target/sh4: Prefer fast cpu_env() over slower CPU QOM cast macro
[qemu/ar7.git] / block / io.c
blob33150c035900a8d822cf08d3a8922704bf1cef5a
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "sysemu/replay.h"
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
45 static void coroutine_fn GRAPH_RDLOCK
46 bdrv_parent_cb_resize(BlockDriverState *bs);
48 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
49 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
51 static void GRAPH_RDLOCK
52 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
54 BdrvChild *c, *next;
55 IO_OR_GS_CODE();
56 assert_bdrv_graph_readable();
58 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
59 if (c == ignore) {
60 continue;
62 bdrv_parent_drained_begin_single(c);
66 void bdrv_parent_drained_end_single(BdrvChild *c)
68 GLOBAL_STATE_CODE();
70 assert(c->quiesced_parent);
71 c->quiesced_parent = false;
73 if (c->klass->drained_end) {
74 c->klass->drained_end(c);
78 static void GRAPH_RDLOCK
79 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
81 BdrvChild *c;
82 IO_OR_GS_CODE();
83 assert_bdrv_graph_readable();
85 QLIST_FOREACH(c, &bs->parents, next_parent) {
86 if (c == ignore) {
87 continue;
89 bdrv_parent_drained_end_single(c);
93 bool bdrv_parent_drained_poll_single(BdrvChild *c)
95 IO_OR_GS_CODE();
97 if (c->klass->drained_poll) {
98 return c->klass->drained_poll(c);
100 return false;
103 static bool GRAPH_RDLOCK
104 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
105 bool ignore_bds_parents)
107 BdrvChild *c, *next;
108 bool busy = false;
109 IO_OR_GS_CODE();
110 assert_bdrv_graph_readable();
112 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
113 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
114 continue;
116 busy |= bdrv_parent_drained_poll_single(c);
119 return busy;
122 void bdrv_parent_drained_begin_single(BdrvChild *c)
124 GLOBAL_STATE_CODE();
126 assert(!c->quiesced_parent);
127 c->quiesced_parent = true;
129 if (c->klass->drained_begin) {
130 /* called with rdlock taken, but it doesn't really need it. */
131 c->klass->drained_begin(c);
135 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
137 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
138 src->pdiscard_alignment);
139 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
140 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
141 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
142 src->max_hw_transfer);
143 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
144 src->opt_mem_alignment);
145 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
146 src->min_mem_alignment);
147 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
148 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
151 typedef struct BdrvRefreshLimitsState {
152 BlockDriverState *bs;
153 BlockLimits old_bl;
154 } BdrvRefreshLimitsState;
156 static void bdrv_refresh_limits_abort(void *opaque)
158 BdrvRefreshLimitsState *s = opaque;
160 s->bs->bl = s->old_bl;
163 static TransactionActionDrv bdrv_refresh_limits_drv = {
164 .abort = bdrv_refresh_limits_abort,
165 .clean = g_free,
168 /* @tran is allowed to be NULL, in this case no rollback is possible. */
169 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
171 ERRP_GUARD();
172 BlockDriver *drv = bs->drv;
173 BdrvChild *c;
174 bool have_limits;
176 GLOBAL_STATE_CODE();
178 if (tran) {
179 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
180 *s = (BdrvRefreshLimitsState) {
181 .bs = bs,
182 .old_bl = bs->bl,
184 tran_add(tran, &bdrv_refresh_limits_drv, s);
187 memset(&bs->bl, 0, sizeof(bs->bl));
189 if (!drv) {
190 return;
193 /* Default alignment based on whether driver has byte interface */
194 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
195 drv->bdrv_aio_preadv ||
196 drv->bdrv_co_preadv_part) ? 1 : 512;
198 /* Take some limits from the children as a default */
199 have_limits = false;
200 QLIST_FOREACH(c, &bs->children, next) {
201 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
203 bdrv_merge_limits(&bs->bl, &c->bs->bl);
204 have_limits = true;
207 if (c->role & BDRV_CHILD_FILTERED) {
208 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
212 if (!have_limits) {
213 bs->bl.min_mem_alignment = 512;
214 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
216 /* Safe default since most protocols use readv()/writev()/etc */
217 bs->bl.max_iov = IOV_MAX;
220 /* Then let the driver override it */
221 if (drv->bdrv_refresh_limits) {
222 drv->bdrv_refresh_limits(bs, errp);
223 if (*errp) {
224 return;
228 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
229 error_setg(errp, "Driver requires too large request alignment");
234 * The copy-on-read flag is actually a reference count so multiple users may
235 * use the feature without worrying about clobbering its previous state.
236 * Copy-on-read stays enabled until all users have called to disable it.
238 void bdrv_enable_copy_on_read(BlockDriverState *bs)
240 IO_CODE();
241 qatomic_inc(&bs->copy_on_read);
244 void bdrv_disable_copy_on_read(BlockDriverState *bs)
246 int old = qatomic_fetch_dec(&bs->copy_on_read);
247 IO_CODE();
248 assert(old >= 1);
251 typedef struct {
252 Coroutine *co;
253 BlockDriverState *bs;
254 bool done;
255 bool begin;
256 bool poll;
257 BdrvChild *parent;
258 } BdrvCoDrainData;
260 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
261 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
262 bool ignore_bds_parents)
264 GLOBAL_STATE_CODE();
266 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
267 return true;
270 if (qatomic_read(&bs->in_flight)) {
271 return true;
274 return false;
277 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
278 BdrvChild *ignore_parent)
280 GLOBAL_STATE_CODE();
281 GRAPH_RDLOCK_GUARD_MAINLOOP();
283 return bdrv_drain_poll(bs, ignore_parent, false);
286 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
287 bool poll);
288 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
290 static void bdrv_co_drain_bh_cb(void *opaque)
292 BdrvCoDrainData *data = opaque;
293 Coroutine *co = data->co;
294 BlockDriverState *bs = data->bs;
296 if (bs) {
297 bdrv_dec_in_flight(bs);
298 if (data->begin) {
299 bdrv_do_drained_begin(bs, data->parent, data->poll);
300 } else {
301 assert(!data->poll);
302 bdrv_do_drained_end(bs, data->parent);
304 } else {
305 assert(data->begin);
306 bdrv_drain_all_begin();
309 data->done = true;
310 aio_co_wake(co);
313 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
314 bool begin,
315 BdrvChild *parent,
316 bool poll)
318 BdrvCoDrainData data;
319 Coroutine *self = qemu_coroutine_self();
321 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
322 * other coroutines run if they were queued by aio_co_enter(). */
324 assert(qemu_in_coroutine());
325 data = (BdrvCoDrainData) {
326 .co = self,
327 .bs = bs,
328 .done = false,
329 .begin = begin,
330 .parent = parent,
331 .poll = poll,
334 if (bs) {
335 bdrv_inc_in_flight(bs);
338 replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
339 bdrv_co_drain_bh_cb, &data);
341 qemu_coroutine_yield();
342 /* If we are resumed from some other event (such as an aio completion or a
343 * timer callback), it is a bug in the caller that should be fixed. */
344 assert(data.done);
347 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
348 bool poll)
350 IO_OR_GS_CODE();
352 if (qemu_in_coroutine()) {
353 bdrv_co_yield_to_drain(bs, true, parent, poll);
354 return;
357 GLOBAL_STATE_CODE();
359 /* Stop things in parent-to-child order */
360 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
361 GRAPH_RDLOCK_GUARD_MAINLOOP();
362 bdrv_parent_drained_begin(bs, parent);
363 if (bs->drv && bs->drv->bdrv_drain_begin) {
364 bs->drv->bdrv_drain_begin(bs);
369 * Wait for drained requests to finish.
371 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
372 * call is needed so things in this AioContext can make progress even
373 * though we don't return to the main AioContext loop - this automatically
374 * includes other nodes in the same AioContext and therefore all child
375 * nodes.
377 if (poll) {
378 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
382 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
384 bdrv_do_drained_begin(bs, parent, false);
387 void coroutine_mixed_fn
388 bdrv_drained_begin(BlockDriverState *bs)
390 IO_OR_GS_CODE();
391 bdrv_do_drained_begin(bs, NULL, true);
395 * This function does not poll, nor must any of its recursively called
396 * functions.
398 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
400 int old_quiesce_counter;
402 IO_OR_GS_CODE();
404 if (qemu_in_coroutine()) {
405 bdrv_co_yield_to_drain(bs, false, parent, false);
406 return;
409 /* At this point, we should be always running in the main loop. */
410 GLOBAL_STATE_CODE();
411 assert(bs->quiesce_counter > 0);
412 GLOBAL_STATE_CODE();
414 /* Re-enable things in child-to-parent order */
415 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
416 if (old_quiesce_counter == 1) {
417 GRAPH_RDLOCK_GUARD_MAINLOOP();
418 if (bs->drv && bs->drv->bdrv_drain_end) {
419 bs->drv->bdrv_drain_end(bs);
421 bdrv_parent_drained_end(bs, parent);
425 void bdrv_drained_end(BlockDriverState *bs)
427 IO_OR_GS_CODE();
428 bdrv_do_drained_end(bs, NULL);
431 void bdrv_drain(BlockDriverState *bs)
433 IO_OR_GS_CODE();
434 bdrv_drained_begin(bs);
435 bdrv_drained_end(bs);
438 static void bdrv_drain_assert_idle(BlockDriverState *bs)
440 BdrvChild *child, *next;
441 GLOBAL_STATE_CODE();
442 GRAPH_RDLOCK_GUARD_MAINLOOP();
444 assert(qatomic_read(&bs->in_flight) == 0);
445 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
446 bdrv_drain_assert_idle(child->bs);
450 unsigned int bdrv_drain_all_count = 0;
452 static bool bdrv_drain_all_poll(void)
454 BlockDriverState *bs = NULL;
455 bool result = false;
457 GLOBAL_STATE_CODE();
458 GRAPH_RDLOCK_GUARD_MAINLOOP();
461 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL,
462 * so iterating bdrv_next_all_states() is safe.
464 while ((bs = bdrv_next_all_states(bs))) {
465 result |= bdrv_drain_poll(bs, NULL, true);
468 return result;
472 * Wait for pending requests to complete across all BlockDriverStates
474 * This function does not flush data to disk, use bdrv_flush_all() for that
475 * after calling this function.
477 * This pauses all block jobs and disables external clients. It must
478 * be paired with bdrv_drain_all_end().
