PPC: E500: Add FSL I2C controller and integrate RTC with it
[qemu/ar7.git] / hw / net / cadence_gem.c
blob7f63411430fcc5cced3412f88abc9a22978564ac
1 /*
2 * QEMU Cadence GEM emulation
4 * Copyright (c) 2011 Xilinx, Inc.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
28 #include "hw/net/cadence_gem.h"
29 #include "qapi/error.h"
30 #include "qemu/log.h"
31 #include "sysemu/dma.h"
32 #include "net/checksum.h"
34 #ifdef CADENCE_GEM_ERR_DEBUG
35 #define DB_PRINT(...) do { \
36 fprintf(stderr, ": %s: ", __func__); \
37 fprintf(stderr, ## __VA_ARGS__); \
38 } while (0)
39 #else
40 #define DB_PRINT(...)
41 #endif
43 #define GEM_NWCTRL (0x00000000/4) /* Network Control reg */
44 #define GEM_NWCFG (0x00000004/4) /* Network Config reg */
45 #define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */
46 #define GEM_USERIO (0x0000000C/4) /* User IO reg */
47 #define GEM_DMACFG (0x00000010/4) /* DMA Control reg */
48 #define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */
49 #define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */
50 #define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */
51 #define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */
52 #define GEM_ISR (0x00000024/4) /* Interrupt Status reg */
53 #define GEM_IER (0x00000028/4) /* Interrupt Enable reg */
54 #define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */
55 #define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */
56 #define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */
57 #define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */
58 #define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */
59 #define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */
60 #define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */
61 #define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */
62 #define GEM_HASHHI (0x00000084/4) /* Hash High address reg */
63 #define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */
64 #define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */
65 #define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */
66 #define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */
67 #define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */
68 #define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */
69 #define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */
70 #define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */
71 #define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */
72 #define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */
73 #define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */
74 #define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */
75 #define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */
76 #define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */
77 #define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */
78 #define GEM_MODID (0x000000FC/4) /* Module ID reg */
79 #define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */
80 #define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */
81 #define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */
82 #define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */
83 #define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */
84 #define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */
85 #define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */
86 #define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */
87 #define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */
88 #define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */
89 #define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */
90 #define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */
91 #define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */
92 #define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */
93 #define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
94 #define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */
95 #define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
96 #define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */
97 #define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */
98 #define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */
99 #define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */
100 #define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */
101 #define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */
102 #define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */
103 #define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */
104 #define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */
105 #define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */
106 #define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */
107 #define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */
108 #define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */
109 #define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */
110 #define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
111 #define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */
112 #define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */
113 #define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */
114 #define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */
115 #define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */
116 #define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */
117 #define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */
118 #define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
119 #define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */
120 #define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */
121 #define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */
122 #define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */
123 #define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */
125 #define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */
126 #define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */
127 #define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */
128 #define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */
129 #define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
130 #define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
131 #define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */
132 #define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */
133 #define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
134 #define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
135 #define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */
136 #define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */
138 /* Design Configuration Registers */
139 #define GEM_DESCONF (0x00000280/4)
140 #define GEM_DESCONF2 (0x00000284/4)
141 #define GEM_DESCONF3 (0x00000288/4)
142 #define GEM_DESCONF4 (0x0000028C/4)
143 #define GEM_DESCONF5 (0x00000290/4)
144 #define GEM_DESCONF6 (0x00000294/4)
145 #define GEM_DESCONF6_64B_MASK (1U << 23)
146 #define GEM_DESCONF7 (0x00000298/4)
148 #define GEM_INT_Q1_STATUS (0x00000400 / 4)
149 #define GEM_INT_Q1_MASK (0x00000640 / 4)
151 #define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4)
152 #define GEM_TRANSMIT_Q7_PTR (GEM_TRANSMIT_Q1_PTR + 6)
154 #define GEM_RECEIVE_Q1_PTR (0x00000480 / 4)
155 #define GEM_RECEIVE_Q7_PTR (GEM_RECEIVE_Q1_PTR + 6)
157 #define GEM_TBQPH (0x000004C8 / 4)
158 #define GEM_RBQPH (0x000004D4 / 4)
160 #define GEM_INT_Q1_ENABLE (0x00000600 / 4)
161 #define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6)
163 #define GEM_INT_Q1_DISABLE (0x00000620 / 4)
164 #define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6)
166 #define GEM_INT_Q1_MASK (0x00000640 / 4)
167 #define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6)
169 #define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4)
171 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29)
172 #define GEM_ST1R_DSTC_ENABLE (1 << 28)
173 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12)
174 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
175 #define GEM_ST1R_DSTC_MATCH_SHIFT (4)
