PPC: E500: Add FSL I2C controller and integrate RTC with it
[qemu/ar7.git] / hw / ppc / ppc.c
blobdf23a7000c968bcb2b53aeb7e506b824751473dc
1 /*
2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "hw/hw.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/cpus.h"
33 #include "qemu/log.h"
34 #include "qemu/error-report.h"
35 #include "sysemu/kvm.h"
36 #include "kvm_ppc.h"
37 #include "trace.h"
39 //#define PPC_DEBUG_IRQ
40 //#define PPC_DEBUG_TB
42 #ifdef PPC_DEBUG_IRQ
43 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
44 #else
45 # define LOG_IRQ(...) do { } while (0)
46 #endif
49 #ifdef PPC_DEBUG_TB
50 # define LOG_TB(...) qemu_log(__VA_ARGS__)
51 #else
52 # define LOG_TB(...) do { } while (0)
53 #endif
55 static void cpu_ppc_tb_stop (CPUPPCState *env);
56 static void cpu_ppc_tb_start (CPUPPCState *env);
58 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
60 CPUState *cs = CPU(cpu);
61 CPUPPCState *env = &cpu->env;
62 unsigned int old_pending;
63 bool locked = false;
65 /* We may already have the BQL if coming from the reset path */
66 if (!qemu_mutex_iothread_locked()) {
67 locked = true;
68 qemu_mutex_lock_iothread();
71 old_pending = env->pending_interrupts;
73 if (level) {
74 env->pending_interrupts |= 1 << n_IRQ;
75 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
76 } else {
77 env->pending_interrupts &= ~(1 << n_IRQ);
78 if (env->pending_interrupts == 0) {
79 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
83 if (old_pending != env->pending_interrupts) {
84 #ifdef CONFIG_KVM
85 kvmppc_set_interrupt(cpu, n_IRQ, level);
86 #endif
90 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91 "req %08x\n", __func__, env, n_IRQ, level,
92 env->pending_interrupts, CPU(cpu)->interrupt_request);
94 if (locked) {
95 qemu_mutex_unlock_iothread();
99 /* PowerPC 6xx / 7xx internal IRQ controller */
100 static void ppc6xx_set_irq(void *opaque, int pin, int level)
102 PowerPCCPU *cpu = opaque;
103 CPUPPCState *env = &cpu->env;
104 int cur_level;
106 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
107 env, pin, level);
108 cur_level = (env->irq_input_state >> pin) & 1;
109 /* Don't generate spurious events */
110 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
111 CPUState *cs = CPU(cpu);
113 switch (pin) {
114 case PPC6xx_INPUT_TBEN:
115 /* Level sensitive - active high */
116 LOG_IRQ("%s: %s the time base\n",
117 __func__, level ? "start" : "stop");
118 if (level) {
119 cpu_ppc_tb_start(env);
120 } else {
121 cpu_ppc_tb_stop(env);
123 case PPC6xx_INPUT_INT:
124 /* Level sensitive - active high */
125 LOG_IRQ("%s: set the external IRQ state to %d\n",
126 __func__, level);
127 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128 break;
129 case PPC6xx_INPUT_SMI:
130 /* Level sensitive - active high */
131 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132 __func__, level);
133 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134 break;
135 case PPC6xx_INPUT_MCP:
136 /* Negative edge sensitive */
137 /* XXX: TODO: actual reaction may depends on HID0 status
138 * 603/604/740/750: check HID0[EMCP]
140 if (cur_level == 1 && level == 0) {
141 LOG_IRQ("%s: raise machine check state\n",
142 __func__);
143 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
145 break;
146 case PPC6xx_INPUT_CKSTP_IN:
147 /* Level sensitive - active low */
148 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149 /* XXX: Note that the only way to restart the CPU is to reset it */
150 if (level) {
151 LOG_IRQ("%s: stop the CPU\n", __func__);
152 cs->halted = 1;
154 break;
155 case PPC6xx_INPUT_HRESET:
156 /* Level sensitive - active low */
157 if (level) {
158 LOG_IRQ("%s: reset the CPU\n", __func__);
159 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
161 break;
162 case PPC6xx_INPUT_SRESET:
163 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164 __func__, level);
165 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166 break;
167 default:
168 /* Unknown pin - do nothing */
169 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
170 return;
172 if (level)
173 env->irq_input_state |= 1 << pin;
174 else
175 env->irq_input_state &= ~(1 << pin);
179 void ppc6xx_irq_init(PowerPCCPU *cpu)
181 CPUPPCState *env = &cpu->env;
183 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
184 PPC6xx_INPUT_NB);
187 #if defined(TARGET_PPC64)
188 /* PowerPC 970 internal IRQ controller */
189 static void ppc970_set_irq(void *opaque, int pin, int level)
191 PowerPCCPU *cpu = opaque;
192 CPUPPCState *env = &cpu->env;
193 int cur_level;
195 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
196 env, pin, level);
197 cur_level = (env->irq_input_state >> pin) & 1;
198 /* Don't generate spurious events */
199 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
200 CPUState *cs = CPU(cpu);
202 switch (pin) {
203 case PPC970_INPUT_INT:
204 /* Level sensitive - active high */
205 LOG_IRQ("%s: set the external IRQ state to %d\n",
206 __func__, level);
207 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