480 * NOTE: no new block jobs or BlockDriverStates can be created between
481 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
483 void bdrv_drain_all_begin_nopoll(void)
485 BlockDriverState *bs = NULL;
486 GLOBAL_STATE_CODE();
489 * bdrv queue is managed by record/replay,
490 * waiting for finishing the I/O requests may
491 * be infinite
493 if (replay_events_enabled()) {
494 return;
497 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
498 * loop AioContext, so make sure we're in the main context. */
499 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
500 assert(bdrv_drain_all_count < INT_MAX);
501 bdrv_drain_all_count++;
503 /* Quiesce all nodes, without polling in-flight requests yet. The graph
504 * cannot change during this loop. */
505 while ((bs = bdrv_next_all_states(bs))) {
506 bdrv_do_drained_begin(bs, NULL, false);
510 void coroutine_mixed_fn bdrv_drain_all_begin(void)
512 BlockDriverState *bs = NULL;
514 if (qemu_in_coroutine()) {
515 bdrv_co_yield_to_drain(NULL, true, NULL, true);
516 return;
520 * bdrv queue is managed by record/replay,
521 * waiting for finishing the I/O requests may
522 * be infinite
524 if (replay_events_enabled()) {
525 return;
528 bdrv_drain_all_begin_nopoll();
530 /* Now poll the in-flight requests */
531 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
533 while ((bs = bdrv_next_all_states(bs))) {
534 bdrv_drain_assert_idle(bs);
538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
540 GLOBAL_STATE_CODE();
542 g_assert(bs->quiesce_counter > 0);
543 g_assert(!bs->refcnt);
545 while (bs->quiesce_counter) {
546 bdrv_do_drained_end(bs, NULL);
550 void bdrv_drain_all_end(void)
552 BlockDriverState *bs = NULL;
553 GLOBAL_STATE_CODE();
556 * bdrv queue is managed by record/replay,
557 * waiting for finishing the I/O requests may
558 * be endless
560 if (replay_events_enabled()) {
561 return;
564 while ((bs = bdrv_next_all_states(bs))) {
565 bdrv_do_drained_end(bs, NULL);
568 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
569 assert(bdrv_drain_all_count > 0);
570 bdrv_drain_all_count--;
573 void bdrv_drain_all(void)
575 GLOBAL_STATE_CODE();
576 bdrv_drain_all_begin();
577 bdrv_drain_all_end();
581 * Remove an active request from the tracked requests list
583 * This function should be called when a tracked request is completing.
585 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
587 if (req->serialising) {
588 qatomic_dec(&req->bs->serialising_in_flight);
591 qemu_mutex_lock(&req->bs->reqs_lock);
592 QLIST_REMOVE(req, list);
593 qemu_mutex_unlock(&req->bs->reqs_lock);
596 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called
597 * anymore because the request has been removed from the list, so it's safe
598 * to restart the queue outside reqs_lock to minimize the critical section.
600 qemu_co_queue_restart_all(&req->wait_queue);
604 * Add an active request to the tracked requests list
606 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
607 BlockDriverState *bs,
608 int64_t offset,
609 int64_t bytes,
610 enum BdrvTrackedRequestType type)
612 bdrv_check_request(offset, bytes, &error_abort);
614 *req = (BdrvTrackedRequest){
615 .bs = bs,
616 .offset = offset,
617 .bytes = bytes,
618 .type = type,
619 .co = qemu_coroutine_self(),
620 .serialising = false,
621 .overlap_offset = offset,
622 .overlap_bytes = bytes,
625 qemu_co_queue_init(&req->wait_queue);
627 qemu_mutex_lock(&bs->reqs_lock);
628 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
629 qemu_mutex_unlock(&bs->reqs_lock);
632 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
633 int64_t offset, int64_t bytes)
635 bdrv_check_request(offset, bytes, &error_abort);
637 /* aaaa bbbb */
638 if (offset >= req->overlap_offset + req->overlap_bytes) {
639 return false;
641 /* bbbb aaaa */
642 if (req->overlap_offset >= offset + bytes) {
643 return false;
645 return true;
648 /* Called with self->bs->reqs_lock held */
649 static coroutine_fn BdrvTrackedRequest *
650 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
652 BdrvTrackedRequest *req;
654 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
655 if (req == self || (!req->serialising && !self->serialising)) {
656 continue;
658 if (tracked_request_overlaps(req, self->overlap_offset,
659 self->overlap_bytes))
662 * Hitting this means there was a reentrant request, for
663 * example, a block driver issuing nested requests. This must
664 * never happen since it means deadlock.
666 assert(qemu_coroutine_self() != req->co);
669 * If the request is already (indirectly) waiting for us, or
670 * will wait for us as soon as it wakes up, then just go on
671 * (instead of producing a deadlock in the former case).
673 if (!req->waiting_for) {
674 return req;
679 return NULL;
682 /* Called with self->bs->reqs_lock held */
683 static void coroutine_fn
684 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
686 BdrvTrackedRequest *req;
688 while ((req = bdrv_find_conflicting_request(self))) {
689 self->waiting_for = req;
690 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
691 self->waiting_for = NULL;
695 /* Called with req->bs->reqs_lock held */
696 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
697 uint64_t align)
699 int64_t overlap_offset = req->offset & ~(align - 1);
700 int64_t overlap_bytes =
701 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
703 bdrv_check_request(req->offset, req->bytes, &error_abort);
705 if (!req->serialising) {
706 qatomic_inc(&req->bs->serialising_in_flight);
707 req->serialising = true;
710 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
711 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
715 * Return the tracked request on @bs for the current coroutine, or
716 * NULL if there is none.
718 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
720 BdrvTrackedRequest *req;
721 Coroutine *self = qemu_coroutine_self();
722 IO_CODE();
724 QLIST_FOREACH(req, &bs->tracked_requests, list) {
725 if (req->co == self) {
726 return req;
730 return NULL;
734 * Round a region to subcluster (if supported) or cluster boundaries
736 void coroutine_fn GRAPH_RDLOCK
737 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
738 int64_t *align_offset, int64_t *align_bytes)
740 BlockDriverInfo bdi;
741 IO_CODE();
742 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) {
743 *align_offset = offset;
744 *align_bytes = bytes;
745 } else {
746 int64_t c = bdi.subcluster_size;
747 *align_offset = QEMU_ALIGN_DOWN(offset, c);
748 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c);
752 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
754 BlockDriverInfo bdi;
755 int ret;
757 ret = bdrv_co_get_info(bs, &bdi);
758 if (ret < 0 || bdi.cluster_size == 0) {
759 return bs->bl.request_alignment;
760 } else {
761 return bdi.cluster_size;
765 void bdrv_inc_in_flight(BlockDriverState *bs)
767 IO_CODE();
768 qatomic_inc(&bs->in_flight);
771 void bdrv_wakeup(BlockDriverState *bs)
773 IO_CODE();
774 aio_wait_kick();
777 void bdrv_dec_in_flight(BlockDriverState *bs)
779 IO_CODE();
780 qatomic_dec(&bs->in_flight);
781 bdrv_wakeup(bs);
784 static void coroutine_fn
785 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
787 BlockDriverState *bs = self->bs;
789 if (!qatomic_read(&bs->serialising_in_flight)) {
790 return;
793 qemu_mutex_lock(&bs->reqs_lock);
794 bdrv_wait_serialising_requests_locked(self);
795 qemu_mutex_unlock(&bs->reqs_lock);
798 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
799 uint64_t align)
801 IO_CODE();
803 qemu_mutex_lock(&req->bs->reqs_lock);
805 tracked_request_set_serialising(req, align);
806 bdrv_wait_serialising_requests_locked(req);
808 qemu_mutex_unlock(&req->bs->reqs_lock);
811 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
812 QEMUIOVector *qiov, size_t qiov_offset,
813 Error **errp)
816 * Check generic offset/bytes correctness
819 if (offset < 0) {
820 error_setg(errp, "offset is negative: %" PRIi64, offset);
821 return -EIO;
824 if (bytes < 0) {
825 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
826 return -EIO;
829 if (bytes > BDRV_MAX_LENGTH) {
830 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
831 bytes, BDRV_MAX_LENGTH);
832 return -EIO;
835 if (offset > BDRV_MAX_LENGTH) {
836 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
837 offset, BDRV_MAX_LENGTH);
838 return -EIO;
841 if (offset > BDRV_MAX_LENGTH - bytes) {
842 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
843 "exceeds maximum(%" PRIi64 ")", offset, bytes,
844 BDRV_MAX_LENGTH);
845 return -EIO;
848 if (!qiov) {
849 return 0;
853 * Check qiov and qiov_offset
856 if (qiov_offset > qiov->size) {
857 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
858 qiov_offset, qiov->size);
859 return -EIO;
862 if (bytes > qiov->size - qiov_offset) {
863 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
864 "vector size(%zu)", bytes, qiov_offset, qiov->size);
865 return -EIO;
868 return 0;
871 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
873 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
876 static int bdrv_check_request32(int64_t offset, int64_t bytes,
877 QEMUIOVector *qiov, size_t qiov_offset)
879 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
880 if (ret < 0) {
881 return ret;
884 if (bytes > BDRV_REQUEST_MAX_BYTES) {
885 return -EIO;
888 return 0;
892 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
893 * The operation is sped up by checking the block status and only writing
894 * zeroes to the device if they currently do not return zeroes. Optional
895 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
896 * BDRV_REQ_FUA).
898 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
900 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
902 int ret;
903 int64_t target_size, bytes, offset = 0;
904 BlockDriverState *bs = child->bs;
905 IO_CODE();
907 target_size = bdrv_getlength(bs);
908 if (target_size < 0) {
909 return target_size;
912 for (;;) {
913 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
914 if (bytes <= 0) {
915 return 0;
917 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
918 if (ret < 0) {
919 return ret;
921 if (ret & BDRV_BLOCK_ZERO) {
922 offset += bytes;
923 continue;
925 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
926 if (ret < 0) {
927 return ret;
929 offset += bytes;
934 * Writes to the file and ensures that no writes are reordered across this
935 * request (acts as a barrier)
937 * Returns 0 on success, -errno in error cases.
