2 * i386 helpers (without register variable usage)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
23 #include "sysemu/kvm.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "sysemu/sysemu.h"
27 #include "sysemu/hw_accel.h"
28 #include "monitor/monitor.h"
29 #include "hw/i386/apic_internal.h"
32 void cpu_sync_bndcs_hflags(CPUX86State
*env
)
34 uint32_t hflags
= env
->hflags
;
35 uint32_t hflags2
= env
->hflags2
;
38 if ((hflags
& HF_CPL_MASK
) == 3) {
39 bndcsr
= env
->bndcs_regs
.cfgu
;
41 bndcsr
= env
->msr_bndcfgs
;
44 if ((env
->cr
[4] & CR4_OSXSAVE_MASK
)
45 && (env
->xcr0
& XSTATE_BNDCSR_MASK
)
46 && (bndcsr
& BNDCFG_ENABLE
)) {
47 hflags
|= HF_MPX_EN_MASK
;
49 hflags
&= ~HF_MPX_EN_MASK
;
52 if (bndcsr
& BNDCFG_BNDPRESERVE
) {
53 hflags2
|= HF2_MPX_PR_MASK
;
55 hflags2
&= ~HF2_MPX_PR_MASK
;
59 env
->hflags2
= hflags2
;
62 static void cpu_x86_version(CPUX86State
*env
, int *family
, int *model
)
64 int cpuver
= env
->cpuid_version
;
66 if (family
== NULL
|| model
== NULL
) {
70 *family
= (cpuver
>> 8) & 0x0f;
71 *model
= ((cpuver
>> 12) & 0xf0) + ((cpuver
>> 4) & 0x0f);
74 /* Broadcast MCA signal for processor version 06H_EH and above */
75 int cpu_x86_support_mca_broadcast(CPUX86State
*env
)
80 cpu_x86_version(env
, &family
, &model
);
81 if ((family
== 6 && model
>= 14) || family
> 6) {
88 /***********************************************************/
91 static const char *cc_op_str
[CC_OP_NB
] = {
158 cpu_x86_dump_seg_cache(CPUX86State
*env
, FILE *f
, fprintf_function cpu_fprintf
,
159 const char *name
, struct SegmentCache
*sc
)
162 if (env
->hflags
& HF_CS64_MASK
) {
163 cpu_fprintf(f
, "%-3s=%04x %016" PRIx64
" %08x %08x", name
,
164 sc
->selector
, sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
168 cpu_fprintf(f
, "%-3s=%04x %08x %08x %08x", name
, sc
->selector
,
169 (uint32_t)sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
172 if (!(env
->hflags
& HF_PE_MASK
) || !(sc
->flags
& DESC_P_MASK
))
175 cpu_fprintf(f
, " DPL=%d ", (sc
->flags
& DESC_DPL_MASK
) >> DESC_DPL_SHIFT
);
176 if (sc
->flags
& DESC_S_MASK
) {
177 if (sc
->flags
& DESC_CS_MASK
) {
178 cpu_fprintf(f
, (sc
->flags
& DESC_L_MASK
) ? "CS64" :
179 ((sc
->flags
& DESC_B_MASK
) ? "CS32" : "CS16"));
180 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_C_MASK
) ? 'C' : '-',
181 (sc
->flags
& DESC_R_MASK
) ? 'R' : '-');
184 (sc
->flags
& DESC_B_MASK
|| env
->hflags
& HF_LMA_MASK
)
186 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_E_MASK
) ? 'E' : '-',
187 (sc
->flags
& DESC_W_MASK
) ? 'W' : '-');
189 cpu_fprintf(f
, "%c]", (sc
->flags
& DESC_A_MASK
) ? 'A' : '-');
191 static const char *sys_type_name
[2][16] = {
193 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
194 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
195 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
196 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
199 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
200 "Reserved", "Reserved", "Reserved", "Reserved",
201 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
202 "Reserved", "IntGate64", "TrapGate64"
206 sys_type_name
[(env
->hflags
& HF_LMA_MASK
) ? 1 : 0]
207 [(sc
->flags
& DESC_TYPE_MASK
)
208 >> DESC_TYPE_SHIFT
]);
211 cpu_fprintf(f
, "\n");
214 #ifndef CONFIG_USER_ONLY
216 /* ARRAY_SIZE check is not required because
217 * DeliveryMode(dm) has a size of 3 bit.
219 static inline const char *dm2str(uint32_t dm
)
221 static const char *str
[] = {
234 static void dump_apic_lvt(FILE *f
, fprintf_function cpu_fprintf
,
235 const char *name
, uint32_t lvt
, bool is_timer
)
237 uint32_t dm
= (lvt
& APIC_LVT_DELIV_MOD
) >> APIC_LVT_DELIV_MOD_SHIFT
;
239 "%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
241 lvt
& APIC_LVT_INT_POLARITY
? "active-lo" : "active-hi",
242 lvt
& APIC_LVT_LEVEL_TRIGGER
? "level" : "edge",
243 lvt
& APIC_LVT_MASKED
? "masked" : "",
244 lvt
& APIC_LVT_DELIV_STS
? "pending" : "",
246 "" : lvt
& APIC_LVT_TIMER_PERIODIC
?