176 #define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
177 #define GEM_ST1R_QUEUE_SHIFT (0)
178 #define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1)
180 #define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4)
182 #define GEM_ST2R_COMPARE_A_ENABLE (1 << 18)
183 #define GEM_ST2R_COMPARE_A_SHIFT (13)
184 #define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
185 #define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12)
186 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9)
187 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
188 + 1)
189 #define GEM_ST2R_QUEUE_SHIFT (0)
190 #define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1)
192 #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4)
193 #define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4)
195 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7)
196 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
197 #define GEM_T2CW1_OFFSET_VALUE_SHIFT (0)
198 #define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
200 /*****************************************/
201 #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
202 #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
203 #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
204 #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
206 #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
207 #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */
208 #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
209 #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
210 #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
211 #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
212 #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
213 #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
215 #define GEM_DMACFG_ADDR_64B (1U << 30)
216 #define GEM_DMACFG_TX_BD_EXT (1U << 29)
217 #define GEM_DMACFG_RX_BD_EXT (1U << 28)
218 #define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */
219 #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
220 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
221 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
223 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
224 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
226 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
227 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
229 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
230 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
231 #define GEM_INT_TXUSED 0x00000008
232 #define GEM_INT_RXUSED 0x00000004
233 #define GEM_INT_RXCMPL 0x00000002
235 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
236 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
237 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
238 #define GEM_PHYMNTNC_ADDR_SHFT 23
239 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
240 #define GEM_PHYMNTNC_REG_SHIFT 18
242 /* Marvell PHY definitions */
243 #define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
245 #define PHY_REG_CONTROL 0
246 #define PHY_REG_STATUS 1
247 #define PHY_REG_PHYID1 2
248 #define PHY_REG_PHYID2 3
249 #define PHY_REG_ANEGADV 4
250 #define PHY_REG_LINKPABIL 5
251 #define PHY_REG_ANEGEXP 6
252 #define PHY_REG_NEXTP 7
253 #define PHY_REG_LINKPNEXTP 8
254 #define PHY_REG_100BTCTRL 9
255 #define PHY_REG_1000BTSTAT 10
256 #define PHY_REG_EXTSTAT 15
257 #define PHY_REG_PHYSPCFC_CTL 16
258 #define PHY_REG_PHYSPCFC_ST 17
259 #define PHY_REG_INT_EN 18
260 #define PHY_REG_INT_ST 19
261 #define PHY_REG_EXT_PHYSPCFC_CTL 20
262 #define PHY_REG_RXERR 21
263 #define PHY_REG_EACD 22
264 #define PHY_REG_LED 24
265 #define PHY_REG_LED_OVRD 25
266 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
267 #define PHY_REG_EXT_PHYSPCFC_ST 27
268 #define PHY_REG_CABLE_DIAG 28
270 #define PHY_REG_CONTROL_RST 0x8000
271 #define PHY_REG_CONTROL_LOOP 0x4000
272 #define PHY_REG_CONTROL_ANEG 0x1000
274 #define PHY_REG_STATUS_LINK 0x0004
275 #define PHY_REG_STATUS_ANEGCMPL 0x0020
277 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
278 #define PHY_REG_INT_ST_LINKC 0x0400
279 #define PHY_REG_INT_ST_ENERGY 0x0010
281 /***********************************************************************/
282 #define GEM_RX_REJECT (-1)
283 #define GEM_RX_PROMISCUOUS_ACCEPT (-2)
284 #define GEM_RX_BROADCAST_ACCEPT (-3)
285 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
286 #define GEM_RX_UNICAST_HASH_ACCEPT (-5)
288 #define GEM_RX_SAR_ACCEPT 0
290 /***********************************************************************/
292 #define DESC_1_USED 0x80000000
293 #define DESC_1_LENGTH 0x00001FFF
295 #define DESC_1_TX_WRAP 0x40000000
296 #define DESC_1_TX_LAST 0x00008000
298 #define DESC_0_RX_WRAP 0x00000002
299 #define DESC_0_RX_OWNERSHIP 0x00000001
301 #define R_DESC_1_RX_SAR_SHIFT 25
302 #define R_DESC_1_RX_SAR_LENGTH 2
303 #define R_DESC_1_RX_SAR_MATCH (1 << 27)
304 #define R_DESC_1_RX_UNICAST_HASH (1 << 29)
305 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
306 #define R_DESC_1_RX_BROADCAST (1 << 31)
308 #define DESC_1_RX_SOF 0x00004000
309 #define DESC_1_RX_EOF 0x00008000
311 #define GEM_MODID_VALUE 0x00020118
313 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
315 uint64_t ret = desc[0];
317 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
318 ret |= (uint64_t)desc[2] << 32;
320 return ret;
323 static inline unsigned tx_desc_get_used(uint32_t *desc)
325 return (desc[1] & DESC_1_USED) ? 1 : 0;
328 static inline void tx_desc_set_used(uint32_t *desc)
330 desc[1] |= DESC_1_USED;
333 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
335 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
338 static inline unsigned tx_desc_get_last(uint32_t *desc)
340 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
343 static inline void tx_desc_set_last(uint32_t *desc)
345 desc[1] |= DESC_1_TX_LAST;
348 static inline unsigned tx_desc_get_length(uint32_t *desc)
350 return desc[1] & DESC_1_LENGTH;
353 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
355 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
356 DB_PRINT("bufaddr: 0x%08x\n", *desc);
357 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
358 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
359 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
360 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
363 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
365 uint64_t ret = desc[0] & ~0x3UL;
367 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
368 ret |= (uint64_t)desc[2] << 32;
370 return ret;
373 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
375 int ret = 2;
377 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
378 ret += 2;
380 if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT
381 : GEM_DMACFG_TX_BD_EXT)) {
382 ret += 2;
385 assert(ret <= DESC_MAX_NUM_WORDS);
386 return ret;
389 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
391 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
394 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
396 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
399 static inline void rx_desc_set_ownership(uint32_t *desc)
401 desc[0] |= DESC_0_RX_OWNERSHIP;
404 static inline void rx_desc_set_sof(uint32_t *desc)
406 desc[1] |= DESC_1_RX_SOF;
409 static inline void rx_desc_set_eof(uint32_t *desc)
411 desc[1] |= DESC_1_RX_EOF;
414 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
416 desc[1] &= ~DESC_1_LENGTH;
417 desc[1] |= len;
420 static inline void rx_desc_set_broadcast(uint32_t *desc)
422 desc[1] |= R_DESC_1_RX_BROADCAST;
425 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
427 desc[1] |= R_DESC_1_RX_UNICAST_HASH;
430 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
432 desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
435 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
437 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
438 sar_idx);
439 desc[1] |= R_DESC_1_RX_SAR_MATCH;
442 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
443 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
446 * gem_init_register_masks:
447 * One time initialization.
