2 * Postcopy migration for RAM
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
7 * Dave Gilbert <dgilbert@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
24 #include "postcopy-ram.h"
26 #include "qapi/error.h"
27 #include "qemu/notify.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/balloon.h"
30 #include "qemu/error-report.h"
32 #include "hw/boards.h"
34 /* Arbitrary limit on size of each discard command,
35 * keeps them around ~200 bytes
37 #define MAX_DISCARDS_PER_COMMAND 12
39 struct PostcopyDiscardState
{
40 const char *ramblock_name
;
43 * Start and length of a discard range (bytes)
45 uint64_t start_list
[MAX_DISCARDS_PER_COMMAND
];
46 uint64_t length_list
[MAX_DISCARDS_PER_COMMAND
];
47 unsigned int nsentwords
;
48 unsigned int nsentcmds
;
51 static NotifierWithReturnList postcopy_notifier_list
;
53 void postcopy_infrastructure_init(void)
55 notifier_with_return_list_init(&postcopy_notifier_list
);
58 void postcopy_add_notifier(NotifierWithReturn
*nn
)
60 notifier_with_return_list_add(&postcopy_notifier_list
, nn
);
63 void postcopy_remove_notifier(NotifierWithReturn
*n
)
65 notifier_with_return_remove(n
);
68 int postcopy_notify(enum PostcopyNotifyReason reason
, Error
**errp
)
70 struct PostcopyNotifyData pnd
;
74 return notifier_with_return_list_notify(&postcopy_notifier_list
,
78 /* Postcopy needs to detect accesses to pages that haven't yet been copied
79 * across, and efficiently map new pages in, the techniques for doing this
80 * are target OS specific.
82 #if defined(__linux__)
85 #include <sys/ioctl.h>
86 #include <sys/syscall.h>
87 #include <asm/types.h> /* for __u64 */
90 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
91 #include <sys/eventfd.h>
92 #include <linux/userfaultfd.h>
94 typedef struct PostcopyBlocktimeContext
{
95 /* time when page fault initiated per vCPU */
96 uint32_t *page_fault_vcpu_time
;
97 /* page address per vCPU */
99 uint32_t total_blocktime
;
100 /* blocktime per vCPU */
101 uint32_t *vcpu_blocktime
;
102 /* point in time when last page fault was initiated */
104 /* number of vCPU are suspended */
109 * Handler for exit event, necessary for
110 * releasing whole blocktime_ctx
112 Notifier exit_notifier
;
113 } PostcopyBlocktimeContext
;
115 static void destroy_blocktime_context(struct PostcopyBlocktimeContext
*ctx
)
117 g_free(ctx
->page_fault_vcpu_time
);
118 g_free(ctx
->vcpu_addr
);
119 g_free(ctx
->vcpu_blocktime
);
123 static void migration_exit_cb(Notifier
*n
, void *data
)
125 PostcopyBlocktimeContext
*ctx
= container_of(n
, PostcopyBlocktimeContext
,
127 destroy_blocktime_context(ctx
);
130 static struct PostcopyBlocktimeContext
*blocktime_context_new(void)
132 MachineState
*ms
= MACHINE(qdev_get_machine());
133 unsigned int smp_cpus
= ms
->smp
.cpus
;
134 PostcopyBlocktimeContext
*ctx
= g_new0(PostcopyBlocktimeContext
, 1);
135 ctx
->page_fault_vcpu_time
= g_new0(uint32_t, smp_cpus
);
136 ctx
->vcpu_addr
= g_new0(uintptr_t, smp_cpus
);
137 ctx
->vcpu_blocktime
= g_new0(uint32_t, smp_cpus
);
139 ctx
->exit_notifier
.notify
= migration_exit_cb
;
140 ctx
->start_time
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
);
141 qemu_add_exit_notifier(&ctx
->exit_notifier
);
145 static uint32List
*get_vcpu_blocktime_list(PostcopyBlocktimeContext
*ctx
)
147 MachineState
*ms
= MACHINE(qdev_get_machine());
148 uint32List
*list
= NULL
, *entry
= NULL
;
151 for (i
= ms
->smp
.cpus
- 1; i
>= 0; i
--) {
152 entry
= g_new0(uint32List
, 1);
153 entry
->value
= ctx
->vcpu_blocktime
[i
];
162 * This function just populates MigrationInfo from postcopy's
163 * blocktime context. It will not populate MigrationInfo,
164 * unless postcopy-blocktime capability was set.
166 * @info: pointer to MigrationInfo to populate
168 void fill_destination_postcopy_migration_info(MigrationInfo
*info
)
170 MigrationIncomingState
*mis
= migration_incoming_get_current();
171 PostcopyBlocktimeContext
*bc
= mis
->blocktime_ctx
;
177 info
->has_postcopy_blocktime
= true;
178 info
->postcopy_blocktime
= bc
->total_blocktime
;
179 info
->has_postcopy_vcpu_blocktime
= true;
180 info
->postcopy_vcpu_blocktime
= get_vcpu_blocktime_list(bc
);
183 static uint32_t get_postcopy_total_blocktime(void)
185 MigrationIncomingState
*mis
= migration_incoming_get_current();
186 PostcopyBlocktimeContext
*bc
= mis
->blocktime_ctx
;
192 return bc
->total_blocktime
;
196 * receive_ufd_features: check userfault fd features, to request only supported
197 * features in the future.
199 * Returns: true on success
201 * __NR_userfaultfd - should be checked before
202 * @features: out parameter will contain uffdio_api.features provided by kernel
205 static bool receive_ufd_features(uint64_t *features
)
207 struct uffdio_api api_struct
= {0};
211 /* if we are here __NR_userfaultfd should exists */
212 ufd
= syscall(__NR_userfaultfd
, O_CLOEXEC
);
214 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__
,
220 api_struct
.api
= UFFD_API
;
221 api_struct
.features
= 0;
222 if (ioctl(ufd
, UFFDIO_API
, &api_struct
)) {
223 error_report("%s: UFFDIO_API failed: %s", __func__
,
229 *features
= api_struct
.features
;
237 * request_ufd_features: this function should be called only once on a newly
238 * opened ufd, subsequent calls will lead to error.