939 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
940 int64_t bytes, const void *buf,
941 BdrvRequestFlags flags)
943 int ret;
944 IO_CODE();
945 assert_bdrv_graph_readable();
947 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
948 if (ret < 0) {
949 return ret;
952 ret = bdrv_co_flush(child->bs);
953 if (ret < 0) {
954 return ret;
957 return 0;
960 typedef struct CoroutineIOCompletion {
961 Coroutine *coroutine;
962 int ret;
963 } CoroutineIOCompletion;
965 static void bdrv_co_io_em_complete(void *opaque, int ret)
967 CoroutineIOCompletion *co = opaque;
969 co->ret = ret;
970 aio_co_wake(co->coroutine);
973 static int coroutine_fn GRAPH_RDLOCK
974 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
975 QEMUIOVector *qiov, size_t qiov_offset, int flags)
977 BlockDriver *drv = bs->drv;
978 int64_t sector_num;
979 unsigned int nb_sectors;
980 QEMUIOVector local_qiov;
981 int ret;
982 assert_bdrv_graph_readable();
984 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
985 assert(!(flags & ~bs->supported_read_flags));
987 if (!drv) {
988 return -ENOMEDIUM;
991 if (drv->bdrv_co_preadv_part) {
992 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
993 flags);
996 if (qiov_offset > 0 || bytes != qiov->size) {
997 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
998 qiov = &local_qiov;
1001 if (drv->bdrv_co_preadv) {
1002 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1003 goto out;
1006 if (drv->bdrv_aio_preadv) {
1007 BlockAIOCB *acb;
1008 CoroutineIOCompletion co = {
1009 .coroutine = qemu_coroutine_self(),
1012 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1013 bdrv_co_io_em_complete, &co);
1014 if (acb == NULL) {
1015 ret = -EIO;
1016 goto out;
1017 } else {
1018 qemu_coroutine_yield();
1019 ret = co.ret;
1020 goto out;
1024 sector_num = offset >> BDRV_SECTOR_BITS;
1025 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1027 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1028 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1029 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1030 assert(drv->bdrv_co_readv);
1032 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1034 out:
1035 if (qiov == &local_qiov) {
1036 qemu_iovec_destroy(&local_qiov);
1039 return ret;
1042 static int coroutine_fn GRAPH_RDLOCK
1043 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1044 QEMUIOVector *qiov, size_t qiov_offset,
1045 BdrvRequestFlags flags)
1047 BlockDriver *drv = bs->drv;
1048 bool emulate_fua = false;
1049 int64_t sector_num;
1050 unsigned int nb_sectors;
1051 QEMUIOVector local_qiov;
1052 int ret;
1053 assert_bdrv_graph_readable();
1055 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1057 if (!drv) {
1058 return -ENOMEDIUM;
1061 if ((flags & BDRV_REQ_FUA) &&
1062 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1063 flags &= ~BDRV_REQ_FUA;
1064 emulate_fua = true;
1067 flags &= bs->supported_write_flags;
1069 if (drv->bdrv_co_pwritev_part) {
1070 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1071 flags);
1072 goto emulate_flags;
1075 if (qiov_offset > 0 || bytes != qiov->size) {
1076 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1077 qiov = &local_qiov;
1080 if (drv->bdrv_co_pwritev) {
1081 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1082 goto emulate_flags;
1085 if (drv->bdrv_aio_pwritev) {
1086 BlockAIOCB *acb;
1087 CoroutineIOCompletion co = {
1088 .coroutine = qemu_coroutine_self(),
1091 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1092 bdrv_co_io_em_complete, &co);
1093 if (acb == NULL) {
1094 ret = -EIO;
1095 } else {
1096 qemu_coroutine_yield();
1097 ret = co.ret;
1099 goto emulate_flags;
1102 sector_num = offset >> BDRV_SECTOR_BITS;
1103 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1105 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1106 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1107 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1109 assert(drv->bdrv_co_writev);
1110 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1112 emulate_flags:
1113 if (ret == 0 && emulate_fua) {
1114 ret = bdrv_co_flush(bs);
1117 if (qiov == &local_qiov) {
1118 qemu_iovec_destroy(&local_qiov);
1121 return ret;
1124 static int coroutine_fn GRAPH_RDLOCK
1125 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1126 int64_t bytes, QEMUIOVector *qiov,
1127 size_t qiov_offset)
1129 BlockDriver *drv = bs->drv;
1130 QEMUIOVector local_qiov;
1131 int ret;
1132 assert_bdrv_graph_readable();
1134 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1136 if (!drv) {
1137 return -ENOMEDIUM;
1140 if (!block_driver_can_compress(drv)) {
1141 return -ENOTSUP;
1144 if (drv->bdrv_co_pwritev_compressed_part) {
1145 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1146 qiov, qiov_offset);
1149 if (qiov_offset == 0) {
1150 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1153 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1154 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1155 qemu_iovec_destroy(&local_qiov);
1157 return ret;
1160 static int coroutine_fn GRAPH_RDLOCK
1161 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1162 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1164 BlockDriverState *bs = child->bs;
1166 /* Perform I/O through a temporary buffer so that users who scribble over
1167 * their read buffer while the operation is in progress do not end up
1168 * modifying the image file. This is critical for zero-copy guest I/O
1169 * where anything might happen inside guest memory.
1171 void *bounce_buffer = NULL;
1173 BlockDriver *drv = bs->drv;
1174 int64_t align_offset;
1175 int64_t align_bytes;
1176 int64_t skip_bytes;
1177 int ret;
1178 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1179 BDRV_REQUEST_MAX_BYTES);
1180 int64_t progress = 0;
1181 bool skip_write;
1183 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1185 if (!drv) {
1186 return -ENOMEDIUM;
1190 * Do not write anything when the BDS is inactive. That is not
1191 * allowed, and it would not help.
1193 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1195 /* FIXME We cannot require callers to have write permissions when all they
1196 * are doing is a read request. If we did things right, write permissions
1197 * would be obtained anyway, but internally by the copy-on-read code. As
1198 * long as it is implemented here rather than in a separate filter driver,
1199 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1200 * it could request permissions. Therefore we have to bypass the permission
1201 * system for the moment. */
1202 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1204 /* Cover entire cluster so no additional backing file I/O is required when
1205 * allocating cluster in the image file. Note that this value may exceed
1206 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1207 * is one reason we loop rather than doing it all at once.
1209 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes);
1210 skip_bytes = offset - align_offset;
1212 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1213 align_offset, align_bytes);
1215 while (align_bytes) {
1216 int64_t pnum;
1218 if (skip_write) {
1219 ret = 1; /* "already allocated", so nothing will be copied */
1220 pnum = MIN(align_bytes, max_transfer);
1221 } else {
1222 ret = bdrv_co_is_allocated(bs, align_offset,
1223 MIN(align_bytes, max_transfer), &pnum);
1224 if (ret < 0) {
1226 * Safe to treat errors in querying allocation as if
1227 * unallocated; we'll probably fail again soon on the
1228 * read, but at least that will set a decent errno.
1230 pnum = MIN(align_bytes, max_transfer);
1233 /* Stop at EOF if the image ends in the middle of the cluster */
1234 if (ret == 0 && pnum == 0) {
1235 assert(progress >= bytes);
1236 break;
1239 assert(skip_bytes < pnum);
1242 if (ret <= 0) {
1243 QEMUIOVector local_qiov;
1245 /* Must copy-on-read; use the bounce buffer */
1246 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1247 if (!bounce_buffer) {
1248 int64_t max_we_need = MAX(pnum, align_bytes - pnum);
1249 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1250 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1252 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1253 if (!bounce_buffer) {
1254 ret = -ENOMEM;
1255 goto err;
1258 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1260 ret = bdrv_driver_preadv(bs, align_offset, pnum,
1261 &local_qiov, 0, 0);
1262 if (ret < 0) {
1263 goto err;
1266 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1267 if (drv->bdrv_co_pwrite_zeroes &&
1268 buffer_is_zero(bounce_buffer, pnum)) {
1269 /* FIXME: Should we (perhaps conditionally) be setting
1270 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1271 * that still correctly reads as zero? */
1272 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum,
1273 BDRV_REQ_WRITE_UNCHANGED);
1274 } else {
1275 /* This does not change the data on the disk, it is not
1276 * necessary to flush even in cache=writethrough mode.
1278 ret = bdrv_driver_pwritev(bs, align_offset, pnum,
1279 &local_qiov, 0,
1280 BDRV_REQ_WRITE_UNCHANGED);
1283 if (ret < 0) {
1284 /* It might be okay to ignore write errors for guest
1285 * requests. If this is a deliberate copy-on-read
1286 * then we don't want to ignore the error. Simply
1287 * report it in all cases.
1289 goto err;
1292 if (!(flags & BDRV_REQ_PREFETCH)) {
1293 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1294 bounce_buffer + skip_bytes,
1295 MIN(pnum - skip_bytes, bytes - progress));
1297 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1298 /* Read directly into the destination */
1299 ret = bdrv_driver_preadv(bs, offset + progress,
1300 MIN(pnum - skip_bytes, bytes - progress),
1301 qiov, qiov_offset + progress, 0);
1302 if (ret < 0) {
1303 goto err;
1307 align_offset += pnum;
1308 align_bytes -= pnum;
1309 progress += pnum - skip_bytes;
1310 skip_bytes = 0;
1312 ret = 0;
1314 err:
1315 qemu_vfree(bounce_buffer);
1316 return ret;
1320 * Forwards an already correctly aligned request to the BlockDriver. This
1321 * handles copy on read, zeroing after EOF, and fragmentation of large
1322 * reads; any other features must be implemented by the caller.
1324 static int coroutine_fn GRAPH_RDLOCK
1325 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1326 int64_t offset, int64_t bytes, int64_t align,
1327 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1329 BlockDriverState *bs = child->bs;
1330 int64_t total_bytes, max_bytes;
1331 int ret = 0;
1332 int64_t bytes_remaining = bytes;
1333 int max_transfer;
1335 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1336 assert(is_power_of_2(align));
1337 assert((offset & (align - 1)) == 0);
1338 assert((bytes & (align - 1)) == 0);
1339 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1340 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1341 align);
1344 * TODO: We would need a per-BDS .supported_read_flags and
1345 * potential fallback support, if we ever implement any read flags
1346 * to pass through to drivers. For now, there aren't any
1347 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1349 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1350 BDRV_REQ_REGISTERED_BUF)));
1352 /* Handle Copy on Read and associated serialisation */
1353 if (flags & BDRV_REQ_COPY_ON_READ) {
1354 /* If we touch the same cluster it counts as an overlap. This
1355 * guarantees that allocating writes will be serialized and not race
1356 * with each other for the same cluster. For example, in copy-on-read
1357 * it ensures that the CoR read and write operations are atomic and
1358 * guest writes cannot interleave between them. */
1359 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1360 } else {
1361 bdrv_wait_serialising_requests(req);
1364 if (flags & BDRV_REQ_COPY_ON_READ) {
1365 int64_t pnum;
1367 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1368 flags &= ~BDRV_REQ_COPY_ON_READ;
1370 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum);
1371 if (ret < 0) {
1372 goto out;
1375 if (!ret || pnum != bytes) {
1376 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1377 qiov, qiov_offset, flags);
1378 goto out;
1379 } else if (flags & BDRV_REQ_PREFETCH) {
1380 goto out;
1384 /* Forward the request to the BlockDriver, possibly fragmenting it */
1385 total_bytes = bdrv_co_getlength(bs);
1386 if (total_bytes < 0) {
1387 ret = total_bytes;
1388 goto out;
1391 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1393 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1394 if (bytes <= max_bytes && bytes <= max_transfer) {
1395 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1396 goto out;
1399 while (bytes_remaining) {
1400 int64_t num;
1402 if (max_bytes) {
1403 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1404 assert(num);
1406 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1407 num, qiov,
1408 qiov_offset + bytes - bytes_remaining,
1409 flags);
1410 max_bytes -= num;
1411 } else {
1412 num = bytes_remaining;
1413 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1414 0, bytes_remaining);
1416 if (ret < 0) {
1417 goto out;
1419 bytes_remaining -= num;
1422 out:
1423 return ret < 0 ? ret : 0;
1427 * Request padding
1429 * |<---- align ----->| |<----- align ---->|
1430 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1431 * | | | | | |
1432 * -*----------$-------*-------- ... --------*-----$------------*---
1433 * | | | | | |
1434 * | offset | | end |
1435 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1436 * [buf ... ) [tail_buf )
1438 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1439 * is placed at the beginning of @buf and @tail at the @end.
1441 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1442 * around tail, if tail exists.
1444 * @merge_reads is true for small requests,
1445 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1446 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1448 * @write is true for write requests, false for read requests.
1450 * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1451 * merge existing vector elements into a single one. @collapse_bounce_buf acts
1452 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse
1453 * I/O vector elements so for read requests, the data can be copied back after
1454 * the read is done.