247 "periodic" : lvt
& APIC_LVT_TIMER_TSCDEADLINE
?
248 "tsc-deadline" : "one-shot",
250 if (dm
!= APIC_DM_NMI
) {
251 cpu_fprintf(f
, " (vec %u)\n", lvt
& APIC_VECTOR_MASK
);
253 cpu_fprintf(f
, "\n");
257 /* ARRAY_SIZE check is not required because
258 * destination shorthand has a size of 2 bit.
260 static inline const char *shorthand2str(uint32_t shorthand
)
262 const char *str
[] = {
263 "no-shorthand", "self", "all-self", "all"
265 return str
[shorthand
];
268 static inline uint8_t divider_conf(uint32_t divide_conf
)
270 uint8_t divide_val
= ((divide_conf
& 0x8) >> 1) | (divide_conf
& 0x3);
272 return divide_val
== 7 ? 1 : 2 << divide_val
;
275 static inline void mask2str(char *str
, uint32_t val
, uint8_t size
)
278 *str
++ = (val
>> size
) & 1 ? '1' : '0';
283 #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
285 static void dump_apic_icr(FILE *f
, fprintf_function cpu_fprintf
,
286 APICCommonState
*s
, CPUX86State
*env
)
288 uint32_t icr
= s
->icr
[0], icr2
= s
->icr
[1];
289 uint8_t dest_shorthand
= \
290 (icr
& APIC_ICR_DEST_SHORT
) >> APIC_ICR_DEST_SHORT_SHIFT
;
291 bool logical_mod
= icr
& APIC_ICR_DEST_MOD
;
292 char apic_id_str
[MAX_LOGICAL_APIC_ID_MASK_SIZE
+ 1];
296 cpu_fprintf(f
, "ICR\t 0x%08x %s %s %s %s\n",
298 logical_mod
? "logical" : "physical",
299 icr
& APIC_ICR_TRIGGER_MOD
? "level" : "edge",
300 icr
& APIC_ICR_LEVEL
? "assert" : "de-assert",
301 shorthand2str(dest_shorthand
));
303 cpu_fprintf(f
, "ICR2\t 0x%08x", icr2
);
304 if (dest_shorthand
!= 0) {
305 cpu_fprintf(f
, "\n");
308 x2apic
= env
->features
[FEAT_1_ECX
] & CPUID_EXT_X2APIC
;
309 dest_field
= x2apic
? icr2
: icr2
>> APIC_ICR_DEST_SHIFT
;
313 cpu_fprintf(f
, " cpu %u (X2APIC ID)\n", dest_field
);
315 cpu_fprintf(f
, " cpu %u (APIC ID)\n",
316 dest_field
& APIC_LOGDEST_XAPIC_ID
);
321 if (s
->dest_mode
== 0xf) { /* flat mode */
322 mask2str(apic_id_str
, icr2
>> APIC_ICR_DEST_SHIFT
, 8);
323 cpu_fprintf(f
, " mask %s (APIC ID)\n", apic_id_str
);
324 } else if (s
->dest_mode
== 0) { /* cluster mode */
326 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_X2APIC_ID
, 16);
327 cpu_fprintf(f
, " cluster %u mask %s (X2APIC ID)\n",
328 dest_field
>> APIC_LOGDEST_X2APIC_SHIFT
, apic_id_str
);
330 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_XAPIC_ID
, 4);
331 cpu_fprintf(f
, " cluster %u mask %s (APIC ID)\n",
332 dest_field
>> APIC_LOGDEST_XAPIC_SHIFT
, apic_id_str
);
337 static void dump_apic_interrupt(FILE *f
, fprintf_function cpu_fprintf
,
338 const char *name
, uint32_t *ireg_tab
,
343 cpu_fprintf(f
, "%s\t ", name
);
344 for (i
= 0; i
< 256; i
++) {
345 if (apic_get_bit(ireg_tab
, i
)) {
346 cpu_fprintf(f
, "%u%s ", i
,
347 apic_get_bit(tmr_tab
, i
) ? "(level)" : "");
351 cpu_fprintf(f
, "%s\n", empty
? "(none)" : "");
354 void x86_cpu_dump_local_apic_state(CPUState
*cs
, FILE *f
,
355 fprintf_function cpu_fprintf
, int flags
)
357 X86CPU
*cpu
= X86_CPU(cs
);
358 APICCommonState
*s
= APIC_COMMON(cpu
->apic_state
);
360 cpu_fprintf(f
, "local apic state not available\n");
363 uint32_t *lvt
= s
->lvt
;
365 cpu_fprintf(f
, "dumping local APIC state for CPU %-2u\n\n",
366 CPU(cpu
)->cpu_index
);
367 dump_apic_lvt(f
, cpu_fprintf
, "LVT0", lvt
[APIC_LVT_LINT0
], false);
368 dump_apic_lvt(f
, cpu_fprintf
, "LVT1", lvt