240 * Returns: true on succes
242 * @ufd: fd obtained from userfaultfd syscall
243 * @features: bit mask see UFFD_API_FEATURES
245 static bool request_ufd_features(int ufd
, uint64_t features
)
247 struct uffdio_api api_struct
= {0};
250 api_struct
.api
= UFFD_API
;
251 api_struct
.features
= features
;
252 if (ioctl(ufd
, UFFDIO_API
, &api_struct
)) {
253 error_report("%s failed: UFFDIO_API failed: %s", __func__
,
258 ioctl_mask
= (__u64
)1 << _UFFDIO_REGISTER
|
259 (__u64
)1 << _UFFDIO_UNREGISTER
;
260 if ((api_struct
.ioctls
& ioctl_mask
) != ioctl_mask
) {
261 error_report("Missing userfault features: %" PRIx64
,
262 (uint64_t)(~api_struct
.ioctls
& ioctl_mask
));
269 static bool ufd_check_and_apply(int ufd
, MigrationIncomingState
*mis
)
271 uint64_t asked_features
= 0;
272 static uint64_t supported_features
;
275 * it's not possible to
276 * request UFFD_API twice per one fd
277 * userfault fd features is persistent
279 if (!supported_features
) {
280 if (!receive_ufd_features(&supported_features
)) {
281 error_report("%s failed", __func__
);
286 #ifdef UFFD_FEATURE_THREAD_ID
287 if (migrate_postcopy_blocktime() && mis
&&
288 UFFD_FEATURE_THREAD_ID
& supported_features
) {
289 /* kernel supports that feature */
290 /* don't create blocktime_context if it exists */
291 if (!mis
->blocktime_ctx
) {
292 mis
->blocktime_ctx
= blocktime_context_new();
295 asked_features
|= UFFD_FEATURE_THREAD_ID
;
300 * request features, even if asked_features is 0, due to
301 * kernel expects UFFD_API before UFFDIO_REGISTER, per
302 * userfault file descriptor
304 if (!request_ufd_features(ufd
, asked_features
)) {
305 error_report("%s failed: features %" PRIu64
, __func__
,
310 if (getpagesize() != ram_pagesize_summary()) {
311 bool have_hp
= false;
312 /* We've got a huge page */
313 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
314 have_hp
= supported_features
& UFFD_FEATURE_MISSING_HUGETLBFS
;
317 error_report("Userfault on this host does not support huge pages");
324 /* Callback from postcopy_ram_supported_by_host block iterator.
326 static int test_ramblock_postcopiable(RAMBlock
*rb
, void *opaque
)
328 const char *block_name
= qemu_ram_get_idstr(rb
);
329 ram_addr_t length
= qemu_ram_get_used_length(rb
);
330 size_t pagesize
= qemu_ram_pagesize(rb
);
332 if (length
% pagesize
) {
333 error_report("Postcopy requires RAM blocks to be a page size multiple,"
334 " block %s is 0x" RAM_ADDR_FMT
" bytes with a "
335 "page size of 0x%zx", block_name
, length
, pagesize
);
342 * Note: This has the side effect of munlock'ing all of RAM, that's
343 * normally fine since if the postcopy succeeds it gets turned back on at the
346 bool postcopy_ram_supported_by_host(MigrationIncomingState
*mis
)
348 long pagesize
= getpagesize();
350 bool ret
= false; /* Error unless we change it */
351 void *testarea
= NULL
;
352 struct uffdio_register reg_struct
;
353 struct uffdio_range range_struct
;
354 uint64_t feature_mask
;
355 Error
*local_err
= NULL
;
357 if (qemu_target_page_size() > pagesize
) {
358 error_report("Target page size bigger than host page size");
362 ufd
= syscall(__NR_userfaultfd
, O_CLOEXEC
);
364 error_report("%s: userfaultfd not available: %s", __func__
,
369 /* Give devices a chance to object */
370 if (postcopy_notify(POSTCOPY_NOTIFY_PROBE
, &local_err
)) {
371 error_report_err(local_err
);
375 /* Version and features check */
376 if (!ufd_check_and_apply(ufd
, mis
)) {
380 /* We don't support postcopy with shared RAM yet */
381 if (foreach_not_ignored_block(test_ramblock_postcopiable
, NULL
)) {
386 * userfault and mlock don't go together; we'll put it back later if
390 error_report("%s: munlockall: %s", __func__
, strerror(errno
));
395 * We need to check that the ops we need are supported on anon memory
396 * To do that we need to register a chunk and see the flags that
399 testarea
= mmap(NULL
, pagesize
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
|
400 MAP_ANONYMOUS
, -1, 0);
401 if (testarea
== MAP_FAILED
) {
402 error_report("%s: Failed to map test area: %s", __func__
,
406 g_assert(((size_t)testarea
& (pagesize
-1)) == 0);
408 reg_struct
.range
.start
= (uintptr_t)testarea
;
409 reg_struct
.range
.len
= pagesize
;
410 reg_struct
.mode
= UFFDIO_REGISTER_MODE_MISSING
;
412 if (ioctl(ufd
, UFFDIO_REGISTER
, ®_struct
)) {
413 error_report("%s userfault register: %s", __func__
, strerror(errno
));
417 range_struct
.start
= (uintptr_t)testarea
;
418 range_struct
.len
= pagesize
;
419 if (ioctl(ufd
, UFFDIO_UNREGISTER
, &range_struct
)) {
420 error_report("%s userfault unregister: %s", __func__
, strerror(errno
));
424 feature_mask
= (__u64
)1 << _UFFDIO_WAKE
|
425 (__u64
)1 << _UFFDIO_COPY
|
426 (__u64
)1 << _UFFDIO_ZEROPAGE
;
427 if ((reg_struct
.ioctls
& feature_mask
) != feature_mask
) {
428 error_report("Missing userfault map features: %" PRIx64
,
429 (uint64_t)(~reg_struct
.ioctls
& feature_mask
));
437 munmap(testarea
, pagesize
);
446 * Setup an area of RAM so that it *can* be used for postcopy later; this
447 * must be done right at the start prior to pre-copy.