208 break;
209 case PPC970_INPUT_THINT:
210 /* Level sensitive - active high */
211 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
212 level);
213 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
214 break;
215 case PPC970_INPUT_MCP:
216 /* Negative edge sensitive */
217 /* XXX: TODO: actual reaction may depends on HID0 status
218 * 603/604/740/750: check HID0[EMCP]
220 if (cur_level == 1 && level == 0) {
221 LOG_IRQ("%s: raise machine check state\n",
222 __func__);
223 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
225 break;
226 case PPC970_INPUT_CKSTP:
227 /* Level sensitive - active low */
228 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229 if (level) {
230 LOG_IRQ("%s: stop the CPU\n", __func__);
231 cs->halted = 1;
232 } else {
233 LOG_IRQ("%s: restart the CPU\n", __func__);
234 cs->halted = 0;
235 qemu_cpu_kick(cs);
237 break;
238 case PPC970_INPUT_HRESET:
239 /* Level sensitive - active low */
240 if (level) {
241 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
243 break;
244 case PPC970_INPUT_SRESET:
245 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
246 __func__, level);
247 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
248 break;
249 case PPC970_INPUT_TBEN:
250 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
251 level);
252 /* XXX: TODO */
253 break;
254 default:
255 /* Unknown pin - do nothing */
256 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
257 return;
259 if (level)
260 env->irq_input_state |= 1 << pin;
261 else
262 env->irq_input_state &= ~(1 << pin);
266 void ppc970_irq_init(PowerPCCPU *cpu)
268 CPUPPCState *env = &cpu->env;
270 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
271 PPC970_INPUT_NB);
274 /* POWER7 internal IRQ controller */
275 static void power7_set_irq(void *opaque, int pin, int level)
277 PowerPCCPU *cpu = opaque;
278 CPUPPCState *env = &cpu->env;
280 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
281 env, pin, level);
283 switch (pin) {
284 case POWER7_INPUT_INT:
285 /* Level sensitive - active high */
286 LOG_IRQ("%s: set the external IRQ state to %d\n",
287 __func__, level);
288 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
289 break;
290 default:
291 /* Unknown pin - do nothing */
292 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
293 return;
295 if (level) {
296 env->irq_input_state |= 1 << pin;
297 } else {
298 env->irq_input_state &= ~(1 << pin);
302 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
304 CPUPPCState *env = &cpu->env;
306 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
307 POWER7_INPUT_NB);
310 /* POWER9 internal IRQ controller */
311 static void power9_set_irq(void *opaque, int pin, int level)
313 PowerPCCPU *cpu = opaque;
314 CPUPPCState *env = &cpu->env;
316 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
317 env, pin, level);
319 switch (pin) {
320 case POWER9_INPUT_INT:
321 /* Level sensitive - active high */
322 LOG_IRQ("%s: set the external IRQ state to %d\n",
323 __func__, level);
324 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
325 break;
326 case POWER9_INPUT_HINT:
327 /* Level sensitive - active high */
328 LOG_IRQ("%s: set the external IRQ state to %d\n",
329 __func__, level);
330 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
331 break;
332 default:
333 /* Unknown pin - do nothing */
334 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
335 return;
337 if (level) {
338 env->irq_input_state |= 1 << pin;
339 } else {
340 env->irq_input_state &= ~(1 << pin);
344 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
346 CPUPPCState *env = &cpu->env;
348 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
349 POWER9_INPUT_NB);
351 #endif /* defined(TARGET_PPC64) */
353 void ppc40x_core_reset(PowerPCCPU *cpu)
355 CPUPPCState *env = &cpu->env;
356 target_ulong dbsr;
358 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
359 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
360 dbsr = env->spr[SPR_40x_DBSR];
361 dbsr &= ~0x00000300;
362 dbsr |= 0x00000100;
363 env->spr[SPR_40x_DBSR] = dbsr;
366 void ppc40x_chip_reset(PowerPCCPU *cpu)
368 CPUPPCState *env = &cpu->env;
369 target_ulong dbsr;
371 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
372 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
373 /* XXX: TODO reset all internal peripherals */
374 dbsr = env->spr[SPR_40x_DBSR];
375 dbsr &= ~0x00000300;
376 dbsr |= 0x00000200;
377 env->spr[SPR_40x_DBSR] = dbsr;
380 void ppc40x_system_reset(PowerPCCPU *cpu)
382 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
383 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
386 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
388 PowerPCCPU *cpu = ppc_env_get_cpu(env);
390 switch ((val >> 28) & 0x3) {
391 case 0x0:
392 /* No action */
393 break;
394 case 0x1:
395 /* Core reset */
396 ppc40x_core_reset(cpu);
397 break;
398 case 0x2:
399 /* Chip reset */
400 ppc40x_chip_reset(cpu);
401 break;
402 case 0x3:
403 /* System reset */
404 ppc40x_system_reset(cpu);
405 break;
