {
1194 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1197 if (!spapr->has_graphics && stdout_path) {
1199 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1200 * kernel. New platforms should only use the "stdout-path" property. Set
1201 * the new property and continue using older property to remain
1202 * compatible with the existing firmware.
1204 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1205 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1208 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1210 g_free(stdout_path);
1211 g_free(bootlist);
1214 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1216 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1217 * KVM to work under pHyp with some guest co-operation */
1218 int hypervisor;
1219 uint8_t hypercall[16];
1221 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1222 /* indicate KVM hypercall interface */
1223 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1224 if (kvmppc_has_cap_fixup_hcalls()) {
1226 * Older KVM versions with older guest kernels were broken
1227 * with the magic page, don't allow the guest to map it.
1229 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1230 sizeof(hypercall))) {
1231 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1232 hypercall, sizeof(hypercall)));
1237 static void *spapr_build_fdt(sPAPRMachineState *spapr)
1239 MachineState *machine = MACHINE(spapr);
1240 MachineClass *mc = MACHINE_GET_CLASS(machine);
1241 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1242 int ret;
1243 void *fdt;
1244 sPAPRPHBState *phb;
1245 char *buf;
1247 fdt = g_malloc0(FDT_MAX_SIZE);
1248 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1250 /* Root node */
1251 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1252 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1253 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1256 * Add info to guest to indentify which host is it being run on
1257 * and what is the uuid of the guest
1259 if (spapr->host_model && !g_str_equal(spapr->host_model, "none")) {
1260 if (g_str_equal(spapr->host_model, "passthrough")) {
1261 /* -M host-model=passthrough */
1262 if (kvmppc_get_host_model(&buf)) {
1263 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1264 g_free(buf);
1266 } else {
1267 /* -M host-model=<user-string> */
1268 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1272 if (spapr->host_serial && !g_str_equal(spapr->host_serial, "none")) {
1273 if (g_str_equal(spapr->host_serial, "passthrough")) {
1274 /* -M host-serial=passthrough */
1275 if (kvmppc_get_host_serial(&buf)) {
1276 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1277 g_free(buf);
1279 } else {
1280 /* -M host-serial=<user-string> */
1281 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1285 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1287 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1288 if (qemu_uuid_set) {
1289 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1291 g_free(buf);
1293 if (qemu_get_vm_name()) {
1294 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1295 qemu_get_vm_name()));
1298 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1299 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1301 /* /interrupt controller */
1302 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1303 PHANDLE_INTC);
1305 ret = spapr_populate_memory(spapr, fdt);
1306 if (ret < 0) {
1307 error_report("couldn't setup memory nodes in fdt");
1308 exit(1);
1311 /* /vdevice */
1312 spapr_dt_vdevice(spapr->vio_bus, fdt);
1314 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1315 ret = spapr_rng_populate_dt(fdt);
1316 if (ret < 0) {
1317 error_report("could not set up rng device in the fdt");
1318 exit(1);
1322 QLIST_FOREACH(phb, &spapr->phbs, list) {
1323 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1324 spapr->irq->nr_msis, NULL);
1325 if (ret < 0) {
1326 error_report("couldn't setup PCI devices in fdt");
1327 exit(1);
1331 /* cpus */
1332 spapr_populate_cpus_dt_node(fdt, spapr);
1334 if (smc->dr_lmb_enabled) {
1335 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1338 if (mc->has_hotpluggable_cpus) {
1339 int offset = fdt_path_offset(fdt, "/cpus");
1340 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1341 SPAPR_DR_CONNECTOR_TYPE_CPU);
1342 if (ret < 0) {
1343 error_report("Couldn't set up CPU DR device tree properties");
1344 exit(1);
1348 /* /event-sources */
1349 spapr_dt_events(spapr, fdt);
1351 /* /rtas */
1352 spapr_dt_rtas(spapr, fdt);
1354 /* /chosen */
1355 spapr_dt_chosen(spapr, fdt);
1357 /* /hypervisor */
1358 if (kvm_enabled()) {
1359 spapr_dt_hypervisor(spapr, fdt);
1362 /* Build memory reserve map */
1363 if (spapr->kernel_size) {
1364 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1366 if (spapr->initrd_size) {
1367 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1370 /* ibm,client-architecture-support updates */
1371 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1372 if (ret < 0) {
1373 error_report("couldn't setup CAS properties fdt");
1374 exit(1);
1377 if (smc->dr_phb_enabled) {
1378 ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1379 if (ret < 0) {
1380 error_report("Couldn't set up PHB DR device tree properties");
1381 exit(1);
1385 return fdt;
1388 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1390 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1393 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1394 PowerPCCPU *cpu)
1396 CPUPPCState *env = &cpu->env;
1398 /* The TCG path should also be holding the BQL at this point */
1399 g_assert(qemu_mutex_iothread_locked());
1401 if (msr_pr) {
1402 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1403 env->gpr[3] = H_PRIVILEGE;
1404 } else {
1405 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1409 struct LPCRSyncState {
1410 target_ulong value;
1411 target_ulong mask;
1414 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1416 struct LPCRSyncState *s = arg.host_ptr;
1417 PowerPCCPU *cpu = POWERPC_CPU(cs);
1418 CPUPPCState *env = &cpu->env;
1419 target_ulong lpcr;
1421 cpu_synchronize_state(cs);
1422 lpcr = env->spr[SPR_LPCR];
1423 lpcr &= ~s->mask;
1424 lpcr |= s->value;
1425 ppc_store_lpcr(cpu, lpcr);
1428 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1430 CPUState *cs;
1431 struct LPCRSyncState s = {
1432 .value = value,
1433 .mask = mask
1435 CPU_FOREACH(cs) {
1436 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1440 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1442 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1444 /* Copy PATE1:GR into PATE0:HR */
1445 entry->dw0 = spapr->patb_entry & PATE0_HR;
1446 entry->dw1 = spapr->patb_entry;
1449 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1450 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1451 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1452 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1453 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1456 * Get the fd to access the kernel htab, re-opening it if necessary
1458 static int get_htab_fd(sPAPRMachineState *spapr)
1460 Error *local_err = NULL;
1462 if (spapr->htab_fd >= 0) {
1463 return spapr->htab_fd;
1466 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1467 if (spapr->htab_fd < 0) {
1468 error_report_err(local_err);
1471 return spapr->htab_fd;
1474 void close_htab_fd(sPAPRMachineState *spapr)
1476 if (spapr->htab_fd >= 0) {
1477 close(spapr->htab_fd);
1479 spapr->htab_fd = -1;
1482 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1484 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1486 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1489 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1491 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1493 assert(kvm_enabled());
1495 if (!spapr->htab) {
1496 return 0;
1499 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1502 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1503 hwaddr ptex, int n)
1505 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1506 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1508 if (!spapr->htab) {
1510 * HTAB is controlled by KVM. Fetch into temporary buffer
1512 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1513 kvmppc_read_hptes(hptes, ptex, n);
1514 return hptes;
1518 * HTAB is controlled by QEMU. Just point to the internally
1519 * accessible PTEG.
1521 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1524 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1525 const ppc_hash_pte64_t *hptes,
1526 hwaddr ptex, int n)
1528 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1530 if (!spapr->htab) {
1531 g_free((void *)hptes);
1534 /* Nothing to do for qemu managed HPT */
1537 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1538 uint64_t pte0, uint64_t pte1)
1540 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1541 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1543 if (!spapr->htab) {
1544 kvmppc_write_hpte(ptex, pte0, pte1);
1545 } else {
1546 if (pte0 & HPTE64_V_VALID) {
1547 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1549 * When setting valid, we write PTE1 first. This ensures
1550 * proper synchronization with the reading code in
1551 * ppc_hash64_pteg_search()
1553 smp_wmb();
1554 stq_p(spapr->htab + offset, pte0);
1555 } else {
1556 stq_p(spapr->htab + offset, pte0);
1558 * When clearing it we set PTE0 first. This ensures proper
1559 * synchronization with the reading code in
1560 * ppc_hash64_pteg_search()
1562 smp_wmb();
1563 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1568 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1570 int shift;
1572 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1573 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1574 * that's much more than is needed for Linux guests */
1575 shift = ctz64(pow2ceil(ramsize)) - 7;
1576 shift = MAX(shift, 18); /* Minimum architected size */
1577 shift = MIN(shift, 46); /* Maximum architected size */
1578 return shift;
1581 void spapr_free_hpt(sPAPRMachineState *spapr)
1583 g_free(spapr->htab);
1584 spapr->htab = NULL;
1585 spapr->htab_shift = 0;
1586 close_htab_fd(spapr);
1589 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1590 Error **errp)
1592 long rc;
1594 /* Clean up any HPT info from a previous boot */
1595 spapr_free_hpt(spapr);
1597 rc = kvmppc_reset_htab(shift);
1598 if (rc < 0) {
1599 /* kernel-side HPT needed, but couldn't allocate one */
1600 error_setg_errno(errp, errno,
1601 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1602 shift);
1603 /* This is almost certainly fatal, but if the caller really
1604 * wants to carry on with shift == 0, it's welcome to try */
1605 } else if (rc > 0) {
1606 /* kernel-side HPT allocated */
1607 if (rc != shift) {
1608 error_setg(errp,
1609 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1610 shift, rc);
1613 spapr->htab_shift = shift;
1614 spapr->htab = NULL;
1615 } else {
1616 /* kernel-side HPT not needed, allocate in userspace instead */
1617 size_t size = 1ULL << shift;
1618 int i;
1620 spapr->htab = qemu_memalign(size, size);
1621 if (!spapr->htab) {
1622 error_setg_errno(errp, errno,
1623 "Could not allocate HPT of order %d", shift);
1624 return;
1627 memset(spapr->htab, 0, size);
1628 spapr->htab_shift = shift;
1630 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1631 DIRTY_HPTE(HPTE(spapr->htab, i));
1634 /* We're setting up a hash table, so that means we're not radix */
1635 spapr->patb_entry = 0;
1636 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1639 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1641 int hpt_shift;
1643 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1644 || (spapr->cas_reboot
1645 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1646 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1647 } else {
1648 uint64_t current_ram_size;
1650 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1651 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1653 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1655 if (spapr->vrma_adjust) {
1656 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1657 spapr->htab_shift);
1661 static int spapr_reset_drcs(Object *child, void *opaque)
1663 sPAPRDRConnector *drc =
1664 (sPAPRDRConnector *) object_dynamic_cast(child,
1665 TYPE_SPAPR_DR_CONNECTOR);
1667 if (drc) {
1668 spapr_drc_reset(drc);
1671 return 0;
1674 static void spapr_machine_reset(void)
1676 MachineState *machine = MACHINE(qdev_get_machine());
1677 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1678 PowerPCCPU *first_ppc_cpu;
1679 uint32_t rtas_limit;
1680 hwaddr rtas_addr, fdt_addr;
1681 void *fdt;
1682 int rc;
1684 spapr_caps_apply(spapr);
1686 first_ppc_cpu = POWERPC_CPU(first_cpu);
1687 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1688 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1689 spapr->max_compat_pvr)) {
1691 * If using KVM with radix mode available, VCPUs can be started
1692 * without a HPT because KVM will start them in radix mode.