[APIC_LVT_LINT1
], false);
369 dump_apic_lvt(f
, cpu_fprintf
, "LVTPC", lvt
[APIC_LVT_PERFORM
], false);
370 dump_apic_lvt(f
, cpu_fprintf
, "LVTERR", lvt
[APIC_LVT_ERROR
], false);
371 dump_apic_lvt(f
, cpu_fprintf
, "LVTTHMR", lvt
[APIC_LVT_THERMAL
], false);
372 dump_apic_lvt(f
, cpu_fprintf
, "LVTT", lvt
[APIC_LVT_TIMER
], true);
374 cpu_fprintf(f
, "Timer\t DCR=0x%x (divide by %u) initial_count = %u\n",
375 s
->divide_conf
& APIC_DCR_MASK
,
376 divider_conf(s
->divide_conf
),
379 cpu_fprintf(f
, "SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
381 s
->spurious_vec
& APIC_SPURIO_ENABLED
? "enabled" : "disabled",
382 s
->spurious_vec
& APIC_SPURIO_FOCUS
? "on" : "off",
383 s
->spurious_vec
& APIC_VECTOR_MASK
);
385 dump_apic_icr(f
, cpu_fprintf
, s
, &cpu
->env
);
387 cpu_fprintf(f
, "ESR\t 0x%08x\n", s
->esr
);
389 dump_apic_interrupt(f
, cpu_fprintf
, "ISR", s
->isr
, s
->tmr
);
390 dump_apic_interrupt(f
, cpu_fprintf
, "IRR", s
->irr
, s
->tmr
);
392 cpu_fprintf(f
, "\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
393 s
->arb_id
, s
->tpr
, s
->dest_mode
, s
->log_dest
);
394 if (s
->dest_mode
== 0) {
395 cpu_fprintf(f
, "(cluster %u: id %u)",
396 s
->log_dest
>> APIC_LOGDEST_XAPIC_SHIFT
,
397 s
->log_dest
& APIC_LOGDEST_XAPIC_ID
);
399 cpu_fprintf(f
, " PPR 0x%02x\n", apic_get_ppr(s
));
402 void x86_cpu_dump_local_apic_state(CPUState
*cs
, FILE *f
,
403 fprintf_function cpu_fprintf
, int flags
)
406 #endif /* !CONFIG_USER_ONLY */
408 #define DUMP_CODE_BYTES_TOTAL 50
409 #define DUMP_CODE_BYTES_BACKWARD 20
411 void x86_cpu_dump_state(CPUState
*cs
, FILE *f
, fprintf_function cpu_fprintf
,
414 X86CPU
*cpu
= X86_CPU(cs
);
415 CPUX86State
*env
= &cpu
->env
;
418 static const char *seg_name
[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
420 eflags
= cpu_compute_eflags(env
);
422 if (env
->hflags
& HF_CS64_MASK
) {
424 "RAX=%016" PRIx64
" RBX=%016" PRIx64
" RCX=%016" PRIx64
" RDX=%016" PRIx64
"\n"
425 "RSI=%016" PRIx64
" RDI=%016" PRIx64
" RBP=%016" PRIx64
" RSP=%016" PRIx64
"\n"
426 "R8 =%016" PRIx64
" R9 =%016" PRIx64
" R10=%016" PRIx64
" R11=%016" PRIx64
"\n"
427 "R12=%016" PRIx64
" R13=%016" PRIx64
" R14=%016" PRIx64
" R15=%016" PRIx64
"\n"
428 "RIP=%016" PRIx64
" RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
446 eflags
& DF_MASK
? 'D' : '-',
447 eflags
& CC_O
? 'O' : '-',
448 eflags
& CC_S
? 'S' : '-',
449 eflags
& CC_Z
? 'Z' : '-',
450 eflags
& CC_A
? 'A' : '-',
451 eflags
& CC_P
? 'P' : '-',
452 eflags
& CC_C
? 'C' : '-',
453 env
->hflags
& HF_CPL_MASK
,
454 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
455 (env
->a20_mask
>> 20) & 1,
456 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
461 cpu_fprintf(f
, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
462 "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
463 "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
464 (uint32_t)env
->regs
[R_EAX
],
465 (uint32_t)env
->regs
[R_EBX
],
466 (uint32_t)env
->regs
[R_ECX
],
467 (uint32_t)env
->regs
[R_EDX
],
468 (uint32_t)env
->regs
[R_ESI
],
469 (uint32_t)env
->regs
[R_EDI
],
470 (uint32_t)env
->regs
[R_EBP
],
471 (uint32_t)env
->regs
[R_ESP
],
472 (uint32_t)env
->eip
, eflags
,
473 eflags
& DF_MASK
? 'D' : '-',
474 eflags
& CC_O
? 'O' : '-',
475 eflags
& CC_S