409 /* PowerPC 40x internal IRQ controller */
410 static void ppc40x_set_irq(void *opaque, int pin, int level)
412 PowerPCCPU *cpu = opaque;
413 CPUPPCState *env = &cpu->env;
414 int cur_level;
416 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
417 env, pin, level);
418 cur_level = (env->irq_input_state >> pin) & 1;
419 /* Don't generate spurious events */
420 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
421 CPUState *cs = CPU(cpu);
423 switch (pin) {
424 case PPC40x_INPUT_RESET_SYS:
425 if (level) {
426 LOG_IRQ("%s: reset the PowerPC system\n",
427 __func__);
428 ppc40x_system_reset(cpu);
430 break;
431 case PPC40x_INPUT_RESET_CHIP:
432 if (level) {
433 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
434 ppc40x_chip_reset(cpu);
436 break;
437 case PPC40x_INPUT_RESET_CORE:
438 /* XXX: TODO: update DBSR[MRR] */
439 if (level) {
440 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
441 ppc40x_core_reset(cpu);
443 break;
444 case PPC40x_INPUT_CINT:
445 /* Level sensitive - active high */
446 LOG_IRQ("%s: set the critical IRQ state to %d\n",
447 __func__, level);
448 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
449 break;
450 case PPC40x_INPUT_INT:
451 /* Level sensitive - active high */
452 LOG_IRQ("%s: set the external IRQ state to %d\n",
453 __func__, level);
454 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
455 break;
456 case PPC40x_INPUT_HALT:
457 /* Level sensitive - active low */
458 if (level) {
459 LOG_IRQ("%s: stop the CPU\n", __func__);
460 cs->halted = 1;
461 } else {
462 LOG_IRQ("%s: restart the CPU\n", __func__);
463 cs->halted = 0;
464 qemu_cpu_kick(cs);
466 break;
467 case PPC40x_INPUT_DEBUG:
468 /* Level sensitive - active high */
469 LOG_IRQ("%s: set the debug pin state to %d\n",
470 __func__, level);
471 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
472 break;
473 default:
474 /* Unknown pin - do nothing */
475 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
476 return;
478 if (level)
479 env->irq_input_state |= 1 << pin;
480 else
481 env->irq_input_state &= ~(1 << pin);
485 void ppc40x_irq_init(PowerPCCPU *cpu)
487 CPUPPCState *env = &cpu->env;
489 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
490 cpu, PPC40x_INPUT_NB);
493 /* PowerPC E500 internal IRQ controller */
494 static void ppce500_set_irq(void *opaque, int pin, int level)
496 PowerPCCPU *cpu = opaque;
497 CPUPPCState *env = &cpu->env;
498 int cur_level;
500 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
501 env, pin, level);
502 cur_level = (env->irq_input_state >> pin) & 1;
503 /* Don't generate spurious events */
504 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
505 switch (pin) {
506 case PPCE500_INPUT_MCK:
507 if (level) {
508 LOG_IRQ("%s: reset the PowerPC system\n",
509 __func__);
510 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
512 break;
513 case PPCE500_INPUT_RESET_CORE:
514 if (level) {
515 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
516 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
518 break;
519 case PPCE500_INPUT_CINT:
520 /* Level sensitive - active high */
521 LOG_IRQ("%s: set the critical IRQ state to %d\n",
522 __func__, level);
523 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
524 break;
525 case PPCE500_INPUT_INT:
526 /* Level sensitive - active high */
527 LOG_IRQ("%s: set the core IRQ state to %d\n",
528 __func__, level);
529 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
530 break;
531 case PPCE500_INPUT_DEBUG:
532 /* Level sensitive - active high */
533 LOG_IRQ("%s: set the debug pin state to %d\n",
534 __func__, level);
535 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
536 break;
537 default:
538 /* Unknown pin - do nothing */
539 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
540 return;
542 if (level)
543 env->irq_input_state |= 1 << pin;
544 else
545 env->irq_input_state &= ~(1 << pin);
549 void ppce500_irq_init(PowerPCCPU *cpu)
551 CPUPPCState *env = &cpu->env;
553 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
554 cpu, PPCE500_INPUT_NB);
557 /* Enable or Disable the E500 EPR capability */
558 void ppce500_set_mpic_proxy(bool enabled)
560 CPUState *cs;
562 CPU_FOREACH(cs) {
563 PowerPCCPU *cpu = POWERPC_CPU(cs);
565 cpu->env.mpic_proxy = enabled;
566 if (kvm_enabled()) {
567 kvmppc_set_mpic_proxy(cpu, enabled);
572 /*****************************************************************************/
573 /* PowerPC time base and decrementer emulation */
575 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
577 /* TB time in tb periods */
578 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
581 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
583 ppc_tb_t *tb_env = env->tb_env;
584 uint64_t tb;
586 if (kvm_enabled()) {
587 return env->spr[SPR_TBL];
590 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
591 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
593 return tb;
596 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
598 ppc_tb_t *tb_env = env->tb_env;