1693 * Set the GR bit in PATE so that we know there is no HPT.
1695 spapr->patb_entry = PATE1_GR;
1696 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1697 } else {
1698 spapr_setup_hpt_and_vrma(spapr);
1702 * If this reset wasn't generated by CAS, we should reset our
1703 * negotiated options and start from scratch
1705 if (!spapr->cas_reboot) {
1706 spapr_ovec_cleanup(spapr->ov5_cas);
1707 spapr->ov5_cas = spapr_ovec_new();
1709 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1712 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1713 spapr_irq_msi_reset(spapr);
1716 qemu_devices_reset();
1719 * This is fixing some of the default configuration of the XIVE
1720 * devices. To be called after the reset of the machine devices.
1722 spapr_irq_reset(spapr, &error_fatal);
1725 * There is no CAS under qtest. Simulate one to please the code that
1726 * depends on spapr->ov5_cas. This is especially needed to test device
1727 * unplug, so we do that before resetting the DRCs.
1729 if (qtest_enabled()) {
1730 spapr_ovec_cleanup(spapr->ov5_cas);
1731 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1734 /* DRC reset may cause a device to be unplugged. This will cause troubles
1735 * if this device is used by another device (eg, a running vhost backend
1736 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1737 * situations, we reset DRCs after all devices have been reset.
1739 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1741 spapr_clear_pending_events(spapr);
1744 * We place the device tree and RTAS just below either the top of the RMA,
1745 * or just below 2GB, whichever is lower, so that it can be
1746 * processed with 32-bit real mode code if necessary
1748 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1749 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1750 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1752 fdt = spapr_build_fdt(spapr);
1754 spapr_load_rtas(spapr, fdt, rtas_addr);
1756 rc = fdt_pack(fdt);
1758 /* Should only fail if we've built a corrupted tree */
1759 assert(rc == 0);
1761 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1762 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1763 fdt_totalsize(fdt), FDT_MAX_SIZE);
1764 exit(1);
1767 /* Load the fdt */
1768 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1769 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1770 g_free(spapr->fdt_blob);
1771 spapr->fdt_size = fdt_totalsize(fdt);
1772 spapr->fdt_initial_size = spapr->fdt_size;
1773 spapr->fdt_blob = fdt;
1775 /* Set up the entry state */
1776 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1777 first_ppc_cpu->env.gpr[5] = 0;
1779 spapr->cas_reboot = false;
1782 static void spapr_create_nvram(sPAPRMachineState *spapr)
1784 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1785 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1787 if (dinfo) {
1788 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1789 &error_fatal);
1792 qdev_init_nofail(dev);
1794 spapr->nvram = (struct sPAPRNVRAM *)dev;
1797 static void spapr_rtc_create(sPAPRMachineState *spapr)
1799 object_initialize_child(OBJECT(spapr), "rtc",
1800 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1801 &error_fatal, NULL);
1802 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1803 &error_fatal);
1804 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1805 "date", &error_fatal);
1808 /* Returns whether we want to use VGA or not */
1809 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1811 switch (vga_interface_type) {
1812 case VGA_NONE:
1813 return false;
1814 case VGA_DEVICE:
1815 return true;
1816 case VGA_STD:
1817 case VGA_VIRTIO:
1818 case VGA_CIRRUS:
1819 return pci_vga_init(pci_bus) != NULL;
1820 default:
1821 error_setg(errp,
1822 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1823 return false;
1827 static int spapr_pre_load(void *opaque)
1829 int rc;
1831 rc = spapr_caps_pre_load(opaque);
1832 if (rc) {
1833 return rc;
1836 return 0;
1839 static int spapr_post_load(void *opaque, int version_id)
1841 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1842 int err = 0;
1844 err = spapr_caps_post_migration(spapr);
1845 if (err) {
1846 return err;
1850 * In earlier versions, there was no separate qdev for the PAPR
1851 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1852 * So when migrating from those versions, poke the incoming offset
1853 * value into the RTC device
1855 if (version_id < 3) {
1856 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1857 if (err) {
1858 return err;
1862 if (kvm_enabled() && spapr->patb_entry) {
1863 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1864 bool radix = !!(spapr->patb_entry & PATE1_GR);
1865 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1868 * Update LPCR:HR and UPRT as they may not be set properly in
1869 * the stream
1871 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1872 LPCR_HR | LPCR_UPRT);
1874 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1875 if (err) {
1876 error_report("Process table config unsupported by the host");
1877 return -EINVAL;
1881 err = spapr_irq_post_load(spapr, version_id);
1882 if (err) {
1883 return err;
1886 return err;
1889 static int spapr_pre_save(void *opaque)
1891 int rc;
1893 rc = spapr_caps_pre_save(opaque);
1894 if (rc) {
1895 return rc;
1898 return 0;
1901 static bool version_before_3(void *opaque, int version_id)
1903 return version_id < 3;
1906 static bool spapr_pending_events_needed(void *opaque)
1908 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1909 return !QTAILQ_EMPTY(&spapr->pending_events);
1912 static const VMStateDescription vmstate_spapr_event_entry = {
1913 .name = "spapr_event_log_entry",
1914 .version_id = 1,
1915 .minimum_version_id = 1,
1916 .fields = (VMStateField[]) {
1917 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1918 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1919 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1920 NULL, extended_length),
1921 VMSTATE_END_OF_LIST()
1925 static const VMStateDescription vmstate_spapr_pending_events = {
1926 .name = "spapr_pending_events",
1927 .version_id = 1,
1928 .minimum_version_id = 1,
1929 .needed = spapr_pending_events_needed,
1930 .fields = (VMStateField[]) {
1931 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1932 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1933 VMSTATE_END_OF_LIST()
1937 static bool spapr_ov5_cas_needed(void *opaque)
1939 sPAPRMachineState *spapr = opaque;
1940 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1941 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1942 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1943 bool cas_needed;
1945 /* Prior to the introduction of sPAPROptionVector, we had two option
1946 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1947 * Both of these options encode machine topology into the device-tree
1948 * in such a way that the now-booted OS should still be able to interact
1949 * appropriately with QEMU regardless of what options were actually
1950 * negotiatied on the source side.
1952 * As such, we can avoid migrating the CAS-negotiated options if these
1953 * are the only options available on the current machine/platform.
1954 * Since these are the only options available for pseries-2.7 and
1955 * earlier, this allows us to maintain old->new/new->old migration
1956 * compatibility.
1958 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1959 * via default pseries-2.8 machines and explicit command-line parameters.
1960 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1961 * of the actual CAS-negotiated values to continue working properly. For
1962 * example, availability of memory unplug depends on knowing whether
1963 * OV5_HP_EVT was negotiated via CAS.
1965 * Thus, for any cases where the set of available CAS-negotiatable
1966 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1967 * include the CAS-negotiated options in the migration stream, unless
1968 * if they affect boot time behaviour only.
1970 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1971 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1972 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1974 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1975 * the mask itself since in the future it's possible "legacy" bits may be
1976 * removed via machine options, which could generate a false positive
1977 * that breaks migration.