448 * Set masks to identify which register bits have magical clear properties
450 static void gem_init_register_masks(CadenceGEMState *s)
452 /* Mask of register bits which are read only */
453 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
454 s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
455 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
456 s->regs_ro[GEM_DMACFG] = 0x8E00F000;
457 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
458 s->regs_ro[GEM_RXQBASE] = 0x00000003;
459 s->regs_ro[GEM_TXQBASE] = 0x00000003;
460 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
461 s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
462 s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
463 s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
465 /* Mask of register bits which are clear on read */
466 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
467 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
469 /* Mask of register bits which are write 1 to clear */
470 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
471 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
472 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
474 /* Mask of register bits which are write only */
475 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
476 s->regs_wo[GEM_NWCTRL] = 0x00073E60;
477 s->regs_wo[GEM_IER] = 0x07FFFFFF;
478 s->regs_wo[GEM_IDR] = 0x07FFFFFF;
482 * phy_update_link:
483 * Make the emulated PHY link state match the QEMU "interface" state.
485 static void phy_update_link(CadenceGEMState *s)
487 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
489 /* Autonegotiation status mirrors link status. */
490 if (qemu_get_queue(s->nic)->link_down) {
491 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
492 PHY_REG_STATUS_LINK);
493 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
494 } else {
495 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
496 PHY_REG_STATUS_LINK);
497 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
498 PHY_REG_INT_ST_ANEGCMPL |
499 PHY_REG_INT_ST_ENERGY);
503 static int gem_can_receive(NetClientState *nc)
505 CadenceGEMState *s;
506 int i;
508 s = qemu_get_nic_opaque(nc);
510 /* Do nothing if receive is not enabled. */
511 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
512 if (s->can_rx_state != 1) {
513 s->can_rx_state = 1;
514 DB_PRINT("can't receive - no enable\n");
516 return 0;
519 for (i = 0; i < s->num_priority_queues; i++) {
520 if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
521 break;
525 if (i == s->num_priority_queues) {
526 if (s->can_rx_state != 2) {
527 s->can_rx_state = 2;
528 DB_PRINT("can't receive - all the buffer descriptors are busy\n");
530 return 0;
533 if (s->can_rx_state != 0) {
534 s->can_rx_state = 0;
535 DB_PRINT("can receive\n");
537 return 1;
541 * gem_update_int_status:
542 * Raise or lower interrupt based on current status.
544 static void gem_update_int_status(CadenceGEMState *s)
546 int i;
548 if (!s->regs[GEM_ISR]) {
549 /* ISR isn't set, clear all the interrupts */
550 for (i = 0; i < s->num_priority_queues; ++i) {
551 qemu_set_irq(s->irq[i], 0);
553 return;
556 /* If we get here we know s->regs[GEM_ISR] is set, so we don't need to
557 * check it again.
559 if (s->num_priority_queues == 1) {
560 /* No priority queues, just trigger the interrupt */
561 DB_PRINT("asserting int.\n");
562 qemu_set_irq(s->irq[0], 1);
563 return;
566 for (i = 0; i < s->num_priority_queues; ++i) {
567 if (s->regs[GEM_INT_Q1_STATUS + i]) {
568 DB_PRINT("asserting int. (q=%d)\n", i);
569 qemu_set_irq(s->irq[i], 1);
575 * gem_receive_updatestats:
576 * Increment receive statistics.
578 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
579 unsigned bytes)
581 uint64_t octets;
583 /* Total octets (bytes) received */
584 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
585 s->regs[GEM_OCTRXHI];
586 octets += bytes;
587 s->regs[GEM_OCTRXLO] = octets >> 32;
588 s->regs[GEM_OCTRXHI] = octets;
590 /* Error-free Frames received */
591 s->regs[GEM_RXCNT]++;
593 /* Error-free Broadcast Frames counter */
594 if (!memcmp(packet, broadcast_addr, 6)) {
595 s->regs[GEM_RXBROADCNT]++;
598 /* Error-free Multicast Frames counter */
599 if (packet[0] == 0x01) {
600 s->regs[GEM_RXMULTICNT]++;
603 if (bytes <= 64) {
604 s->regs[GEM_RX64CNT]++;
605 } else if (bytes <= 127) {
606 s->regs[GEM_RX65CNT]++;
607 } else if (bytes <= 255) {
608 s->regs[GEM_RX128CNT]++;
609 } else if (bytes <= 511) {
610 s->regs[GEM_RX256CNT]++;
611 } else if (bytes <= 1023) {
612 s->regs[GEM_RX512CNT]++;
613 } else if (bytes <= 1518) {
614 s->regs[GEM_RX1024CNT]++;
615 } else {
616 s->regs[GEM_RX1519CNT]++;
621 * Get the MAC Address bit from the specified position
623 static unsigned get_bit(const uint8_t *mac, unsigned bit)
625 unsigned byte;
627 byte = mac[bit / 8];
628 byte >>= (bit & 0x7);
629 byte &= 1;
631 return byte;
635 * Calculate a GEM MAC Address hash index
637 static unsigned calc_mac_hash(const uint8_t *mac)
639 int index_bit, mac_bit;
640 unsigned hash_index;
642 hash_index = 0;
643 mac_bit = 5;
644 for (index_bit = 5; index_bit >= 0; index_bit--) {
645 hash_index |= (get_bit(mac, mac_bit) ^
646 get_bit(mac, mac_bit + 6) ^
647 get_bit(mac, mac_bit + 12) ^
648 get_bit(mac, mac_bit + 18) ^
649 get_bit(mac, mac_bit + 24) ^
650 get_bit(mac, mac_bit + 30) ^
651 get_bit(mac, mac_bit + 36) ^
652 get_bit(mac, mac_bit + 42)) << index_bit;
653 mac_bit--;
656 return hash_index;
660 * gem_mac_address_filter:
661 * Accept or reject this destination address?
