block: update bdrv_drain_all()/bdrv_drain() comments
[qemu/ar7.git] / target-arm / kvm64.c
blobac34f514987d6d6b47982e9038de2f829fb32d23
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
16 #include <linux/kvm.h>
18 #include "config-host.h"
19 #include "qemu-common.h"
20 #include "qemu/timer.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/kvm.h"
23 #include "kvm_arm.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "hw/arm/arm.h"
28 static inline void set_feature(uint64_t *features, int feature)
30 *features |= 1ULL << feature;
33 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
35 /* Identify the feature bits corresponding to the host CPU, and
36 * fill out the ARMHostCPUClass fields accordingly. To do this
37 * we have to create a scratch VM, create a single CPU inside it,
38 * and then query that CPU for the relevant ID registers.
39 * For AArch64 we currently don't care about ID registers at
40 * all; we just want to know the CPU type.
42 int fdarray[3];
43 uint64_t features = 0;
44 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
45 * we know these will only support creating one kind of guest CPU,
46 * which is its preferred CPU type. Fortunately these old kernels
47 * support only a very limited number of CPUs.
49 static const uint32_t cpus_to_try[] = {
50 KVM_ARM_TARGET_AEM_V8,
51 KVM_ARM_TARGET_FOUNDATION_V8,
52 KVM_ARM_TARGET_CORTEX_A57,
53 QEMU_KVM_ARM_TARGET_NONE
55 struct kvm_vcpu_init init;
57 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
58 return false;
61 ahcc->target = init.target;
62 ahcc->dtb_compatible = "arm,arm-v8";
64 kvm_arm_destroy_scratch_host_vcpu(fdarray);
66 /* We can assume any KVM supporting CPU is at least a v8
67 * with VFPv4+Neon; this in turn implies most of the other
68 * feature bits.
70 set_feature(&features, ARM_FEATURE_V8);
71 set_feature(&features, ARM_FEATURE_VFP4);
72 set_feature(&features, ARM_FEATURE_NEON);
73 set_feature(&features, ARM_FEATURE_AARCH64);
75 ahcc->features = features;
77 return true;
80 #define ARM_MPIDR_HWID_BITMASK 0xFF00FFFFFFULL
81 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
83 int kvm_arch_init_vcpu(CPUState *cs)
85 int ret;
86 uint64_t mpidr;
87 ARMCPU *cpu = ARM_CPU(cs);
89 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
90 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
91 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
92 return -EINVAL;
95 /* Determine init features for this CPU */
96 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
97 if (cpu->start_powered_off) {
98 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
100 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
101 cpu->psci_version = 2;
102 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
104 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
105 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
108 /* Do KVM_ARM_VCPU_INIT ioctl */
109 ret = kvm_arm_vcpu_init(cs);
110 if (ret) {
111 return ret;
115 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
116 * Currently KVM has its own idea about MPIDR assignment, so we
117 * override our defaults with what we get from KVM.
119 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
120 if (ret) {
121 return ret;
123 cpu->mp_affinity = mpidr & ARM_MPIDR_HWID_BITMASK;
125 return kvm_arm_init_cpreg_list(cpu);
128 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
130 /* Return true if the regidx is a register we should synchronize
131 * via the cpreg_tuples array (ie is not a core reg we sync by
132 * hand in kvm_arch_get/put_registers())
134 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
135 case KVM_REG_ARM_CORE:
136 return false;
137 default:
138 return true;
142 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
143 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
145 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
146 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
148 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
149 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
151 int kvm_arch_put_registers(CPUState *cs, int level)
153 struct kvm_one_reg reg;
154 uint32_t fpr;
155 uint64_t val;
156 int i;
157 int ret;
158 unsigned int el;
160 ARMCPU *cpu = ARM_CPU(cs);
161 CPUARMState *env = &cpu->env;
163 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
164 * AArch64 registers before pushing them out to 64-bit KVM.
166 if (!is_a64(env)) {
167 aarch64_sync_32_to_64(env);
170 for (i = 0; i < 31; i++) {
171 reg.id = AARCH64_CORE_REG(regs.regs[i]);
172 reg.addr = (uintptr_t) &env->xregs[i];
173 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
174 if (ret) {
175 return ret;
179 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
180 * QEMU side we keep the current SP in xregs[31] as well.
182 aarch64_save_sp(env, 1);
184 reg.id = AARCH64_CORE_REG(regs.sp);
185 reg.addr = (uintptr_t) &env->sp_el[0];
186 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
187 if (ret) {
188 return ret;
191 reg.id = AARCH64_CORE_REG(sp_el1);
192 reg.addr = (uintptr_t) &env->sp_el[1];
193 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
194 if (ret) {
195 return ret;
198 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
199 if (is_a64(env)) {
200 val = pstate_read(env);
201 } else {
202 val = cpsr_read(env);
204 reg.id = AARCH64_CORE_REG(regs.pstate);
205 reg.addr = (uintptr_t) &val;
206 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
207 if (ret) {
208 return ret;
211 reg.id = AARCH64_CORE_REG(regs.pc);
212 reg.addr = (uintptr_t) &env->pc;
213 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
214 if (ret) {
215 return ret;
218 reg.id = AARCH64_CORE_REG(elr_el1);
219 reg.addr = (uintptr_t) &env->elr_el[1];
220 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
221 if (ret) {
222 return ret;
225 /* Saved Program State Registers
227 * Before we restore from the banked_spsr[] array we need to
228 * ensure that any modifications to env->spsr are correctly
229 * reflected in the banks.