1979 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1980 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1982 spapr_ovec_cleanup(ov5_mask);
1983 spapr_ovec_cleanup(ov5_legacy);
1984 spapr_ovec_cleanup(ov5_removed);
1986 return cas_needed;
1989 static const VMStateDescription vmstate_spapr_ov5_cas = {
1990 .name = "spapr_option_vector_ov5_cas",
1991 .version_id = 1,
1992 .minimum_version_id = 1,
1993 .needed = spapr_ov5_cas_needed,
1994 .fields = (VMStateField[]) {
1995 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1996 vmstate_spapr_ovec, sPAPROptionVector),
1997 VMSTATE_END_OF_LIST()
2001 static bool spapr_patb_entry_needed(void *opaque)
2003 sPAPRMachineState *spapr = opaque;
2005 return !!spapr->patb_entry;
2008 static const VMStateDescription vmstate_spapr_patb_entry = {
2009 .name = "spapr_patb_entry",
2010 .version_id = 1,
2011 .minimum_version_id = 1,
2012 .needed = spapr_patb_entry_needed,
2013 .fields = (VMStateField[]) {
2014 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
2015 VMSTATE_END_OF_LIST()
2019 static bool spapr_irq_map_needed(void *opaque)
2021 sPAPRMachineState *spapr = opaque;
2023 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2026 static const VMStateDescription vmstate_spapr_irq_map = {
2027 .name = "spapr_irq_map",
2028 .version_id = 1,
2029 .minimum_version_id = 1,
2030 .needed = spapr_irq_map_needed,
2031 .fields = (VMStateField[]) {
2032 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
2033 VMSTATE_END_OF_LIST()
2037 static bool spapr_dtb_needed(void *opaque)
2039 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2041 return smc->update_dt_enabled;
2044 static int spapr_dtb_pre_load(void *opaque)
2046 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
2048 g_free(spapr->fdt_blob);
2049 spapr->fdt_blob = NULL;
2050 spapr->fdt_size = 0;
2052 return 0;
2055 static const VMStateDescription vmstate_spapr_dtb = {
2056 .name = "spapr_dtb",
2057 .version_id = 1,
2058 .minimum_version_id = 1,
2059 .needed = spapr_dtb_needed,
2060 .pre_load = spapr_dtb_pre_load,
2061 .fields = (VMStateField[]) {
2062 VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState),
2063 VMSTATE_UINT32(fdt_size, sPAPRMachineState),
2064 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL,
2065 fdt_size),
2066 VMSTATE_END_OF_LIST()
2070 static const VMStateDescription vmstate_spapr = {
2071 .name = "spapr",
2072 .version_id = 3,
2073 .minimum_version_id = 1,
2074 .pre_load = spapr_pre_load,
2075 .post_load = spapr_post_load,
2076 .pre_save = spapr_pre_save,
2077 .fields = (VMStateField[]) {
2078 /* used to be @next_irq */
2079 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2081 /* RTC offset */
2082 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
2084 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
2085 VMSTATE_END_OF_LIST()
2087 .subsections = (const VMStateDescription*[]) {
2088 &vmstate_spapr_ov5_cas,
2089 &vmstate_spapr_patb_entry,
2090 &vmstate_spapr_pending_events,
2091 &vmstate_spapr_cap_htm,
2092 &vmstate_spapr_cap_vsx,
2093 &vmstate_spapr_cap_dfp,
2094 &vmstate_spapr_cap_cfpc,
2095 &vmstate_spapr_cap_sbbc,
2096 &vmstate_spapr_cap_ibs,
2097 &vmstate_spapr_irq_map,
2098 &vmstate_spapr_cap_nested_kvm_hv,
2099 &vmstate_spapr_dtb,
2100 &vmstate_spapr_cap_large_decr,
2101 &vmstate_spapr_cap_ccf_assist,
2102 NULL
2106 static int htab_save_setup(QEMUFile *f, void *opaque)
2108 sPAPRMachineState *spapr = opaque;
2110 /* "Iteration" header */
2111 if (!spapr->htab_shift) {
2112 qemu_put_be32(f, -1);
2113 } else {
2114 qemu_put_be32(f, spapr->htab_shift);
2117 if (spapr->htab) {
2118 spapr->htab_save_index = 0;
2119 spapr->htab_first_pass = true;
2120 } else {
2121 if (spapr->htab_shift) {
2122 assert(kvm_enabled());
2127 return 0;
2130 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
2131 int chunkstart, int n_valid, int n_invalid)
2133 qemu_put_be32(f, chunkstart);
2134 qemu_put_be16(f, n_valid);
2135 qemu_put_be16(f, n_invalid);
2136 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2137 HASH_PTE_SIZE_64 * n_valid);
2140 static void htab_save_end_marker(QEMUFile *f)
2142 qemu_put_be32(f, 0);
2143 qemu_put_be16(f, 0);
2144 qemu_put_be16(f, 0);
2147 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
2148 int64_t max_ns)
2150 bool has_timeout = max_ns != -1;
2151 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2152 int index = spapr->htab_save_index;
2153 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2155 assert(spapr->htab_first_pass);
2157 do {
2158 int chunkstart;
2160 /* Consume invalid HPTEs */
2161 while ((index < htabslots)
2162 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2163 CLEAN_HPTE(HPTE(spapr->htab, index));
2164 index++;
2167 /* Consume valid HPTEs */
2168 chunkstart = index;
2169 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2170 && HPTE_VALID(HPTE(spapr->htab, index))) {
2171 CLEAN_HPTE(HPTE(spapr->htab, index));
2172 index++;
2175 if (index > chunkstart) {
2176 int n_valid = index - chunkstart;
2178 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2180 if (has_timeout &&
2181 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2182 break;
2185 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2187 if (index >= htabslots) {
2188 assert(index == htabslots);
2189 index = 0;
2190 spapr->htab_first_pass = false;
2192 spapr->htab_save_index = index;
2195 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2196 int64_t max_ns)
2198 bool final = max_ns < 0;
2199 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2200 int examined = 0, sent = 0;
2201 int index = spapr->htab_save_index;
2202 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2204 assert(!spapr->htab_first_pass);
2206 do {
2207 int chunkstart, invalidstart;
2209 /* Consume non-dirty HPTEs */
2210 while ((index < htabslots)
2211 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2212 index++;
2213 examined++;
2216 chunkstart = index;
2217 /* Consume valid dirty HPTEs */
2218 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2219 && HPTE_DIRTY(HPTE(spapr->htab, index))
2220 && HPTE_VALID(HPTE(spapr->htab, index))) {
2221 CLEAN_HPTE(HPTE(spapr->htab, index));
2222 index++;
2223 examined++;
2226 invalidstart = index;
2227 /* Consume invalid dirty HPTEs */
2228 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2229 && HPTE_DIRTY(HPTE(spapr->htab, index))
2230 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2231 CLEAN_HPTE(HPTE(spapr->htab, index));
2232 index++;
2233 examined++;
2236 if (index > chunkstart) {
2237 int n_valid = invalidstart - chunkstart;
2238 int n_invalid = index - invalidstart;
2240 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2241 sent += index - chunkstart;
2243 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2244 break;
2248 if (examined >= htabslots) {
2249 break;
2252 if (index >= htabslots) {
2253 assert(index == htabslots);
2254 index = 0;
2256 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2258 if (index >= htabslots) {
2259 assert(index == htabslots);
2260 index = 0;
2263 spapr->htab_save_index = index;
2265 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2268 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2269 #define MAX_KVM_BUF_SIZE 2048
2271 static int htab_save_iterate(QEMUFile *f, void *opaque)
2273 sPAPRMachineState *spapr = opaque;
2274 int fd;
2275 int rc = 0;
2277 /* Iteration header */
2278 if (!spapr->htab_shift) {
2279 qemu_put_be32(f, -1);
2280 return 1;
2281 } else {
2282 qemu_put_be32(f, 0);
2285 if (!spapr->htab) {
2286 assert(kvm_enabled());
2288 fd = get_htab_fd(spapr);
2289 if (fd < 0) {
2290 return fd;
2293 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2294 if (rc < 0) {
2295 return rc;
2297 } else if (spapr->htab_first_pass) {
2298 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2299 } else {
2300 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2303 htab_save_end_marker(f);
2305 return rc;
2308 static int htab_save_complete(QEMUFile *f, void *opaque)
2310 sPAPRMachineState *spapr = opaque;
2311 int fd;
2313 /* Iteration header */
2314 if (!spapr->htab_shift) {
2315 qemu_put_be32(f, -1);
2316 return 0;
2317 } else {
2318 qemu_put_be32(f, 0);
2321 if (!spapr->htab) {
2322 int rc;
2324 assert(kvm_enabled());
2326 fd = get_htab_fd(spapr);
2327 if (fd < 0) {
2328 return fd;
2331 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2332 if (rc < 0) {
2333 return rc;
2335 } else {
2336 if (spapr->htab_first_pass) {
2337 htab_save_first_pass(f, spapr, -1);
2339 htab_save_later_pass(f, spapr, -1);
2342 /* End marker */
2343 htab_save_end_marker(f);
2345 return 0;
2348 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2350 sPAPRMachineState *spapr = opaque;
2351 uint32_t section_hdr;
2352 int fd = -1;
2353 Error *local_err = NULL;
2355 if (version_id < 1 || version_id > 1) {
2356 error_report("htab_load() bad version");
2357 return -EINVAL;
2360 section_hdr = qemu_get_be32(f);
2362 if (section_hdr == -1) {
2363 spapr_free_hpt(spapr);
2364 return 0;
2367 if (section_hdr) {
2368 /* First section gives the htab size */
2369 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2370 if (local_err) {
2371 error_report_err(local_err);
2372 return -EINVAL;
2374 return 0;
2377 if (!spapr->htab) {
2378 assert(kvm_enabled());
2380 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2381 if (fd < 0) {
2382 error_report_err(local_err);
2383 return fd;
2387 while (true) {
2388 uint32_t index;
2389 uint16_t n_valid, n_invalid;
2391 index = qemu_get_be32(f);
2392 n_valid = qemu_get_be16(f);
2393 n_invalid = qemu_get_be16(f);
2395 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2396 /* End of Stream */
2397 break;
2400 if ((index + n_valid + n_invalid) >
2401 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2402 /* Bad index in stream */
2403 error_report(
2404 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2405 index, n_valid, n_invalid, spapr->htab_shift);
2406 return -EINVAL;
2409 if (spapr->htab) {
2410 if (n_valid) {
2411 qemu_get_buffer(f, HPTE(spapr->htab, index),
2412 HASH_PTE_SIZE_64 * n_valid);
2414 if (n_invalid) {
2415 memset(HPTE(spapr->htab, index + n_valid), 0,
2416 HASH_PTE_SIZE_64 * n_invalid);
2418 } else {
2419 int rc;
2421 assert(fd >= 0);
2423 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2424 if (rc < 0) {
2425 return rc;
2430 if (!spapr->htab) {
2431 assert(fd >= 0);
2432 close(fd);
2435 return 0;
2438 static void htab_save_cleanup(void *opaque)
2440 sPAPRMachineState *spapr = opaque;
2442 close_htab_fd(spapr);
2445 static SaveVMHandlers savevm_htab_handlers = {
2446 .save_setup = htab_save_setup,
2447 .save_live_iterate = htab_save_iterate,
2448 .save_live_complete_precopy = htab_save_complete,
2449 .save_cleanup = htab_save_cleanup,
2450 .load_state = htab_load,
2453 static void spapr_boot_set(void *opaque, const char *boot_device,
2454 Error **errp)
2456 MachineState *machine = MACHINE(opaque);
2457 machine->boot_order = g_strdup(boot_device);
2460 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2462 MachineState *machine = MACHINE(spapr);
2463 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2464 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2465 int i;
2467 for (i = 0; i < nr_lmbs; i++) {
2468 uint64_t addr;
2470 addr = i * lmb_size + machine->device_memory->base;
2471 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2472 addr / lmb_size);
2477 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2478 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2479 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2481 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2483 int i;
2485 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2486 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2487 " is not aligned to %" PRIu64 " MiB",
2488 machine->ram_size,
2489 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2490 return;
2493 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2494 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2495 " is not aligned to %" PRIu64 " MiB",
2496 machine->ram_size,
2497 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2498 return;
2501 for (i = 0; i < nb_numa_nodes; i++) {
2502 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2503 error_setg(errp,
2504 "Node %d memory size 0x%" PRIx64
2505 " is not aligned to %" PRIu64 " MiB",
2506 i, numa_info[i].node_mem,
2507 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2508 return;
2513 /* find cpu slot in machine->possible_cpus by core_id */
2514 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2516 int index = id / smp_threads;
2518 if (index >= ms->possible_cpus->len) {
2519 return NULL;
2521 if (idx) {
2522 *idx = index;
2524 return &ms->possible_cpus->cpus[index];
2527 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2529 Error *local_err = NULL;
2530 bool vsmt_user = !!spapr->vsmt;
2531 int kvm_smt = kvmppc_smt_threads();
2532 int ret;
2534 if (!kvm_enabled() && (smp_threads > 1)) {
2535 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2536 "on a pseries machine");
2537 goto out;
2539 if (!is_power_of_2(smp_threads)) {
2540 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2541 "machine because it must be a power of 2", smp_threads);
2542 goto out;
2545 /* Detemine the VSMT mode to use: */
2546 if (vsmt_user) {
2547 if (spapr->vsmt < smp_threads) {
2548 error_setg(&local_err, "Cannot support VSMT mode %d"
2549 " because it must be >= threads/core (%d)",
2550 spapr->vsmt, smp_threads);
2551 goto out;
2553 /* In this case, spapr->vsmt has been set by the command line */
2554 } else {
2556 * Default VSMT value is tricky, because we need it to be as
2557 * consistent as possible (for migration), but this requires
2558 * changing it for at least some existing cases. We pick 8 as
2559 * the value that we'd get with KVM on POWER8, the
2560 * overwhelmingly common case in production systems.