599 uint64_t tb;
601 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
602 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
604 return tb >> 32;
607 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
609 if (kvm_enabled()) {
610 return env->spr[SPR_TBU];
613 return _cpu_ppc_load_tbu(env);
616 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
617 int64_t *tb_offsetp, uint64_t value)
619 *tb_offsetp = value -
620 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
622 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
623 __func__, value, *tb_offsetp);
626 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
628 ppc_tb_t *tb_env = env->tb_env;
629 uint64_t tb;
631 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
632 tb &= 0xFFFFFFFF00000000ULL;
633 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
634 &tb_env->tb_offset, tb | (uint64_t)value);
637 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
639 ppc_tb_t *tb_env = env->tb_env;
640 uint64_t tb;
642 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
643 tb &= 0x00000000FFFFFFFFULL;
644 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
645 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
648 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
650 _cpu_ppc_store_tbu(env, value);
653 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
655 ppc_tb_t *tb_env = env->tb_env;
656 uint64_t tb;
658 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
659 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
661 return tb;
664 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
666 ppc_tb_t *tb_env = env->tb_env;
667 uint64_t tb;
669 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
670 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
672 return tb >> 32;
675 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
677 ppc_tb_t *tb_env = env->tb_env;
678 uint64_t tb;
680 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
681 tb &= 0xFFFFFFFF00000000ULL;
682 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
683 &tb_env->atb_offset, tb | (uint64_t)value);
686 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
688 ppc_tb_t *tb_env = env->tb_env;
689 uint64_t tb;
691 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
692 tb &= 0x00000000FFFFFFFFULL;
693 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
694 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
697 static void cpu_ppc_tb_stop (CPUPPCState *env)
699 ppc_tb_t *tb_env = env->tb_env;
700 uint64_t tb, atb, vmclk;
702 /* If the time base is already frozen, do nothing */
703 if (tb_env->tb_freq != 0) {
704 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
705 /* Get the time base */
706 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
707 /* Get the alternate time base */
708 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
709 /* Store the time base value (ie compute the current offset) */
710 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
711 /* Store the alternate time base value (compute the current offset) */
712 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
713 /* Set the time base frequency to zero */
714 tb_env->tb_freq = 0;
715 /* Now, the time bases are frozen to tb_offset / atb_offset value */
719 static void cpu_ppc_tb_start (CPUPPCState *env)
721 ppc_tb_t *tb_env = env->tb_env;
722 uint64_t tb, atb, vmclk;
724 /* If the time base is not frozen, do nothing */
725 if (tb_env->tb_freq == 0) {
726 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
727 /* Get the time base from tb_offset */
728 tb = tb_env->tb_offset;
729 /* Get the alternate time base from atb_offset */
730 atb = tb_env->atb_offset;
731 /* Restore the tb frequency from the decrementer frequency */
732 tb_env->tb_freq = tb_env->decr_freq;
733 /* Store the time base value */
734 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
735 /* Store the alternate time base value */
736 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
740 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
742 ppc_tb_t *tb_env = env->tb_env;
743 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
744 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
747 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
749 ppc_tb_t *tb_env = env->tb_env;
750 int64_t decr, diff;
752 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
753 if (diff >= 0) {
754 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
755 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
756 decr = 0;
757 } else {
758 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
760 LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
762 return decr;
765 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
767 ppc_tb_t *tb_env = env->tb_env;
768 uint64_t decr;
770 if (kvm_enabled()) {
771 return env->spr[SPR_DECR];
774 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
777 * If large decrementer is enabled then the decrementer is signed extened
778 * to 64 bits, otherwise it is a 32 bit value.