448 * opaque should be the MIS.
450 static int init_range(RAMBlock
*rb
, void *opaque
)
452 const char *block_name
= qemu_ram_get_idstr(rb
);
453 void *host_addr
= qemu_ram_get_host_addr(rb
);
454 ram_addr_t offset
= qemu_ram_get_offset(rb
);
455 ram_addr_t length
= qemu_ram_get_used_length(rb
);
456 trace_postcopy_init_range(block_name
, host_addr
, offset
, length
);
459 * We need the whole of RAM to be truly empty for postcopy, so things
460 * like ROMs and any data tables built during init must be zero'd
461 * - we're going to get the copy from the source anyway.
462 * (Precopy will just overwrite this data, so doesn't need the discard)
464 if (ram_discard_range(block_name
, 0, length
)) {
472 * At the end of migration, undo the effects of init_range
473 * opaque should be the MIS.
475 static int cleanup_range(RAMBlock
*rb
, void *opaque
)
477 const char *block_name
= qemu_ram_get_idstr(rb
);
478 void *host_addr
= qemu_ram_get_host_addr(rb
);
479 ram_addr_t offset
= qemu_ram_get_offset(rb
);
480 ram_addr_t length
= qemu_ram_get_used_length(rb
);
481 MigrationIncomingState
*mis
= opaque
;
482 struct uffdio_range range_struct
;
483 trace_postcopy_cleanup_range(block_name
, host_addr
, offset
, length
);
486 * We turned off hugepage for the precopy stage with postcopy enabled
487 * we can turn it back on now.
489 qemu_madvise(host_addr
, length
, QEMU_MADV_HUGEPAGE
);
492 * We can also turn off userfault now since we should have all the
493 * pages. It can be useful to leave it on to debug postcopy
494 * if you're not sure it's always getting every page.
496 range_struct
.start
= (uintptr_t)host_addr
;
497 range_struct
.len
= length
;
499 if (ioctl(mis
->userfault_fd
, UFFDIO_UNREGISTER
, &range_struct
)) {
500 error_report("%s: userfault unregister %s", __func__
, strerror(errno
));
509 * Initialise postcopy-ram, setting the RAM to a state where we can go into
510 * postcopy later; must be called prior to any precopy.
511 * called from arch_init's similarly named ram_postcopy_incoming_init
513 int postcopy_ram_incoming_init(MigrationIncomingState
*mis
)
515 if (foreach_not_ignored_block(init_range
, NULL
)) {
523 * Manage a single vote to the QEMU balloon inhibitor for all postcopy usage,
526 static void postcopy_balloon_inhibit(bool state
)
528 static bool cur_state
= false;
530 if (state
!= cur_state
) {
531 qemu_balloon_inhibit(state
);
537 * At the end of a migration where postcopy_ram_incoming_init was called.
539 int postcopy_ram_incoming_cleanup(MigrationIncomingState
*mis
)
541 trace_postcopy_ram_incoming_cleanup_entry();
543 if (mis
->have_fault_thread
) {
544 Error
*local_err
= NULL
;
546 /* Let the fault thread quit */
547 atomic_set(&mis
->fault_thread_quit
, 1);
548 postcopy_fault_thread_notify(mis
);
549 trace_postcopy_ram_incoming_cleanup_join();
550 qemu_thread_join(&mis
->fault_thread
);
552 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END
, &local_err
)) {
553 error_report_err(local_err
);
557 if (foreach_not_ignored_block(cleanup_range
, mis
)) {
561 trace_postcopy_ram_incoming_cleanup_closeuf();
562 close(mis
->userfault_fd
);
563 close(mis
->userfault_event_fd
);
564 mis
->have_fault_thread
= false;
567 postcopy_balloon_inhibit(false);
570 if (os_mlock() < 0) {
571 error_report("mlock: %s", strerror(errno
));
573 * It doesn't feel right to fail at this point, we have a valid
579 postcopy_state_set(POSTCOPY_INCOMING_END
);
581 if (mis
->postcopy_tmp_page
) {
582 munmap(mis
->postcopy_tmp_page
, mis
->largest_page_size
);
583 mis
->postcopy_tmp_page
= NULL
;
585 if (mis
->postcopy_tmp_zero_page
) {
586 munmap(mis
->postcopy_tmp_zero_page
, mis
->largest_page_size
);
587 mis
->postcopy_tmp_zero_page
= NULL
;
589 trace_postcopy_ram_incoming_cleanup_blocktime(
590 get_postcopy_total_blocktime());
592 trace_postcopy_ram_incoming_cleanup_exit();
597 * Disable huge pages on an area
599 static int nhp_range(RAMBlock
*rb
, void *opaque
)
601 const char *block_name
= qemu_ram_get_idstr(rb
);
602 void *host_addr
= qemu_ram_get_host_addr(rb
);
603 ram_addr_t offset
= qemu_ram_get_offset(rb
);
604 ram_addr_t length
= qemu_ram_get_used_length(rb
);
605 trace_postcopy_nhp_range(block_name
, host_addr
, offset
, length
);
608 * Before we do discards we need to ensure those discards really
609 * do delete areas of the page, even if THP thinks a hugepage would
610 * be a good idea, so force hugepages off.
