qcow2: Return 0/-errno in qcow2_alloc_compressed_cluster_offset()
[qemu/ar7.git] / block / qcow2-cluster.c
blob8c4b4005ff1644dca02c484a6ac80cd48d1e7da5
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h>
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
35 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
37 BDRVQcow2State *s = bs->opaque;
38 int new_l1_size, i, ret;
40 if (exact_size >= s->l1_size) {
41 return 0;
44 new_l1_size = exact_size;
46 #ifdef DEBUG_ALLOC2
47 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
48 #endif
50 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
51 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
52 new_l1_size * sizeof(uint64_t),
53 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
54 if (ret < 0) {
55 goto fail;
58 ret = bdrv_flush(bs->file->bs);
59 if (ret < 0) {
60 goto fail;
63 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
64 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
65 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
66 continue;
68 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
69 s->cluster_size, QCOW2_DISCARD_ALWAYS);
70 s->l1_table[i] = 0;
72 return 0;
74 fail:
76 * If the write in the l1_table failed the image may contain a partially
77 * overwritten l1_table. In this case it would be better to clear the
78 * l1_table in memory to avoid possible image corruption.
80 memset(s->l1_table + new_l1_size, 0,
81 (s->l1_size - new_l1_size) * sizeof(uint64_t));
82 return ret;
85 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
86 bool exact_size)
88 BDRVQcow2State *s = bs->opaque;
89 int new_l1_size2, ret, i;
90 uint64_t *new_l1_table;
91 int64_t old_l1_table_offset, old_l1_size;
92 int64_t new_l1_table_offset, new_l1_size;
93 uint8_t data[12];
95 if (min_size <= s->l1_size)
96 return 0;
98 /* Do a sanity check on min_size before trying to calculate new_l1_size
99 * (this prevents overflows during the while loop for the calculation of
100 * new_l1_size) */
101 if (min_size > INT_MAX / sizeof(uint64_t)) {
102 return -EFBIG;
105 if (exact_size) {
106 new_l1_size = min_size;
107 } else {
108 /* Bump size up to reduce the number of times we have to grow */
109 new_l1_size = s->l1_size;
110 if (new_l1_size == 0) {
111 new_l1_size = 1;
113 while (min_size > new_l1_size) {
114 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
118 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
119 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
120 return -EFBIG;
123 #ifdef DEBUG_ALLOC2
124 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
125 s->l1_size, new_l1_size);
126 #endif
128 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
129 new_l1_table = qemu_try_blockalign(bs->file->bs,
130 ROUND_UP(new_l1_size2, 512));
131 if (new_l1_table == NULL) {
132 return -ENOMEM;
134 memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
136 if (s->l1_size) {
137 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
140 /* write new table (align to cluster) */
141 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
142 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
143 if (new_l1_table_offset < 0) {
144 qemu_vfree(new_l1_table);
145 return new_l1_table_offset;
148 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149 if (ret < 0) {
150 goto fail;
153 /* the L1 position has not yet been updated, so these clusters must
154 * indeed be completely free */
155 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156 new_l1_size2);
157 if (ret < 0) {
158 goto fail;
161 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
162 for(i = 0; i < s->l1_size; i++)
163 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
164 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
165 new_l1_table, new_l1_size2);
166 if (ret < 0)
167 goto fail;
168 for(i = 0; i < s->l1_size; i++)
169 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
171 /* set new table */
172 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
173 stl_be_p(data, new_l1_size);
174 stq_be_p(data + 4, new_l1_table_offset);
175 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
176 data, sizeof(data));
177 if (ret < 0) {
178 goto fail;
180 qemu_vfree(s->l1_table);
181 old_l1_table_offset = s->l1_table_offset;
182 s->l1_table_offset = new_l1_table_offset;
183 s->l1_table = new_l1_table;
184 old_l1_size = s->l1_size;
185 s->l1_size = new_l1_size;
186 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
187 QCOW2_DISCARD_OTHER);
188 return 0;
189 fail:
190 qemu_vfree(new_l1_table);
191 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192 QCOW2_DISCARD_OTHER);
193 return ret;
197 * l2_load
199 * @bs: The BlockDriverState
200 * @offset: A guest offset, used to calculate what slice of the L2
201 * table to load.
202 * @l2_offset: Offset to the L2 table in the image file.
203 * @l2_slice: Location to store the pointer to the L2 slice.
205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206 * that are loaded by the qcow2 cache). If the slice is in the cache,
207 * the cache is used; otherwise the L2 slice is loaded from the image
208 * file.
210 static int l2_load(BlockDriverState *bs, uint64_t offset,
211 uint64_t l2_offset, uint64_t **l2_slice)
213 BDRVQcow2State *s = bs->opaque;
214 int start_of_slice = sizeof(uint64_t) *
215 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
217 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
218 (void **)l2_slice);
222 * Writes one sector of the L1 table to the disk (can't update single entries
223 * and we really don't want bdrv_pread to perform a read-modify-write)
225 #define L1_ENTRIES_PER_SECTOR (512 / 8)
226 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
228 BDRVQcow2State *s = bs->opaque;
229 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
230 int l1_start_index;
231 int i, ret;
233 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
234 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
235 i++)
237 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
240 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
241 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
242 if (ret < 0) {
243 return ret;
246 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
247 ret = bdrv_pwrite_sync(bs->file,
248 s->l1_table_offset + 8 * l1_start_index,
249 buf, sizeof(buf));
250 if (ret < 0) {
251 return ret;
254 return 0;
258 * l2_allocate
260 * Allocate a new l2 entry in the file. If l1_index points to an already
261 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
262 * table) copy the contents of the old L2 table into the newly allocated one.
263 * Otherwise the new table is initialized with zeros.