2562 spapr->vsmt = MAX(8, smp_threads);
2565 /* KVM: If necessary, set the SMT mode: */
2566 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2567 ret = kvmppc_set_smt_threads(spapr->vsmt);
2568 if (ret) {
2569 /* Looks like KVM isn't able to change VSMT mode */
2570 error_setg(&local_err,
2571 "Failed to set KVM's VSMT mode to %d (errno %d)",
2572 spapr->vsmt, ret);
2573 /* We can live with that if the default one is big enough
2574 * for the number of threads, and a submultiple of the one
2575 * we want. In this case we'll waste some vcpu ids, but
2576 * behaviour will be correct */
2577 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2578 warn_report_err(local_err);
2579 local_err = NULL;
2580 goto out;
2581 } else {
2582 if (!vsmt_user) {
2583 error_append_hint(&local_err,
2584 "On PPC, a VM with %d threads/core"
2585 " on a host with %d threads/core"
2586 " requires the use of VSMT mode %d.\n",
2587 smp_threads, kvm_smt, spapr->vsmt);
2589 kvmppc_hint_smt_possible(&local_err);
2590 goto out;
2594 /* else TCG: nothing to do currently */
2595 out:
2596 error_propagate(errp, local_err);
2599 static void spapr_init_cpus(sPAPRMachineState *spapr)
2601 MachineState *machine = MACHINE(spapr);
2602 MachineClass *mc = MACHINE_GET_CLASS(machine);
2603 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2604 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2605 const CPUArchIdList *possible_cpus;
2606 int boot_cores_nr = smp_cpus / smp_threads;
2607 int i;
2609 possible_cpus = mc->possible_cpu_arch_ids(machine);
2610 if (mc->has_hotpluggable_cpus) {
2611 if (smp_cpus % smp_threads) {
2612 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2613 smp_cpus, smp_threads);
2614 exit(1);
2616 if (max_cpus % smp_threads) {
2617 error_report("max_cpus (%u) must be multiple of threads (%u)",
2618 max_cpus, smp_threads);
2619 exit(1);
2621 } else {
2622 if (max_cpus != smp_cpus) {
2623 error_report("This machine version does not support CPU hotplug");
2624 exit(1);
2626 boot_cores_nr = possible_cpus->len;
2629 if (smc->pre_2_10_has_unused_icps) {
2630 int i;
2632 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2633 /* Dummy entries get deregistered when real ICPState objects
2634 * are registered during CPU core hotplug.
2636 pre_2_10_vmstate_register_dummy_icp(i);
2640 for (i = 0; i < possible_cpus->len; i++) {
2641 int core_id = i * smp_threads;
2643 if (mc->has_hotpluggable_cpus) {
2644 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2645 spapr_vcpu_id(spapr, core_id));
2648 if (i < boot_cores_nr) {
2649 Object *core = object_new(type);
2650 int nr_threads = smp_threads;
2652 /* Handle the partially filled core for older machine types */
2653 if ((i + 1) * smp_threads >= smp_cpus) {
2654 nr_threads = smp_cpus - i * smp_threads;
2657 object_property_set_int(core, nr_threads, "nr-threads",
2658 &error_fatal);
2659 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2660 &error_fatal);
2661 object_property_set_bool(core, true, "realized", &error_fatal);
2663 object_unref(core);
2668 static PCIHostState *spapr_create_default_phb(void)
2670 DeviceState *dev;
2672 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2673 qdev_prop_set_uint32(dev, "index", 0);
2674 qdev_init_nofail(dev);
2676 return PCI_HOST_BRIDGE(dev);
2679 /* pSeries LPAR / sPAPR hardware init */
2680 static void spapr_machine_init(MachineState *machine)
2682 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2683 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2684 const char *kernel_filename = machine->kernel_filename;
2685 const char *initrd_filename = machine->initrd_filename;
2686 PCIHostState *phb;
2687 int i;
2688 MemoryRegion *sysmem = get_system_memory();
2689 MemoryRegion *ram = g_new(MemoryRegion, 1);
2690 hwaddr node0_size = spapr_node0_size(machine);
2691 long load_limit, fw_size;
2692 char *filename;
2693 Error *resize_hpt_err = NULL;
2695 msi_nonbroken = true;
2697 QLIST_INIT(&spapr->phbs);
2698 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2700 /* Determine capabilities to run with */
2701 spapr_caps_init(spapr);
2703 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2704 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2706 * If the user explicitly requested a mode we should either
2707 * supply it, or fail completely (which we do below). But if
2708 * it's not set explicitly, we reset our mode to something
2709 * that works
2711 if (resize_hpt_err) {
2712 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2713 error_free(resize_hpt_err);
2714 resize_hpt_err = NULL;
2715 } else {
2716 spapr->resize_hpt = smc->resize_hpt_default;
2720 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2722 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2724 * User requested HPT resize, but this host can't supply it. Bail out
2726 error_report_err(resize_hpt_err);
2727 exit(1);
2730 spapr->rma_size = node0_size;
2732 /* With KVM, we don't actually know whether KVM supports an
2733 * unbounded RMA (PR KVM) or is limited by the hash table size
2734 * (HV KVM using VRMA), so we always assume the latter
2736 * In that case, we also limit the initial allocations for RTAS
2737 * etc... to 256M since we have no way to know what the VRMA size
2738 * is going to be as it depends on the size of the hash table
2739 * which isn't determined yet.
2741 if (kvm_enabled()) {
2742 spapr->vrma_adjust = 1;
2743 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2746 /* Actually we don't support unbounded RMA anymore since we added
2747 * proper emulation of HV mode. The max we can get is 16G which
2748 * also happens to be what we configure for PAPR mode so make sure
2749 * we don't do anything bigger than that
2751 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2753 if (spapr->rma_size > node0_size) {
2754 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2755 spapr->rma_size);
2756 exit(1);
2759 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2760 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2763 * VSMT must be set in order to be able to compute VCPU ids, ie to
2764 * call spapr_max_server_number() or spapr_vcpu_id().
2766 spapr_set_vsmt_mode(spapr, &error_fatal);
2768 /* Set up Interrupt Controller before we create the VCPUs */
2769 spapr_irq_init(spapr, &error_fatal);
2771 /* Set up containers for ibm,client-architecture-support negotiated options
2773 spapr->ov5 = spapr_ovec_new();
2774 spapr->ov5_cas = spapr_ovec_new();
2776 if (smc->dr_lmb_enabled) {
2777 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2778 spapr_validate_node_memory(machine, &error_fatal);
2781 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2783 /* advertise support for dedicated HP event source to guests */
2784 if (spapr->use_hotplug_event_source) {
2785 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2788 /* advertise support for HPT resizing */
2789 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2790 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2793 /* advertise support for ibm,dyamic-memory-v2 */
2794 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2796 /* advertise XIVE on POWER9 machines */
2797 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2798 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
2799 0, spapr->max_compat_pvr)) {
2800 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2801 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) {
2802 error_report("XIVE-only machines require a POWER9 CPU");
2803 exit(1);
2807 /* init CPUs */
2808 spapr_init_cpus(spapr);
2810 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2811 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2812 spapr->max_compat_pvr)) {
2813 /* KVM and TCG always allow GTSE with radix... */
2814 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2816 /* ... but not with hash (currently). */
2818 if (kvm_enabled()) {
2819 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2820 kvmppc_enable_logical_ci_hcalls();
2821 kvmppc_enable_set_mode_hcall();
2823 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2824 kvmppc_enable_clear_ref_mod_hcalls();
2826 /* Enable H_PAGE_INIT */
2827 kvmppc_enable_h_page_init();
2830 /* allocate RAM */
2831 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2832 machine->ram_size);
2833 memory_region_add_subregion(sysmem, 0, ram);
2835 /* always allocate the device memory information */
2836 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2838 /* initialize hotplug memory address space */
2839 if (machine->ram_size < machine->maxram_size) {
2840 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2842 * Limit the number of hotpluggable memory slots to half the number
2843 * slots that KVM supports, leaving the other half for PCI and other
2844 * devices. However ensure that number of slots doesn't drop below 32.
2846 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2847 SPAPR_MAX_RAM_SLOTS;
2849 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2850 max_memslots = SPAPR_MAX_RAM_SLOTS;
2852 if (machine->ram_slots > max_memslots) {
2853 error_report("Specified number of memory slots %"
2854 PRIu64" exceeds max supported %d",
2855 machine->ram_slots, max_memslots);
2856 exit(1);
2859 machine->device_memory->base = ROUND_UP(machine->ram_size,
2860 SPAPR_DEVICE_MEM_ALIGN);
2861 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2862 "device-memory", device_mem_size);
2863 memory_region_add_subregion(sysmem, machine->device_memory->base,
2864 &machine->device_memory->mr);
2867 if (smc->dr_lmb_enabled) {
2868 spapr_create_lmb_dr_connectors(spapr);
2871 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2872 if (!filename) {
2873 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2874 exit(1);
2876 spapr->rtas_size = get_image_size(filename);
2877 if (spapr->rtas_size < 0) {
2878 error_report("Could not get size of LPAR rtas '%s'", filename);
2879 exit(1);
2881 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2882 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2883 error_report("Could not load LPAR rtas '%s'", filename);
2884 exit(1);
2886 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2887 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2888 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2889 exit(1);
2891 g_free(filename);
2893 /* Set up RTAS event infrastructure */
2894 spapr_events_init(spapr);
2896 /* Set up the RTC RTAS interfaces */
2897 spapr_rtc_create(spapr);
2899 /* Set up VIO bus */
2900 spapr->vio_bus = spapr_vio_bus_init();
2902 for (i = 0; i < serial_max_hds(); i++) {
2903 if (serial_hd(i)) {
2904 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2908 /* We always have at least the nvram device on VIO */
2909 spapr_create_nvram(spapr);
2912 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2913 * connectors (described in root DT node's "ibm,drc-types" property)
2914 * are pre-initialized here. additional child connectors (such as
2915 * connectors for a PHBs PCI slots) are added as needed during their
2916 * parent's realization.