612 qemu_madvise(host_addr
, length
, QEMU_MADV_NOHUGEPAGE
);
618 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
619 * however leaving it until after precopy means that most of the precopy
622 int postcopy_ram_prepare_discard(MigrationIncomingState
*mis
)
624 if (foreach_not_ignored_block(nhp_range
, mis
)) {
628 postcopy_state_set(POSTCOPY_INCOMING_DISCARD
);
634 * Mark the given area of RAM as requiring notification to unwritten areas
635 * Used as a callback on foreach_not_ignored_block.
636 * host_addr: Base of area to mark
637 * offset: Offset in the whole ram arena
638 * length: Length of the section
639 * opaque: MigrationIncomingState pointer
640 * Returns 0 on success
642 static int ram_block_enable_notify(RAMBlock
*rb
, void *opaque
)
644 MigrationIncomingState
*mis
= opaque
;
645 struct uffdio_register reg_struct
;
647 reg_struct
.range
.start
= (uintptr_t)qemu_ram_get_host_addr(rb
);
648 reg_struct
.range
.len
= qemu_ram_get_used_length(rb
);
649 reg_struct
.mode
= UFFDIO_REGISTER_MODE_MISSING
;
651 /* Now tell our userfault_fd that it's responsible for this area */
652 if (ioctl(mis
->userfault_fd
, UFFDIO_REGISTER
, ®_struct
)) {
653 error_report("%s userfault register: %s", __func__
, strerror(errno
));
656 if (!(reg_struct
.ioctls
& ((__u64
)1 << _UFFDIO_COPY
))) {
657 error_report("%s userfault: Region doesn't support COPY", __func__
);
660 if (reg_struct
.ioctls
& ((__u64
)1 << _UFFDIO_ZEROPAGE
)) {
661 qemu_ram_set_uf_zeroable(rb
);
667 int postcopy_wake_shared(struct PostCopyFD
*pcfd
,
668 uint64_t client_addr
,
671 size_t pagesize
= qemu_ram_pagesize(rb
);
672 struct uffdio_range range
;
674 trace_postcopy_wake_shared(client_addr
, qemu_ram_get_idstr(rb
));
675 range
.start
= client_addr
& ~(pagesize
- 1);
676 range
.len
= pagesize
;
677 ret
= ioctl(pcfd
->fd
, UFFDIO_WAKE
, &range
);
679 error_report("%s: Failed to wake: %zx in %s (%s)",
680 __func__
, (size_t)client_addr
, qemu_ram_get_idstr(rb
),
687 * Callback from shared fault handlers to ask for a page,
688 * the page must be specified by a RAMBlock and an offset in that rb
689 * Note: Only for use by shared fault handlers (in fault thread)
691 int postcopy_request_shared_page(struct PostCopyFD
*pcfd
, RAMBlock
*rb
,
692 uint64_t client_addr
, uint64_t rb_offset
)
694 size_t pagesize
= qemu_ram_pagesize(rb
);
695 uint64_t aligned_rbo
= rb_offset
& ~(pagesize
- 1);
696 MigrationIncomingState
*mis
= migration_incoming_get_current();
698 trace_postcopy_request_shared_page(pcfd
->idstr
, qemu_ram_get_idstr(rb
),
700 if (ramblock_recv_bitmap_test_byte_offset(rb
, aligned_rbo
)) {
701 trace_postcopy_request_shared_page_present(pcfd
->idstr
,
702 qemu_ram_get_idstr(rb
), rb_offset
);
703 return postcopy_wake_shared(pcfd
, client_addr
, rb
);
705 if (rb
!= mis
->last_rb
) {
707 migrate_send_rp_req_pages(mis
, qemu_ram_get_idstr(rb
),
708 aligned_rbo
, pagesize
);
710 /* Save some space */
711 migrate_send_rp_req_pages(mis
, NULL
, aligned_rbo
, pagesize
);
716 static int get_mem_fault_cpu_index(uint32_t pid
)
720 CPU_FOREACH(cpu_iter
) {
721 if (cpu_iter
->thread_id
== pid
) {
722 trace_get_mem_fault_cpu_index(cpu_iter
->cpu_index
, pid
);
723 return cpu_iter
->cpu_index
;
726 trace_get_mem_fault_cpu_index(-1, pid
);
730 static uint32_t get_low_time_offset(PostcopyBlocktimeContext
*dc
)
732 int64_t start_time_offset
= qemu_clock_get_ms(QEMU_CLOCK_REALTIME
) -
734 return start_time_offset
< 1 ? 1 : start_time_offset
& UINT32_MAX
;
738 * This function is being called when pagefault occurs. It
739 * tracks down vCPU blocking time.
741 * @addr: faulted host virtual address
742 * @ptid: faulted process thread id
743 * @rb: ramblock appropriate to addr
745 static void mark_postcopy_blocktime_begin(uintptr_t addr
, uint32_t ptid
,
748 int cpu
, already_received
;
749 MigrationIncomingState
*mis
= migration_incoming_get_current();
750 PostcopyBlocktimeContext
*dc
= mis
->blocktime_ctx
;
751 uint32_t low_time_offset
;
753 if (!dc
|| ptid
== 0) {
756 cpu
= get_mem_fault_cpu_index(ptid
);
761 low_time_offset
= get_low_time_offset(dc
);
762 if (dc
->vcpu_addr
[cpu
] == 0) {
763 atomic_inc(&dc
->smp_cpus_down
);
766 atomic_xchg(&dc
->last_begin
, low_time_offset
);
767 atomic_xchg(&dc
->page_fault_vcpu_time
[cpu
], low_time_offset
);
768 atomic_xchg(&dc
->vcpu_addr
[cpu
], addr
);
770 /* check it here, not at the begining of the function,
771 * due to, check could accur early than bitmap_set in
772 * qemu_ufd_copy_ioctl */
773 already_received
= ramblock_recv_bitmap_test(rb
, (void *)addr
);
774 if (already_received
) {
775 atomic_xchg(&dc
->vcpu_addr
[cpu
], 0);
776 atomic_xchg(&dc
->page_fault_vcpu_time
[cpu
], 0);
777 atomic_dec(&dc
->smp_cpus_down
);
779 trace_mark_postcopy_blocktime_begin(addr
, dc
, dc
->page_fault_vcpu_time
[cpu
],
780 cpu
, already_received
);
784 * This function just provide calculated blocktime per cpu and trace it.