267 static int l2_allocate(BlockDriverState *bs, int l1_index)
269 BDRVQcow2State *s = bs->opaque;
270 uint64_t old_l2_offset;
271 uint64_t *l2_slice = NULL;
272 unsigned slice, slice_size2, n_slices;
273 int64_t l2_offset;
274 int ret;
276 old_l2_offset = s->l1_table[l1_index];
278 trace_qcow2_l2_allocate(bs, l1_index);
280 /* allocate a new l2 entry */
282 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
283 if (l2_offset < 0) {
284 ret = l2_offset;
285 goto fail;
288 /* The offset must fit in the offset field of the L1 table entry */
289 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
291 /* If we're allocating the table at offset 0 then something is wrong */
292 if (l2_offset == 0) {
293 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
294 "allocation of L2 table at offset 0");
295 ret = -EIO;
296 goto fail;
299 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
300 if (ret < 0) {
301 goto fail;
304 /* allocate a new entry in the l2 cache */
306 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
307 n_slices = s->cluster_size / slice_size2;
309 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
310 for (slice = 0; slice < n_slices; slice++) {
311 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
312 l2_offset + slice * slice_size2,
313 (void **) &l2_slice);
314 if (ret < 0) {
315 goto fail;
318 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
319 /* if there was no old l2 table, clear the new slice */
320 memset(l2_slice, 0, slice_size2);
321 } else {
322 uint64_t *old_slice;
323 uint64_t old_l2_slice_offset =
324 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
326 /* if there was an old l2 table, read a slice from the disk */
327 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
328 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
329 (void **) &old_slice);
330 if (ret < 0) {
331 goto fail;
334 memcpy(l2_slice, old_slice, slice_size2);
336 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
339 /* write the l2 slice to the file */
340 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
342 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
343 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
344 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
347 ret = qcow2_cache_flush(bs, s->l2_table_cache);
348 if (ret < 0) {
349 goto fail;
352 /* update the L1 entry */
353 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
354 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
355 ret = qcow2_write_l1_entry(bs, l1_index);
356 if (ret < 0) {
357 goto fail;
360 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
361 return 0;
363 fail:
364 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
365 if (l2_slice != NULL) {
366 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
368 s->l1_table[l1_index] = old_l2_offset;
369 if (l2_offset > 0) {
370 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
371 QCOW2_DISCARD_ALWAYS);
373 return ret;
377 * Checks how many clusters in a given L2 slice are contiguous in the image
378 * file. As soon as one of the flags in the bitmask stop_flags changes compared
379 * to the first cluster, the search is stopped and the cluster is not counted
380 * as contiguous. (This allows it, for example, to stop at the first compressed
381 * cluster which may require a different handling)
383 static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
384 int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
386 int i;
387 QCow2ClusterType first_cluster_type;
388 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
389 uint64_t first_entry = be64_to_cpu(l2_slice[0]);
390 uint64_t offset = first_entry & mask;
392 first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
393 if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
394 return 0;
397 /* must be allocated */
398 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
399 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
401 for (i = 0; i < nb_clusters; i++) {
402 uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
403 if (offset + (uint64_t) i * cluster_size != l2_entry) {
404 break;
408 return i;
412 * Checks how many consecutive unallocated clusters in a given L2
413 * slice have the same cluster type.
415 static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
416 int nb_clusters,
417 uint64_t *l2_slice,
418 QCow2ClusterType wanted_type)
420 int i;
422 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
423 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
424 for (i = 0; i < nb_clusters; i++) {
425 uint64_t entry = be64_to_cpu(l2_slice[i]);
426 QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
428 if (type != wanted_type) {
429 break;
433 return i;
436 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
437 uint64_t src_cluster_offset,
438 unsigned offset_in_cluster,
439 QEMUIOVector *qiov)
441 int ret;
443 if (qiov->size == 0) {
444 return 0;
447 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
449 if (!bs->drv) {
450 return -ENOMEDIUM;
453 /* Call .bdrv_co_readv() directly instead of using the public block-layer
454 * interface. This avoids double I/O throttling and request tracking,
455 * which can lead to deadlock when block layer copy-on-read is enabled.
457 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
458 qiov->size, qiov, 0);
459 if (ret < 0) {
460 return ret;
463 return 0;
466 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
467 uint64_t src_cluster_offset,
468 uint64_t cluster_offset,
469 unsigned offset_in_cluster,
470 uint8_t *buffer,
471 unsigned bytes)
473 if (bytes && bs->encrypted) {
474 BDRVQcow2State *s = bs->opaque;
475 int64_t offset = (s->crypt_physical_offset ?
476 (cluster_offset + offset_in_cluster) :
477 (src_cluster_offset + offset_in_cluster));
478 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
479 assert((bytes & ~BDRV_SECTOR_MASK) == 0);
480 assert(s->crypto);
481 if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
482 return false;
485 return true;
488 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
489 uint64_t cluster_offset,
490 unsigned offset_in_cluster,
491 QEMUIOVector *qiov)
493 int ret;
495 if (qiov->size == 0) {
496 return 0;
499 ret = qcow2_pre_write_overlap_check(bs, 0,
500 cluster_offset + offset_in_cluster, qiov->size);
501 if (ret < 0) {
502 return ret;
505 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
506 ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
507 qiov->size, qiov, 0);
508 if (ret < 0) {
509 return ret;
512 return 0;
517 * get_cluster_offset
519 * For a given offset of the virtual disk, find the cluster type and offset in
520 * the qcow2 file. The offset is stored in *cluster_offset.
522 * On entry, *bytes is the maximum number of contiguous bytes starting at
523 * offset that we are interested in.
525 * On exit, *bytes is the number of bytes starting at offset that have the same
526 * cluster type and (if applicable) are stored contiguously in the image file.
527 * Compressed clusters are always returned one by one.
529 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
530 * cases.