662 * Returns:
663 * GEM_RX_REJECT: reject
664 * >= 0: Specific address accept (which matched SAR is returned)
665 * others for various other modes of accept:
666 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
667 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
669 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
671 uint8_t *gem_spaddr;
672 int i;
674 /* Promiscuous mode? */
675 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
676 return GEM_RX_PROMISCUOUS_ACCEPT;
679 if (!memcmp(packet, broadcast_addr, 6)) {
680 /* Reject broadcast packets? */
681 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
682 return GEM_RX_REJECT;
684 return GEM_RX_BROADCAST_ACCEPT;
687 /* Accept packets -w- hash match? */
688 if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
689 (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
690 unsigned hash_index;
692 hash_index = calc_mac_hash(packet);
693 if (hash_index < 32) {
694 if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
695 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
696 GEM_RX_UNICAST_HASH_ACCEPT;
698 } else {
699 hash_index -= 32;
700 if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
701 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
702 GEM_RX_UNICAST_HASH_ACCEPT;
707 /* Check all 4 specific addresses */
708 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
709 for (i = 3; i >= 0; i--) {
710 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
711 return GEM_RX_SAR_ACCEPT + i;
715 /* No address match; reject the packet */
716 return GEM_RX_REJECT;
719 /* Figure out which queue the received data should be sent to */
720 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
721 unsigned rxbufsize)
723 uint32_t reg;
724 bool matched, mismatched;
725 int i, j;
727 for (i = 0; i < s->num_type1_screeners; i++) {
728 reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
729 matched = false;
730 mismatched = false;
732 /* Screening is based on UDP Port */
733 if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
734 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
735 if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
736 GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
737 matched = true;
738 } else {
739 mismatched = true;
743 /* Screening is based on DS/TC */
744 if (reg & GEM_ST1R_DSTC_ENABLE) {
745 uint8_t dscp = rxbuf_ptr[14 + 1];
746 if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
747 GEM_ST1R_DSTC_MATCH_WIDTH)) {
748 matched = true;
749 } else {
750 mismatched = true;
754 if (matched && !mismatched) {
755 return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
759 for (i = 0; i < s->num_type2_screeners; i++) {
760 reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
761 matched = false;
762 mismatched = false;
764 if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
765 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
766 int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
767 GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
769 if (et_idx > s->num_type2_screeners) {
770 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
771 "register index: %d\n", et_idx);
773 if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
774 et_idx]) {
775 matched = true;
776 } else {
777 mismatched = true;
781 /* Compare A, B, C */
782 for (j = 0; j < 3; j++) {
783 uint32_t cr0, cr1, mask;
784 uint16_t rx_cmp;
785 int offset;
786 int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
787 GEM_ST2R_COMPARE_WIDTH);
789 if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
790 continue;
792 if (cr_idx > s->num_type2_screeners) {
793 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
794 "register index: %d\n", cr_idx);
797 cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
798 cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
799 offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
800 GEM_T2CW1_OFFSET_VALUE_WIDTH);
802 switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
803 GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
804 case 3: /* Skip UDP header */
805 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
806 "unimplemented - assuming UDP\n");
807 offset += 8;
808 /* Fallthrough */
809 case 2: /* skip the IP header */
810 offset += 20;
811 /* Fallthrough */
812 case 1: /* Count from after the ethertype */
813 offset += 14;
814 break;
815 case 0:
816 /* Offset from start of frame */
817 break;
820 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
821 mask = extract32(cr0, 0, 16);
823 if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
824 matched = true;
825 } else {
826 mismatched = true;
830 if (matched && !mismatched) {
831 return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
835 /* We made it here, assume it's queue 0 */
836 return 0;
839 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
841 hwaddr desc_addr = 0;
843 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
844 desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH];
846 desc_addr <<= 32;
847 desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
848 return desc_addr;
851 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
853 return gem_get_desc_addr(s, true, q);
856 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
858 return gem_get_desc_addr(s, false, q);
861 static void gem_get_rx_desc(CadenceGEMState *s, int q)
863 hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
865 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
867 /* read current descriptor */
868 address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
869 (uint8_t *)s->rx_desc[q],
870 sizeof(uint32_t) * gem_get_desc_len(s, true));
872 /* Descriptor owned by software ? */
873 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
874 DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
875 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
876 s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
877 /* Handle interrupt consequences */
878 gem_update_int_status(s);
883 * gem_receive:
884 * Fit a packet handed to us by QEMU into the receive descriptor ring.