785 * Total blocktime is calculated in mark_postcopy_blocktime_end.
788 * Assume we have 3 CPU
791 * -----***********------------xxx***************------------------------> CPU1
794 * ------------****************xxx---------------------------------------> CPU2
797 * ------------------------****xxx********-------------------------------> CPU3
799 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
800 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
801 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
802 * it's a part of total blocktime.
803 * S1 - here is last_begin
804 * Legend of the picture is following:
805 * * - means blocktime per vCPU
806 * x - means overlapped blocktime (total blocktime)
808 * @addr: host virtual address
810 static void mark_postcopy_blocktime_end(uintptr_t addr
)
812 MigrationIncomingState
*mis
= migration_incoming_get_current();
813 PostcopyBlocktimeContext
*dc
= mis
->blocktime_ctx
;
814 MachineState
*ms
= MACHINE(qdev_get_machine());
815 unsigned int smp_cpus
= ms
->smp
.cpus
;
816 int i
, affected_cpu
= 0;
817 bool vcpu_total_blocktime
= false;
818 uint32_t read_vcpu_time
, low_time_offset
;
824 low_time_offset
= get_low_time_offset(dc
);
825 /* lookup cpu, to clear it,
826 * that algorithm looks straighforward, but it's not
827 * optimal, more optimal algorithm is keeping tree or hash
828 * where key is address value is a list of */
829 for (i
= 0; i
< smp_cpus
; i
++) {
830 uint32_t vcpu_blocktime
= 0;
832 read_vcpu_time
= atomic_fetch_add(&dc
->page_fault_vcpu_time
[i
], 0);
833 if (atomic_fetch_add(&dc
->vcpu_addr
[i
], 0) != addr
||
834 read_vcpu_time
== 0) {
837 atomic_xchg(&dc
->vcpu_addr
[i
], 0);
838 vcpu_blocktime
= low_time_offset
- read_vcpu_time
;
840 /* we need to know is that mark_postcopy_end was due to
841 * faulted page, another possible case it's prefetched
842 * page and in that case we shouldn't be here */
843 if (!vcpu_total_blocktime
&&
844 atomic_fetch_add(&dc
->smp_cpus_down
, 0) == smp_cpus
) {
845 vcpu_total_blocktime
= true;
847 /* continue cycle, due to one page could affect several vCPUs */
848 dc
->vcpu_blocktime
[i
] += vcpu_blocktime
;
851 atomic_sub(&dc
->smp_cpus_down
, affected_cpu
);
852 if (vcpu_total_blocktime
) {
853 dc
->total_blocktime
+= low_time_offset
- atomic_fetch_add(
856 trace_mark_postcopy_blocktime_end(addr
, dc
, dc
->total_blocktime
,
860 static bool postcopy_pause_fault_thread(MigrationIncomingState
*mis
)
862 trace_postcopy_pause_fault_thread();
864 qemu_sem_wait(&mis
->postcopy_pause_sem_fault
);
866 trace_postcopy_pause_fault_thread_continued();
872 * Handle faults detected by the USERFAULT markings
874 static void *postcopy_ram_fault_thread(void *opaque
)
876 MigrationIncomingState
*mis
= opaque
;
882 trace_postcopy_ram_fault_thread_entry();
883 rcu_register_thread();
884 mis
->last_rb
= NULL
; /* last RAMBlock we sent part of */
885 qemu_sem_post(&mis
->fault_thread_sem
);
888 size_t pfd_len
= 2 + mis
->postcopy_remote_fds
->len
;
890 pfd
= g_new0(struct pollfd
, pfd_len
);
892 pfd
[0].fd
= mis
->userfault_fd
;
893 pfd
[0].events
= POLLIN
;
894 pfd
[1].fd
= mis
->userfault_event_fd
;
895 pfd
[1].events
= POLLIN
; /* Waiting for eventfd to go positive */
896 trace_postcopy_ram_fault_thread_fds_core(pfd
[0].fd
, pfd
[1].fd
);
897 for (index
= 0; index
< mis
->postcopy_remote_fds
->len
; index
++) {
898 struct PostCopyFD
*pcfd
= &g_array_index(mis
->postcopy_remote_fds
,
899 struct PostCopyFD
, index
);
900 pfd
[2 + index
].fd
= pcfd
->fd
;
901 pfd
[2 + index
].events
= POLLIN
;
902 trace_postcopy_ram_fault_thread_fds_extra(2 + index
, pcfd
->idstr
,
907 ram_addr_t rb_offset
;
911 * We're mainly waiting for the kernel to give us a faulting HVA,
912 * however we can be told to quit via userfault_quit_fd which is
916 poll_result
= poll(pfd
, pfd_len
, -1 /* Wait forever */);
917 if (poll_result
== -1) {
918 error_report("%s: userfault poll: %s", __func__
, strerror(errno
));
922 if (!mis
->to_src_file
) {
924 * Possibly someone tells us that the return path is
925 * broken already using the event. We should hold until
926 * the channel is rebuilt.