532 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
533 unsigned int *bytes, uint64_t *cluster_offset)
535 BDRVQcow2State *s = bs->opaque;
536 unsigned int l2_index;
537 uint64_t l1_index, l2_offset, *l2_slice;
538 int c;
539 unsigned int offset_in_cluster;
540 uint64_t bytes_available, bytes_needed, nb_clusters;
541 QCow2ClusterType type;
542 int ret;
544 offset_in_cluster = offset_into_cluster(s, offset);
545 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
547 /* compute how many bytes there are between the start of the cluster
548 * containing offset and the end of the l2 slice that contains
549 * the entry pointing to it */
550 bytes_available =
551 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
552 << s->cluster_bits;
554 if (bytes_needed > bytes_available) {
555 bytes_needed = bytes_available;
558 *cluster_offset = 0;
560 /* seek to the l2 offset in the l1 table */
562 l1_index = offset_to_l1_index(s, offset);
563 if (l1_index >= s->l1_size) {
564 type = QCOW2_CLUSTER_UNALLOCATED;
565 goto out;
568 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
569 if (!l2_offset) {
570 type = QCOW2_CLUSTER_UNALLOCATED;
571 goto out;
574 if (offset_into_cluster(s, l2_offset)) {
575 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
576 " unaligned (L1 index: %#" PRIx64 ")",
577 l2_offset, l1_index);
578 return -EIO;
581 /* load the l2 slice in memory */
583 ret = l2_load(bs, offset, l2_offset, &l2_slice);
584 if (ret < 0) {
585 return ret;
588 /* find the cluster offset for the given disk offset */
590 l2_index = offset_to_l2_slice_index(s, offset);
591 *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
593 nb_clusters = size_to_clusters(s, bytes_needed);
594 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
595 * integers; the minimum cluster size is 512, so this assertion is always
596 * true */
597 assert(nb_clusters <= INT_MAX);
599 type = qcow2_get_cluster_type(bs, *cluster_offset);
600 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
601 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
602 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
603 " in pre-v3 image (L2 offset: %#" PRIx64
604 ", L2 index: %#x)", l2_offset, l2_index);
605 ret = -EIO;
606 goto fail;
608 switch (type) {
609 case QCOW2_CLUSTER_COMPRESSED:
610 /* Compressed clusters can only be processed one by one */
611 c = 1;
612 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
613 break;
614 case QCOW2_CLUSTER_ZERO_PLAIN:
615 case QCOW2_CLUSTER_UNALLOCATED:
616 /* how many empty clusters ? */
617 c = count_contiguous_clusters_unallocated(bs, nb_clusters,
618 &l2_slice[l2_index], type);
619 *cluster_offset = 0;
620 break;
621 case QCOW2_CLUSTER_ZERO_ALLOC:
622 case QCOW2_CLUSTER_NORMAL:
623 /* how many allocated clusters ? */
624 c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
625 &l2_slice[l2_index], QCOW_OFLAG_ZERO);
626 *cluster_offset &= L2E_OFFSET_MASK;
627 if (offset_into_cluster(s, *cluster_offset)) {
628 qcow2_signal_corruption(bs, true, -1, -1,
629 "Cluster allocation offset %#"
630 PRIx64 " unaligned (L2 offset: %#" PRIx64
631 ", L2 index: %#x)", *cluster_offset,
632 l2_offset, l2_index);
633 ret = -EIO;
634 goto fail;
636 break;
637 default:
638 abort();
641 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
643 bytes_available = (int64_t)c * s->cluster_size;
645 out:
646 if (bytes_available > bytes_needed) {
647 bytes_available = bytes_needed;
650 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
651 * subtracting offset_in_cluster will therefore definitely yield something
652 * not exceeding UINT_MAX */
653 assert(bytes_available - offset_in_cluster <= UINT_MAX);
654 *bytes = bytes_available - offset_in_cluster;
656 return type;
658 fail:
659 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
660 return ret;
664 * get_cluster_table
666 * for a given disk offset, load (and allocate if needed)
667 * the appropriate slice of its l2 table.
669 * the cluster index in the l2 slice is given to the caller.
671 * Returns 0 on success, -errno in failure case
673 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
674 uint64_t **new_l2_slice,
675 int *new_l2_index)
677 BDRVQcow2State *s = bs->opaque;
678 unsigned int l2_index;
679 uint64_t l1_index, l2_offset;
680 uint64_t *l2_slice = NULL;
681 int ret;
683 /* seek to the l2 offset in the l1 table */
685 l1_index = offset_to_l1_index(s, offset);
686 if (l1_index >= s->l1_size) {
687 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
688 if (ret < 0) {
689 return ret;
693 assert(l1_index < s->l1_size);
694 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
695 if (offset_into_cluster(s, l2_offset)) {
696 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
697 " unaligned (L1 index: %#" PRIx64 ")",
698 l2_offset, l1_index);
699 return -EIO;
702 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
703 /* First allocate a new L2 table (and do COW if needed) */
704 ret = l2_allocate(bs, l1_index);
705 if (ret < 0) {
706 return ret;
709 /* Then decrease the refcount of the old table */
710 if (l2_offset) {
711 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
712 QCOW2_DISCARD_OTHER);
715 /* Get the offset of the newly-allocated l2 table */
716 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
717 assert(offset_into_cluster(s, l2_offset) == 0);
720 /* load the l2 slice in memory */
721 ret = l2_load(bs, offset, l2_offset, &l2_slice);
722 if (ret < 0) {
723 return ret;
726 /* find the cluster offset for the given disk offset */
728 l2_index = offset_to_l2_slice_index(s, offset);
730 *new_l2_slice = l2_slice;
731 *new_l2_index = l2_index;
733 return 0;
737 * alloc_compressed_cluster_offset
739 * For a given offset on the virtual disk, allocate a new compressed cluster
740 * and put the host offset of the cluster into *host_offset. If a cluster is
741 * already allocated at the offset, return an error.