2918 if (smc->dr_phb_enabled) {
2919 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2920 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2924 /* Set up PCI */
2925 spapr_pci_rtas_init();
2927 phb = spapr_create_default_phb();
2929 for (i = 0; i < nb_nics; i++) {
2930 NICInfo *nd = &nd_table[i];
2932 if (!nd->model) {
2933 nd->model = g_strdup("spapr-vlan");
2936 if (g_str_equal(nd->model, "spapr-vlan") ||
2937 g_str_equal(nd->model, "ibmveth")) {
2938 spapr_vlan_create(spapr->vio_bus, nd);
2939 } else {
2940 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2944 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2945 spapr_vscsi_create(spapr->vio_bus);
2948 /* Graphics */
2949 if (spapr_vga_init(phb->bus, &error_fatal)) {
2950 spapr->has_graphics = true;
2951 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2954 if (machine->usb) {
2955 if (smc->use_ohci_by_default) {
2956 pci_create_simple(phb->bus, -1, "pci-ohci");
2957 } else {
2958 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2961 if (spapr->has_graphics) {
2962 USBBus *usb_bus = usb_bus_find(-1);
2964 usb_create_simple(usb_bus, "usb-kbd");
2965 usb_create_simple(usb_bus, "usb-mouse");
2969 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2970 error_report(
2971 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2972 MIN_RMA_SLOF);
2973 exit(1);
2976 if (kernel_filename) {
2977 uint64_t lowaddr = 0;
2979 spapr->kernel_size = load_elf(kernel_filename, NULL,
2980 translate_kernel_address, NULL,
2981 NULL, &lowaddr, NULL, 1,
2982 PPC_ELF_MACHINE, 0, 0);
2983 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2984 spapr->kernel_size = load_elf(kernel_filename, NULL,
2985 translate_kernel_address, NULL, NULL,
2986 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2987 0, 0);
2988 spapr->kernel_le = spapr->kernel_size > 0;
2990 if (spapr->kernel_size < 0) {
2991 error_report("error loading %s: %s", kernel_filename,
2992 load_elf_strerror(spapr->kernel_size));
2993 exit(1);
2996 /* load initrd */
2997 if (initrd_filename) {
2998 /* Try to locate the initrd in the gap between the kernel
2999 * and the firmware. Add a bit of space just in case
3001 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3002 + 0x1ffff) & ~0xffff;
3003 spapr->initrd_size = load_image_targphys(initrd_filename,
3004 spapr->initrd_base,
3005 load_limit
3006 - spapr->initrd_base);
3007 if (spapr->initrd_size < 0) {
3008 error_report("could not load initial ram disk '%s'",
3009 initrd_filename);
3010 exit(1);
3015 if (bios_name == NULL) {
3016 bios_name = FW_FILE_NAME;
3018 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3019 if (!filename) {
3020 error_report("Could not find LPAR firmware '%s'", bios_name);
3021 exit(1);
3023 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3024 if (fw_size <= 0) {
3025 error_report("Could not load LPAR firmware '%s'", filename);
3026 exit(1);
3028 g_free(filename);
3030 /* FIXME: Should register things through the MachineState's qdev
3031 * interface, this is a legacy from the sPAPREnvironment structure
3032 * which predated MachineState but had a similar function */
3033 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3034 register_savevm_live(NULL, "spapr/htab", -1, 1,
3035 &savevm_htab_handlers, spapr);
3037 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3038 &error_fatal);
3040 qemu_register_boot_set(spapr_boot_set, spapr);
3042 if (kvm_enabled()) {
3043 /* to stop and start vmclock */
3044 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3045 &spapr->tb);
3047 kvmppc_spapr_enable_inkernel_multitce();
3051 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3053 if (!vm_type) {
3054 return 0;
3057 if (!strcmp(vm_type, "HV")) {
3058 return 1;
3061 if (!strcmp(vm_type, "PR")) {
3062 return 2;
3065 error_report("Unknown kvm-type specified '%s'", vm_type);
3066 exit(1);
3070 * Implementation of an interface to adjust firmware path
3071 * for the bootindex property handling.
3073 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3074 DeviceState *dev)
3076 #define CAST(type, obj, name) \
3077 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3078 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3079 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3080 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3082 if (d) {
3083 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3084 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3085 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3087 if (spapr) {
3089 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3090 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3091 * 0x8000 | (target << 8) | (bus << 5) | lun
3092 * (see the "Logical unit addressing format" table in SAM5)
3094 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3095 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3096 (uint64_t)id << 48);
3097 } else if (virtio) {
3099 * We use SRP luns of the form 01000000 | (target << 8) | lun
3100 * in the top 32 bits of the 64-bit LUN
3101 * Note: the quote above is from SLOF and it is wrong,
3102 * the actual binding is:
3103 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3105 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3106 if (d->lun >= 256) {
3107 /* Use the LUN "flat space addressing method" */
3108 id |= 0x4000;
3110 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3111 (uint64_t)id << 32);
3112 } else if (usb) {
3114 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3115 * in the top 32 bits of the 64-bit LUN
3117 unsigned usb_port = atoi(usb->port->path);
3118 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3119 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3120 (uint64_t)id << 32);
3125 * SLOF probes the USB devices, and if it recognizes that the device is a
3126 * storage device, it changes its name to "storage" instead of "usb-host",
3127 * and additionally adds a child node for the SCSI LUN, so the correct
3128 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3130 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3131 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3132 if (usb_host_dev_is_scsi_storage(usbdev)) {
3133 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3137 if (phb) {
3138 /* Replace "pci" with "pci@800000020000000" */
3139 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3142 if (vsc) {
3143 /* Same logic as virtio above */
3144 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3145 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3148 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3149 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3150 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3151 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3154 return NULL;
3157 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3159 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3161 return g_strdup(spapr->kvm_type);
3164 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3166 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3168 g_free(spapr->kvm_type);
3169 spapr->kvm_type = g_strdup(value);
3172 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3174 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3176 return spapr->use_hotplug_event_source;
3179 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3180 Error **errp)
3182 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3184 spapr->use_hotplug_event_source = value;
3187 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3189 return true;
3192 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3194 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3196 switch (spapr->resize_hpt) {
3197 case SPAPR_RESIZE_HPT_DEFAULT:
3198 return g_strdup("default");
3199 case SPAPR_RESIZE_HPT_DISABLED:
3200 return g_strdup("disabled");
3201 case SPAPR_RESIZE_HPT_ENABLED:
3202 return g_strdup("enabled");
3203 case SPAPR_RESIZE_HPT_REQUIRED:
3204 return g_strdup("required");
3206 g_assert_not_reached();
3209 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3211 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3213 if (strcmp(value, "default") == 0) {
3214 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3215 } else if (strcmp(value, "disabled") == 0) {
3216 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3217 } else if (strcmp(value, "enabled") == 0) {
3218 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3219 } else if (strcmp(value, "required") == 0) {
3220 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3221 } else {
3222 error_setg(errp, "Bad value for \"resize-hpt\" property");
3226 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3227 void *opaque, Error **errp)
3229 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3232 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3233 void *opaque, Error **errp)
3235 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3238 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3240 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3242 if (spapr->irq == &spapr_irq_xics_legacy) {
3243 return g_strdup("legacy");
3244 } else if (spapr->irq == &spapr_irq_xics) {
3245 return g_strdup("xics");
3246 } else if (spapr->irq == &spapr_irq_xive) {
3247 return g_strdup("xive");
3248 } else if (spapr->irq == &spapr_irq_dual) {
3249 return g_strdup("dual");
3251 g_assert_not_reached();
3254 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3256 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3258 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3259 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3260 return;
3263 /* The legacy IRQ backend can not be set */
3264 if (strcmp(value, "xics") == 0) {
3265 spapr->irq = &spapr_irq_xics;
3266 } else if (strcmp(value, "xive") == 0) {
3267 spapr->irq = &spapr_irq_xive;
3268 } else if (strcmp(value, "dual") == 0) {
3269 spapr->irq = &spapr_irq_dual;
3270 } else {
3271 error_setg(errp, "Bad value for \"ic-mode\" property");
3275 static char *spapr_get_host_model(Object *obj, Error **errp)
3277 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3279 return g_strdup(spapr->host_model);
3282 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3284 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3286 g_free(spapr->host_model);
3287 spapr->host_model = g_strdup(value);
3290 static char *spapr_get_host_serial(Object *obj, Error **errp)
3292 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3294 return g_strdup(spapr->host_serial);
3297 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3299 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3301 g_free(spapr->host_serial);
3302 spapr->host_serial = g_strdup(value);
3305 static void spapr_instance_init(Object *obj)
3307 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3308 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3310 spapr->htab_fd = -1;
3311 spapr->use_hotplug_event_source = true;
3312 object_property_add_str(obj, "kvm-type",
3313 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3314 object_property_set_description(obj, "kvm-type",
3315 "Specifies the KVM virtualization mode (HV, PR)",
3316 NULL);
3317 object_property_add_bool(obj, "modern-hotplug-events",
3318 spapr_get_modern_hotplug_events,
3319 spapr_set_modern_hotplug_events,
3320 NULL);
3321 object_property_set_description(obj, "modern-hotplug-events",
3322 "Use dedicated hotplug event mechanism in"
3323 " place of standard EPOW events when possible"
3324 " (required for memory hot-unplug support)",
3325 NULL);
3326 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3327 "Maximum permitted CPU compatibility mode",
3328 &error_fatal);
3330 object_property_add_str(obj, "resize-hpt",
3331 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3332 object_property_set_description(obj, "resize-hpt",
3333 "Resizing of the Hash Page Table (enabled, disabled, required)",
3334 NULL);
3335 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3336 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3337 object_property_set_description(obj, "vsmt",
3338 "Virtual SMT: KVM behaves as if this were"
3339 " the host's SMT mode", &error_abort);
3340 object_property_add_bool(obj, "vfio-no-msix-emulation",
3341 spapr_get_msix_emulation, NULL, NULL);
3343 /* The machine class defines the default interrupt controller mode */
3344 spapr->irq = smc->irq;
3345 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3346 spapr_set_ic_mode, NULL);
3347 object_property_set_description(obj, "ic-mode",