1456 typedef struct BdrvRequestPadding {
1457 uint8_t *buf;
1458 size_t buf_len;
1459 uint8_t *tail_buf;
1460 size_t head;
1461 size_t tail;
1462 bool merge_reads;
1463 bool write;
1464 QEMUIOVector local_qiov;
1466 uint8_t *collapse_bounce_buf;
1467 size_t collapse_len;
1468 QEMUIOVector pre_collapse_qiov;
1469 } BdrvRequestPadding;
1471 static bool bdrv_init_padding(BlockDriverState *bs,
1472 int64_t offset, int64_t bytes,
1473 bool write,
1474 BdrvRequestPadding *pad)
1476 int64_t align = bs->bl.request_alignment;
1477 int64_t sum;
1479 bdrv_check_request(offset, bytes, &error_abort);
1480 assert(align <= INT_MAX); /* documented in block/block_int.h */
1481 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1483 memset(pad, 0, sizeof(*pad));
1485 pad->head = offset & (align - 1);
1486 pad->tail = ((offset + bytes) & (align - 1));
1487 if (pad->tail) {
1488 pad->tail = align - pad->tail;
1491 if (!pad->head && !pad->tail) {
1492 return false;
1495 assert(bytes); /* Nothing good in aligning zero-length requests */
1497 sum = pad->head + bytes + pad->tail;
1498 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1499 pad->buf = qemu_blockalign(bs, pad->buf_len);
1500 pad->merge_reads = sum == pad->buf_len;
1501 if (pad->tail) {
1502 pad->tail_buf = pad->buf + pad->buf_len - align;
1505 pad->write = write;
1507 return true;
1510 static int coroutine_fn GRAPH_RDLOCK
1511 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1512 BdrvRequestPadding *pad, bool zero_middle)
1514 QEMUIOVector local_qiov;
1515 BlockDriverState *bs = child->bs;
1516 uint64_t align = bs->bl.request_alignment;
1517 int ret;
1519 assert(req->serialising && pad->buf);
1521 if (pad->head || pad->merge_reads) {
1522 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1524 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1526 if (pad->head) {
1527 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1529 if (pad->merge_reads && pad->tail) {
1530 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1532 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1533 align, &local_qiov, 0, 0);
1534 if (ret < 0) {
1535 return ret;
1537 if (pad->head) {
1538 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1540 if (pad->merge_reads && pad->tail) {
1541 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1544 if (pad->merge_reads) {
1545 goto zero_mem;
1549 if (pad->tail) {
1550 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1552 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1553 ret = bdrv_aligned_preadv(
1554 child, req,
1555 req->overlap_offset + req->overlap_bytes - align,
1556 align, align, &local_qiov, 0, 0);
1557 if (ret < 0) {
1558 return ret;
1560 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1563 zero_mem:
1564 if (zero_middle) {
1565 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1568 return 0;
1572 * Free *pad's associated buffers, and perform any necessary finalization steps.
1574 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1576 if (pad->collapse_bounce_buf) {
1577 if (!pad->write) {
1579 * If padding required elements in the vector to be collapsed into a
1580 * bounce buffer, copy the bounce buffer content back
1582 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1583 pad->collapse_bounce_buf, pad->collapse_len);
1585 qemu_vfree(pad->collapse_bounce_buf);
1586 qemu_iovec_destroy(&pad->pre_collapse_qiov);
1588 if (pad->buf) {
1589 qemu_vfree(pad->buf);
1590 qemu_iovec_destroy(&pad->local_qiov);
1592 memset(pad, 0, sizeof(*pad));
1596 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1597 * ensuring that the resulting vector will not exceed IOV_MAX elements.
1599 * To ensure this, when necessary, the first two or three elements of @iov are
1600 * merged into pad->collapse_bounce_buf and replaced by a reference to that
1601 * bounce buffer in pad->local_qiov.
1603 * After performing a read request, the data from the bounce buffer must be
1604 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1606 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1607 BdrvRequestPadding *pad,
1608 struct iovec *iov, int niov,
1609 size_t iov_offset, size_t bytes)
1611 int padded_niov, surplus_count, collapse_count;
1613 /* Assert this invariant */
1614 assert(niov <= IOV_MAX);
1617 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error
1618 * to the guest is not ideal, but there is little else we can do. At least
1619 * this will practically never happen on 64-bit systems.
1621 if (SIZE_MAX - pad->head < bytes ||
1622 SIZE_MAX - pad->head - bytes < pad->tail)
1624 return -EINVAL;
1627 /* Length of the resulting IOV if we just concatenated everything */
1628 padded_niov = !!pad->head + niov + !!pad->tail;
1630 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1632 if (pad->head) {
1633 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1637 * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1638 * Instead, merge the first two or three elements of @iov to reduce the
1639 * number of vector elements as necessary.
1641 if (padded_niov > IOV_MAX) {
1643 * Only head and tail can have lead to the number of entries exceeding
1644 * IOV_MAX, so we can exceed it by the head and tail at most. We need
1645 * to reduce the number of elements by `surplus_count`, so we merge that
1646 * many elements plus one into one element.
1648 surplus_count = padded_niov - IOV_MAX;
1649 assert(surplus_count <= !!pad->head + !!pad->tail);
1650 collapse_count = surplus_count + 1;
1653 * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1654 * advance `iov` (and associated variables) by those elements.
1656 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1657 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1658 collapse_count, iov_offset, SIZE_MAX);
1659 iov += collapse_count;
1660 iov_offset = 0;
1661 niov -= collapse_count;
1662 bytes -= pad->pre_collapse_qiov.size;
1665 * Construct the bounce buffer to match the length of the to-collapse
1666 * vector elements, and for write requests, initialize it with the data
1667 * from those elements. Then add it to `pad->local_qiov`.
1669 pad->collapse_len = pad->pre_collapse_qiov.size;
1670 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1671 if (pad->write) {
1672 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1673 pad->collapse_bounce_buf, pad->collapse_len);
1675 qemu_iovec_add(&pad->local_qiov,
1676 pad->collapse_bounce_buf, pad->collapse_len);
1679 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1681 if (pad->tail) {
1682 qemu_iovec_add(&pad->local_qiov,
1683 pad->buf + pad->buf_len - pad->tail, pad->tail);
1686 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1687 return 0;
1691 * bdrv_pad_request
1693 * Exchange request parameters with padded request if needed. Don't include RMW
1694 * read of padding, bdrv_padding_rmw_read() should be called separately if
1695 * needed.
1697 * @write is true for write requests, false for read requests.
1699 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1700 * - on function start they represent original request
1701 * - on failure or when padding is not needed they are unchanged
1702 * - on success when padding is needed they represent padded request
1704 static int bdrv_pad_request(BlockDriverState *bs,
1705 QEMUIOVector **qiov, size_t *qiov_offset,
1706 int64_t *offset, int64_t *bytes,
1707 bool write,
1708 BdrvRequestPadding *pad, bool *padded,
1709 BdrvRequestFlags *flags)
1711 int ret;
1712 struct iovec *sliced_iov;
1713 int sliced_niov;
1714 size_t sliced_head, sliced_tail;
1716 /* Should have been checked by the caller already */
1717 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1718 if (ret < 0) {
1719 return ret;
1722 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1723 if (padded) {
1724 *padded = false;
1726 return 0;
1729 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1730 &sliced_head, &sliced_tail,
1731 &sliced_niov);
1733 /* Guaranteed by bdrv_check_request32() */
1734 assert(*bytes <= SIZE_MAX);
1735 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1736 sliced_head, *bytes);
1737 if (ret < 0) {
1738 bdrv_padding_finalize(pad);
1739 return ret;
1741 *bytes += pad->head + pad->tail;
1742 *offset -= pad->head;
1743 *qiov = &pad->local_qiov;
1744 *qiov_offset = 0;
1745 if (padded) {
1746 *padded = true;
1748 if (flags) {
1749 /* Can't use optimization hint with bounce buffer */
1750 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1753 return 0;
1756 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1757 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1758 BdrvRequestFlags flags)
1760 IO_CODE();
1761 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1764 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1765 int64_t offset, int64_t bytes,
1766 QEMUIOVector *qiov, size_t qiov_offset,
1767 BdrvRequestFlags flags)
1769 BlockDriverState *bs = child->bs;
1770 BdrvTrackedRequest req;
1771 BdrvRequestPadding pad;
1772 int ret;
1773 IO_CODE();
1775 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1777 if (!bdrv_co_is_inserted(bs)) {
1778 return -ENOMEDIUM;
1781 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1782 if (ret < 0) {
1783 return ret;
1786 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1788 * Aligning zero request is nonsense. Even if driver has special meaning
1789 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1790 * it to driver due to request_alignment.
1792 * Still, no reason to return an error if someone do unaligned
1793 * zero-length read occasionally.
1795 return 0;
1798 bdrv_inc_in_flight(bs);
1800 /* Don't do copy-on-read if we read data before write operation */
1801 if (qatomic_read(&bs->copy_on_read)) {
1802 flags |= BDRV_REQ_COPY_ON_READ;
1805 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1806 &pad, NULL, &flags);
1807 if (ret < 0) {
1808 goto fail;
1811 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1812 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1813 bs->bl.request_alignment,
1814 qiov, qiov_offset, flags);
1815 tracked_request_end(&req);
1816 bdrv_padding_finalize(&pad);
1818 fail:
1819 bdrv_dec_in_flight(bs);
1821 return ret;
1824 static int coroutine_fn GRAPH_RDLOCK
1825 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1826 BdrvRequestFlags flags)
1828 BlockDriver *drv = bs->drv;
1829 QEMUIOVector qiov;
1830 void *buf = NULL;
1831 int ret = 0;
1832 bool need_flush = false;
1833 int head = 0;
1834 int tail = 0;
1836 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1837 INT64_MAX);
1838 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1839 bs->bl.request_alignment);
1840 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1842 assert_bdrv_graph_readable();
1843 bdrv_check_request(offset, bytes, &error_abort);
1845 if (!drv) {
1846 return -ENOMEDIUM;
1849 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1850 return -ENOTSUP;
1853 /* By definition there is no user buffer so this flag doesn't make sense */
1854 if (flags & BDRV_REQ_REGISTERED_BUF) {
1855 return -EINVAL;
1858 /* Invalidate the cached block-status data range if this write overlaps */
1859 bdrv_bsc_invalidate_range(bs, offset, bytes);
1861 assert(alignment % bs->bl.request_alignment == 0);
1862 head = offset % alignment;
1863 tail = (offset + bytes) % alignment;
1864 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1865 assert(max_write_zeroes >= bs->bl.request_alignment);
1867 while (bytes > 0 && !ret) {
1868 int64_t num = bytes;
1870 /* Align request. Block drivers can expect the "bulk" of the request
1871 * to be aligned, and that unaligned requests do not cross cluster
1872 * boundaries.
1874 if (head) {
1875 /* Make a small request up to the first aligned sector. For
1876 * convenience, limit this request to max_transfer even if
1877 * we don't need to fall back to writes. */
1878 num = MIN(MIN(bytes, max_transfer), alignment - head);
1879 head = (head + num) % alignment;
1880 assert(num < max_write_zeroes);
1881 } else if (tail && num > alignment) {
1882 /* Shorten the request to the last aligned sector. */
1883 num -= tail;
1886 /* limit request size */
1887 if (num > max_write_zeroes) {
1888 num = max_write_zeroes;
1891 ret = -ENOTSUP;
1892 /* First try the efficient write zeroes operation */
1893 if (drv->bdrv_co_pwrite_zeroes) {
1894 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1895 flags & bs->supported_zero_flags);
1896 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1897 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1898 need_flush = true;
1900 } else {
1901 assert(!bs->supported_zero_flags);
1904 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1905 /* Fall back to bounce buffer if write zeroes is unsupported */
1906 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1908 if ((flags & BDRV_REQ_FUA) &&
1909 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1910 /* No need for bdrv_driver_pwrite() to do a fallback
1911 * flush on each chunk; use just one at the end */
1912 write_flags &= ~BDRV_REQ_FUA;
1913 need_flush = true;
1915 num = MIN(num, max_transfer);
1916 if (buf == NULL) {
1917 buf = qemu_try_blockalign0(bs, num);
1918 if (buf == NULL) {
1919 ret = -ENOMEM;
1920 goto fail;
1923 qemu_iovec_init_buf(&qiov, buf, num);
1925 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1927 /* Keep bounce buffer around if it is big enough for all
1928 * all future requests.