743 * Return 0 on success and -errno in error cases
745 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
746 uint64_t offset,
747 int compressed_size,
748 uint64_t *host_offset)
750 BDRVQcow2State *s = bs->opaque;
751 int l2_index, ret;
752 uint64_t *l2_slice;
753 int64_t cluster_offset;
754 int nb_csectors;
756 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
757 if (ret < 0) {
758 return ret;
761 /* Compression can't overwrite anything. Fail if the cluster was already
762 * allocated. */
763 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
764 if (cluster_offset & L2E_OFFSET_MASK) {
765 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
766 return -EIO;
769 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
770 if (cluster_offset < 0) {
771 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
772 return cluster_offset;
775 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
776 (cluster_offset >> 9);
778 cluster_offset |= QCOW_OFLAG_COMPRESSED |
779 ((uint64_t)nb_csectors << s->csize_shift);
781 /* update L2 table */
783 /* compressed clusters never have the copied flag */
785 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
786 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
787 l2_slice[l2_index] = cpu_to_be64(cluster_offset);
788 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
790 *host_offset = cluster_offset & s->cluster_offset_mask;
791 return 0;
794 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
796 BDRVQcow2State *s = bs->opaque;
797 Qcow2COWRegion *start = &m->cow_start;
798 Qcow2COWRegion *end = &m->cow_end;
799 unsigned buffer_size;
800 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
801 bool merge_reads;
802 uint8_t *start_buffer, *end_buffer;
803 QEMUIOVector qiov;
804 int ret;
806 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
807 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
808 assert(start->offset + start->nb_bytes <= end->offset);
809 assert(!m->data_qiov || m->data_qiov->size == data_bytes);
811 if (start->nb_bytes == 0 && end->nb_bytes == 0) {
812 return 0;
815 /* If we have to read both the start and end COW regions and the
816 * middle region is not too large then perform just one read
817 * operation */
818 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
819 if (merge_reads) {
820 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
821 } else {
822 /* If we have to do two reads, add some padding in the middle
823 * if necessary to make sure that the end region is optimally
824 * aligned. */
825 size_t align = bdrv_opt_mem_align(bs);
826 assert(align > 0 && align <= UINT_MAX);
827 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
828 UINT_MAX - end->nb_bytes);
829 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
832 /* Reserve a buffer large enough to store all the data that we're
833 * going to read */
834 start_buffer = qemu_try_blockalign(bs, buffer_size);
835 if (start_buffer == NULL) {
836 return -ENOMEM;
838 /* The part of the buffer where the end region is located */
839 end_buffer = start_buffer + buffer_size - end->nb_bytes;
841 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
843 qemu_co_mutex_unlock(&s->lock);
844 /* First we read the existing data from both COW regions. We
845 * either read the whole region in one go, or the start and end
846 * regions separately. */
847 if (merge_reads) {
848 qemu_iovec_add(&qiov, start_buffer, buffer_size);
849 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
850 } else {
851 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
852 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
853 if (ret < 0) {
854 goto fail;
857 qemu_iovec_reset(&qiov);
858 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
859 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
861 if (ret < 0) {
862 goto fail;
865 /* Encrypt the data if necessary before writing it */
866 if (bs->encrypted) {
867 if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
868 start->offset, start_buffer,
869 start->nb_bytes) ||
870 !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
871 end->offset, end_buffer, end->nb_bytes)) {
872 ret = -EIO;
873 goto fail;
877 /* And now we can write everything. If we have the guest data we
878 * can write everything in one single operation */
879 if (m->data_qiov) {
880 qemu_iovec_reset(&qiov);
881 if (start->nb_bytes) {
882 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
884 qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
885 if (end->nb_bytes) {
886 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
888 /* NOTE: we have a write_aio blkdebug event here followed by
889 * a cow_write one in do_perform_cow_write(), but there's only
890 * one single I/O operation */
891 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
892 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
893 } else {
894 /* If there's no guest data then write both COW regions separately */
895 qemu_iovec_reset(&qiov);
896 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
897 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
898 if (ret < 0) {
899 goto fail;
902 qemu_iovec_reset(&qiov);
903 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
904 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
907 fail:
908 qemu_co_mutex_lock(&s->lock);
911 * Before we update the L2 table to actually point to the new cluster, we
912 * need to be sure that the refcounts have been increased and COW was
913 * handled.
915 if (ret == 0) {
916 qcow2_cache_depends_on_flush(s->l2_table_cache);
919 qemu_vfree(start_buffer);
920 qemu_iovec_destroy(&qiov);
921 return ret;
924 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
926 BDRVQcow2State *s = bs->opaque;
927 int i, j = 0, l2_index, ret;
928 uint64_t *old_cluster, *l2_slice;
929 uint64_t cluster_offset = m->alloc_offset;
931 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
932 assert(m->nb_clusters > 0);
934 old_cluster = g_try_new(uint64_t, m->nb_clusters);
935 if (old_cluster == NULL) {
936 ret = -ENOMEM;
937 goto err;
940 /* copy content of unmodified sectors */
941 ret = perform_cow(bs, m);
942 if (ret < 0) {
943 goto err;
946 /* Update L2 table. */
947 if (s->use_lazy_refcounts) {
948 qcow2_mark_dirty(bs);
950 if (qcow2_need_accurate_refcounts(s)) {
951 qcow2_cache_set_dependency(bs, s->l2_table_cache,
952 s->refcount_block_cache);
955 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
956 if (ret < 0) {
957 goto err;
959 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
961 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
962 for (i = 0; i < m->nb_clusters; i++) {
963 /* if two concurrent writes happen to the same unallocated cluster
964 * each write allocates separate cluster and writes data concurrently.
965 * The first one to complete updates l2 table with pointer to its
966 * cluster the second one has to do RMW (which is done above by
967 * perform_cow()), update l2 table with its cluster pointer and free
968 * old cluster. This is what this loop does */
969 if (l2_slice[l2_index + i] != 0) {
970 old_cluster[j++] = l2_slice[l2_index + i];
973 l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
974 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
978 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
981 * If this was a COW, we need to decrease the refcount of the old cluster.
983 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
984 * clusters), the next write will reuse them anyway.
986 if (!m->keep_old_clusters && j != 0) {
987 for (i = 0; i < j; i++) {
988 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
989 QCOW2_DISCARD_NEVER);
993 ret = 0;
994 err:
995 g_free(old_cluster);
996 return ret;
1000 * Frees the allocated clusters because the request failed and they won't
1001 * actually be linked.