3348 "Specifies the interrupt controller mode (xics, xive, dual)",
3349 NULL);
3351 object_property_add_str(obj, "host-model",
3352 spapr_get_host_model, spapr_set_host_model,
3353 &error_abort);
3354 object_property_set_description(obj, "host-model",
3355 "Set host's model-id to use - none|passthrough|string", &error_abort);
3356 object_property_add_str(obj, "host-serial",
3357 spapr_get_host_serial, spapr_set_host_serial,
3358 &error_abort);
3359 object_property_set_description(obj, "host-serial",
3360 "Set host's system-id to use - none|passthrough|string", &error_abort);
3363 static void spapr_machine_finalizefn(Object *obj)
3365 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3367 g_free(spapr->kvm_type);
3370 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3372 cpu_synchronize_state(cs);
3373 ppc_cpu_do_system_reset(cs);
3376 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3378 CPUState *cs;
3380 CPU_FOREACH(cs) {
3381 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3385 int spapr_lmb_dt_populate(sPAPRDRConnector *drc, sPAPRMachineState *spapr,
3386 void *fdt, int *fdt_start_offset, Error **errp)
3388 uint64_t addr;
3389 uint32_t node;
3391 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3392 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3393 &error_abort);
3394 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3395 SPAPR_MEMORY_BLOCK_SIZE);
3396 return 0;
3399 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3400 bool dedicated_hp_event_source, Error **errp)
3402 sPAPRDRConnector *drc;
3403 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3404 int i;
3405 uint64_t addr = addr_start;
3406 bool hotplugged = spapr_drc_hotplugged(dev);
3407 Error *local_err = NULL;
3409 for (i = 0; i < nr_lmbs; i++) {
3410 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3411 addr / SPAPR_MEMORY_BLOCK_SIZE);
3412 g_assert(drc);
3414 spapr_drc_attach(drc, dev, &local_err);
3415 if (local_err) {
3416 while (addr > addr_start) {
3417 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3419 addr / SPAPR_MEMORY_BLOCK_SIZE);
3420 spapr_drc_detach(drc);
3422 error_propagate(errp, local_err);
3423 return;
3425 if (!hotplugged) {
3426 spapr_drc_reset(drc);
3428 addr += SPAPR_MEMORY_BLOCK_SIZE;
3430 /* send hotplug notification to the
3431 * guest only in case of hotplugged memory
3433 if (hotplugged) {
3434 if (dedicated_hp_event_source) {
3435 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3436 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3437 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3438 nr_lmbs,
3439 spapr_drc_index(drc));
3440 } else {
3441 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3442 nr_lmbs);
3447 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3448 Error **errp)
3450 Error *local_err = NULL;
3451 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3452 PCDIMMDevice *dimm = PC_DIMM(dev);
3453 uint64_t size, addr;
3455 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3457 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3458 if (local_err) {
3459 goto out;
3462 addr = object_property_get_uint(OBJECT(dimm),
3463 PC_DIMM_ADDR_PROP, &local_err);
3464 if (local_err) {
3465 goto out_unplug;
3468 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3469 &local_err);
3470 if (local_err) {
3471 goto out_unplug;
3474 return;
3476 out_unplug:
3477 pc_dimm_unplug(dimm, MACHINE(ms));
3478 out:
3479 error_propagate(errp, local_err);
3482 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3483 Error **errp)
3485 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3486 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3487 PCDIMMDevice *dimm = PC_DIMM(dev);
3488 Error *local_err = NULL;
3489 uint64_t size;
3490 Object *memdev;
3491 hwaddr pagesize;
3493 if (!smc->dr_lmb_enabled) {
3494 error_setg(errp, "Memory hotplug not supported for this machine");
3495 return;
3498 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3499 if (local_err) {
3500 error_propagate(errp, local_err);
3501 return;
3504 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3505 error_setg(errp, "Hotplugged memory size must be a multiple of "
3506 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3507 return;
3510 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3511 &error_abort);
3512 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3513 spapr_check_pagesize(spapr, pagesize, &local_err);
3514 if (local_err) {
3515 error_propagate(errp, local_err);
3516 return;
3519 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3522 struct sPAPRDIMMState {
3523 PCDIMMDevice *dimm;
3524 uint32_t nr_lmbs;
3525 QTAILQ_ENTRY(sPAPRDIMMState) next;
3528 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3529 PCDIMMDevice *dimm)
3531 sPAPRDIMMState *dimm_state = NULL;
3533 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3534 if (dimm_state->dimm == dimm) {
3535 break;
3538 return dimm_state;
3541 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3542 uint32_t nr_lmbs,
3543 PCDIMMDevice *dimm)
3545 sPAPRDIMMState *ds = NULL;
3548 * If this request is for a DIMM whose removal had failed earlier
3549 * (due to guest's refusal to remove the LMBs), we would have this
3550 * dimm already in the pending_dimm_unplugs list. In that
3551 * case don't add again.
3553 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3554 if (!ds) {
3555 ds = g_malloc0(sizeof(sPAPRDIMMState));
3556 ds->nr_lmbs = nr_lmbs;
3557 ds->dimm = dimm;
3558 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3560 return ds;
3563 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3564 sPAPRDIMMState *dimm_state)
3566 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3567 g_free(dimm_state);
3570 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3571 PCDIMMDevice *dimm)
3573 sPAPRDRConnector *drc;
3574 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3575 &error_abort);
3576 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3577 uint32_t avail_lmbs = 0;
3578 uint64_t addr_start, addr;
3579 int i;
3581 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3582 &error_abort);
3584 addr = addr_start;
3585 for (i = 0; i < nr_lmbs; i++) {
3586 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3587 addr / SPAPR_MEMORY_BLOCK_SIZE);
3588 g_assert(drc);
3589 if (drc->dev) {
3590 avail_lmbs++;
3592 addr += SPAPR_MEMORY_BLOCK_SIZE;
3595 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3598 /* Callback to be called during DRC release. */
3599 void spapr_lmb_release(DeviceState *dev)
3601 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3602 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3603 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3605 /* This information will get lost if a migration occurs
3606 * during the unplug process. In this case recover it. */
3607 if (ds == NULL) {
3608 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3609 g_assert(ds);
3610 /* The DRC being examined by the caller at least must be counted */
3611 g_assert(ds->nr_lmbs);
3614 if (--ds->nr_lmbs) {
3615 return;
3619 * Now that all the LMBs have been removed by the guest, call the
3620 * unplug handler chain. This can never fail.
3622 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3623 object_unparent(OBJECT(dev));
3626 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3628 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3629 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3631 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3632 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3633 spapr_pending_dimm_unplugs_remove(spapr, ds);
3636 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3637 DeviceState *dev, Error **errp)
3639 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3640 Error *local_err = NULL;
3641 PCDIMMDevice *dimm = PC_DIMM(dev);
3642 uint32_t nr_lmbs;
3643 uint64_t size, addr_start, addr;
3644 int i;
3645 sPAPRDRConnector *drc;
3647 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3648 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3650 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3651 &local_err);
3652 if (local_err) {
3653 goto out;
3657 * An existing pending dimm state for this DIMM means that there is an
3658 * unplug operation in progress, waiting for the spapr_lmb_release
3659 * callback to complete the job (BQL can't cover that far). In this case,
3660 * bail out to avoid detaching DRCs that were already released.
3662 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3663 error_setg(&local_err,
3664 "Memory unplug already in progress for device %s",
3665 dev->id);
3666 goto out;
3669 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3671 addr = addr_start;
3672 for (i = 0; i < nr_lmbs; i++) {
3673 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3674 addr / SPAPR_MEMORY_BLOCK_SIZE);
3675 g_assert(drc);
3677 spapr_drc_detach(drc);
3678 addr += SPAPR_MEMORY_BLOCK_SIZE;
3681 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3682 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3683 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3684 nr_lmbs, spapr_drc_index(drc));
3685 out:
3686 error_propagate(errp, local_err);
3689 /* Callback to be called during DRC release. */
3690 void spapr_core_release(DeviceState *dev)
3692 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3694 /* Call the unplug handler chain. This can never fail. */
3695 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3696 object_unparent(OBJECT(dev));
3699 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3701 MachineState *ms = MACHINE(hotplug_dev);
3702 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3703 CPUCore *cc = CPU_CORE(dev);
3704 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3706 if (smc->pre_2_10_has_unused_icps) {
3707 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3708 int i;
3710 for (i = 0; i < cc->nr_threads; i++) {
3711 CPUState *cs = CPU(sc->threads[i]);
3713 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3717 assert(core_slot);
3718 core_slot->cpu = NULL;
3719 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3722 static
3723 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3724 Error **errp)
3726 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3727 int index;
3728 sPAPRDRConnector *drc;
3729 CPUCore *cc = CPU_CORE(dev);
3731 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3732 error_setg(errp, "Unable to find CPU core with core-id: %d",
3733 cc->core_id);
3734 return;
3736 if (index == 0) {
3737 error_setg(errp, "Boot CPU core may not be unplugged");
3738 return;
3741 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3742 spapr_vcpu_id(spapr, cc->core_id));
3743 g_assert(drc);
3745 spapr_drc_detach(drc);
3747 spapr_hotplug_req_remove_by_index(drc);
3750 int spapr_core_dt_populate(sPAPRDRConnector *drc, sPAPRMachineState *spapr,
3751 void *fdt, int *fdt_start_offset, Error **errp)
3753 sPAPRCPUCore *core = SPAPR_CPU_CORE(drc->dev);
3754 CPUState *cs = CPU(core->threads[0]);
3755 PowerPCCPU *cpu = POWERPC_CPU(cs);
3756 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3757 int id = spapr_get_vcpu_id(cpu);
3758 char *nodename;
3759 int offset;
3761 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3762 offset = fdt_add_subnode(fdt, 0, nodename);
3763 g_free(nodename);
3765 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3767 *fdt_start_offset = offset;
3768 return 0;
3771 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3772 Error **errp)
3774 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3775 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3776 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3777 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3778 CPUCore *cc = CPU_CORE(dev);
3779 CPUState *cs;
3780 sPAPRDRConnector *drc;
3781 Error *local_err = NULL;
3782 CPUArchId *core_slot;
3783 int index;
3784 bool hotplugged = spapr_drc_hotplugged(dev);
3786 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3787 if (!core_slot) {
3788 error_setg(errp, "Unable to find CPU core with core-id: %d",
3789 cc->core_id);
3790 return;
3792 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3793 spapr_vcpu_id(spapr, cc->core_id));
3795 g_assert(drc || !mc->has_hotpluggable_cpus);
3797 if (drc) {
3798 spapr_drc_attach(drc, dev, &local_err);
3799 if (local_err) {
3800 error_propagate(errp, local_err);
3801 return;
3804 if (hotplugged) {
3806 * Send hotplug notification interrupt to the guest only
3807 * in case of hotplugged CPUs.