928 if (postcopy_pause_fault_thread(mis
)) {
930 /* Continue to read the userfaultfd */
932 error_report("%s: paused but don't allow to continue",
938 if (pfd
[1].revents
) {
941 /* Consume the signal */
942 if (read(mis
->userfault_event_fd
, &tmp64
, 8) != 8) {
943 /* Nothing obviously nicer than posting this error. */
944 error_report("%s: read() failed", __func__
);
947 if (atomic_read(&mis
->fault_thread_quit
)) {
948 trace_postcopy_ram_fault_thread_quit();
953 if (pfd
[0].revents
) {
955 ret
= read(mis
->userfault_fd
, &msg
, sizeof(msg
));
956 if (ret
!= sizeof(msg
)) {
957 if (errno
== EAGAIN
) {
959 * if a wake up happens on the other thread just after
960 * the poll, there is nothing to read.
965 error_report("%s: Failed to read full userfault "
967 __func__
, strerror(errno
));
970 error_report("%s: Read %d bytes from userfaultfd "
972 __func__
, ret
, sizeof(msg
));
973 break; /* Lost alignment, don't know what we'd read next */
976 if (msg
.event
!= UFFD_EVENT_PAGEFAULT
) {
977 error_report("%s: Read unexpected event %ud from userfaultfd",
978 __func__
, msg
.event
);
979 continue; /* It's not a page fault, shouldn't happen */
982 rb
= qemu_ram_block_from_host(
983 (void *)(uintptr_t)msg
.arg
.pagefault
.address
,
986 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
987 PRIx64
, (uint64_t)msg
.arg
.pagefault
.address
);
991 rb_offset
&= ~(qemu_ram_pagesize(rb
) - 1);
992 trace_postcopy_ram_fault_thread_request(msg
.arg
.pagefault
.address
,
993 qemu_ram_get_idstr(rb
),
995 msg
.arg
.pagefault
.feat
.ptid
);
996 mark_postcopy_blocktime_begin(
997 (uintptr_t)(msg
.arg
.pagefault
.address
),
998 msg
.arg
.pagefault
.feat
.ptid
, rb
);
1002 * Send the request to the source - we want to request one
1003 * of our host page sizes (which is >= TPS)
1005 if (rb
!= mis
->last_rb
) {
1007 ret
= migrate_send_rp_req_pages(mis
,
1008 qemu_ram_get_idstr(rb
),
1010 qemu_ram_pagesize(rb
));
1012 /* Save some space */
1013 ret
= migrate_send_rp_req_pages(mis
,
1016 qemu_ram_pagesize(rb
));
1020 /* May be network failure, try to wait for recovery */
1021 if (ret
== -EIO
&& postcopy_pause_fault_thread(mis
)) {
1022 /* We got reconnected somehow, try to continue */
1023 mis
->last_rb
= NULL
;
1026 /* This is a unavoidable fault */
1027 error_report("%s: migrate_send_rp_req_pages() get %d",
1034 /* Now handle any requests from external processes on shared memory */
1035 /* TODO: May need to handle devices deregistering during postcopy */
1036 for (index
= 2; index
< pfd_len
&& poll_result
; index
++) {
1037 if (pfd
[index
].revents
) {
1038 struct PostCopyFD
*pcfd
=
1039 &g_array_index(mis
->postcopy_remote_fds
,
1040 struct PostCopyFD
, index
- 2);
1043 if (pfd
[index
].revents
& POLLERR
) {
1044 error_report("%s: POLLERR on poll %zd fd=%d",
1045 __func__
, index
, pcfd
->fd
);
1046 pfd
[index
].events
= 0;
1050 ret
= read(pcfd
->fd
, &msg
, sizeof(msg
));
1051 if (ret
!= sizeof(msg
)) {
1052 if (errno
== EAGAIN
) {
1054 * if a wake up happens on the other thread just after
1055 * the poll, there is nothing to read.
1060 error_report("%s: Failed to read full userfault "
1061 "message: %s (shared) revents=%d",
1062 __func__
, strerror(errno
),
1063 pfd
[index
].revents
);
1064 /*TODO: Could just disable this sharer */
1067 error_report("%s: Read %d bytes from userfaultfd "
1068 "expected %zd (shared)",
1069 __func__
, ret
, sizeof(msg
));
1070 /*TODO: Could just disable this sharer */
1071 break; /*Lost alignment,don't know what we'd read next*/
1074 if (msg
.event
!= UFFD_EVENT_PAGEFAULT
) {
1075 error_report("%s: Read unexpected event %ud "
1076 "from userfaultfd (shared)",
1077 __func__
, msg
.event
);
1078 continue; /* It's not a page fault, shouldn't happen */
1080 /* Call the device handler registered with us */
1081 ret
= pcfd
->handler(pcfd
, &msg
);
1083 error_report("%s: Failed to resolve shared fault on %zd/%s",
1084 __func__
, index
, pcfd
->idstr
);
1085 /* TODO: Fail? Disable this sharer? */
1090 rcu_unregister_thread();
1091 trace_postcopy_ram_fault_thread_exit();
1096 int postcopy_ram_enable_notify(MigrationIncomingState
*mis
)
1098 /* Open the fd for the kernel to give us userfaults */
1099 mis
->userfault_fd
= syscall(__NR_userfaultfd
, O_CLOEXEC
| O_NONBLOCK
);
1100 if (mis
->userfault_fd
== -1) {
1101 error_report("%s: Failed to open userfault fd: %s", __func__
,
1107 * Although the host check already tested the API, we need to
1108 * do the check again as an ABI handshake on the new fd.