886 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
888 CadenceGEMState *s;
889 unsigned rxbufsize, bytes_to_copy;
890 unsigned rxbuf_offset;
891 uint8_t rxbuf[2048];
892 uint8_t *rxbuf_ptr;
893 bool first_desc = true;
894 int maf;
895 int q = 0;
897 s = qemu_get_nic_opaque(nc);
899 /* Is this destination MAC address "for us" ? */
900 maf = gem_mac_address_filter(s, buf);
901 if (maf == GEM_RX_REJECT) {
902 return -1;
905 /* Discard packets with receive length error enabled ? */
906 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
907 unsigned type_len;
909 /* Fish the ethertype / length field out of the RX packet */
910 type_len = buf[12] << 8 | buf[13];
911 /* It is a length field, not an ethertype */
912 if (type_len < 0x600) {
913 if (size < type_len) {
914 /* discard */
915 return -1;
921 * Determine configured receive buffer offset (probably 0)
923 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
924 GEM_NWCFG_BUFF_OFST_S;
926 /* The configure size of each receive buffer. Determines how many
927 * buffers needed to hold this packet.
929 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
930 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
931 bytes_to_copy = size;
933 /* Hardware allows a zero value here but warns against it. To avoid QEMU
934 * indefinite loops we enforce a minimum value here
936 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
937 rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
940 /* Pad to minimum length. Assume FCS field is stripped, logic
941 * below will increment it to the real minimum of 64 when
942 * not FCS stripping
944 if (size < 60) {
945 size = 60;
948 /* Strip of FCS field ? (usually yes) */
949 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
950 rxbuf_ptr = (void *)buf;
951 } else {
952 unsigned crc_val;
954 if (size > sizeof(rxbuf) - sizeof(crc_val)) {
955 size = sizeof(rxbuf) - sizeof(crc_val);
957 bytes_to_copy = size;
958 /* The application wants the FCS field, which QEMU does not provide.
959 * We must try and calculate one.
962 memcpy(rxbuf, buf, size);
963 memset(rxbuf + size, 0, sizeof(rxbuf) - size);
964 rxbuf_ptr = rxbuf;
965 crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
966 memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
968 bytes_to_copy += 4;
969 size += 4;
972 DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
974 /* Find which queue we are targeting */
975 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
977 while (bytes_to_copy) {
978 hwaddr desc_addr;
980 /* Do nothing if receive is not enabled. */
981 if (!gem_can_receive(nc)) {
982 return -1;
985 DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
986 rx_desc_get_buffer(s->rx_desc[q]));
988 /* Copy packet data to emulated DMA buffer */
989 address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
990 rxbuf_offset,
991 MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
992 MIN(bytes_to_copy, rxbufsize));
993 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
994 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
996 /* Update the descriptor. */
997 if (first_desc) {
998 rx_desc_set_sof(s->rx_desc[q]);
999 first_desc = false;
1001 if (bytes_to_copy == 0) {
1002 rx_desc_set_eof(s->rx_desc[q]);
1003 rx_desc_set_length(s->rx_desc[q], size);
1005 rx_desc_set_ownership(s->rx_desc[q]);
1007 switch (maf) {
1008 case GEM_RX_PROMISCUOUS_ACCEPT:
1009 break;
1010 case GEM_RX_BROADCAST_ACCEPT:
1011 rx_desc_set_broadcast(s->rx_desc[q]);
1012 break;
1013 case GEM_RX_UNICAST_HASH_ACCEPT:
1014 rx_desc_set_unicast_hash(s->rx_desc[q]);
1015 break;
1016 case GEM_RX_MULTICAST_HASH_ACCEPT:
1017 rx_desc_set_multicast_hash(s->rx_desc[q]);
1018 break;
1019 case GEM_RX_REJECT:
1020 abort();
1021 default: /* SAR */
1022 rx_desc_set_sar(s->rx_desc[q], maf);
1025 /* Descriptor write-back. */
1026 desc_addr = gem_get_rx_desc_addr(s, q);
1027 address_space_write(&s->dma_as, desc_addr,
1028 MEMTXATTRS_UNSPECIFIED,
1029 (uint8_t *)s->rx_desc[q],
1030 sizeof(uint32_t) * gem_get_desc_len(s, true));
1032 /* Next descriptor */
1033 if (rx_desc_get_wrap(s->rx_desc[q])) {
1034 DB_PRINT("wrapping RX descriptor list\n");
1035 s->rx_desc_addr[q] = s->regs[GEM_RXQBASE];
1036 } else {
1037 DB_PRINT("incrementing RX descriptor list\n");
1038 s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1041 gem_get_rx_desc(s, q);
1044 /* Count it */
1045 gem_receive_updatestats(s, buf, size);
1047 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1048 s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
1050 /* Handle interrupt consequences */
1051 gem_update_int_status(s);
1053 return size;
1057 * gem_transmit_updatestats:
1058 * Increment transmit statistics.