780 if (env->spr[SPR_LPCR] & LPCR_LD) {
781 return decr;
783 return (uint32_t) decr;
786 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
788 PowerPCCPU *cpu = ppc_env_get_cpu(env);
789 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
790 ppc_tb_t *tb_env = env->tb_env;
791 uint64_t hdecr;
793 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
796 * If we have a large decrementer (POWER9 or later) then hdecr is sign
797 * extended to 64 bits, otherwise it is 32 bits.
799 if (pcc->lrg_decr_bits > 32) {
800 return hdecr;
802 return (uint32_t) hdecr;
805 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
807 ppc_tb_t *tb_env = env->tb_env;
808 uint64_t diff;
810 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
812 return tb_env->purr_load +
813 muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
816 /* When decrementer expires,
817 * all we need to do is generate or queue a CPU exception
819 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
821 /* Raise it */
822 LOG_TB("raise decrementer exception\n");
823 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
826 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
828 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
831 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
833 CPUPPCState *env = &cpu->env;
835 /* Raise it */
836 LOG_TB("raise hv decrementer exception\n");
838 /* The architecture specifies that we don't deliver HDEC
839 * interrupts in a PM state. Not only they don't cause a
840 * wakeup but they also get effectively discarded.
842 if (!env->resume_as_sreset) {
843 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
847 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
849 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
852 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
853 QEMUTimer *timer,
854 void (*raise_excp)(void *),
855 void (*lower_excp)(PowerPCCPU *),
856 target_ulong decr, target_ulong value,
857 int nr_bits)
859 CPUPPCState *env = &cpu->env;
860 ppc_tb_t *tb_env = env->tb_env;
861 uint64_t now, next;
862 bool negative;
864 /* Truncate value to decr_width and sign extend for simplicity */
865 value &= ((1ULL << nr_bits) - 1);
866 negative = !!(value & (1ULL << (nr_bits - 1)));
867 if (negative) {
868 value |= (0xFFFFFFFFULL << nr_bits);
871 LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
872 decr, value);
874 if (kvm_enabled()) {
875 /* KVM handles decrementer exceptions, we don't need our own timer */
876 return;
880 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
881 * interrupt.
883 * If we get a really small DEC value, we can assume that by the time we
884 * handled it we should inject an interrupt already.
886 * On MSB level based DEC implementations the MSB always means the interrupt
887 * is pending, so raise it on those.
889 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
890 * an edge interrupt, so raise it here too.
892 if ((value < 3) ||
893 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
894 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
895 && !(decr & (1ULL << (nr_bits - 1))))) {
896 (*raise_excp)(cpu);
897 return;
900 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
901 if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
902 (*lower_excp)(cpu);
905 /* Calculate the next timer event */
906 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
907 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
908 *nextp = next;
910 /* Adjust timer */
911 timer_mod(timer, next);
914 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
915 target_ulong value, int nr_bits)
917 ppc_tb_t *tb_env = cpu->env.tb_env;
919 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
920 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
921 value, nr_bits);
924 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
926 PowerPCCPU *cpu = ppc_env_get_cpu(env);
927 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
928 int nr_bits = 32;
930 if (env->spr[SPR_LPCR] & LPCR_LD) {
931 nr_bits = pcc->lrg_decr_bits;
934 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
937 static void cpu_ppc_decr_cb(void *opaque)
939 PowerPCCPU *cpu = opaque;
941 cpu_ppc_decr_excp(cpu);
944 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
945 target_ulong value, int nr_bits)
947 ppc_tb_t *tb_env = cpu->env.tb_env;
949 if (tb_env->hdecr_timer != NULL) {
950 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
951 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
952 hdecr, value, nr_bits);
956 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
958 PowerPCCPU *cpu = ppc_env_get_cpu(env);
959 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
961 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
962 pcc->lrg_decr_bits);
965 static void cpu_ppc_hdecr_cb(void *opaque)
967 PowerPCCPU *cpu = opaque;
969 cpu_ppc_hdecr_excp(cpu);
972 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
974 ppc_tb_t *tb_env = cpu->env.tb_env;
976 tb_env->purr_load = value;
977 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
980 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
982 CPUPPCState *env = opaque;
983 PowerPCCPU *cpu = ppc_env_get_cpu(env);
984 ppc_tb_t *tb_env = env->tb_env;
986 tb_env->tb_freq = freq;
987 tb_env->decr_freq = freq;
988 /* There is a bug in Linux 2.4 kernels:
989 * if a decrementer exception is pending when it enables msr_ee at startup,
990 * it's not ready to handle it...