1930 if (num < max_transfer) {
1931 qemu_vfree(buf);
1932 buf = NULL;
1936 offset += num;
1937 bytes -= num;
1940 fail:
1941 if (ret == 0 && need_flush) {
1942 ret = bdrv_co_flush(bs);
1944 qemu_vfree(buf);
1945 return ret;
1948 static inline int coroutine_fn GRAPH_RDLOCK
1949 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1950 BdrvTrackedRequest *req, int flags)
1952 BlockDriverState *bs = child->bs;
1954 bdrv_check_request(offset, bytes, &error_abort);
1956 if (bdrv_is_read_only(bs)) {
1957 return -EPERM;
1960 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1961 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1962 assert(!(flags & ~BDRV_REQ_MASK));
1963 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1965 if (flags & BDRV_REQ_SERIALISING) {
1966 QEMU_LOCK_GUARD(&bs->reqs_lock);
1968 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1970 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1971 return -EBUSY;
1974 bdrv_wait_serialising_requests_locked(req);
1975 } else {
1976 bdrv_wait_serialising_requests(req);
1979 assert(req->overlap_offset <= offset);
1980 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1981 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1982 child->perm & BLK_PERM_RESIZE);
1984 switch (req->type) {
1985 case BDRV_TRACKED_WRITE:
1986 case BDRV_TRACKED_DISCARD:
1987 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1988 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1989 } else {
1990 assert(child->perm & BLK_PERM_WRITE);
1992 bdrv_write_threshold_check_write(bs, offset, bytes);
1993 return 0;
1994 case BDRV_TRACKED_TRUNCATE:
1995 assert(child->perm & BLK_PERM_RESIZE);
1996 return 0;
1997 default:
1998 abort();
2002 static inline void coroutine_fn GRAPH_RDLOCK
2003 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2004 BdrvTrackedRequest *req, int ret)
2006 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2007 BlockDriverState *bs = child->bs;
2009 bdrv_check_request(offset, bytes, &error_abort);
2011 qatomic_inc(&bs->write_gen);
2014 * Discard cannot extend the image, but in error handling cases, such as
2015 * when reverting a qcow2 cluster allocation, the discarded range can pass
2016 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2017 * here. Instead, just skip it, since semantically a discard request
2018 * beyond EOF cannot expand the image anyway.
2020 if (ret == 0 &&
2021 (req->type == BDRV_TRACKED_TRUNCATE ||
2022 end_sector > bs->total_sectors) &&
2023 req->type != BDRV_TRACKED_DISCARD) {
2024 bs->total_sectors = end_sector;
2025 bdrv_parent_cb_resize(bs);
2026 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2028 if (req->bytes) {
2029 switch (req->type) {
2030 case BDRV_TRACKED_WRITE:
2031 stat64_max(&bs->wr_highest_offset, offset + bytes);
2032 /* fall through, to set dirty bits */
2033 case BDRV_TRACKED_DISCARD:
2034 bdrv_set_dirty(bs, offset, bytes);
2035 break;
2036 default:
2037 break;
2043 * Forwards an already correctly aligned write request to the BlockDriver,
2044 * after possibly fragmenting it.
2046 static int coroutine_fn GRAPH_RDLOCK
2047 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2048 int64_t offset, int64_t bytes, int64_t align,
2049 QEMUIOVector *qiov, size_t qiov_offset,
2050 BdrvRequestFlags flags)
2052 BlockDriverState *bs = child->bs;
2053 BlockDriver *drv = bs->drv;
2054 int ret;
2056 int64_t bytes_remaining = bytes;
2057 int max_transfer;
2059 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2061 if (!drv) {
2062 return -ENOMEDIUM;
2065 if (bdrv_has_readonly_bitmaps(bs)) {
2066 return -EPERM;
2069 assert(is_power_of_2(align));
2070 assert((offset & (align - 1)) == 0);
2071 assert((bytes & (align - 1)) == 0);
2072 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2073 align);
2075 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2077 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2078 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2079 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2080 flags |= BDRV_REQ_ZERO_WRITE;
2081 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2082 flags |= BDRV_REQ_MAY_UNMAP;
2085 /* Can't use optimization hint with bufferless zero write */
2086 flags &= ~BDRV_REQ_REGISTERED_BUF;
2089 if (ret < 0) {
2090 /* Do nothing, write notifier decided to fail this request */
2091 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2092 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2093 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2094 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2095 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2096 qiov, qiov_offset);
2097 } else if (bytes <= max_transfer) {
2098 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2099 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2100 } else {
2101 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2102 while (bytes_remaining) {
2103 int num = MIN(bytes_remaining, max_transfer);
2104 int local_flags = flags;
2106 assert(num);
2107 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2108 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2109 /* If FUA is going to be emulated by flush, we only
2110 * need to flush on the last iteration */
2111 local_flags &= ~BDRV_REQ_FUA;
2114 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2115 num, qiov,
2116 qiov_offset + bytes - bytes_remaining,
2117 local_flags);
2118 if (ret < 0) {
2119 break;
2121 bytes_remaining -= num;
2124 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2126 if (ret >= 0) {
2127 ret = 0;
2129 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2131 return ret;
2134 static int coroutine_fn GRAPH_RDLOCK
2135 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2136 BdrvRequestFlags flags, BdrvTrackedRequest *req)
2138 BlockDriverState *bs = child->bs;
2139 QEMUIOVector local_qiov;
2140 uint64_t align = bs->bl.request_alignment;
2141 int ret = 0;
2142 bool padding;
2143 BdrvRequestPadding pad;
2145 /* This flag doesn't make sense for padding or zero writes */
2146 flags &= ~BDRV_REQ_REGISTERED_BUF;
2148 padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2149 if (padding) {
2150 assert(!(flags & BDRV_REQ_NO_WAIT));
2151 bdrv_make_request_serialising(req, align);
2153 bdrv_padding_rmw_read(child, req, &pad, true);
2155 if (pad.head || pad.merge_reads) {
2156 int64_t aligned_offset = offset & ~(align - 1);
2157 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2159 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2160 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2161 align, &local_qiov, 0,
2162 flags & ~BDRV_REQ_ZERO_WRITE);
2163 if (ret < 0 || pad.merge_reads) {
2164 /* Error or all work is done */
2165 goto out;
2167 offset += write_bytes - pad.head;
2168 bytes -= write_bytes - pad.head;
2172 assert(!bytes || (offset & (align - 1)) == 0);
2173 if (bytes >= align) {
2174 /* Write the aligned part in the middle. */
2175 int64_t aligned_bytes = bytes & ~(align - 1);
2176 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2177 NULL, 0, flags);
2178 if (ret < 0) {
2179 goto out;
2181 bytes -= aligned_bytes;
2182 offset += aligned_bytes;
2185 assert(!bytes || (offset & (align - 1)) == 0);
2186 if (bytes) {
2187 assert(align == pad.tail + bytes);
2189 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2190 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2191 &local_qiov, 0,
2192 flags & ~BDRV_REQ_ZERO_WRITE);
2195 out:
2196 bdrv_padding_finalize(&pad);
2198 return ret;
2202 * Handle a write request in coroutine context
2204 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2205 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2206 BdrvRequestFlags flags)
2208 IO_CODE();
2209 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2212 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2213 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2214 BdrvRequestFlags flags)
2216 BlockDriverState *bs = child->bs;
2217 BdrvTrackedRequest req;
2218 uint64_t align = bs->bl.request_alignment;
2219 BdrvRequestPadding pad;
2220 int ret;
2221 bool padded = false;
2222 IO_CODE();
2224 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2226 if (!bdrv_co_is_inserted(bs)) {
2227 return -ENOMEDIUM;
2230 if (flags & BDRV_REQ_ZERO_WRITE) {
2231 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2232 } else {
2233 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2235 if (ret < 0) {
2236 return ret;
2239 /* If the request is misaligned then we can't make it efficient */
2240 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2241 !QEMU_IS_ALIGNED(offset | bytes, align))
2243 return -ENOTSUP;
2246 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2248 * Aligning zero request is nonsense. Even if driver has special meaning
2249 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2250 * it to driver due to request_alignment.
2252 * Still, no reason to return an error if someone do unaligned
2253 * zero-length write occasionally.
2255 return 0;
2258 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2260 * Pad request for following read-modify-write cycle.
2261 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2262 * alignment only if there is no ZERO flag.
2264 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2265 &pad, &padded, &flags);
2266 if (ret < 0) {
2267 return ret;
2271 bdrv_inc_in_flight(bs);
2272 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2274 if (flags & BDRV_REQ_ZERO_WRITE) {
2275 assert(!padded);
2276 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2277 goto out;
2280 if (padded) {
2282 * Request was unaligned to request_alignment and therefore
2283 * padded. We are going to do read-modify-write, and must
2284 * serialize the request to prevent interactions of the
2285 * widened region with other transactions.
2287 assert(!(flags & BDRV_REQ_NO_WAIT));
2288 bdrv_make_request_serialising(&req, align);
2289 bdrv_padding_rmw_read(child, &req, &pad, false);
2292 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2293 qiov, qiov_offset, flags);
2295 bdrv_padding_finalize(&pad);
2297 out:
2298 tracked_request_end(&req);
2299 bdrv_dec_in_flight(bs);
2301 return ret;
2304 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2305 int64_t bytes, BdrvRequestFlags flags)
2307 IO_CODE();
2308 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2309 assert_bdrv_graph_readable();
2311 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2312 flags &= ~BDRV_REQ_MAY_UNMAP;
2315 return bdrv_co_pwritev(child, offset, bytes, NULL,
2316 BDRV_REQ_ZERO_WRITE | flags);
2320 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2322 int bdrv_flush_all(void)
2324 BdrvNextIterator it;
2325 BlockDriverState *bs = NULL;
2326 int result = 0;
2328 GLOBAL_STATE_CODE();
2329 GRAPH_RDLOCK_GUARD_MAINLOOP();
2332 * bdrv queue is managed by record/replay,
2333 * creating new flush request for stopping
2334 * the VM may break the determinism
2336 if (replay_events_enabled()) {
2337 return result;
2340 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2341 int ret = bdrv_flush(bs);
2342 if (ret < 0 && !result) {
2343 result = ret;
2347 return result;
2351 * Returns the allocation status of the specified sectors.
2352 * Drivers not implementing the functionality are assumed to not support
2353 * backing files, hence all their sectors are reported as allocated.
2355 * If 'want_zero' is true, the caller is querying for mapping
2356 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2357 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2358 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2360 * If 'offset' is beyond the end of the disk image the return value is
2361 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2363 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2364 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2365 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2367 * 'pnum' is set to the number of bytes (including and immediately
2368 * following the specified offset) that are easily known to be in the
2369 * same allocated/unallocated state. Note that a second call starting
2370 * at the original offset plus returned pnum may have the same status.
2371 * The returned value is non-zero on success except at end-of-file.
2373 * Returns negative errno on failure. Otherwise, if the
2374 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2375 * set to the host mapping and BDS corresponding to the guest offset.