1060 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1061 unsigned bytes)
1063 uint64_t octets;
1065 /* Total octets (bytes) transmitted */
1066 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
1067 s->regs[GEM_OCTTXHI];
1068 octets += bytes;
1069 s->regs[GEM_OCTTXLO] = octets >> 32;
1070 s->regs[GEM_OCTTXHI] = octets;
1072 /* Error-free Frames transmitted */
1073 s->regs[GEM_TXCNT]++;
1075 /* Error-free Broadcast Frames counter */
1076 if (!memcmp(packet, broadcast_addr, 6)) {
1077 s->regs[GEM_TXBCNT]++;
1080 /* Error-free Multicast Frames counter */
1081 if (packet[0] == 0x01) {
1082 s->regs[GEM_TXMCNT]++;
1085 if (bytes <= 64) {
1086 s->regs[GEM_TX64CNT]++;
1087 } else if (bytes <= 127) {
1088 s->regs[GEM_TX65CNT]++;
1089 } else if (bytes <= 255) {
1090 s->regs[GEM_TX128CNT]++;
1091 } else if (bytes <= 511) {
1092 s->regs[GEM_TX256CNT]++;
1093 } else if (bytes <= 1023) {
1094 s->regs[GEM_TX512CNT]++;
1095 } else if (bytes <= 1518) {
1096 s->regs[GEM_TX1024CNT]++;
1097 } else {
1098 s->regs[GEM_TX1519CNT]++;
1103 * gem_transmit:
1104 * Fish packets out of the descriptor ring and feed them to QEMU
1106 static void gem_transmit(CadenceGEMState *s)
1108 uint32_t desc[DESC_MAX_NUM_WORDS];
1109 hwaddr packet_desc_addr;
1110 uint8_t tx_packet[2048];
1111 uint8_t *p;
1112 unsigned total_bytes;
1113 int q = 0;
1115 /* Do nothing if transmit is not enabled. */
1116 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1117 return;
1120 DB_PRINT("\n");
1122 /* The packet we will hand off to QEMU.
1123 * Packets scattered across multiple descriptors are gathered to this
1124 * one contiguous buffer first.
1126 p = tx_packet;
1127 total_bytes = 0;
1129 for (q = s->num_priority_queues - 1; q >= 0; q--) {
1130 /* read current descriptor */
1131 packet_desc_addr = gem_get_tx_desc_addr(s, q);
1133 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1134 address_space_read(&s->dma_as, packet_desc_addr,
1135 MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc,
1136 sizeof(uint32_t) * gem_get_desc_len(s, false));
1137 /* Handle all descriptors owned by hardware */
1138 while (tx_desc_get_used(desc) == 0) {
1140 /* Do nothing if transmit is not enabled. */
1141 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1142 return;
1144 print_gem_tx_desc(desc, q);
1146 /* The real hardware would eat this (and possibly crash).
1147 * For QEMU let's lend a helping hand.
1149 if ((tx_desc_get_buffer(s, desc) == 0) ||
1150 (tx_desc_get_length(desc) == 0)) {
1151 DB_PRINT("Invalid TX descriptor @ 0x%x\n",
1152 (unsigned)packet_desc_addr);
1153 break;
1156 if (tx_desc_get_length(desc) > sizeof(tx_packet) -
1157 (p - tx_packet)) {
1158 DB_PRINT("TX descriptor @ 0x%x too large: size 0x%x space " \
1159 "0x%x\n", (unsigned)packet_desc_addr,
1160 (unsigned)tx_desc_get_length(desc),
1161 sizeof(tx_packet) - (p - tx_packet));
1162 break;
1165 /* Gather this fragment of the packet from "dma memory" to our
1166 * contig buffer.
1168 address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1169 MEMTXATTRS_UNSPECIFIED,
1170 p, tx_desc_get_length(desc));
1171 p += tx_desc_get_length(desc);
1172 total_bytes += tx_desc_get_length(desc);
1174 /* Last descriptor for this packet; hand the whole thing off */
1175 if (tx_desc_get_last(desc)) {
1176 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1177 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1179 /* Modify the 1st descriptor of this packet to be owned by
1180 * the processor.
1182 address_space_read(&s->dma_as, desc_addr,
1183 MEMTXATTRS_UNSPECIFIED,
1184 (uint8_t *)desc_first,
1185 sizeof(desc_first));
1186 tx_desc_set_used(desc_first);
1187 address_space_write(&s->dma_as, desc_addr,
1188 MEMTXATTRS_UNSPECIFIED,
1189 (uint8_t *)desc_first,
1190 sizeof(desc_first));
1191 /* Advance the hardware current descriptor past this packet */
1192 if (tx_desc_get_wrap(desc)) {
1193 s->tx_desc_addr[q] = s->regs[GEM_TXQBASE];
1194 } else {
1195 s->tx_desc_addr[q] = packet_desc_addr +
1196 4 * gem_get_desc_len(s, false);
1198 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1200 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1201 s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
1203 /* Update queue interrupt status */
1204 if (s->num_priority_queues > 1) {
1205 s->regs[GEM_INT_Q1_STATUS + q] |=
1206 GEM_INT_TXCMPL & ~(s->regs[GEM_INT_Q1_MASK + q]);
1209 /* Handle interrupt consequences */
1210 gem_update_int_status(s);
1212 /* Is checksum offload enabled? */
1213 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1214 net_checksum_calculate(tx_packet, total_bytes);
1217 /* Update MAC statistics */
1218 gem_transmit_updatestats(s, tx_packet, total_bytes);
1220 /* Send the packet somewhere */
1221 if (s->phy_loop || (s->regs[GEM_NWCTRL] &
1222 GEM_NWCTRL_LOCALLOOP)) {
1223 gem_receive(qemu_get_queue(s->nic), tx_packet,
1224 total_bytes);
1225 } else {
1226 qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
1227 total_bytes);
1230 /* Prepare for next packet */
1231 p = tx_packet;
1232 total_bytes = 0;