1003 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1005 BDRVQcow2State *s = bs->opaque;
1006 qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits,
1007 QCOW2_DISCARD_NEVER);
1011 * Returns the number of contiguous clusters that can be used for an allocating
1012 * write, but require COW to be performed (this includes yet unallocated space,
1013 * which must copy from the backing file)
1015 static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
1016 uint64_t *l2_slice, int l2_index)
1018 int i;
1020 for (i = 0; i < nb_clusters; i++) {
1021 uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1022 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1024 switch(cluster_type) {
1025 case QCOW2_CLUSTER_NORMAL:
1026 if (l2_entry & QCOW_OFLAG_COPIED) {
1027 goto out;
1029 break;
1030 case QCOW2_CLUSTER_UNALLOCATED:
1031 case QCOW2_CLUSTER_COMPRESSED:
1032 case QCOW2_CLUSTER_ZERO_PLAIN:
1033 case QCOW2_CLUSTER_ZERO_ALLOC:
1034 break;
1035 default:
1036 abort();
1040 out:
1041 assert(i <= nb_clusters);
1042 return i;
1046 * Check if there already is an AIO write request in flight which allocates
1047 * the same cluster. In this case we need to wait until the previous
1048 * request has completed and updated the L2 table accordingly.
1050 * Returns:
1051 * 0 if there was no dependency. *cur_bytes indicates the number of
1052 * bytes from guest_offset that can be read before the next
1053 * dependency must be processed (or the request is complete)
1055 * -EAGAIN if we had to wait for another request, previously gathered
1056 * information on cluster allocation may be invalid now. The caller
1057 * must start over anyway, so consider *cur_bytes undefined.
1059 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1060 uint64_t *cur_bytes, QCowL2Meta **m)
1062 BDRVQcow2State *s = bs->opaque;
1063 QCowL2Meta *old_alloc;
1064 uint64_t bytes = *cur_bytes;
1066 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1068 uint64_t start = guest_offset;
1069 uint64_t end = start + bytes;
1070 uint64_t old_start = l2meta_cow_start(old_alloc);
1071 uint64_t old_end = l2meta_cow_end(old_alloc);
1073 if (end <= old_start || start >= old_end) {
1074 /* No intersection */
1075 } else {
1076 if (start < old_start) {
1077 /* Stop at the start of a running allocation */
1078 bytes = old_start - start;
1079 } else {
1080 bytes = 0;
1083 /* Stop if already an l2meta exists. After yielding, it wouldn't
1084 * be valid any more, so we'd have to clean up the old L2Metas
1085 * and deal with requests depending on them before starting to
1086 * gather new ones. Not worth the trouble. */
1087 if (bytes == 0 && *m) {
1088 *cur_bytes = 0;
1089 return 0;
1092 if (bytes == 0) {
1093 /* Wait for the dependency to complete. We need to recheck
1094 * the free/allocated clusters when we continue. */
1095 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1096 return -EAGAIN;
1101 /* Make sure that existing clusters and new allocations are only used up to
1102 * the next dependency if we shortened the request above */
1103 *cur_bytes = bytes;
1105 return 0;
1109 * Checks how many already allocated clusters that don't require a copy on
1110 * write there are at the given guest_offset (up to *bytes). If *host_offset is
1111 * not INV_OFFSET, only physically contiguous clusters beginning at this host
1112 * offset are counted.
1114 * Note that guest_offset may not be cluster aligned. In this case, the
1115 * returned *host_offset points to exact byte referenced by guest_offset and
1116 * therefore isn't cluster aligned as well.
1118 * Returns:
1119 * 0: if no allocated clusters are available at the given offset.
1120 * *bytes is normally unchanged. It is set to 0 if the cluster
1121 * is allocated and doesn't need COW, but doesn't have the right
1122 * physical offset.
1124 * 1: if allocated clusters that don't require a COW are available at
1125 * the requested offset. *bytes may have decreased and describes
1126 * the length of the area that can be written to.
1128 * -errno: in error cases
1130 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1131 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1133 BDRVQcow2State *s = bs->opaque;
1134 int l2_index;
1135 uint64_t cluster_offset;
1136 uint64_t *l2_slice;
1137 uint64_t nb_clusters;
1138 unsigned int keep_clusters;
1139 int ret;
1141 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1142 *bytes);
1144 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1145 == offset_into_cluster(s, *host_offset));
1148 * Calculate the number of clusters to look for. We stop at L2 slice
1149 * boundaries to keep things simple.
1151 nb_clusters =
1152 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1154 l2_index = offset_to_l2_slice_index(s, guest_offset);
1155 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1156 assert(nb_clusters <= INT_MAX);
1158 /* Find L2 entry for the first involved cluster */
1159 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1160 if (ret < 0) {
1161 return ret;
1164 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1166 /* Check how many clusters are already allocated and don't need COW */
1167 if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
1168 && (cluster_offset & QCOW_OFLAG_COPIED))
1170 /* If a specific host_offset is required, check it */
1171 bool offset_matches =
1172 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1174 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1175 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1176 "%#llx unaligned (guest offset: %#" PRIx64
1177 ")", cluster_offset & L2E_OFFSET_MASK,
1178 guest_offset);
1179 ret = -EIO;
1180 goto out;
1183 if (*host_offset != INV_OFFSET && !offset_matches) {
1184 *bytes = 0;
1185 ret = 0;
1186 goto out;
1189 /* We keep all QCOW_OFLAG_COPIED clusters */
1190 keep_clusters =
1191 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1192 &l2_slice[l2_index],
1193 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1194 assert(keep_clusters <= nb_clusters);
1196 *bytes = MIN(*bytes,
1197 keep_clusters * s->cluster_size
1198 - offset_into_cluster(s, guest_offset));
1200 ret = 1;
1201 } else {
1202 ret = 0;
1205 /* Cleanup */
1206 out:
1207 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1209 /* Only return a host offset if we actually made progress. Otherwise we
1210 * would make requirements for handle_alloc() that it can't fulfill */
1211 if (ret > 0) {
1212 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1213 + offset_into_cluster(s, guest_offset);
1216 return ret;
1220 * Allocates new clusters for the given guest_offset.
1222 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1223 * contain the number of clusters that have been allocated and are contiguous
1224 * in the image file.
1226 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1227 * at which the new clusters must start. *nb_clusters can be 0 on return in
1228 * this case if the cluster at host_offset is already in use. If *host_offset
1229 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1231 * *host_offset is updated to contain the offset into the image file at which
1232 * the first allocated cluster starts.