? 'S' : '-',
476 eflags
& CC_Z
? 'Z' : '-',
477 eflags
& CC_A
? 'A' : '-',
478 eflags
& CC_P
? 'P' : '-',
479 eflags
& CC_C
? 'C' : '-',
480 env
->hflags
& HF_CPL_MASK
,
481 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
482 (env
->a20_mask
>> 20) & 1,
483 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
487 for(i
= 0; i
< 6; i
++) {
488 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, seg_name
[i
],
491 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "LDT", &env
->ldt
);
492 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "TR", &env
->tr
);
495 if (env
->hflags
& HF_LMA_MASK
) {
496 cpu_fprintf(f
, "GDT= %016" PRIx64
" %08x\n",
497 env
->gdt
.base
, env
->gdt
.limit
);
498 cpu_fprintf(f
, "IDT= %016" PRIx64
" %08x\n",
499 env
->idt
.base
, env
->idt
.limit
);
500 cpu_fprintf(f
, "CR0=%08x CR2=%016" PRIx64
" CR3=%016" PRIx64
" CR4=%08x\n",
501 (uint32_t)env
->cr
[0],
504 (uint32_t)env
->cr
[4]);
505 for(i
= 0; i
< 4; i
++)
506 cpu_fprintf(f
, "DR%d=%016" PRIx64
" ", i
, env
->dr
[i
]);
507 cpu_fprintf(f
, "\nDR6=%016" PRIx64
" DR7=%016" PRIx64
"\n",
508 env
->dr
[6], env
->dr
[7]);
512 cpu_fprintf(f
, "GDT= %08x %08x\n",
513 (uint32_t)env
->gdt
.base
, env
->gdt
.limit
);
514 cpu_fprintf(f
, "IDT= %08x %08x\n",
515 (uint32_t)env
->idt
.base
, env
->idt
.limit
);
516 cpu_fprintf(f
, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
517 (uint32_t)env
->cr
[0],
518 (uint32_t)env
->cr
[2],
519 (uint32_t)env
->cr
[3],
520 (uint32_t)env
->cr
[4]);
521 for(i
= 0; i
< 4; i
++) {
522 cpu_fprintf(f
, "DR%d=" TARGET_FMT_lx
" ", i
, env
->dr
[i
]);
524 cpu_fprintf(f
, "\nDR6=" TARGET_FMT_lx
" DR7=" TARGET_FMT_lx
"\n",
525 env
->dr
[6], env
->dr
[7]);
527 if (flags
& CPU_DUMP_CCOP
) {
528 if ((unsigned)env
->cc_op
< CC_OP_NB
)
529 snprintf(cc_op_name
, sizeof(cc_op_name
), "%s", cc_op_str
[env
->cc_op
]);
531 snprintf(cc_op_name
, sizeof(cc_op_name
), "[%d]", env
->cc_op
);
533 if (env
->hflags
& HF_CS64_MASK
) {
534 cpu_fprintf(f
, "CCS=%016" PRIx64
" CCD=%016" PRIx64
" CCO=%-8s\n",
535 env
->cc_src
, env
->cc_dst
,
540 cpu_fprintf(f
, "CCS=%08x CCD=%08x CCO=%-8s\n",
541 (uint32_t)env
->cc_src
, (uint32_t)env
->cc_dst
,
545 cpu_fprintf(f
, "EFER=%016" PRIx64
"\n", env
->efer
);
546 if (flags
& CPU_DUMP_FPU
) {
549 for(i
= 0; i
< 8; i
++) {
550 fptag
|= ((!env
->fptags
[i
]) << i
);
552 cpu_fprintf(f
, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
554 (env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11,
560 u
.d
= env
->fpregs
[i
].d
;
561 cpu_fprintf(f
, "FPR%d=%016" PRIx64
" %04x",
562 i
, u
.l
.lower
, u
.l
.upper
);
564 cpu_fprintf(f
, "\n");
568 if (env
->hflags
& HF_CS64_MASK
)
573 cpu_fprintf(f
, "XMM%02d=%08x%08x%08x%08x",
575 env
->xmm_regs
[i
].ZMM_L(3),
576 env
->xmm_regs
[i
].ZMM_L(2),
577 env
->xmm_regs
[i
].ZMM_L(1),
578 env
->xmm_regs
[i
].ZMM_L(0));
580 cpu_fprintf(f
, "\n");
585 if (flags
& CPU_DUMP_CODE
) {
586 target_ulong base
= env
->segs
[R_CS
].base
+ env
->eip
;
587 target_ulong offs
= MIN(env
->eip
, DUMP_CODE_BYTES_BACKWARD
);
591 cpu_fprintf(f
, "Code=");
592 for (i
= 0; i
< DUMP_CODE_BYTES_TOTAL
; i
++) {
593 if (cpu_memory_rw_debug(cs
, base
- offs
+ i
, &code
, 1, 0) == 0) {
594 snprintf(codestr
, sizeof(codestr
), "%02x", code
);
596 snprintf(codestr
, sizeof(codestr