992 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
993 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
994 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
997 static void timebase_save(PPCTimebase *tb)
999 uint64_t ticks = cpu_get_host_ticks();
1000 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1002 if (!first_ppc_cpu->env.tb_env) {
1003 error_report("No timebase object");
1004 return;
1007 /* not used anymore, we keep it for compatibility */
1008 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1010 * tb_offset is only expected to be changed by QEMU so
1011 * there is no need to update it from KVM here
1013 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1016 static void timebase_load(PPCTimebase *tb)
1018 CPUState *cpu;
1019 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1020 int64_t tb_off_adj, tb_off;
1021 unsigned long freq;
1023 if (!first_ppc_cpu->env.tb_env) {
1024 error_report("No timebase object");
1025 return;
1028 freq = first_ppc_cpu->env.tb_env->tb_freq;
1030 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1032 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1033 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1034 (tb_off_adj - tb_off) / freq);
1036 /* Set new offset to all CPUs */
1037 CPU_FOREACH(cpu) {
1038 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1039 pcpu->env.tb_env->tb_offset = tb_off_adj;
1040 #if defined(CONFIG_KVM)
1041 kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET,
1042 &pcpu->env.tb_env->tb_offset);
1043 #endif
1047 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1048 RunState state)
1050 PPCTimebase *tb = opaque;
1052 if (running) {
1053 timebase_load(tb);
1054 } else {
1055 timebase_save(tb);
1060 * When migrating, read the clock just before migration,
1061 * so that the guest clock counts during the events
1062 * between:
1064 * * vm_stop()
1066 * * pre_save()
1068 * This reduces clock difference on migration from 5s
1069 * to 0.1s (when max_downtime == 5s), because sending the
1070 * final pages of memory (which happens between vm_stop()
1071 * and pre_save()) takes max_downtime.
1073 static int timebase_pre_save(void *opaque)
1075 PPCTimebase *tb = opaque;
1077 timebase_save(tb);
1079 return 0;
1082 const VMStateDescription vmstate_ppc_timebase = {
1083 .name = "timebase",
1084 .version_id = 1,
1085 .minimum_version_id = 1,
1086 .minimum_version_id_old = 1,
1087 .pre_save = timebase_pre_save,
1088 .fields = (VMStateField []) {
1089 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1090 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1091 VMSTATE_END_OF_LIST()
1095 /* Set up (once) timebase frequency (in Hz) */
1096 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1098 PowerPCCPU *cpu = ppc_env_get_cpu(env);
1099 ppc_tb_t *tb_env;
1101 tb_env = g_malloc0(sizeof(ppc_tb_t));
1102 env->tb_env = tb_env;
1103 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1104 if (env->insns_flags & PPC_SEGMENT_64B) {
1105 /* All Book3S 64bit CPUs implement level based DEC logic */
1106 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1108 /* Create new timer */
1109 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1110 if (env->has_hv_mode) {
1111 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1112 cpu);
1113 } else {
1114 tb_env->hdecr_timer = NULL;
1116 cpu_ppc_set_tb_clk(env, freq);
1118 return &cpu_ppc_set_tb_clk;
1121 /* Specific helpers for POWER & PowerPC 601 RTC */
1122 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1124 _cpu_ppc_store_tbu(env, value);
1127 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1129 return _cpu_ppc_load_tbu(env);
1132 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1134 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1137 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1139 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1142 /*****************************************************************************/
1143 /* PowerPC 40x timers */
1145 /* PIT, FIT & WDT */
1146 typedef struct ppc40x_timer_t ppc40x_timer_t;
1147 struct ppc40x_timer_t {
1148 uint64_t pit_reload; /* PIT auto-reload value */
1149 uint64_t fit_next; /* Tick for next FIT interrupt */
1150 QEMUTimer *fit_timer;
1151 uint64_t wdt_next; /* Tick for next WDT interrupt */
1152 QEMUTimer *wdt_timer;
1154 /* 405 have the PIT, 440 have a DECR. */
1155 unsigned int decr_excp;