2377 static int coroutine_fn GRAPH_RDLOCK
2378 bdrv_co_do_block_status(BlockDriverState *bs, bool want_zero,
2379 int64_t offset, int64_t bytes,
2380 int64_t *pnum, int64_t *map, BlockDriverState **file)
2382 int64_t total_size;
2383 int64_t n; /* bytes */
2384 int ret;
2385 int64_t local_map = 0;
2386 BlockDriverState *local_file = NULL;
2387 int64_t aligned_offset, aligned_bytes;
2388 uint32_t align;
2389 bool has_filtered_child;
2391 assert(pnum);
2392 assert_bdrv_graph_readable();
2393 *pnum = 0;
2394 total_size = bdrv_co_getlength(bs);
2395 if (total_size < 0) {
2396 ret = total_size;
2397 goto early_out;
2400 if (offset >= total_size) {
2401 ret = BDRV_BLOCK_EOF;
2402 goto early_out;
2404 if (!bytes) {
2405 ret = 0;
2406 goto early_out;
2409 n = total_size - offset;
2410 if (n < bytes) {
2411 bytes = n;
2414 /* Must be non-NULL or bdrv_co_getlength() would have failed */
2415 assert(bs->drv);
2416 has_filtered_child = bdrv_filter_child(bs);
2417 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2418 *pnum = bytes;
2419 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2420 if (offset + bytes == total_size) {
2421 ret |= BDRV_BLOCK_EOF;
2423 if (bs->drv->protocol_name) {
2424 ret |= BDRV_BLOCK_OFFSET_VALID;
2425 local_map = offset;
2426 local_file = bs;
2428 goto early_out;
2431 bdrv_inc_in_flight(bs);
2433 /* Round out to request_alignment boundaries */
2434 align = bs->bl.request_alignment;
2435 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2436 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2438 if (bs->drv->bdrv_co_block_status) {
2440 * Use the block-status cache only for protocol nodes: Format
2441 * drivers are generally quick to inquire the status, but protocol
2442 * drivers often need to get information from outside of qemu, so
2443 * we do not have control over the actual implementation. There
2444 * have been cases where inquiring the status took an unreasonably
2445 * long time, and we can do nothing in qemu to fix it.
2446 * This is especially problematic for images with large data areas,
2447 * because finding the few holes in them and giving them special
2448 * treatment does not gain much performance. Therefore, we try to
2449 * cache the last-identified data region.
2451 * Second, limiting ourselves to protocol nodes allows us to assume
2452 * the block status for data regions to be DATA | OFFSET_VALID, and
2453 * that the host offset is the same as the guest offset.
2455 * Note that it is possible that external writers zero parts of
2456 * the cached regions without the cache being invalidated, and so
2457 * we may report zeroes as data. This is not catastrophic,
2458 * however, because reporting zeroes as data is fine.
2460 if (QLIST_EMPTY(&bs->children) &&
2461 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2463 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2464 local_file = bs;
2465 local_map = aligned_offset;
2466 } else {
2467 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2468 aligned_bytes, pnum, &local_map,
2469 &local_file);
2472 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2473 * the cache is queried above. Technically, we do not need to check
2474 * it here; the worst that can happen is that we fill the cache for
2475 * non-protocol nodes, and then it is never used. However, filling
2476 * the cache requires an RCU update, so double check here to avoid
2477 * such an update if possible.
2479 * Check want_zero, because we only want to update the cache when we
2480 * have accurate information about what is zero and what is data.
2482 if (want_zero &&
2483 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2484 QLIST_EMPTY(&bs->children))
2487 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2488 * returned local_map value must be the same as the offset we
2489 * have passed (aligned_offset), and local_bs must be the node
2490 * itself.
2491 * Assert this, because we follow this rule when reading from
2492 * the cache (see the `local_file = bs` and
2493 * `local_map = aligned_offset` assignments above), and the
2494 * result the cache delivers must be the same as the driver
2495 * would deliver.
2497 assert(local_file == bs);
2498 assert(local_map == aligned_offset);
2499 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2502 } else {
2503 /* Default code for filters */
2505 local_file = bdrv_filter_bs(bs);
2506 assert(local_file);
2508 *pnum = aligned_bytes;
2509 local_map = aligned_offset;
2510 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2512 if (ret < 0) {
2513 *pnum = 0;
2514 goto out;
2518 * The driver's result must be a non-zero multiple of request_alignment.
2519 * Clamp pnum and adjust map to original request.
2521 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2522 align > offset - aligned_offset);
2523 if (ret & BDRV_BLOCK_RECURSE) {
2524 assert(ret & BDRV_BLOCK_DATA);
2525 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2526 assert(!(ret & BDRV_BLOCK_ZERO));
2529 *pnum -= offset - aligned_offset;
2530 if (*pnum > bytes) {
2531 *pnum = bytes;
2533 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2534 local_map += offset - aligned_offset;
2537 if (ret & BDRV_BLOCK_RAW) {
2538 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2539 ret = bdrv_co_do_block_status(local_file, want_zero, local_map,
2540 *pnum, pnum, &local_map, &local_file);
2541 goto out;
2544 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2545 ret |= BDRV_BLOCK_ALLOCATED;
2546 } else if (bs->drv->supports_backing) {
2547 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2549 if (!cow_bs) {
2550 ret |= BDRV_BLOCK_ZERO;
2551 } else if (want_zero) {
2552 int64_t size2 = bdrv_co_getlength(cow_bs);
2554 if (size2 >= 0 && offset >= size2) {
2555 ret |= BDRV_BLOCK_ZERO;
2560 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2561 local_file && local_file != bs &&
2562 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2563 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2564 int64_t file_pnum;
2565 int ret2;
2567 ret2 = bdrv_co_do_block_status(local_file, want_zero, local_map,
2568 *pnum, &file_pnum, NULL, NULL);
2569 if (ret2 >= 0) {
2570 /* Ignore errors. This is just providing extra information, it
2571 * is useful but not necessary.
2573 if (ret2 & BDRV_BLOCK_EOF &&
2574 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2576 * It is valid for the format block driver to read
2577 * beyond the end of the underlying file's current
2578 * size; such areas read as zero.
2580 ret |= BDRV_BLOCK_ZERO;
2581 } else {
2582 /* Limit request to the range reported by the protocol driver */
2583 *pnum = file_pnum;
2584 ret |= (ret2 & BDRV_BLOCK_ZERO);
2589 * Now that the recursive search was done, clear the flag. Otherwise,
2590 * with more complicated block graphs like snapshot-access ->
2591 * copy-before-write -> qcow2, where the return value will be propagated
2592 * further up to a parent bdrv_co_do_block_status() call, both the
2593 * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is
2594 * not allowed.
2596 ret &= ~BDRV_BLOCK_RECURSE;
2599 out:
2600 bdrv_dec_in_flight(bs);
2601 if (ret >= 0 && offset + *pnum == total_size) {
2602 ret |= BDRV_BLOCK_EOF;
2604 early_out:
2605 if (file) {
2606 *file = local_file;
2608 if (map) {
2609 *map = local_map;
2611 return ret;
2614 int coroutine_fn
2615 bdrv_co_common_block_status_above(BlockDriverState *bs,
2616 BlockDriverState *base,
2617 bool include_base,
2618 bool want_zero,
2619 int64_t offset,
2620 int64_t bytes,
2621 int64_t *pnum,
2622 int64_t *map,
2623 BlockDriverState **file,
2624 int *depth)
2626 int ret;
2627 BlockDriverState *p;
2628 int64_t eof = 0;
2629 int dummy;
2630 IO_CODE();
2632 assert(!include_base || base); /* Can't include NULL base */
2633 assert_bdrv_graph_readable();
2635 if (!depth) {
2636 depth = &dummy;
2638 *depth = 0;
2640 if (!include_base && bs == base) {
2641 *pnum = bytes;
2642 return 0;
2645 ret = bdrv_co_do_block_status(bs, want_zero, offset, bytes, pnum,
2646 map, file);
2647 ++*depth;
2648 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2649 return ret;
2652 if (ret & BDRV_BLOCK_EOF) {
2653 eof = offset + *pnum;
2656 assert(*pnum <= bytes);
2657 bytes = *pnum;
2659 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2660 p = bdrv_filter_or_cow_bs(p))
2662 ret = bdrv_co_do_block_status(p, want_zero, offset, bytes, pnum,
2663 map, file);
2664 ++*depth;
2665 if (ret < 0) {
2666 return ret;
2668 if (*pnum == 0) {
2670 * The top layer deferred to this layer, and because this layer is
2671 * short, any zeroes that we synthesize beyond EOF behave as if they
2672 * were allocated at this layer.
2674 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2675 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2676 * below.
2678 assert(ret & BDRV_BLOCK_EOF);
2679 *pnum = bytes;
2680 if (file) {
2681 *file = p;
2683 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2684 break;
2686 if (ret & BDRV_BLOCK_ALLOCATED) {
2688 * We've found the node and the status, we must break.
2690 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2691 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2692 * below.
2694 ret &= ~BDRV_BLOCK_EOF;
2695 break;
2698 if (p == base) {
2699 assert(include_base);
2700 break;
2704 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2705 * let's continue the diving.
2707 assert(*pnum <= bytes);
2708 bytes = *pnum;
2711 if (offset + *pnum == eof) {
2712 ret |= BDRV_BLOCK_EOF;
2715 return ret;
2718 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2719 BlockDriverState *base,
2720 int64_t offset, int64_t bytes,
2721 int64_t *pnum, int64_t *map,
2722 BlockDriverState **file)
2724 IO_CODE();
2725 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2726 bytes, pnum, map, file, NULL);
2729 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset,
2730 int64_t bytes, int64_t *pnum,
2731 int64_t *map, BlockDriverState **file)
2733 IO_CODE();
2734 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2735 offset, bytes, pnum, map, file);
2739 * Check @bs (and its backing chain) to see if the range defined
2740 * by @offset and @bytes is known to read as zeroes.
2741 * Return 1 if that is the case, 0 otherwise and -errno on error.
2742 * This test is meant to be fast rather than accurate so returning 0
2743 * does not guarantee non-zero data.
2745 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2746 int64_t bytes)
2748 int ret;
2749 int64_t pnum = bytes;
2750 IO_CODE();
2752 if (!bytes) {
2753 return 1;
2756 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2757 bytes, &pnum, NULL, NULL, NULL);
2759 if (ret < 0) {
2760 return ret;
2763 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2766 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2767 int64_t bytes, int64_t *pnum)
2769 int ret;
2770 int64_t dummy;
2771 IO_CODE();
2773 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2774 bytes, pnum ? pnum : &dummy, NULL,
2775 NULL, NULL);
2776 if (ret < 0) {
2777 return ret;
2779 return !!(ret & BDRV_BLOCK_ALLOCATED);
2783 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2785 * Return a positive depth if (a prefix of) the given range is allocated
2786 * in any image between BASE and TOP (BASE is only included if include_base
2787 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2788 * BASE can be NULL to check if the given offset is allocated in any
2789 * image of the chain. Return 0 otherwise, or negative errno on
2790 * failure.
2792 * 'pnum' is set to the number of bytes (including and immediately
2793 * following the specified offset) that are known to be in the same
2794 * allocated/unallocated state. Note that a subsequent call starting
2795 * at 'offset + *pnum' may return the same allocation status (in other
2796 * words, the result is not necessarily the maximum possible range);
2797 * but 'pnum' will only be 0 when end of file is reached.