1235 /* read next descriptor */
1236 if (tx_desc_get_wrap(desc)) {
1237 tx_desc_set_last(desc);
1238 packet_desc_addr = s->regs[GEM_TXQBASE];
1239 } else {
1240 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1242 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1243 address_space_read(&s->dma_as, packet_desc_addr,
1244 MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc,
1245 sizeof(uint32_t) * gem_get_desc_len(s, false));
1248 if (tx_desc_get_used(desc)) {
1249 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
1250 s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
1251 gem_update_int_status(s);
1256 static void gem_phy_reset(CadenceGEMState *s)
1258 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1259 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1260 s->phy_regs[PHY_REG_STATUS] = 0x7969;
1261 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1262 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1263 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1264 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1265 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1266 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1267 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1268 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1269 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1270 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1271 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1272 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1273 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1274 s->phy_regs[PHY_REG_LED] = 0x4100;
1275 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1276 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1278 phy_update_link(s);
1281 static void gem_reset(DeviceState *d)
1283 int i;
1284 CadenceGEMState *s = CADENCE_GEM(d);
1285 const uint8_t *a;
1286 uint32_t queues_mask = 0;
1288 DB_PRINT("\n");
1290 /* Set post reset register values */
1291 memset(&s->regs[0], 0, sizeof(s->regs));
1292 s->regs[GEM_NWCFG] = 0x00080000;
1293 s->regs[GEM_NWSTATUS] = 0x00000006;
1294 s->regs[GEM_DMACFG] = 0x00020784;
1295 s->regs[GEM_IMR] = 0x07ffffff;
1296 s->regs[GEM_TXPAUSE] = 0x0000ffff;
1297 s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1298 s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1299 s->regs[GEM_MODID] = s->revision;
1300 s->regs[GEM_DESCONF] = 0x02500111;
1301 s->regs[GEM_DESCONF2] = 0x2ab13fff;
1302 s->regs[GEM_DESCONF5] = 0x002f2045;
1303 s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK;
1305 if (s->num_priority_queues > 1) {
1306 queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1307 s->regs[GEM_DESCONF6] |= queues_mask;
1310 /* Set MAC address */
1311 a = &s->conf.macaddr.a[0];
1312 s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1313 s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
1315 for (i = 0; i < 4; i++) {
1316 s->sar_active[i] = false;
1319 gem_phy_reset(s);
1321 gem_update_int_status(s);
1324 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1326 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1327 return s->phy_regs[reg_num];
1330 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1332 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1334 switch (reg_num) {
1335 case PHY_REG_CONTROL:
1336 if (val & PHY_REG_CONTROL_RST) {
1337 /* Phy reset */
1338 gem_phy_reset(s);
1339 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1340 s->phy_loop = 0;
1342 if (val & PHY_REG_CONTROL_ANEG) {
1343 /* Complete autonegotiation immediately */
1344 val &= ~PHY_REG_CONTROL_ANEG;
1345 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1347 if (val & PHY_REG_CONTROL_LOOP) {
1348 DB_PRINT("PHY placed in loopback\n");
1349 s->phy_loop = 1;
1350 } else {
1351 s->phy_loop = 0;
1353 break;
1355 s->phy_regs[reg_num] = val;
1359 * gem_read32:
1360 * Read a GEM register.
1362 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1364 CadenceGEMState *s;
1365 uint32_t retval;
1366 s = (CadenceGEMState *)opaque;
1368 offset >>= 2;
1369 retval = s->regs[offset];
1371 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1373 switch (offset) {
1374 case GEM_ISR:
1375 DB_PRINT("lowering irqs on ISR read\n");
1376 /* The interrupts get updated at the end of the function. */
1377 break;
1378 case GEM_PHYMNTNC:
1379 if (retval & GEM_PHYMNTNC_OP_R) {
1380 uint32_t phy_addr, reg_num;
1382 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1383 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1384 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1385 retval &= 0xFFFF0000;
1386 retval |= gem_phy_read(s, reg_num);
1387 } else {
1388 retval |= 0xFFFF; /* No device at this address */
1391 break;
1394 /* Squash read to clear bits */
1395 s->regs[offset] &= ~(s->regs_rtc[offset]);
1397 /* Do not provide write only bits */
1398 retval &= ~(s->regs_wo[offset]);
1400 DB_PRINT("0x%08x\n", retval);
1401 gem_update_int_status(s);
1402 return retval;
1406 * gem_write32:
1407 * Write a GEM register.