1110 if (!ufd_check_and_apply(mis
->userfault_fd
, mis
)) {
1114 /* Now an eventfd we use to tell the fault-thread to quit */
1115 mis
->userfault_event_fd
= eventfd(0, EFD_CLOEXEC
);
1116 if (mis
->userfault_event_fd
== -1) {
1117 error_report("%s: Opening userfault_event_fd: %s", __func__
,
1119 close(mis
->userfault_fd
);
1123 qemu_sem_init(&mis
->fault_thread_sem
, 0);
1124 qemu_thread_create(&mis
->fault_thread
, "postcopy/fault",
1125 postcopy_ram_fault_thread
, mis
, QEMU_THREAD_JOINABLE
);
1126 qemu_sem_wait(&mis
->fault_thread_sem
);
1127 qemu_sem_destroy(&mis
->fault_thread_sem
);
1128 mis
->have_fault_thread
= true;
1130 /* Mark so that we get notified of accesses to unwritten areas */
1131 if (foreach_not_ignored_block(ram_block_enable_notify
, mis
)) {
1132 error_report("ram_block_enable_notify failed");
1137 * Ballooning can mark pages as absent while we're postcopying
1138 * that would cause false userfaults.
1140 postcopy_balloon_inhibit(true);
1142 trace_postcopy_ram_enable_notify();
1147 static int qemu_ufd_copy_ioctl(int userfault_fd
, void *host_addr
,
1148 void *from_addr
, uint64_t pagesize
, RAMBlock
*rb
)
1152 struct uffdio_copy copy_struct
;
1153 copy_struct
.dst
= (uint64_t)(uintptr_t)host_addr
;
1154 copy_struct
.src
= (uint64_t)(uintptr_t)from_addr
;
1155 copy_struct
.len
= pagesize
;
1156 copy_struct
.mode
= 0;
1157 ret
= ioctl(userfault_fd
, UFFDIO_COPY
, ©_struct
);
1159 struct uffdio_zeropage zero_struct
;
1160 zero_struct
.range
.start
= (uint64_t)(uintptr_t)host_addr
;
1161 zero_struct
.range
.len
= pagesize
;
1162 zero_struct
.mode
= 0;
1163 ret
= ioctl(userfault_fd
, UFFDIO_ZEROPAGE
, &zero_struct
);
1166 ramblock_recv_bitmap_set_range(rb
, host_addr
,
1167 pagesize
/ qemu_target_page_size());
1168 mark_postcopy_blocktime_end((uintptr_t)host_addr
);
1174 int postcopy_notify_shared_wake(RAMBlock
*rb
, uint64_t offset
)
1177 MigrationIncomingState
*mis
= migration_incoming_get_current();
1178 GArray
*pcrfds
= mis
->postcopy_remote_fds
;
1180 for (i
= 0; i
< pcrfds
->len
; i
++) {
1181 struct PostCopyFD
*cur
= &g_array_index(pcrfds
, struct PostCopyFD
, i
);
1182 int ret
= cur
->waker(cur
, rb
, offset
);
1191 * Place a host page (from) at (host) atomically
1192 * returns 0 on success
1194 int postcopy_place_page(MigrationIncomingState
*mis
, void *host
, void *from
,
1197 size_t pagesize
= qemu_ram_pagesize(rb
);
1199 /* copy also acks to the kernel waking the stalled thread up
1200 * TODO: We can inhibit that ack and only do it if it was requested
1201 * which would be slightly cheaper, but we'd have to be careful
1202 * of the order of updating our page state.
1204 if (qemu_ufd_copy_ioctl(mis
->userfault_fd
, host
, from
, pagesize
, rb
)) {
1206 error_report("%s: %s copy host: %p from: %p (size: %zd)",
1207 __func__
, strerror(e
), host
, from
, pagesize
);
1212 trace_postcopy_place_page(host
);
1213 return postcopy_notify_shared_wake(rb
,
1214 qemu_ram_block_host_offset(rb
, host
));
1218 * Place a zero page at (host) atomically
1219 * returns 0 on success
1221 int postcopy_place_page_zero(MigrationIncomingState
*mis
, void *host
,
1224 size_t pagesize
= qemu_ram_pagesize(rb
);
1225 trace_postcopy_place_page_zero(host
);
1227 /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1228 * but it's not available for everything (e.g. hugetlbpages)
1230 if (qemu_ram_is_uf_zeroable(rb
)) {
1231 if (qemu_ufd_copy_ioctl(mis
->userfault_fd
, host
, NULL
, pagesize
, rb
)) {
1233 error_report("%s: %s zero host: %p",
1234 __func__
, strerror(e
), host
);
1238 return postcopy_notify_shared_wake(rb
,
1239 qemu_ram_block_host_offset(rb
,
1242 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1243 if (!mis
->postcopy_tmp_zero_page
) {
1244 mis
->postcopy_tmp_zero_page
= mmap(NULL
, mis
->largest_page_size
,
1245 PROT_READ
| PROT_WRITE
,
1246 MAP_PRIVATE
| MAP_ANONYMOUS
,
1248 if (mis
->postcopy_tmp_zero_page
== MAP_FAILED
) {
1250 mis
->postcopy_tmp_zero_page
= NULL
;
1251 error_report("%s: %s mapping large zero page",
1252 __func__
, strerror(e
));
1255 memset(mis
->postcopy_tmp_zero_page
, '\0', mis
->largest_page_size
);
1257 return postcopy_place_page(mis
, host
, mis
->postcopy_tmp_zero_page
,
1263 * Returns a target page of memory that can be mapped at a later point in time
1264 * using postcopy_place_page
1265 * The same address is used repeatedly, postcopy_place_page just takes the
1266 * backing page away.