2799 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs,
2800 BlockDriverState *base,
2801 bool include_base, int64_t offset,
2802 int64_t bytes, int64_t *pnum)
2804 int depth;
2805 int ret;
2806 IO_CODE();
2808 ret = bdrv_co_common_block_status_above(bs, base, include_base, false,
2809 offset, bytes, pnum, NULL, NULL,
2810 &depth);
2811 if (ret < 0) {
2812 return ret;
2815 if (ret & BDRV_BLOCK_ALLOCATED) {
2816 return depth;
2818 return 0;
2821 int coroutine_fn
2822 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2824 BlockDriver *drv = bs->drv;
2825 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2826 int ret;
2827 IO_CODE();
2828 assert_bdrv_graph_readable();
2830 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2831 if (ret < 0) {
2832 return ret;
2835 if (!drv) {
2836 return -ENOMEDIUM;
2839 bdrv_inc_in_flight(bs);
2841 if (drv->bdrv_co_load_vmstate) {
2842 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2843 } else if (child_bs) {
2844 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2845 } else {
2846 ret = -ENOTSUP;
2849 bdrv_dec_in_flight(bs);
2851 return ret;
2854 int coroutine_fn
2855 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2857 BlockDriver *drv = bs->drv;
2858 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2859 int ret;
2860 IO_CODE();
2861 assert_bdrv_graph_readable();
2863 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2864 if (ret < 0) {
2865 return ret;
2868 if (!drv) {
2869 return -ENOMEDIUM;
2872 bdrv_inc_in_flight(bs);
2874 if (drv->bdrv_co_save_vmstate) {
2875 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2876 } else if (child_bs) {
2877 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2878 } else {
2879 ret = -ENOTSUP;
2882 bdrv_dec_in_flight(bs);
2884 return ret;
2887 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2888 int64_t pos, int size)
2890 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2891 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2892 IO_CODE();
2894 return ret < 0 ? ret : size;
2897 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2898 int64_t pos, int size)
2900 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2901 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2902 IO_CODE();
2904 return ret < 0 ? ret : size;
2907 /**************************************************************/
2908 /* async I/Os */
2911 * Synchronously cancels an acb. Must be called with the BQL held and the acb
2912 * must be processed with the BQL held too (IOThreads are not allowed).
2914 * Use bdrv_aio_cancel_async() instead when possible.
2916 void bdrv_aio_cancel(BlockAIOCB *acb)
2918 GLOBAL_STATE_CODE();
2919 qemu_aio_ref(acb);
2920 bdrv_aio_cancel_async(acb);
2921 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1);
2922 qemu_aio_unref(acb);
2925 /* Async version of aio cancel. The caller is not blocked if the acb implements
2926 * cancel_async, otherwise we do nothing and let the request normally complete.
2927 * In either case the completion callback must be called. */
2928 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2930 IO_CODE();
2931 if (acb->aiocb_info->cancel_async) {
2932 acb->aiocb_info->cancel_async(acb);
2936 /**************************************************************/
2937 /* Coroutine block device emulation */
2939 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2941 BdrvChild *primary_child = bdrv_primary_child(bs);
2942 BdrvChild *child;
2943 int current_gen;
2944 int ret = 0;
2945 IO_CODE();
2947 assert_bdrv_graph_readable();
2948 bdrv_inc_in_flight(bs);
2950 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2951 bdrv_is_sg(bs)) {
2952 goto early_exit;
2955 qemu_mutex_lock(&bs->reqs_lock);
2956 current_gen = qatomic_read(&bs->write_gen);
2958 /* Wait until any previous flushes are completed */
2959 while (bs->active_flush_req) {
2960 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2963 /* Flushes reach this point in nondecreasing current_gen order. */
2964 bs->active_flush_req = true;
2965 qemu_mutex_unlock(&bs->reqs_lock);
2967 /* Write back all layers by calling one driver function */
2968 if (bs->drv->bdrv_co_flush) {
2969 ret = bs->drv->bdrv_co_flush(bs);
2970 goto out;
2973 /* Write back cached data to the OS even with cache=unsafe */
2974 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2975 if (bs->drv->bdrv_co_flush_to_os) {
2976 ret = bs->drv->bdrv_co_flush_to_os(bs);
2977 if (ret < 0) {
2978 goto out;
2982 /* But don't actually force it to the disk with cache=unsafe */
2983 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2984 goto flush_children;
2987 /* Check if we really need to flush anything */
2988 if (bs->flushed_gen == current_gen) {
2989 goto flush_children;
2992 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2993 if (!bs->drv) {
2994 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2995 * (even in case of apparent success) */
2996 ret = -ENOMEDIUM;
2997 goto out;
2999 if (bs->drv->bdrv_co_flush_to_disk) {
3000 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3001 } else if (bs->drv->bdrv_aio_flush) {
3002 BlockAIOCB *acb;
3003 CoroutineIOCompletion co = {
3004 .coroutine = qemu_coroutine_self(),
3007 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3008 if (acb == NULL) {
3009 ret = -EIO;
3010 } else {
3011 qemu_coroutine_yield();
3012 ret = co.ret;
3014 } else {
3016 * Some block drivers always operate in either writethrough or unsafe
3017 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3018 * know how the server works (because the behaviour is hardcoded or
3019 * depends on server-side configuration), so we can't ensure that
3020 * everything is safe on disk. Returning an error doesn't work because
3021 * that would break guests even if the server operates in writethrough
3022 * mode.
3024 * Let's hope the user knows what he's doing.
3026 ret = 0;
3029 if (ret < 0) {
3030 goto out;
3033 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3034 * in the case of cache=unsafe, so there are no useless flushes.
3036 flush_children:
3037 ret = 0;
3038 QLIST_FOREACH(child, &bs->children, next) {
3039 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3040 int this_child_ret = bdrv_co_flush(child->bs);
3041 if (!ret) {
3042 ret = this_child_ret;
3047 out:
3048 /* Notify any pending flushes that we have completed */
3049 if (ret == 0) {
3050 bs->flushed_gen = current_gen;
3053 qemu_mutex_lock(&bs->reqs_lock);
3054 bs->active_flush_req = false;
3055 /* Return value is ignored - it's ok if wait queue is empty */
3056 qemu_co_queue_next(&bs->flush_queue);
3057 qemu_mutex_unlock(&bs->reqs_lock);
3059 early_exit:
3060 bdrv_dec_in_flight(bs);
3061 return ret;
3064 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3065 int64_t bytes)
3067 BdrvTrackedRequest req;
3068 int ret;
3069 int64_t max_pdiscard;
3070 int head, tail, align;
3071 BlockDriverState *bs = child->bs;
3072 IO_CODE();
3073 assert_bdrv_graph_readable();
3075 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3076 return -ENOMEDIUM;
3079 if (bdrv_has_readonly_bitmaps(bs)) {
3080 return -EPERM;
3083 ret = bdrv_check_request(offset, bytes, NULL);
3084 if (ret < 0) {
3085 return ret;
3088 /* Do nothing if disabled. */
3089 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3090 return 0;
3093 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
3094 return 0;
3097 /* Invalidate the cached block-status data range if this discard overlaps */
3098 bdrv_bsc_invalidate_range(bs, offset, bytes);
3100 /* Discard is advisory, but some devices track and coalesce
3101 * unaligned requests, so we must pass everything down rather than
3102 * round here. Still, most devices will just silently ignore
3103 * unaligned requests (by returning -ENOTSUP), so we must fragment
3104 * the request accordingly. */
3105 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3106 assert(align % bs->bl.request_alignment == 0);
3107 head = offset % align;
3108 tail = (offset + bytes) % align;
3110 bdrv_inc_in_flight(bs);
3111 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3113 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3114 if (ret < 0) {
3115 goto out;
3118 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3119 align);
3120 assert(max_pdiscard >= bs->bl.request_alignment);
3122 while (bytes > 0) {
3123 int64_t num = bytes;
3125 if (head) {
3126 /* Make small requests to get to alignment boundaries. */
3127 num = MIN(bytes, align - head);
3128 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3129 num %= bs->bl.request_alignment;
3131 head = (head + num) % align;
3132 assert(num < max_pdiscard);
3133 } else if (tail) {
3134 if (num > align) {
3135 /* Shorten the request to the last aligned cluster. */
3136 num -= tail;
3137 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3138 tail > bs->bl.request_alignment) {
3139 tail %= bs->bl.request_alignment;
3140 num -= tail;
3143 /* limit request size */
3144 if (num > max_pdiscard) {
3145 num = max_pdiscard;
3148 if (!bs->drv) {
3149 ret = -ENOMEDIUM;
3150 goto out;
3152 if (bs->drv->bdrv_co_pdiscard) {
3153 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3154 } else {
3155 BlockAIOCB *acb;
3156 CoroutineIOCompletion co = {
3157 .coroutine = qemu_coroutine_self(),
3160 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
3161 bdrv_co_io_em_complete, &co);
3162 if (acb == NULL) {
3163 ret = -EIO;
3164 goto out;
3165 } else {
3166 qemu_coroutine_yield();
3167 ret = co.ret;
3170 if (ret && ret != -ENOTSUP) {
3171 goto out;
3174 offset += num;
3175 bytes -= num;
3177 ret = 0;
3178 out:
3179 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3180 tracked_request_end(&req);
3181 bdrv_dec_in_flight(bs);
3182 return ret;
3185 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3187 BlockDriver *drv = bs->drv;
3188 CoroutineIOCompletion co = {
3189 .coroutine = qemu_coroutine_self(),
3191 BlockAIOCB *acb;
3192 IO_CODE();
3193 assert_bdrv_graph_readable();
3195 bdrv_inc_in_flight(bs);
3196 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3197 co.ret = -ENOTSUP;
3198 goto out;
3201 if (drv->bdrv_co_ioctl) {
3202 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3203 } else {
3204 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3205 if (!acb) {
3206 co.ret = -ENOTSUP;
3207 goto out;
3209 qemu_coroutine_yield();
3211 out:
3212 bdrv_dec_in_flight(bs);
3213 return co.ret;
3216 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3217 unsigned int *nr_zones,
3218 BlockZoneDescriptor *zones)
3220 BlockDriver *drv = bs->drv;
3221 CoroutineIOCompletion co = {
3222 .coroutine = qemu_coroutine_self(),
3224 IO_CODE();
3226 bdrv_inc_in_flight(bs);
3227 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3228 co.ret = -ENOTSUP;
3229 goto out;
3231 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3232 out:
3233 bdrv_dec_in_flight(bs);
3234 return co.ret;
3237 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3238 int64_t offset, int64_t len)
3240 BlockDriver *drv = bs->drv;
3241 CoroutineIOCompletion co = {
3242 .coroutine = qemu_coroutine_self(),
3244 IO_CODE();
3246 bdrv_inc_in_flight(bs);
3247 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3248 co.ret = -ENOTSUP;
3249 goto out;
3251 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3252 out:
3253 bdrv_dec_in_flight(bs);
3254 return co.ret;
3257 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3258 QEMUIOVector *qiov,
3259 BdrvRequestFlags flags)
3261 int ret;
3262 BlockDriver *drv = bs->drv;
3263 CoroutineIOCompletion co = {
3264 .coroutine = qemu_coroutine_self(),
3266 IO_CODE();
3268 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3269 if (ret < 0) {
3270 return ret;
3273 bdrv_inc_in_flight(bs);