1409 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1410 unsigned size)
1412 CadenceGEMState *s = (CadenceGEMState *)opaque;
1413 uint32_t readonly;
1414 int i;
1416 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1417 offset >>= 2;
1419 /* Squash bits which are read only in write value */
1420 val &= ~(s->regs_ro[offset]);
1421 /* Preserve (only) bits which are read only and wtc in register */
1422 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1424 /* Copy register write to backing store */
1425 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1427 /* do w1c */
1428 s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1430 /* Handle register write side effects */
1431 switch (offset) {
1432 case GEM_NWCTRL:
1433 if (val & GEM_NWCTRL_RXENA) {
1434 for (i = 0; i < s->num_priority_queues; ++i) {
1435 gem_get_rx_desc(s, i);
1438 if (val & GEM_NWCTRL_TXSTART) {
1439 gem_transmit(s);
1441 if (!(val & GEM_NWCTRL_TXENA)) {
1442 /* Reset to start of Q when transmit disabled. */
1443 for (i = 0; i < s->num_priority_queues; i++) {
1444 s->tx_desc_addr[i] = s->regs[GEM_TXQBASE];
1447 if (gem_can_receive(qemu_get_queue(s->nic))) {
1448 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1450 break;
1452 case GEM_TXSTATUS:
1453 gem_update_int_status(s);
1454 break;
1455 case GEM_RXQBASE:
1456 s->rx_desc_addr[0] = val;
1457 break;
1458 case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR:
1459 s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
1460 break;
1461 case GEM_TXQBASE:
1462 s->tx_desc_addr[0] = val;
1463 break;
1464 case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR:
1465 s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
1466 break;
1467 case GEM_RXSTATUS:
1468 gem_update_int_status(s);
1469 break;
1470 case GEM_IER:
1471 s->regs[GEM_IMR] &= ~val;
1472 gem_update_int_status(s);
1473 break;
1474 case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
1475 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
1476 gem_update_int_status(s);
1477 break;
1478 case GEM_IDR:
1479 s->regs[GEM_IMR] |= val;
1480 gem_update_int_status(s);
1481 break;
1482 case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
1483 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
1484 gem_update_int_status(s);
1485 break;
1486 case GEM_SPADDR1LO:
1487 case GEM_SPADDR2LO:
1488 case GEM_SPADDR3LO:
1489 case GEM_SPADDR4LO:
1490 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1491 break;
1492 case GEM_SPADDR1HI:
1493 case GEM_SPADDR2HI:
1494 case GEM_SPADDR3HI:
1495 case GEM_SPADDR4HI:
1496 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1497 break;
1498 case GEM_PHYMNTNC:
1499 if (val & GEM_PHYMNTNC_OP_W) {
1500 uint32_t phy_addr, reg_num;
1502 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1503 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1504 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1505 gem_phy_write(s, reg_num, val);
1508 break;
1511 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1514 static const MemoryRegionOps gem_ops = {
1515 .read = gem_read,
1516 .write = gem_write,
1517 .endianness = DEVICE_LITTLE_ENDIAN,
1520 static void gem_set_link(NetClientState *nc)
1522 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1524 DB_PRINT("\n");
1525 phy_update_link(s);
1526 gem_update_int_status(s);
1529 static NetClientInfo net_gem_info = {
1530 .type = NET_CLIENT_DRIVER_NIC,
1531 .size = sizeof(NICState),
1532 .can_receive = gem_can_receive,
1533 .receive = gem_receive,
1534 .link_status_changed = gem_set_link,
1537 static void gem_realize(DeviceState *dev, Error **errp)
1539 CadenceGEMState *s = CADENCE_GEM(dev);
1540 int i;
1542 address_space_init(&s->dma_as,
1543 s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1545 if (s->num_priority_queues == 0 ||
1546 s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1547 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1548 s->num_priority_queues);
1549 return;
1550 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1551 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1552 s->num_type1_screeners);
1553 return;
1554 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1555 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1556 s->num_type2_screeners);
1557 return;
1560 for (i = 0; i < s->num_priority_queues; ++i) {
1561 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1564 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1566 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1567 object_get_typename(OBJECT(dev)), dev->id, s);
1570 static void gem_init(Object *obj)
1572 CadenceGEMState *s = CADENCE_GEM(obj);
1573 DeviceState *dev = DEVICE(obj);
1575 DB_PRINT("\n");
1577 gem_init_register_masks(s);
1578 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1579 "enet", sizeof(s->regs));
1581 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1583 object_property_add_link(obj, "dma", TYPE_MEMORY_REGION,
1584 (Object **)&s->dma_mr,
1585 qdev_prop_allow_set_link_before_realize,
1586 OBJ_PROP_LINK_STRONG,
1587 &error_abort);
1590 static const VMStateDescription vmstate_cadence_gem = {
1591 .name = "cadence_gem",
1592 .version_id = 4,
1593 .minimum_version_id = 4,
1594 .fields = (VMStateField[]) {
1595 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1596 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1597 VMSTATE_UINT8(phy_loop, CadenceGEMState),
1598 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1599 MAX_PRIORITY_QUEUES),
1600 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1601 MAX_PRIORITY_QUEUES),
1602 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1603 VMSTATE_END_OF_LIST(),
1607 static Property gem_properties[] = {
1608 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1609 DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1610 GEM_MODID_VALUE),
1611 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1612 num_priority_queues, 1),
1613 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1614 num_type1_screeners, 4),
1615 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1616 num_type2_screeners, 4),
1617 DEFINE_PROP_END_OF_LIST(),
1620 static void gem_class_init(ObjectClass *klass, void *data)
1622 DeviceClass *dc = DEVICE_CLASS(klass);
1624 dc->realize = gem_realize;
1625 dc->props = gem_properties;
1626 dc->vmsd = &vmstate_cadence_gem;
1627 dc->reset = gem_reset;
1630 static const TypeInfo gem_info = {
1631 .name = TYPE_CADENCE_GEM,
1632 .parent = TYPE_SYS_BUS_DEVICE,
1633 .instance_size = sizeof(CadenceGEMState),
1634 .instance_init = gem_init,
1635 .class_init = gem_class_init,
1638 static void gem_register_types(void)
1640 type_register_static(&gem_info);
1643 type_init(gem_register_types)