), "??");
598 cpu_fprintf(f
, "%s%s%s%s", i
> 0 ? " " : "",
599 i
== offs
? "<" : "", codestr
, i
== offs
? ">" : "");
601 cpu_fprintf(f
, "\n");
605 /***********************************************************/
607 /* XXX: add PGE support */
609 void x86_cpu_set_a20(X86CPU
*cpu
, int a20_state
)
611 CPUX86State
*env
= &cpu
->env
;
613 a20_state
= (a20_state
!= 0);
614 if (a20_state
!= ((env
->a20_mask
>> 20) & 1)) {
615 CPUState
*cs
= CPU(cpu
);
617 qemu_log_mask(CPU_LOG_MMU
, "A20 update: a20=%d\n", a20_state
);
618 /* if the cpu is currently executing code, we must unlink it and
619 all the potentially executing TB */
620 cpu_interrupt(cs
, CPU_INTERRUPT_EXITTB
);
622 /* when a20 is changed, all the MMU mappings are invalid, so
623 we must flush everything */
625 env
->a20_mask
= ~(1 << 20) | (a20_state
<< 20);
629 void cpu_x86_update_cr0(CPUX86State
*env
, uint32_t new_cr0
)
631 X86CPU
*cpu
= x86_env_get_cpu(env
);
634 qemu_log_mask(CPU_LOG_MMU
, "CR0 update: CR0=0x%08x\n", new_cr0
);
635 if ((new_cr0
& (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
)) !=
636 (env
->cr
[0] & (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
))) {
641 if (!(env
->cr
[0] & CR0_PG_MASK
) && (new_cr0
& CR0_PG_MASK
) &&
642 (env
->efer
& MSR_EFER_LME
)) {
643 /* enter in long mode */
644 /* XXX: generate an exception */
645 if (!(env
->cr
[4] & CR4_PAE_MASK
))
647 env
->efer
|= MSR_EFER_LMA
;
648 env
->hflags
|= HF_LMA_MASK
;
649 } else if ((env
->cr
[0] & CR0_PG_MASK
) && !(new_cr0
& CR0_PG_MASK
) &&
650 (env
->efer
& MSR_EFER_LMA
)) {
652 env
->efer
&= ~MSR_EFER_LMA
;
653 env
->hflags
&= ~(HF_LMA_MASK
| HF_CS64_MASK
);
654 env
->eip
&= 0xffffffff;
657 env
->cr
[0] = new_cr0
| CR0_ET_MASK
;
659 /* update PE flag in hidden flags */
660 pe_state
= (env
->cr
[0] & CR0_PE_MASK
);
661 env
->hflags
= (env
->hflags
& ~HF_PE_MASK
) | (pe_state
<< HF_PE_SHIFT
);
662 /* ensure that ADDSEG is always set in real mode */
663 env
->hflags
|= ((pe_state
^ 1) << HF_ADDSEG_SHIFT
);
664 /* update FPU flags */
665 env
->hflags
= (env
->hflags
& ~(HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
)) |
666 ((new_cr0
<< (HF_MP_SHIFT
- 1)) & (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
));
669 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
671 void cpu_x86_update_cr3(CPUX86State
*env
, target_ulong new_cr3
)
673 X86CPU
*cpu
= x86_env_get_cpu(env
);
675 env
->cr
[3] = new_cr3
;
676 if (env
->cr
[0] & CR0_PG_MASK
) {
677 qemu_log_mask(CPU_LOG_MMU
,
678 "CR3 update: CR3=" TARGET_FMT_lx
"\n", new_cr3
);
683 void cpu_x86_update_cr4(CPUX86State
*env
, uint32_t new_cr4
)
685 X86CPU
*cpu
= x86_env_get_cpu(env
);
688 #if defined(DEBUG_MMU)
689 printf("CR4 update: %08x -> %08x\n", (uint32_t)env
->cr
[4], new_cr4
);
691 if ((new_cr4
^ env
->cr
[4]) &
692 (CR4_PGE_MASK
| CR4_PAE_MASK
| CR4_PSE_MASK
|
693 CR4_SMEP_MASK
| CR4_SMAP_MASK
| CR4_LA57_MASK
)) {
697 /* Clear bits we're going to recompute. */
698 hflags
= env
->hflags
& ~(HF_OSFXSR_MASK
| HF_SMAP_MASK
);
701 if (!(env
->features
[FEAT_1_EDX
] & CPUID_SSE
)) {
702 new_cr4
&= ~CR4_OSFXSR_MASK
;
704 if (new_cr4
& CR4_OSFXSR_MASK
) {
705 hflags
|= HF_OSFXSR_MASK
;
708 if (!(env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_SMAP
)) {
709 new_cr4
&= ~CR4_SMAP_MASK
;