231 el = arm_current_el(env);
232 if (el > 0 && !is_a64(env)) {
233 i = bank_number(env->uncached_cpsr & CPSR_M);
234 env->banked_spsr[i] = env->spsr;
237 /* KVM 0-4 map to QEMU banks 1-5 */
238 for (i = 0; i < KVM_NR_SPSR; i++) {
239 reg.id = AARCH64_CORE_REG(spsr[i]);
240 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
241 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
242 if (ret) {
243 return ret;
247 /* Advanced SIMD and FP registers
248 * We map Qn = regs[2n+1]:regs[2n]
250 for (i = 0; i < 32; i++) {
251 int rd = i << 1;
252 uint64_t fp_val[2];
253 #ifdef HOST_WORDS_BIGENDIAN
254 fp_val[0] = env->vfp.regs[rd + 1];
255 fp_val[1] = env->vfp.regs[rd];
256 #else
257 fp_val[1] = env->vfp.regs[rd + 1];
258 fp_val[0] = env->vfp.regs[rd];
259 #endif
260 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
261 reg.addr = (uintptr_t)(&fp_val);
262 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
263 if (ret) {
264 return ret;
268 reg.addr = (uintptr_t)(&fpr);
269 fpr = vfp_get_fpsr(env);
270 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
271 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
272 if (ret) {
273 return ret;
276 fpr = vfp_get_fpcr(env);
277 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
278 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
279 if (ret) {
280 return ret;
283 if (!write_list_to_kvmstate(cpu)) {
284 return EINVAL;
287 kvm_arm_sync_mpstate_to_kvm(cpu);
289 return ret;
292 int kvm_arch_get_registers(CPUState *cs)
294 struct kvm_one_reg reg;
295 uint64_t val;
296 uint32_t fpr;
297 unsigned int el;
298 int i;
299 int ret;
301 ARMCPU *cpu = ARM_CPU(cs);
302 CPUARMState *env = &cpu->env;
304 for (i = 0; i < 31; i++) {
305 reg.id = AARCH64_CORE_REG(regs.regs[i]);
306 reg.addr = (uintptr_t) &env->xregs[i];
307 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
308 if (ret) {
309 return ret;
313 reg.id = AARCH64_CORE_REG(regs.sp);
314 reg.addr = (uintptr_t) &env->sp_el[0];
315 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
316 if (ret) {
317 return ret;
320 reg.id = AARCH64_CORE_REG(sp_el1);
321 reg.addr = (uintptr_t) &env->sp_el[1];
322 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
323 if (ret) {
324 return ret;
327 reg.id = AARCH64_CORE_REG(regs.pstate);
328 reg.addr = (uintptr_t) &val;
329 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
330 if (ret) {
331 return ret;
334 env->aarch64 = ((val & PSTATE_nRW) == 0);
335 if (is_a64(env)) {
336 pstate_write(env, val);
337 } else {
338 env->uncached_cpsr = val & CPSR_M;
339 cpsr_write(env, val, 0xffffffff);
342 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
343 * QEMU side we keep the current SP in xregs[31] as well.
345 aarch64_restore_sp(env, 1);
347 reg.id = AARCH64_CORE_REG(regs.pc);
348 reg.addr = (uintptr_t) &env->pc;
349 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
350 if (ret) {
351 return ret;
354 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
355 * incoming AArch64 regs received from 64-bit KVM.
356 * We must perform this after all of the registers have been acquired from
357 * the kernel.
359 if (!is_a64(env)) {
360 aarch64_sync_64_to_32(env);
363 reg.id = AARCH64_CORE_REG(elr_el1);
364 reg.addr = (uintptr_t) &env->elr_el[1];
365 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
366 if (ret) {
367 return ret;
370 /* Fetch the SPSR registers
372 * KVM SPSRs 0-4 map to QEMU banks 1-5
374 for (i = 0; i < KVM_NR_SPSR; i++) {
375 reg.id = AARCH64_CORE_REG(spsr[i]);
376 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
377 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
378 if (ret) {
379 return ret;
383 el = arm_current_el(env);
384 if (el > 0 && !is_a64(env)) {
385 i = bank_number(env->uncached_cpsr & CPSR_M);
386 env->spsr = env->banked_spsr[i];
389 /* Advanced SIMD and FP registers
390 * We map Qn = regs[2n+1]:regs[2n]
392 for (i = 0; i < 32; i++) {
393 uint64_t fp_val[2];
394 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
395 reg.addr = (uintptr_t)(&fp_val);
396 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
397 if (ret) {
398 return ret;
399 } else {
400 int rd = i << 1;
401 #ifdef HOST_WORDS_BIGENDIAN
402 env->vfp.regs[rd + 1] = fp_val[0];
403 env->vfp.regs[rd] = fp_val[1];
404 #else
405 env->vfp.regs[rd + 1] = fp_val[1];
406 env->vfp.regs[rd] = fp_val[0];
407 #endif
411 reg.addr = (uintptr_t)(&fpr);
412 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
413 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
414 if (ret) {
415 return ret;
417 vfp_set_fpsr(env, fpr);
419 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
420 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
421 if (ret) {
422 return ret;
424 vfp_set_fpcr(env, fpr);
426 if (!write_kvmstate_to_list(cpu)) {
427 return EINVAL;
429 /* Note that it's OK to have registers which aren't in CPUState,
430 * so we can ignore a failure return here.
432 write_list_to_cpustate(cpu);
434 kvm_arm_sync_mpstate_to_qemu(cpu);
436 /* TODO: other registers */
437 return ret;