3809 spapr_hotplug_req_add_by_index(drc);
3810 } else {
3811 spapr_drc_reset(drc);
3815 core_slot->cpu = OBJECT(dev);
3817 if (smc->pre_2_10_has_unused_icps) {
3818 int i;
3820 for (i = 0; i < cc->nr_threads; i++) {
3821 cs = CPU(core->threads[i]);
3822 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3827 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3828 Error **errp)
3830 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3831 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3832 Error *local_err = NULL;
3833 CPUCore *cc = CPU_CORE(dev);
3834 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3835 const char *type = object_get_typename(OBJECT(dev));
3836 CPUArchId *core_slot;
3837 int index;
3839 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3840 error_setg(&local_err, "CPU hotplug not supported for this machine");
3841 goto out;
3844 if (strcmp(base_core_type, type)) {
3845 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3846 goto out;
3849 if (cc->core_id % smp_threads) {
3850 error_setg(&local_err, "invalid core id %d", cc->core_id);
3851 goto out;
3855 * In general we should have homogeneous threads-per-core, but old
3856 * (pre hotplug support) machine types allow the last core to have
3857 * reduced threads as a compatibility hack for when we allowed
3858 * total vcpus not a multiple of threads-per-core.
3860 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3861 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3862 cc->nr_threads, smp_threads);
3863 goto out;
3866 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3867 if (!core_slot) {
3868 error_setg(&local_err, "core id %d out of range", cc->core_id);
3869 goto out;
3872 if (core_slot->cpu) {
3873 error_setg(&local_err, "core %d already populated", cc->core_id);
3874 goto out;
3877 numa_cpu_pre_plug(core_slot, dev, &local_err);
3879 out:
3880 error_propagate(errp, local_err);
3883 int spapr_phb_dt_populate(sPAPRDRConnector *drc, sPAPRMachineState *spapr,
3884 void *fdt, int *fdt_start_offset, Error **errp)
3886 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3887 int intc_phandle;
3889 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3890 if (intc_phandle <= 0) {
3891 return -1;
3894 if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3895 fdt_start_offset)) {
3896 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3897 return -1;
3900 /* generally SLOF creates these, for hotplug it's up to QEMU */
3901 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3903 return 0;
3906 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3907 Error **errp)
3909 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3910 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3911 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3912 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3914 if (dev->hotplugged && !smc->dr_phb_enabled) {
3915 error_setg(errp, "PHB hotplug not supported for this machine");
3916 return;
3919 if (sphb->index == (uint32_t)-1) {
3920 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3921 return;
3925 * This will check that sphb->index doesn't exceed the maximum number of
3926 * PHBs for the current machine type.
3928 smc->phb_placement(spapr, sphb->index,
3929 &sphb->buid, &sphb->io_win_addr,
3930 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3931 windows_supported, sphb->dma_liobn, errp);
3934 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3935 Error **errp)
3937 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3938 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3939 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3940 sPAPRDRConnector *drc;
3941 bool hotplugged = spapr_drc_hotplugged(dev);
3942 Error *local_err = NULL;
3944 if (!smc->dr_phb_enabled) {
3945 return;
3948 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3949 /* hotplug hooks should check it's enabled before getting this far */
3950 assert(drc);
3952 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3953 if (local_err) {
3954 error_propagate(errp, local_err);
3955 return;
3958 if (hotplugged) {
3959 spapr_hotplug_req_add_by_index(drc);
3960 } else {
3961 spapr_drc_reset(drc);
3965 void spapr_phb_release(DeviceState *dev)
3967 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3969 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3970 object_unparent(OBJECT(dev));
3973 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3975 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3978 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3979 DeviceState *dev, Error **errp)
3981 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3982 sPAPRDRConnector *drc;
3984 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3985 assert(drc);
3987 if (!spapr_drc_unplug_requested(drc)) {
3988 spapr_drc_detach(drc);
3989 spapr_hotplug_req_remove_by_index(drc);
3993 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3994 DeviceState *dev, Error **errp)
3996 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3997 spapr_memory_plug(hotplug_dev, dev, errp);
3998 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3999 spapr_core_plug(hotplug_dev, dev, errp);
4000 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4001 spapr_phb_plug(hotplug_dev, dev, errp);
4005 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4006 DeviceState *dev, Error **errp)
4008 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4009 spapr_memory_unplug(hotplug_dev, dev);
4010 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4011 spapr_core_unplug(hotplug_dev, dev);
4012 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4013 spapr_phb_unplug(hotplug_dev, dev);
4017 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4018 DeviceState *dev, Error **errp)
4020 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4021 MachineClass *mc = MACHINE_GET_CLASS(sms);
4022 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4024 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4025 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4026 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4027 } else {
4028 /* NOTE: this means there is a window after guest reset, prior to
4029 * CAS negotiation, where unplug requests will fail due to the
4030 * capability not being detected yet. This is a bit different than
4031 * the case with PCI unplug, where the events will be queued and
4032 * eventually handled by the guest after boot
4034 error_setg(errp, "Memory hot unplug not supported for this guest");
4036 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4037 if (!mc->has_hotpluggable_cpus) {
4038 error_setg(errp, "CPU hot unplug not supported on this machine");
4039 return;
4041 spapr_core_unplug_request(hotplug_dev, dev, errp);
4042 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4043 if (!smc->dr_phb_enabled) {
4044 error_setg(errp, "PHB hot unplug not supported on this machine");
4045 return;
4047 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4051 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4052 DeviceState *dev, Error **errp)
4054 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4055 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4056 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4057 spapr_core_pre_plug(hotplug_dev, dev, errp);
4058 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4059 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4063 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4064 DeviceState *dev)
4066 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4067 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4068 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4069 return HOTPLUG_HANDLER(machine);
4071 return NULL;
4074 static CpuInstanceProperties
4075 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4077 CPUArchId *core_slot;
4078 MachineClass *mc = MACHINE_GET_CLASS(machine);
4080 /* make sure possible_cpu are intialized */
4081 mc->possible_cpu_arch_ids(machine);
4082 /* get CPU core slot containing thread that matches cpu_index */
4083 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4084 assert(core_slot);
4085 return core_slot->props;
4088 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4090 return idx / smp_cores % nb_numa_nodes;
4093 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4095 int i;
4096 const char *core_type;
4097 int spapr_max_cores = max_cpus / smp_threads;
4098 MachineClass *mc = MACHINE_GET_CLASS(machine);
4100 if (!mc->has_hotpluggable_cpus) {
4101 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4103 if (machine->possible_cpus) {
4104 assert(machine->possible_cpus->len == spapr_max_cores);
4105 return machine->possible_cpus;
4108 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4109 if (!core_type) {
4110 error_report("Unable to find sPAPR CPU Core definition");
4111 exit(1);
4114 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4115 sizeof(CPUArchId) * spapr_max_cores);
4116 machine->possible_cpus->len = spapr_max_cores;
4117 for (i = 0; i < machine->possible_cpus->len; i++) {
4118 int core_id = i * smp_threads;
4120 machine->possible_cpus->cpus[i].type = core_type;
4121 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4122 machine->possible_cpus->cpus[i].arch_id = core_id;
4123 machine->possible_cpus->cpus[i].props.has_core_id = true;
4124 machine->possible_cpus->cpus[i].props.core_id = core_id;
4126 return machine->possible_cpus;
4129 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
4130 uint64_t *buid, hwaddr *pio,
4131 hwaddr *mmio32, hwaddr *mmio64,
4132 unsigned n_dma, uint32_t *liobns, Error **errp)
4135 * New-style PHB window placement.
4137 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4138 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4139 * windows.
4141 * Some guest kernels can't work with MMIO windows above 1<<46
4142 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4144 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4145 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4146 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4147 * 1TiB 64-bit MMIO windows for each PHB.