711 if (new_cr4
& CR4_SMAP_MASK
) {
712 hflags
|= HF_SMAP_MASK
;
715 if (!(env
->features
[FEAT_7_0_ECX
] & CPUID_7_0_ECX_PKU
)) {
716 new_cr4
&= ~CR4_PKE_MASK
;
719 env
->cr
[4] = new_cr4
;
720 env
->hflags
= hflags
;
722 cpu_sync_bndcs_hflags(env
);
725 #if !defined(CONFIG_USER_ONLY)
726 hwaddr
x86_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
728 X86CPU
*cpu
= X86_CPU(cs
);
729 CPUX86State
*env
= &cpu
->env
;
730 target_ulong pde_addr
, pte_addr
;
733 uint32_t page_offset
;
736 a20_mask
= x86_get_a20_mask(env
);
737 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
738 pte
= addr
& a20_mask
;
740 } else if (env
->cr
[4] & CR4_PAE_MASK
) {
741 target_ulong pdpe_addr
;
745 if (env
->hflags
& HF_LMA_MASK
) {
746 bool la57
= env
->cr
[4] & CR4_LA57_MASK
;
747 uint64_t pml5e_addr
, pml5e
;
748 uint64_t pml4e_addr
, pml4e
;
751 /* test virtual address sign extension */
752 sext
= la57
? (int64_t)addr
>> 56 : (int64_t)addr
>> 47;
753 if (sext
!= 0 && sext
!= -1) {
758 pml5e_addr
= ((env
->cr
[3] & ~0xfff) +
759 (((addr
>> 48) & 0x1ff) << 3)) & a20_mask
;
760 pml5e
= x86_ldq_phys(cs
, pml5e_addr
);
761 if (!(pml5e
& PG_PRESENT_MASK
)) {
768 pml4e_addr
= ((pml5e
& PG_ADDRESS_MASK
) +
769 (((addr
>> 39) & 0x1ff) << 3)) & a20_mask
;
770 pml4e
= x86_ldq_phys(cs
, pml4e_addr
);
771 if (!(pml4e
& PG_PRESENT_MASK
)) {
774 pdpe_addr
= ((pml4e
& PG_ADDRESS_MASK
) +
775 (((addr
>> 30) & 0x1ff) << 3)) & a20_mask
;
776 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
777 if (!(pdpe
& PG_PRESENT_MASK
)) {
780 if (pdpe
& PG_PSE_MASK
) {
781 page_size
= 1024 * 1024 * 1024;
789 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
791 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
792 if (!(pdpe
& PG_PRESENT_MASK
))
796 pde_addr
= ((pdpe
& PG_ADDRESS_MASK
) +
797 (((addr
>> 21) & 0x1ff) << 3)) & a20_mask
;
798 pde
= x86_ldq_phys(cs
, pde_addr
);
799 if (!(pde
& PG_PRESENT_MASK
)) {
802 if (pde
& PG_PSE_MASK
) {
804 page_size
= 2048 * 1024;
808 pte_addr
= ((pde
& PG_ADDRESS_MASK
) +
809 (((addr
>> 12) & 0x1ff) << 3)) & a20_mask
;
811 pte
= x86_ldq_phys(cs
, pte_addr
);
813 if (!(pte
& PG_PRESENT_MASK
)) {
819 /* page directory entry */
820 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) & a20_mask
;
821 pde
= x86_ldl_phys(cs
, pde_addr
);
822 if (!(pde
& PG_PRESENT_MASK
))
824 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
825 pte
= pde
| ((pde
& 0x1fe000LL
) << (32 - 13));
826 page_size
= 4096 * 1024;
828 /* page directory entry */
829 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) & a20_mask
;
830 pte
= x86_ldl_phys(cs
, pte_addr
);
831 if (!(pte
& PG_PRESENT_MASK
)) {
836 pte
= pte
& a20_mask
;
842 pte
&= PG_ADDRESS_MASK
& ~(page_size
- 1);
843 page_offset
= (addr
& TARGET_PAGE_MASK
) & (page_size
- 1);
844 return pte
| page_offset
;
847 typedef struct MCEInjectionParams
{
855 } MCEInjectionParams
;
857 static void do_inject_x86_mce(CPUState
*cs
, run_on_cpu_data data
)
859 MCEInjectionParams
*params
= data
.host_ptr
;
860 X86CPU
*cpu
= X86_CPU(cs
);
861 CPUX86State
*cenv
= &cpu
->env
;
862 uint64_t *banks
= cenv
->mce_banks
+ 4 * params
->bank
;
864 cpu_synchronize_state(cs
);
867 * If there is an MCE exception being processed, ignore this SRAO MCE
868 * unless unconditional injection was requested.