1234 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1235 * function has been waiting for another request and the allocation must be
1236 * restarted, but the whole request should not be failed.
1238 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1239 uint64_t *host_offset, uint64_t *nb_clusters)
1241 BDRVQcow2State *s = bs->opaque;
1243 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1244 *host_offset, *nb_clusters);
1246 /* Allocate new clusters */
1247 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1248 if (*host_offset == INV_OFFSET) {
1249 int64_t cluster_offset =
1250 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1251 if (cluster_offset < 0) {
1252 return cluster_offset;
1254 *host_offset = cluster_offset;
1255 return 0;
1256 } else {
1257 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1258 if (ret < 0) {
1259 return ret;
1261 *nb_clusters = ret;
1262 return 0;
1267 * Allocates new clusters for an area that either is yet unallocated or needs a
1268 * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1269 * allocated if the new allocation can match the specified host offset.
1271 * Note that guest_offset may not be cluster aligned. In this case, the
1272 * returned *host_offset points to exact byte referenced by guest_offset and
1273 * therefore isn't cluster aligned as well.
1275 * Returns:
1276 * 0: if no clusters could be allocated. *bytes is set to 0,
1277 * *host_offset is left unchanged.
1279 * 1: if new clusters were allocated. *bytes may be decreased if the
1280 * new allocation doesn't cover all of the requested area.
1281 * *host_offset is updated to contain the host offset of the first
1282 * newly allocated cluster.
1284 * -errno: in error cases
1286 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1287 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1289 BDRVQcow2State *s = bs->opaque;
1290 int l2_index;
1291 uint64_t *l2_slice;
1292 uint64_t entry;
1293 uint64_t nb_clusters;
1294 int ret;
1295 bool keep_old_clusters = false;
1297 uint64_t alloc_cluster_offset = INV_OFFSET;
1299 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1300 *bytes);
1301 assert(*bytes > 0);
1304 * Calculate the number of clusters to look for. We stop at L2 slice
1305 * boundaries to keep things simple.
1307 nb_clusters =
1308 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1310 l2_index = offset_to_l2_slice_index(s, guest_offset);
1311 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1312 assert(nb_clusters <= INT_MAX);
1314 /* Find L2 entry for the first involved cluster */
1315 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1316 if (ret < 0) {
1317 return ret;
1320 entry = be64_to_cpu(l2_slice[l2_index]);
1322 /* For the moment, overwrite compressed clusters one by one */
1323 if (entry & QCOW_OFLAG_COMPRESSED) {
1324 nb_clusters = 1;
1325 } else {
1326 nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
1329 /* This function is only called when there were no non-COW clusters, so if
1330 * we can't find any unallocated or COW clusters either, something is
1331 * wrong with our code. */
1332 assert(nb_clusters > 0);
1334 if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1335 (entry & QCOW_OFLAG_COPIED) &&
1336 (*host_offset == INV_OFFSET ||
1337 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1339 int preallocated_nb_clusters;
1341 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1342 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1343 "cluster offset %#llx unaligned (guest "
1344 "offset: %#" PRIx64 ")",
1345 entry & L2E_OFFSET_MASK, guest_offset);
1346 ret = -EIO;
1347 goto fail;
1350 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1351 * would be fine, too, but count_cow_clusters() above has limited
1352 * nb_clusters already to a range of COW clusters */
1353 preallocated_nb_clusters =
1354 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1355 &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1356 assert(preallocated_nb_clusters > 0);
1358 nb_clusters = preallocated_nb_clusters;
1359 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1361 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1362 * should not free them. */
1363 keep_old_clusters = true;
1366 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1368 if (alloc_cluster_offset == INV_OFFSET) {
1369 /* Allocate, if necessary at a given offset in the image file */
1370 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1371 start_of_cluster(s, *host_offset);
1372 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1373 &nb_clusters);
1374 if (ret < 0) {
1375 goto fail;
1378 /* Can't extend contiguous allocation */
1379 if (nb_clusters == 0) {
1380 *bytes = 0;
1381 return 0;
1384 assert(alloc_cluster_offset != INV_OFFSET);
1388 * Save info needed for meta data update.
1390 * requested_bytes: Number of bytes from the start of the first
1391 * newly allocated cluster to the end of the (possibly shortened
1392 * before) write request.
1394 * avail_bytes: Number of bytes from the start of the first
1395 * newly allocated to the end of the last newly allocated cluster.
1397 * nb_bytes: The number of bytes from the start of the first
1398 * newly allocated cluster to the end of the area that the write
1399 * request actually writes to (excluding COW at the end)
1401 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1402 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1403 int nb_bytes = MIN(requested_bytes, avail_bytes);
1404 QCowL2Meta *old_m = *m;
1406 *m = g_malloc0(sizeof(**m));
1408 **m = (QCowL2Meta) {
1409 .next = old_m,
1411 .alloc_offset = alloc_cluster_offset,
1412 .offset = start_of_cluster(s, guest_offset),
1413 .nb_clusters = nb_clusters,
1415 .keep_old_clusters = keep_old_clusters,
1417 .cow_start = {
1418 .offset = 0,
1419 .nb_bytes = offset_into_cluster(s, guest_offset),
1421 .cow_end = {
1422 .offset = nb_bytes,
1423 .nb_bytes = avail_bytes - nb_bytes,
1426 qemu_co_queue_init(&(*m)->dependent_requests);
1427 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1429 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1430 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1431 assert(*bytes != 0);
1433 return 1;
1435 fail:
1436 if (*m && (*m)->nb_clusters > 0) {
1437 QLIST_REMOVE(*m, next_in_flight);
1439 return ret;
1443 * alloc_cluster_offset
1445 * For a given offset on the virtual disk, find the cluster offset in qcow2
1446 * file. If the offset is not found, allocate a new cluster.
1448 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1449 * other fields in m are meaningless.
1451 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1452 * contiguous clusters that have been allocated. In this case, the other
1453 * fields of m are valid and contain information about the first allocated
1454 * cluster.
1456 * If the request conflicts with another write request in flight, the coroutine
1457 * is queued and will be reentered when the dependency has completed.