4149 const uint64_t base_buid = 0x800000020000000ULL;
4150 int i;
4152 /* Sanity check natural alignments */
4153 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4154 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4155 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4156 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4157 /* Sanity check bounds */
4158 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4159 SPAPR_PCI_MEM32_WIN_SIZE);
4160 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4161 SPAPR_PCI_MEM64_WIN_SIZE);
4163 if (index >= SPAPR_MAX_PHBS) {
4164 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4165 SPAPR_MAX_PHBS - 1);
4166 return;
4169 *buid = base_buid + index;
4170 for (i = 0; i < n_dma; ++i) {
4171 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4174 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4175 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4176 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4179 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4181 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
4183 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4186 static void spapr_ics_resend(XICSFabric *dev)
4188 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
4190 ics_resend(spapr->ics);
4193 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4195 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4197 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4200 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4201 Monitor *mon)
4203 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
4205 spapr->irq->print_info(spapr, mon);
4208 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4210 return cpu->vcpu_id;
4213 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4215 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4216 int vcpu_id;
4218 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4220 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4221 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4222 error_append_hint(errp, "Adjust the number of cpus to %d "
4223 "or try to raise the number of threads per core\n",
4224 vcpu_id * smp_threads / spapr->vsmt);
4225 return;
4228 cpu->vcpu_id = vcpu_id;
4231 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4233 CPUState *cs;
4235 CPU_FOREACH(cs) {
4236 PowerPCCPU *cpu = POWERPC_CPU(cs);
4238 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4239 return cpu;
4243 return NULL;
4246 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4248 MachineClass *mc = MACHINE_CLASS(oc);
4249 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4250 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4251 NMIClass *nc = NMI_CLASS(oc);
4252 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4253 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4254 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4255 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4257 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4258 mc->ignore_boot_device_suffixes = true;
4261 * We set up the default / latest behaviour here. The class_init
4262 * functions for the specific versioned machine types can override
4263 * these details for backwards compatibility
4265 mc->init = spapr_machine_init;
4266 mc->reset = spapr_machine_reset;
4267 mc->block_default_type = IF_SCSI;
4268 mc->max_cpus = 1024;
4269 mc->no_parallel = 1;
4270 mc->default_boot_order = "";
4271 mc->default_ram_size = 512 * MiB;
4272 mc->default_display = "std";
4273 mc->kvm_type = spapr_kvm_type;
4274 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4275 mc->pci_allow_0_address = true;
4276 assert(!mc->get_hotplug_handler);
4277 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4278 hc->pre_plug = spapr_machine_device_pre_plug;
4279 hc->plug = spapr_machine_device_plug;
4280 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4281 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4282 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4283 hc->unplug_request = spapr_machine_device_unplug_request;
4284 hc->unplug = spapr_machine_device_unplug;
4286 smc->dr_lmb_enabled = true;
4287 smc->update_dt_enabled = true;
4288 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4289 mc->has_hotpluggable_cpus = true;
4290 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4291 fwc->get_dev_path = spapr_get_fw_dev_path;
4292 nc->nmi_monitor_handler = spapr_nmi;
4293 smc->phb_placement = spapr_phb_placement;
4294 vhc->hypercall = emulate_spapr_hypercall;
4295 vhc->hpt_mask = spapr_hpt_mask;
4296 vhc->map_hptes = spapr_map_hptes;
4297 vhc->unmap_hptes = spapr_unmap_hptes;
4298 vhc->store_hpte = spapr_store_hpte;
4299 vhc->get_pate = spapr_get_pate;
4300 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4301 xic->ics_get = spapr_ics_get;
4302 xic->ics_resend = spapr_ics_resend;
4303 xic->icp_get = spapr_icp_get;
4304 ispc->print_info = spapr_pic_print_info;
4305 /* Force NUMA node memory size to be a multiple of
4306 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4307 * in which LMBs are represented and hot-added
4309 mc->numa_mem_align_shift = 28;
4311 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4312 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4313 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4314 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4315 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4316 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4317 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4318 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4319 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4320 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4321 spapr_caps_add_properties(smc, &error_abort);
4322 smc->irq = &spapr_irq_xics;
4323 smc->dr_phb_enabled = true;
4326 static const TypeInfo spapr_machine_info = {
4327 .name = TYPE_SPAPR_MACHINE,
4328 .parent = TYPE_MACHINE,
4329 .abstract = true,
4330 .instance_size = sizeof(sPAPRMachineState),
4331 .instance_init = spapr_instance_init,
4332 .instance_finalize = spapr_machine_finalizefn,
4333 .class_size = sizeof(sPAPRMachineClass),
4334 .class_init = spapr_machine_class_init,
4335 .interfaces = (InterfaceInfo[]) {
4336 { TYPE_FW_PATH_PROVIDER },
4337 { TYPE_NMI },
4338 { TYPE_HOTPLUG_HANDLER },
4339 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4340 { TYPE_XICS_FABRIC },
4341 { TYPE_INTERRUPT_STATS_PROVIDER },
4346 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4347 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4348 void *data) \
4350 MachineClass *mc = MACHINE_CLASS(oc); \
4351 spapr_machine_##suffix##_class_options(mc); \
4352 if (latest) { \
4353 mc->alias = "pseries"; \
4354 mc->is_default = 1; \
4357 static const TypeInfo spapr_machine_##suffix##_info = { \
4358 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4359 .parent = TYPE_SPAPR_MACHINE, \
4360 .class_init = spapr_machine_##suffix##_class_init, \
4361 }; \
4362 static void spapr_machine_register_##suffix(void) \
4364 type_register(&spapr_machine_##suffix##_info); \
4366 type_init(spapr_machine_register_##suffix)
4369 * pseries-4.0
4371 static void spapr_machine_4_0_class_options(MachineClass *mc)
4373 /* Defaults for the latest behaviour inherited from the base class */
4376 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4379 * pseries-3.1
4381 static void spapr_machine_3_1_class_options(MachineClass *mc)
4383 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4384 static GlobalProperty compat[] = {
4385 { TYPE_SPAPR_MACHINE, "host-model", "passthrough" },
4386 { TYPE_SPAPR_MACHINE, "host-serial", "passthrough" },
4389 spapr_machine_4_0_class_options(mc);
4390 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4391 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4393 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4394 smc->update_dt_enabled = false;
4395 smc->dr_phb_enabled = false;
4396 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4397 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4398 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4399 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4402 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4405 * pseries-3.0
4408 static void spapr_machine_3_0_class_options(MachineClass *mc)
4410 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4412 spapr_machine_3_1_class_options(mc);
4413 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4415 smc->legacy_irq_allocation = true;
4416 smc->irq = &spapr_irq_xics_legacy;
4419 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4422 * pseries-2.12
4424 static void spapr_machine_2_12_class_options(MachineClass *mc)
4426 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4427 static GlobalProperty compat[] = {
4428 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4429 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4432 spapr_machine_3_0_class_options(mc);
4433 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4434 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4436 /* We depend on kvm_enabled() to choose a default value for the
4437 * hpt-max-page-size capability. Of course we can't do it here
4438 * because this is too early and the HW accelerator isn't initialzed
4439 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4441 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4444 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4446 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4448 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4450 spapr_machine_2_12_class_options(mc);
4451 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4452 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4453 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4456 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4459 * pseries-2.11
4462 static void spapr_machine_2_11_class_options(MachineClass *mc)
4464 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4466 spapr_machine_2_12_class_options(mc);
4467 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4468 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4471 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4474 * pseries-2.10
4477 static void spapr_machine_2_10_class_options(MachineClass *mc)
4479 spapr_machine_2_11_class_options(mc);
4480 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4483 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4486 * pseries-2.9
4489 static void spapr_machine_2_9_class_options(MachineClass *mc)
4491 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4492 static GlobalProperty compat[] = {
4493 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4496 spapr_machine_2_10_class_options(mc);
4497 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4498 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4499 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4500 smc->pre_2_10_has_unused_icps = true;
4501 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4504 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4507 * pseries-2.8
4510 static void spapr_machine_2_8_class_options(MachineClass *mc)
4512 static GlobalProperty compat[] = {
4513 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4516 spapr_machine_2_9_class_options(mc);
4517 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4518 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4519 mc->numa_mem_align_shift = 23;
4522 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4525 * pseries-2.7
4528 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4529 uint64_t *buid, hwaddr *pio,
4530 hwaddr *mmio32, hwaddr *mmio64,
4531 unsigned n_dma, uint32_t *liobns, Error **errp)
4533 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4534 const uint64_t base_buid = 0x800000020000000ULL;
4535 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4536 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4537 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4538 const uint32_t max_index = 255;
4539 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4541 uint64_t ram_top = MACHINE(spapr)->ram_size;
4542 hwaddr phb0_base, phb_base;
4543 int i;
4545 /* Do we have device memory? */
4546 if (MACHINE(spapr)->maxram_size > ram_top) {
4547 /* Can't just use maxram_size, because there may be an
4548 * alignment gap between normal and device memory regions
4550 ram_top = MACHINE(spapr)->device_memory->base +
4551 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4554 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4556 if (index > max_index) {
4557 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4558 max_index);
4559 return;
4562 *buid = base_buid + index;
4563 for (i = 0; i < n_dma; ++i) {
4564 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4567 phb_base = phb0_base + index * phb_spacing;
4568 *pio = phb_base + pio_offset;
4569 *mmio32 = phb_base + mmio_offset;
4571 * We don't set the 64-bit MMIO window, relying on the PHB's
4572 * fallback behaviour of automatically splitting a large "32-bit"
4573 * window into contiguous 32-bit and 64-bit windows
4577 static void spapr_machine_2_7_class_options(MachineClass *mc)
4579 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4580 static GlobalProperty compat[] = {
4581 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4582 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4583 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4584 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4587 spapr_machine_2_8_class_options(mc);
4588 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4589 mc->default_machine_opts = "modern-hotplug-events=off";
4590 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4591 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4592 smc->phb_placement = phb_placement_2_7;
4595 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4598 * pseries-2.6
4601 static void spapr_machine_2_6_class_options(MachineClass *mc)
4603 static GlobalProperty compat[] = {
4604 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4607 spapr_machine_2_7_class_options(mc);
4608 mc->has_hotpluggable_cpus = false;
4609 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4610 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4613 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4616 * pseries-2.5
4619 static void spapr_machine_2_5_class_options(MachineClass *mc)
4621 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4622 static GlobalProperty compat[] = {
4623 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4626 spapr_machine_2_6_class_options(mc);
4627 smc->use_ohci_by_default = true;
4628 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4629 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4632 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4635 * pseries-2.4
4638 static void spapr_machine_2_4_class_options(MachineClass *mc)
4640 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4642 spapr_machine_2_5_class_options(mc);
4643 smc->dr_lmb_enabled = false;
4644 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4647 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4650 * pseries-2.3
4653 static void spapr_machine_2_3_class_options(MachineClass *mc)
4655 static GlobalProperty compat[] = {
4656 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4658 spapr_machine_2_4_class_options(mc);
4659 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4660 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4662 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4665 * pseries-2.2
4668 static void spapr_machine_2_2_class_options(MachineClass *mc)
4670 static GlobalProperty compat[] = {
4671 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4674 spapr_machine_2_3_class_options(mc);
4675 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4676 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4677 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4679 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4682 * pseries-2.1
4685 static void spapr_machine_2_1_class_options(MachineClass *mc)
4687 spapr_machine_2_2_class_options(mc);
4688 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4690 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4692 static void spapr_machine_register_types(void)
4694 type_register_static(&spapr_machine_info);
4697 type_init(spapr_machine_register_types)