870 if (!(params
->flags
& MCE_INJECT_UNCOND_AO
)
871 && !(params
->status
& MCI_STATUS_AR
)
872 && (cenv
->mcg_status
& MCG_STATUS_MCIP
)) {
876 if (params
->status
& MCI_STATUS_UC
) {
878 * if MSR_MCG_CTL is not all 1s, the uncorrected error
879 * reporting is disabled
881 if ((cenv
->mcg_cap
& MCG_CTL_P
) && cenv
->mcg_ctl
!= ~(uint64_t)0) {
882 monitor_printf(params
->mon
,
883 "CPU %d: Uncorrected error reporting disabled\n",
889 * if MSR_MCi_CTL is not all 1s, the uncorrected error
890 * reporting is disabled for the bank
892 if (banks
[0] != ~(uint64_t)0) {
893 monitor_printf(params
->mon
,
894 "CPU %d: Uncorrected error reporting disabled for"
896 cs
->cpu_index
, params
->bank
);
900 if ((cenv
->mcg_status
& MCG_STATUS_MCIP
) ||
901 !(cenv
->cr
[4] & CR4_MCE_MASK
)) {
902 monitor_printf(params
->mon
,
903 "CPU %d: Previous MCE still in progress, raising"
906 qemu_log_mask(CPU_LOG_RESET
, "Triple fault\n");
907 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
910 if (banks
[1] & MCI_STATUS_VAL
) {
911 params
->status
|= MCI_STATUS_OVER
;
913 banks
[2] = params
->addr
;
914 banks
[3] = params
->misc
;
915 cenv
->mcg_status
= params
->mcg_status
;
916 banks
[1] = params
->status
;
917 cpu_interrupt(cs
, CPU_INTERRUPT_MCE
);
918 } else if (!(banks
[1] & MCI_STATUS_VAL
)
919 || !(banks
[1] & MCI_STATUS_UC
)) {
920 if (banks
[1] & MCI_STATUS_VAL
) {
921 params
->status
|= MCI_STATUS_OVER
;
923 banks
[2] = params
->addr
;
924 banks
[3] = params
->misc
;
925 banks
[1] = params
->status
;
927 banks
[1] |= MCI_STATUS_OVER
;
931 void cpu_x86_inject_mce(Monitor
*mon
, X86CPU
*cpu
, int bank
,
932 uint64_t status
, uint64_t mcg_status
, uint64_t addr
,
933 uint64_t misc
, int flags
)
935 CPUState
*cs
= CPU(cpu
);
936 CPUX86State
*cenv
= &cpu
->env
;
937 MCEInjectionParams params
= {
941 .mcg_status
= mcg_status
,
946 unsigned bank_num
= cenv
->mcg_cap
& 0xff;
948 if (!cenv
->mcg_cap
) {
949 monitor_printf(mon
, "MCE injection not supported\n");
952 if (bank
>= bank_num
) {
953 monitor_printf(mon
, "Invalid MCE bank number\n");
956 if (!(status
& MCI_STATUS_VAL
)) {
957 monitor_printf(mon
, "Invalid MCE status code\n");
960 if ((flags
& MCE_INJECT_BROADCAST
)
961 && !cpu_x86_support_mca_broadcast(cenv
)) {
962 monitor_printf(mon
, "Guest CPU does not support MCA broadcast\n");
966 run_on_cpu(cs
, do_inject_x86_mce
, RUN_ON_CPU_HOST_PTR(¶ms
));
967 if (flags
& MCE_INJECT_BROADCAST
) {
971 params
.status
= MCI_STATUS_VAL
| MCI_STATUS_UC
;
972 params
.mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
;
975 CPU_FOREACH(other_cs
) {
976 if (other_cs
== cs
) {
979 run_on_cpu(other_cs
, do_inject_x86_mce
, RUN_ON_CPU_HOST_PTR(¶ms
));
984 void cpu_report_tpr_access(CPUX86State
*env
, TPRAccess access
)
986 X86CPU
*cpu
= x86_env_get_cpu(env
);
987 CPUState
*cs
= CPU(cpu
);
990 env
->tpr_access_type
= access
;
992 cpu_interrupt(cs
, CPU_INTERRUPT_TPR
);
993 } else if (tcg_enabled()) {
994 cpu_restore_state(cs
, cs
->mem_io_pc
);
996 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
, access
);
999 #endif /* !CONFIG_USER_ONLY */
1001 int cpu_x86_get_descr_debug(CPUX86State
*env
, unsigned int selector
,
1002 target_ulong
*base
, unsigned int *limit
,
1003 unsigned int *flags
)
1005 X86CPU
*cpu
= x86_env_get_cpu(env
);
1006 CPUState
*cs
= CPU(cpu
);
1016 index
= selector
& ~7;
1017 ptr
= dt
->base
+ index
;
1018 if ((index
+ 7) > dt
->limit
1019 || cpu_memory_rw_debug(cs
, ptr
, (uint8_t *)&e1
, sizeof(e1
), 0) != 0
1020 || cpu_memory_rw_debug(cs
, ptr
+4, (uint8_t *)&e2
, sizeof(e2
), 0) != 0)
1023 *base
= ((e1
>> 16) | ((e2
& 0xff) << 16) | (e2
& 0xff000000));
1024 *limit
= (e1
& 0xffff) | (e2
& 0x000f0000);
1025 if (e2
& DESC_G_MASK
)
1026 *limit
= (*limit
<< 12) | 0xfff;
1032 #if !defined(CONFIG_USER_ONLY)
1033 void do_cpu_init(X86CPU
*cpu
)
1035 CPUState
*cs
= CPU(cpu
);
1036 CPUX86State
*env
= &cpu
->env
;
1037 CPUX86State