1267 * Returns: Pointer to allocated page
1270 void *postcopy_get_tmp_page(MigrationIncomingState
*mis
)
1272 if (!mis
->postcopy_tmp_page
) {
1273 mis
->postcopy_tmp_page
= mmap(NULL
, mis
->largest_page_size
,
1274 PROT_READ
| PROT_WRITE
, MAP_PRIVATE
|
1275 MAP_ANONYMOUS
, -1, 0);
1276 if (mis
->postcopy_tmp_page
== MAP_FAILED
) {
1277 mis
->postcopy_tmp_page
= NULL
;
1278 error_report("%s: %s", __func__
, strerror(errno
));
1283 return mis
->postcopy_tmp_page
;
1287 /* No target OS support, stubs just fail */
1288 void fill_destination_postcopy_migration_info(MigrationInfo
*info
)
1292 bool postcopy_ram_supported_by_host(MigrationIncomingState
*mis
)
1294 error_report("%s: No OS support", __func__
);
1298 int postcopy_ram_incoming_init(MigrationIncomingState
*mis
)
1300 error_report("postcopy_ram_incoming_init: No OS support");
1304 int postcopy_ram_incoming_cleanup(MigrationIncomingState
*mis
)
1310 int postcopy_ram_prepare_discard(MigrationIncomingState
*mis
)
1316 int postcopy_request_shared_page(struct PostCopyFD
*pcfd
, RAMBlock
*rb
,
1317 uint64_t client_addr
, uint64_t rb_offset
)
1323 int postcopy_ram_enable_notify(MigrationIncomingState
*mis
)
1329 int postcopy_place_page(MigrationIncomingState
*mis
, void *host
, void *from
,
1336 int postcopy_place_page_zero(MigrationIncomingState
*mis
, void *host
,
1343 void *postcopy_get_tmp_page(MigrationIncomingState
*mis
)
1349 int postcopy_wake_shared(struct PostCopyFD
*pcfd
,
1350 uint64_t client_addr
,
1358 /* ------------------------------------------------------------------------- */
1360 void postcopy_fault_thread_notify(MigrationIncomingState
*mis
)
1365 * Wakeup the fault_thread. It's an eventfd that should currently
1366 * be at 0, we're going to increment it to 1
1368 if (write(mis
->userfault_event_fd
, &tmp64
, 8) != 8) {
1369 /* Not much we can do here, but may as well report it */
1370 error_report("%s: incrementing failed: %s", __func__
,
1376 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1377 * asking to discard individual ranges.
1379 * @ms: The current migration state.
1380 * @offset: the bitmap offset of the named RAMBlock in the migration
1382 * @name: RAMBlock that discards will operate on.
1384 * returns: a new PDS.
1386 PostcopyDiscardState
*postcopy_discard_send_init(MigrationState
*ms
,
1389 PostcopyDiscardState
*res
= g_malloc0(sizeof(PostcopyDiscardState
));
1392 res
->ramblock_name
= name
;
1399 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1400 * discard. May send a discard message, may just leave it queued to
1403 * @ms: Current migration state.
1404 * @pds: Structure initialised by postcopy_discard_send_init().
1405 * @start,@length: a range of pages in the migration bitmap in the
1406 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1408 void postcopy_discard_send_range(MigrationState
*ms
, PostcopyDiscardState
*pds
,
1409 unsigned long start
, unsigned long length
)
1411 size_t tp_size
= qemu_target_page_size();
1412 /* Convert to byte offsets within the RAM block */
1413 pds
->start_list
[pds
->cur_entry
] = start
* tp_size
;
1414 pds
->length_list
[pds
->cur_entry
] = length
* tp_size
;
1415 trace_postcopy_discard_send_range(pds
->ramblock_name
, start
, length
);
1419 if (pds
->cur_entry
== MAX_DISCARDS_PER_COMMAND
) {
1420 /* Full set, ship it! */
1421 qemu_savevm_send_postcopy_ram_discard(ms
->to_dst_file
,
1432 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1433 * bitmap code. Sends any outstanding discard messages, frees the PDS
1435 * @ms: Current migration state.
1436 * @pds: Structure initialised by postcopy_discard_send_init().
1438 void postcopy_discard_send_finish(MigrationState
*ms
, PostcopyDiscardState
*pds
)
1440 /* Anything unsent? */
1441 if (pds
->cur_entry
) {
1442 qemu_savevm_send_postcopy_ram_discard(ms
->to_dst_file
,
1450 trace_postcopy_discard_send_finish(pds
->ramblock_name
, pds
->nsentwords
,
1457 * Current state of incoming postcopy; note this is not part of
1458 * MigrationIncomingState since it's state is used during cleanup
1459 * at the end as MIS is being freed.
1461 static PostcopyState incoming_postcopy_state
;
1463 PostcopyState
postcopy_state_get(void)
1465 return atomic_mb_read(&incoming_postcopy_state
);
1468 /* Set the state and return the old state */
1469 PostcopyState
postcopy_state_set(PostcopyState new_state
)
1471 return atomic_xchg(&incoming_postcopy_state
, new_state
);
1474 /* Register a handler for external shared memory postcopy
1475 * called on the destination.
1477 void postcopy_register_shared_ufd(struct PostCopyFD
*pcfd
)
1479 MigrationIncomingState
*mis
= migration_incoming_get_current();
1481 mis
->postcopy_remote_fds
= g_array_append_val(mis
->postcopy_remote_fds
,
1485 /* Unregister a handler for external shared memory postcopy
1487 void postcopy_unregister_shared_ufd(struct PostCopyFD
*pcfd
)
1490 MigrationIncomingState
*mis
= migration_incoming_get_current();
1491 GArray
*pcrfds
= mis
->postcopy_remote_fds
;
1493 for (i
= 0; i
< pcrfds
->len
; i
++) {
1494 struct PostCopyFD
*cur
= &g_array_index(pcrfds
, struct PostCopyFD
, i
);
1495 if (cur
->fd
== pcfd
->fd
) {
1496 mis
->postcopy_remote_fds
= g_array_remove_index(pcrfds
, i
);