1158 /* Fixed interval timer */
1159 static void cpu_4xx_fit_cb (void *opaque)
1161 PowerPCCPU *cpu;
1162 CPUPPCState *env;
1163 ppc_tb_t *tb_env;
1164 ppc40x_timer_t *ppc40x_timer;
1165 uint64_t now, next;
1167 env = opaque;
1168 cpu = ppc_env_get_cpu(env);
1169 tb_env = env->tb_env;
1170 ppc40x_timer = tb_env->opaque;
1171 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1172 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1173 case 0:
1174 next = 1 << 9;
1175 break;
1176 case 1:
1177 next = 1 << 13;
1178 break;
1179 case 2:
1180 next = 1 << 17;
1181 break;
1182 case 3:
1183 next = 1 << 21;
1184 break;
1185 default:
1186 /* Cannot occur, but makes gcc happy */
1187 return;
1189 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1190 if (next == now)
1191 next++;
1192 timer_mod(ppc40x_timer->fit_timer, next);
1193 env->spr[SPR_40x_TSR] |= 1 << 26;
1194 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1195 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1197 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1198 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1199 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1202 /* Programmable interval timer */
1203 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1205 ppc40x_timer_t *ppc40x_timer;
1206 uint64_t now, next;
1208 ppc40x_timer = tb_env->opaque;
1209 if (ppc40x_timer->pit_reload <= 1 ||
1210 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1211 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1212 /* Stop PIT */
1213 LOG_TB("%s: stop PIT\n", __func__);
1214 timer_del(tb_env->decr_timer);
1215 } else {
1216 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1217 __func__, ppc40x_timer->pit_reload);
1218 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1219 next = now + muldiv64(ppc40x_timer->pit_reload,
1220 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1221 if (is_excp)
1222 next += tb_env->decr_next - now;
1223 if (next == now)
1224 next++;
1225 timer_mod(tb_env->decr_timer, next);
1226 tb_env->decr_next = next;
1230 static void cpu_4xx_pit_cb (void *opaque)
1232 PowerPCCPU *cpu;
1233 CPUPPCState *env;
1234 ppc_tb_t *tb_env;
1235 ppc40x_timer_t *ppc40x_timer;
1237 env = opaque;
1238 cpu = ppc_env_get_cpu(env);
1239 tb_env = env->tb_env;
1240 ppc40x_timer = tb_env->opaque;
1241 env->spr[SPR_40x_TSR] |= 1 << 27;
1242 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1243 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1245 start_stop_pit(env, tb_env, 1);
1246 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1247 "%016" PRIx64 "\n", __func__,
1248 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1249 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1250 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1251 ppc40x_timer->pit_reload);
1254 /* Watchdog timer */
1255 static void cpu_4xx_wdt_cb (void *opaque)
1257 PowerPCCPU *cpu;
1258 CPUPPCState *env;
1259 ppc_tb_t *tb_env;
1260 ppc40x_timer_t *ppc40x_timer;
1261 uint64_t now, next;
1263 env = opaque;
1264 cpu = ppc_env_get_cpu(env);
1265 tb_env = env->tb_env;
1266 ppc40x_timer = tb_env->opaque;
1267 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1268 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1269 case 0:
1270 next = 1 << 17;
1271 break;
1272 case 1:
1273 next = 1 << 21;
1274 break;
1275 case 2:
1276 next = 1 << 25;
1277 break;
1278 case 3:
1279 next = 1 << 29;
1280 break;
1281 default:
1282 /* Cannot occur, but makes gcc happy */
1283 return;
1285 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1286 if (next == now)
1287 next++;
1288 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1289 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1290 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1291 case 0x0:
1292 case 0x1:
1293 timer_mod(ppc40x_timer->wdt_timer, next);
1294 ppc40x_timer->wdt_next = next;
1295 env->spr[SPR_40x_TSR] |= 1U << 31;
1296 break;
1297 case 0x2:
1298 timer_mod(ppc40x_timer->wdt_timer, next);
1299 ppc40x_timer->wdt_next = next;
1300 env->spr[SPR_40x_TSR] |= 1 << 30;
1301 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1302 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1304 break;
1305 case 0x3:
1306 env->spr[SPR_40x_TSR] &= ~0x30000000;
1307 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1308 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1309 case 0x0:
1310 /* No reset */
1311 break;