*save
= g_new(CPUX86State
, 1);
1038 int sipi
= cs
->interrupt_request
& CPU_INTERRUPT_SIPI
;
1043 cs
->interrupt_request
= sipi
;
1044 memcpy(&env
->start_init_save
, &save
->start_init_save
,
1045 offsetof(CPUX86State
, end_init_save
) -
1046 offsetof(CPUX86State
, start_init_save
));
1049 if (kvm_enabled()) {
1050 kvm_arch_do_init_vcpu(cpu
);
1052 apic_init_reset(cpu
->apic_state
);
1055 void do_cpu_sipi(X86CPU
*cpu
)
1057 apic_sipi(cpu
->apic_state
);
1060 void do_cpu_init(X86CPU
*cpu
)
1063 void do_cpu_sipi(X86CPU
*cpu
)
1068 /* Frob eflags into and out of the CPU temporary format. */
1070 void x86_cpu_exec_enter(CPUState
*cs
)
1072 X86CPU
*cpu
= X86_CPU(cs
);
1073 CPUX86State
*env
= &cpu
->env
;
1075 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1076 env
->df
= 1 - (2 * ((env
->eflags
>> 10) & 1));
1077 CC_OP
= CC_OP_EFLAGS
;
1078 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1081 void x86_cpu_exec_exit(CPUState
*cs
)
1083 X86CPU
*cpu
= X86_CPU(cs
);
1084 CPUX86State
*env
= &cpu
->env
;
1086 env
->eflags
= cpu_compute_eflags(env
);
1089 #ifndef CONFIG_USER_ONLY
1090 uint8_t x86_ldub_phys(CPUState
*cs
, hwaddr addr
)
1092 X86CPU
*cpu
= X86_CPU(cs
);
1093 CPUX86State
*env
= &cpu
->env
;
1094 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1095 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1097 return address_space_ldub(as
, addr
, attrs
, NULL
);
1100 uint32_t x86_lduw_phys(CPUState
*cs
, hwaddr addr
)
1102 X86CPU
*cpu
= X86_CPU(cs
);
1103 CPUX86State
*env
= &cpu
->env
;
1104 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1105 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1107 return address_space_lduw(as
, addr
, attrs
, NULL
);
1110 uint32_t x86_ldl_phys(CPUState
*cs
, hwaddr addr
)
1112 X86CPU
*cpu
= X86_CPU(cs
);
1113 CPUX86State
*env
= &cpu
->env
;
1114 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1115 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1117 return address_space_ldl(as
, addr
, attrs
, NULL
);
1120 uint64_t x86_ldq_phys(CPUState
*cs
, hwaddr addr
)
1122 X86CPU
*cpu
= X86_CPU(cs
);
1123 CPUX86State
*env
= &cpu
->env
;
1124 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1125 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1127 return address_space_ldq(as
, addr
, attrs
, NULL
);
1130 void x86_stb_phys(CPUState
*cs
, hwaddr addr
, uint8_t val
)
1132 X86CPU
*cpu
= X86_CPU(cs
);
1133 CPUX86State
*env
= &cpu
->env
;
1134 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1135 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1137 address_space_stb(as
, addr
, val
, attrs
, NULL
);
1140 void x86_stl_phys_notdirty(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1142 X86CPU
*cpu
= X86_CPU(cs
);
1143 CPUX86State
*env
= &cpu
->env
;
1144 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1145 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1147 address_space_stl_notdirty(as
, addr
, val
, attrs
, NULL
);
1150 void x86_stw_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1152 X86CPU
*cpu
= X86_CPU(cs
);
1153 CPUX86State
*env
= &cpu
->env
;
1154 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1155 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1157 address_space_stw(as
, addr
, val
, attrs
, NULL
);
1160 void x86_stl_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1162 X86CPU
*cpu
= X86_CPU(cs
);
1163 CPUX86State
*env
= &cpu
->env
;
1164 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1165 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1167 address_space_stl(as
, addr
, val
, attrs
, NULL
);
1170 void x86_stq_phys(CPUState
*cs
, hwaddr addr
, uint64_t val
)
1172 X86CPU
*cpu
= X86_CPU(cs
);
1173 CPUX86State
*env
= &cpu
->env
;
1174 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1175 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1177 address_space_stq(as
, addr
, val
, attrs
, NULL
);