1459 * Return 0 on success and -errno in error cases
1461 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1462 unsigned int *bytes, uint64_t *host_offset,
1463 QCowL2Meta **m)
1465 BDRVQcow2State *s = bs->opaque;
1466 uint64_t start, remaining;
1467 uint64_t cluster_offset;
1468 uint64_t cur_bytes;
1469 int ret;
1471 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1473 again:
1474 start = offset;
1475 remaining = *bytes;
1476 cluster_offset = INV_OFFSET;
1477 *host_offset = INV_OFFSET;
1478 cur_bytes = 0;
1479 *m = NULL;
1481 while (true) {
1483 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1484 *host_offset = start_of_cluster(s, cluster_offset);
1487 assert(remaining >= cur_bytes);
1489 start += cur_bytes;
1490 remaining -= cur_bytes;
1492 if (cluster_offset != INV_OFFSET) {
1493 cluster_offset += cur_bytes;
1496 if (remaining == 0) {
1497 break;
1500 cur_bytes = remaining;
1503 * Now start gathering as many contiguous clusters as possible:
1505 * 1. Check for overlaps with in-flight allocations
1507 * a) Overlap not in the first cluster -> shorten this request and
1508 * let the caller handle the rest in its next loop iteration.
1510 * b) Real overlaps of two requests. Yield and restart the search
1511 * for contiguous clusters (the situation could have changed
1512 * while we were sleeping)
1514 * c) TODO: Request starts in the same cluster as the in-flight
1515 * allocation ends. Shorten the COW of the in-fight allocation,
1516 * set cluster_offset to write to the same cluster and set up
1517 * the right synchronisation between the in-flight request and
1518 * the new one.
1520 ret = handle_dependencies(bs, start, &cur_bytes, m);
1521 if (ret == -EAGAIN) {
1522 /* Currently handle_dependencies() doesn't yield if we already had
1523 * an allocation. If it did, we would have to clean up the L2Meta
1524 * structs before starting over. */
1525 assert(*m == NULL);
1526 goto again;
1527 } else if (ret < 0) {
1528 return ret;
1529 } else if (cur_bytes == 0) {
1530 break;
1531 } else {
1532 /* handle_dependencies() may have decreased cur_bytes (shortened
1533 * the allocations below) so that the next dependency is processed
1534 * correctly during the next loop iteration. */
1538 * 2. Count contiguous COPIED clusters.
1540 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1541 if (ret < 0) {
1542 return ret;
1543 } else if (ret) {
1544 continue;
1545 } else if (cur_bytes == 0) {
1546 break;
1550 * 3. If the request still hasn't completed, allocate new clusters,
1551 * considering any cluster_offset of steps 1c or 2.
1553 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1554 if (ret < 0) {
1555 return ret;
1556 } else if (ret) {
1557 continue;
1558 } else {
1559 assert(cur_bytes == 0);
1560 break;
1564 *bytes -= remaining;
1565 assert(*bytes > 0);
1566 assert(*host_offset != INV_OFFSET);
1568 return 0;
1572 * This discards as many clusters of nb_clusters as possible at once (i.e.
1573 * all clusters in the same L2 slice) and returns the number of discarded
1574 * clusters.
1576 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1577 uint64_t nb_clusters,
1578 enum qcow2_discard_type type, bool full_discard)
1580 BDRVQcow2State *s = bs->opaque;
1581 uint64_t *l2_slice;
1582 int l2_index;
1583 int ret;
1584 int i;
1586 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1587 if (ret < 0) {
1588 return ret;
1591 /* Limit nb_clusters to one L2 slice */
1592 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1593 assert(nb_clusters <= INT_MAX);
1595 for (i = 0; i < nb_clusters; i++) {
1596 uint64_t old_l2_entry;
1598 old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1601 * If full_discard is false, make sure that a discarded area reads back
1602 * as zeroes for v3 images (we cannot do it for v2 without actually
1603 * writing a zero-filled buffer). We can skip the operation if the
1604 * cluster is already marked as zero, or if it's unallocated and we
1605 * don't have a backing file.
1607 * TODO We might want to use bdrv_block_status(bs) here, but we're
1608 * holding s->lock, so that doesn't work today.
1610 * If full_discard is true, the sector should not read back as zeroes,
1611 * but rather fall through to the backing file.
1613 switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
1614 case QCOW2_CLUSTER_UNALLOCATED:
1615 if (full_discard || !bs->backing) {
1616 continue;
1618 break;
1620 case QCOW2_CLUSTER_ZERO_PLAIN:
1621 if (!full_discard) {
1622 continue;
1624 break;
1626 case QCOW2_CLUSTER_ZERO_ALLOC:
1627 case QCOW2_CLUSTER_NORMAL:
1628 case QCOW2_CLUSTER_COMPRESSED:
1629 break;
1631 default:
1632 abort();
1635 /* First remove L2 entries */
1636 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1637 if (!full_discard && s->qcow_version >= 3) {
1638 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1639 } else {
1640 l2_slice[l2_index + i] = cpu_to_be64(0);
1643 /* Then decrease the refcount */
1644 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1647 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1649 return nb_clusters;
1652 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1653 uint64_t bytes, enum qcow2_discard_type type,
1654 bool full_discard)
1656 BDRVQcow2State *s = bs->opaque;
1657 uint64_t end_offset = offset + bytes;
1658 uint64_t nb_clusters;
1659 int64_t cleared;
1660 int ret;
1662 /* Caller must pass aligned values, except at image end */
1663 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1664 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1665 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1667 nb_clusters = size_to_clusters(s, bytes);
1669 s->cache_discards = true;
1671 /* Each L2 slice is handled by its own loop iteration */
1672 while (nb_clusters > 0) {
1673 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1674 full_discard);
1675 if (cleared < 0) {
1676 ret = cleared;
1677 goto fail;
1680 nb_clusters -= cleared;
1681 offset += (cleared * s->cluster_size);
1684 ret = 0;
1685 fail:
1686 s->cache_discards = false;
1687 qcow2_process_discards(bs, ret);
1689 return ret;
1693 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1694 * all clusters in the same L2 slice) and returns the number of zeroed
1695 * clusters.