3274 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3275 co.ret = -ENOTSUP;
3276 goto out;
3278 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3279 out:
3280 bdrv_dec_in_flight(bs);
3281 return co.ret;
3284 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3286 IO_CODE();
3287 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3290 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3292 IO_CODE();
3293 return memset(qemu_blockalign(bs, size), 0, size);
3296 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3298 size_t align = bdrv_opt_mem_align(bs);
3299 IO_CODE();
3301 /* Ensure that NULL is never returned on success */
3302 assert(align > 0);
3303 if (size == 0) {
3304 size = align;
3307 return qemu_try_memalign(align, size);
3310 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3312 void *mem = qemu_try_blockalign(bs, size);
3313 IO_CODE();
3315 if (mem) {
3316 memset(mem, 0, size);
3319 return mem;
3322 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3323 static void GRAPH_RDLOCK
3324 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3325 BdrvChild *final_child)
3327 BdrvChild *child;
3329 GLOBAL_STATE_CODE();
3330 assert_bdrv_graph_readable();
3332 QLIST_FOREACH(child, &bs->children, next) {
3333 if (child == final_child) {
3334 break;
3337 bdrv_unregister_buf(child->bs, host, size);
3340 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3341 bs->drv->bdrv_unregister_buf(bs, host, size);
3345 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3346 Error **errp)
3348 BdrvChild *child;
3350 GLOBAL_STATE_CODE();
3351 GRAPH_RDLOCK_GUARD_MAINLOOP();
3353 if (bs->drv && bs->drv->bdrv_register_buf) {
3354 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3355 return false;
3358 QLIST_FOREACH(child, &bs->children, next) {
3359 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3360 bdrv_register_buf_rollback(bs, host, size, child);
3361 return false;
3364 return true;
3367 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3369 BdrvChild *child;
3371 GLOBAL_STATE_CODE();
3372 GRAPH_RDLOCK_GUARD_MAINLOOP();
3374 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3375 bs->drv->bdrv_unregister_buf(bs, host, size);
3377 QLIST_FOREACH(child, &bs->children, next) {
3378 bdrv_unregister_buf(child->bs, host, size);
3382 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3383 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3384 int64_t dst_offset, int64_t bytes,
3385 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3386 bool recurse_src)
3388 BdrvTrackedRequest req;
3389 int ret;
3390 assert_bdrv_graph_readable();
3392 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3393 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3394 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3395 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3396 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3398 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3399 return -ENOMEDIUM;
3401 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3402 if (ret) {
3403 return ret;
3405 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3406 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3409 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3410 return -ENOMEDIUM;
3412 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3413 if (ret) {
3414 return ret;
3417 if (!src->bs->drv->bdrv_co_copy_range_from
3418 || !dst->bs->drv->bdrv_co_copy_range_to
3419 || src->bs->encrypted || dst->bs->encrypted) {
3420 return -ENOTSUP;
3423 if (recurse_src) {
3424 bdrv_inc_in_flight(src->bs);
3425 tracked_request_begin(&req, src->bs, src_offset, bytes,
3426 BDRV_TRACKED_READ);
3428 /* BDRV_REQ_SERIALISING is only for write operation */
3429 assert(!(read_flags & BDRV_REQ_SERIALISING));
3430 bdrv_wait_serialising_requests(&req);
3432 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3433 src, src_offset,
3434 dst, dst_offset,
3435 bytes,
3436 read_flags, write_flags);
3438 tracked_request_end(&req);
3439 bdrv_dec_in_flight(src->bs);
3440 } else {
3441 bdrv_inc_in_flight(dst->bs);
3442 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3443 BDRV_TRACKED_WRITE);
3444 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3445 write_flags);
3446 if (!ret) {
3447 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3448 src, src_offset,
3449 dst, dst_offset,
3450 bytes,
3451 read_flags, write_flags);
3453 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3454 tracked_request_end(&req);
3455 bdrv_dec_in_flight(dst->bs);
3458 return ret;
3461 /* Copy range from @src to @dst.
3463 * See the comment of bdrv_co_copy_range for the parameter and return value
3464 * semantics. */
3465 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3466 BdrvChild *dst, int64_t dst_offset,
3467 int64_t bytes,
3468 BdrvRequestFlags read_flags,
3469 BdrvRequestFlags write_flags)
3471 IO_CODE();
3472 assert_bdrv_graph_readable();
3473 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3474 read_flags, write_flags);
3475 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3476 bytes, read_flags, write_flags, true);
3479 /* Copy range from @src to @dst.
3481 * See the comment of bdrv_co_copy_range for the parameter and return value
3482 * semantics. */
3483 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3484 BdrvChild *dst, int64_t dst_offset,
3485 int64_t bytes,
3486 BdrvRequestFlags read_flags,
3487 BdrvRequestFlags write_flags)
3489 IO_CODE();
3490 assert_bdrv_graph_readable();
3491 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3492 read_flags, write_flags);
3493 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3494 bytes, read_flags, write_flags, false);
3497 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3498 BdrvChild *dst, int64_t dst_offset,
3499 int64_t bytes, BdrvRequestFlags read_flags,
3500 BdrvRequestFlags write_flags)
3502 IO_CODE();
3503 assert_bdrv_graph_readable();
3505 return bdrv_co_copy_range_from(src, src_offset,
3506 dst, dst_offset,
3507 bytes, read_flags, write_flags);
3510 static void coroutine_fn GRAPH_RDLOCK
3511 bdrv_parent_cb_resize(BlockDriverState *bs)
3513 BdrvChild *c;
3515 assert_bdrv_graph_readable();
3517 QLIST_FOREACH(c, &bs->parents, next_parent) {
3518 if (c->klass->resize) {
3519 c->klass->resize(c);
3525 * Truncate file to 'offset' bytes (needed only for file protocols)
3527 * If 'exact' is true, the file must be resized to exactly the given
3528 * 'offset'. Otherwise, it is sufficient for the node to be at least
3529 * 'offset' bytes in length.
3531 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3532 PreallocMode prealloc, BdrvRequestFlags flags,
3533 Error **errp)
3535 BlockDriverState *bs = child->bs;
3536 BdrvChild *filtered, *backing;
3537 BlockDriver *drv = bs->drv;
3538 BdrvTrackedRequest req;
3539 int64_t old_size, new_bytes;
3540 int ret;
3541 IO_CODE();
3542 assert_bdrv_graph_readable();
3544 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3545 if (!drv) {
3546 error_setg(errp, "No medium inserted");
3547 return -ENOMEDIUM;
3549 if (offset < 0) {
3550 error_setg(errp, "Image size cannot be negative");
3551 return -EINVAL;
3554 ret = bdrv_check_request(offset, 0, errp);
3555 if (ret < 0) {
3556 return ret;
3559 old_size = bdrv_co_getlength(bs);
3560 if (old_size < 0) {
3561 error_setg_errno(errp, -old_size, "Failed to get old image size");
3562 return old_size;
3565 if (bdrv_is_read_only(bs)) {
3566 error_setg(errp, "Image is read-only");
3567 return -EACCES;
3570 if (offset > old_size) {
3571 new_bytes = offset - old_size;
3572 } else {
3573 new_bytes = 0;
3576 bdrv_inc_in_flight(bs);
3577 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3578 BDRV_TRACKED_TRUNCATE);
3580 /* If we are growing the image and potentially using preallocation for the
3581 * new area, we need to make sure that no write requests are made to it
3582 * concurrently or they might be overwritten by preallocation. */
3583 if (new_bytes) {
3584 bdrv_make_request_serialising(&req, 1);
3586 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3588 if (ret < 0) {
3589 error_setg_errno(errp, -ret,
3590 "Failed to prepare request for truncation");
3591 goto out;
3594 filtered = bdrv_filter_child(bs);
3595 backing = bdrv_cow_child(bs);
3598 * If the image has a backing file that is large enough that it would
3599 * provide data for the new area, we cannot leave it unallocated because
3600 * then the backing file content would become visible. Instead, zero-fill
3601 * the new area.
3603 * Note that if the image has a backing file, but was opened without the
3604 * backing file, taking care of keeping things consistent with that backing
3605 * file is the user's responsibility.
3607 if (new_bytes && backing) {
3608 int64_t backing_len;
3610 backing_len = bdrv_co_getlength(backing->bs);
3611 if (backing_len < 0) {
3612 ret = backing_len;
3613 error_setg_errno(errp, -ret, "Could not get backing file size");
3614 goto out;
3617 if (backing_len > old_size) {
3618 flags |= BDRV_REQ_ZERO_WRITE;
3622 if (drv->bdrv_co_truncate) {
3623 if (flags & ~bs->supported_truncate_flags) {
3624 error_setg(errp, "Block driver does not support requested flags");
3625 ret = -ENOTSUP;
3626 goto out;
3628 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3629 } else if (filtered) {
3630 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3631 } else {
3632 error_setg(errp, "Image format driver does not support resize");
3633 ret = -ENOTSUP;
3634 goto out;
3636 if (ret < 0) {
3637 goto out;
3640 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3641 if (ret < 0) {
3642 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3643 } else {
3644 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3647 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3648 * failed, but the latter doesn't affect how we should finish the request.
3649 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3651 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3653 out:
3654 tracked_request_end(&req);
3655 bdrv_dec_in_flight(bs);
3657 return ret;
3660 void bdrv_cancel_in_flight(BlockDriverState *bs)
3662 GLOBAL_STATE_CODE();
3663 GRAPH_RDLOCK_GUARD_MAINLOOP();
3665 if (!bs || !bs->drv) {
3666 return;
3669 if (bs->drv->bdrv_cancel_in_flight) {
3670 bs->drv->bdrv_cancel_in_flight(bs);
3674 int coroutine_fn
3675 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3676 QEMUIOVector *qiov, size_t qiov_offset)
3678 BlockDriverState *bs = child->bs;
3679 BlockDriver *drv = bs->drv;
3680 int ret;
3681 IO_CODE();
3682 assert_bdrv_graph_readable();
3684 if (!drv) {
3685 return -ENOMEDIUM;
3688 if (!drv->bdrv_co_preadv_snapshot) {
3689 return -ENOTSUP;
3692 bdrv_inc_in_flight(bs);
3693 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3694 bdrv_dec_in_flight(bs);
3696 return ret;
3699 int coroutine_fn
3700 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3701 bool want_zero, int64_t offset, int64_t bytes,
3702 int64_t *pnum, int64_t *map,
3703 BlockDriverState **file)
3705 BlockDriver *drv = bs->drv;
3706 int ret;
3707 IO_CODE();
3708 assert_bdrv_graph_readable();
3710 if (!drv) {
3711 return -ENOMEDIUM;
3714 if (!drv->bdrv_co_snapshot_block_status) {
3715 return -ENOTSUP;
3718 bdrv_inc_in_flight(bs);
3719 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3720 pnum, map, file);
3721 bdrv_dec_in_flight(bs);
3723 return ret;
3726 int coroutine_fn
3727 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3729 BlockDriver *drv = bs->drv;
3730 int ret;
3731 IO_CODE();
3732 assert_bdrv_graph_readable();
3734 if (!drv) {
3735 return -ENOMEDIUM;
3738 if (!drv->bdrv_co_pdiscard_snapshot) {
3739 return -ENOTSUP;
3742 bdrv_inc_in_flight(bs);
3743 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3744 bdrv_dec_in_flight(bs);
3746 return ret;