1312 case 0x1: /* Core reset */
1313 ppc40x_core_reset(cpu);
1314 break;
1315 case 0x2: /* Chip reset */
1316 ppc40x_chip_reset(cpu);
1317 break;
1318 case 0x3: /* System reset */
1319 ppc40x_system_reset(cpu);
1320 break;
1325 void store_40x_pit (CPUPPCState *env, target_ulong val)
1327 ppc_tb_t *tb_env;
1328 ppc40x_timer_t *ppc40x_timer;
1330 tb_env = env->tb_env;
1331 ppc40x_timer = tb_env->opaque;
1332 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1333 ppc40x_timer->pit_reload = val;
1334 start_stop_pit(env, tb_env, 0);
1337 target_ulong load_40x_pit (CPUPPCState *env)
1339 return cpu_ppc_load_decr(env);
1342 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1344 CPUPPCState *env = opaque;
1345 ppc_tb_t *tb_env = env->tb_env;
1347 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1348 freq);
1349 tb_env->tb_freq = freq;
1350 tb_env->decr_freq = freq;
1351 /* XXX: we should also update all timers */
1354 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1355 unsigned int decr_excp)
1357 ppc_tb_t *tb_env;
1358 ppc40x_timer_t *ppc40x_timer;
1360 tb_env = g_malloc0(sizeof(ppc_tb_t));
1361 env->tb_env = tb_env;
1362 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1363 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1364 tb_env->tb_freq = freq;
1365 tb_env->decr_freq = freq;
1366 tb_env->opaque = ppc40x_timer;
1367 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1368 if (ppc40x_timer != NULL) {
1369 /* We use decr timer for PIT */
1370 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1371 ppc40x_timer->fit_timer =
1372 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1373 ppc40x_timer->wdt_timer =
1374 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1375 ppc40x_timer->decr_excp = decr_excp;
1378 return &ppc_40x_set_tb_clk;
1381 /*****************************************************************************/
1382 /* Embedded PowerPC Device Control Registers */
1383 typedef struct ppc_dcrn_t ppc_dcrn_t;
1384 struct ppc_dcrn_t {
1385 dcr_read_cb dcr_read;
1386 dcr_write_cb dcr_write;
1387 void *opaque;
1390 /* XXX: on 460, DCR addresses are 32 bits wide,
1391 * using DCRIPR to get the 22 upper bits of the DCR address
1393 #define DCRN_NB 1024
1394 struct ppc_dcr_t {
1395 ppc_dcrn_t dcrn[DCRN_NB];
1396 int (*read_error)(int dcrn);
1397 int (*write_error)(int dcrn);
1400 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1402 ppc_dcrn_t *dcr;
1404 if (dcrn < 0 || dcrn >= DCRN_NB)
1405 goto error;
1406 dcr = &dcr_env->dcrn[dcrn];
1407 if (dcr->dcr_read == NULL)
1408 goto error;
1409 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1411 return 0;
1413 error:
1414 if (dcr_env->read_error != NULL)
1415 return (*dcr_env->read_error)(dcrn);
1417 return -1;
1420 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1422 ppc_dcrn_t *dcr;
1424 if (dcrn < 0 || dcrn >= DCRN_NB)
1425 goto error;
1426 dcr = &dcr_env->dcrn[dcrn];
1427 if (dcr->dcr_write == NULL)
1428 goto error;
1429 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1431 return 0;
1433 error:
1434 if (dcr_env->write_error != NULL)
1435 return (*dcr_env->write_error)(dcrn);
1437 return -1;
1440 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1441 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1443 ppc_dcr_t *dcr_env;
1444 ppc_dcrn_t *dcr;
1446 dcr_env = env->dcr_env;
1447 if (dcr_env == NULL)
1448 return -1;
1449 if (dcrn < 0 || dcrn >= DCRN_NB)
1450 return -1;
1451 dcr = &dcr_env->dcrn[dcrn];
1452 if (dcr->opaque != NULL ||
1453 dcr->dcr_read != NULL ||
1454 dcr->dcr_write != NULL)
1455 return -1;
1456 dcr->opaque = opaque;
1457 dcr->dcr_read = dcr_read;
1458 dcr->dcr_write = dcr_write;
1460 return 0;
1463 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1464 int (*write_error)(int dcrn))
1466 ppc_dcr_t *dcr_env;
1468 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1469 dcr_env->read_error = read_error;
1470 dcr_env->write_error = write_error;
1471 env->dcr_env = dcr_env;
1473 return 0;
1476 /*****************************************************************************/
1477 /* Debug port */
1478 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1480 addr &= 0xF;
1481 switch (addr) {
1482 case 0:
1483 printf("%c", val);
1484 break;
1485 case 1:
1486 printf("\n");
1487 fflush(stdout);
1488 break;
1489 case 2:
1490 printf("Set loglevel to %04" PRIx32 "\n", val);
1491 qemu_set_log(val | 0x100);
1492 break;