1697 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1698 uint64_t nb_clusters, int flags)
1700 BDRVQcow2State *s = bs->opaque;
1701 uint64_t *l2_slice;
1702 int l2_index;
1703 int ret;
1704 int i;
1705 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1707 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1708 if (ret < 0) {
1709 return ret;
1712 /* Limit nb_clusters to one L2 slice */
1713 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1714 assert(nb_clusters <= INT_MAX);
1716 for (i = 0; i < nb_clusters; i++) {
1717 uint64_t old_offset;
1718 QCow2ClusterType cluster_type;
1720 old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1723 * Minimize L2 changes if the cluster already reads back as
1724 * zeroes with correct allocation.
1726 cluster_type = qcow2_get_cluster_type(bs, old_offset);
1727 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1728 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1729 continue;
1732 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1733 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1734 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1735 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1736 } else {
1737 l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1741 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1743 return nb_clusters;
1746 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1747 uint64_t bytes, int flags)
1749 BDRVQcow2State *s = bs->opaque;
1750 uint64_t end_offset = offset + bytes;
1751 uint64_t nb_clusters;
1752 int64_t cleared;
1753 int ret;
1755 /* Caller must pass aligned values, except at image end */
1756 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1757 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1758 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1760 /* The zero flag is only supported by version 3 and newer */
1761 if (s->qcow_version < 3) {
1762 return -ENOTSUP;
1765 /* Each L2 slice is handled by its own loop iteration */
1766 nb_clusters = size_to_clusters(s, bytes);
1768 s->cache_discards = true;
1770 while (nb_clusters > 0) {
1771 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1772 if (cleared < 0) {
1773 ret = cleared;
1774 goto fail;
1777 nb_clusters -= cleared;
1778 offset += (cleared * s->cluster_size);
1781 ret = 0;
1782 fail:
1783 s->cache_discards = false;
1784 qcow2_process_discards(bs, ret);
1786 return ret;
1790 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1791 * non-backed non-pre-allocated zero clusters).
1793 * l1_entries and *visited_l1_entries are used to keep track of progress for
1794 * status_cb(). l1_entries contains the total number of L1 entries and
1795 * *visited_l1_entries counts all visited L1 entries.
1797 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1798 int l1_size, int64_t *visited_l1_entries,
1799 int64_t l1_entries,
1800 BlockDriverAmendStatusCB *status_cb,
1801 void *cb_opaque)
1803 BDRVQcow2State *s = bs->opaque;
1804 bool is_active_l1 = (l1_table == s->l1_table);
1805 uint64_t *l2_slice = NULL;
1806 unsigned slice, slice_size2, n_slices;
1807 int ret;
1808 int i, j;
1810 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1811 n_slices = s->cluster_size / slice_size2;
1813 if (!is_active_l1) {
1814 /* inactive L2 tables require a buffer to be stored in when loading
1815 * them from disk */
1816 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1817 if (l2_slice == NULL) {
1818 return -ENOMEM;
1822 for (i = 0; i < l1_size; i++) {
1823 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1824 uint64_t l2_refcount;
1826 if (!l2_offset) {
1827 /* unallocated */
1828 (*visited_l1_entries)++;
1829 if (status_cb) {
1830 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1832 continue;
1835 if (offset_into_cluster(s, l2_offset)) {
1836 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1837 PRIx64 " unaligned (L1 index: %#x)",
1838 l2_offset, i);
1839 ret = -EIO;
1840 goto fail;
1843 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1844 &l2_refcount);
1845 if (ret < 0) {
1846 goto fail;
1849 for (slice = 0; slice < n_slices; slice++) {
1850 uint64_t slice_offset = l2_offset + slice * slice_size2;
1851 bool l2_dirty = false;
1852 if (is_active_l1) {
1853 /* get active L2 tables from cache */
1854 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1855 (void **)&l2_slice);
1856 } else {
1857 /* load inactive L2 tables from disk */
1858 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1860 if (ret < 0) {
1861 goto fail;
1864 for (j = 0; j < s->l2_slice_size; j++) {
1865 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1866 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1867 QCow2ClusterType cluster_type =
1868 qcow2_get_cluster_type(bs, l2_entry);
1870 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1871 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1872 continue;
1875 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1876 if (!bs->backing) {
1877 /* not backed; therefore we can simply deallocate the
1878 * cluster */
1879 l2_slice[j] = 0;
1880 l2_dirty = true;
1881 continue;
1884 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1885 if (offset < 0) {
1886 ret = offset;
1887 goto fail;
1890 if (l2_refcount > 1) {
1891 /* For shared L2 tables, set the refcount accordingly
1892 * (it is already 1 and needs to be l2_refcount) */
1893 ret = qcow2_update_cluster_refcount(
1894 bs, offset >> s->cluster_bits,
1895 refcount_diff(1, l2_refcount), false,
1896 QCOW2_DISCARD_OTHER);
1897 if (ret < 0) {
1898 qcow2_free_clusters(bs, offset, s->cluster_size,
1899 QCOW2_DISCARD_OTHER);
1900 goto fail;
1905 if (offset_into_cluster(s, offset)) {
1906 int l2_index = slice * s->l2_slice_size + j;
1907 qcow2_signal_corruption(
1908 bs, true, -1, -1,
1909 "Cluster allocation offset "
1910 "%#" PRIx64 " unaligned (L2 offset: %#"
1911 PRIx64 ", L2 index: %#x)", offset,
1912 l2_offset, l2_index);
1913 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1914 qcow2_free_clusters(bs, offset, s->cluster_size,
1915 QCOW2_DISCARD_ALWAYS);
1917 ret = -EIO;
1918 goto fail;
1921 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1922 s->cluster_size);
1923 if (ret < 0) {
1924 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1925 qcow2_free_clusters(bs, offset, s->cluster_size,
1926 QCOW2_DISCARD_ALWAYS);
1928 goto fail;
1931 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1932 if (ret < 0) {
1933 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1934 qcow2_free_clusters(bs, offset, s->cluster_size,
1935 QCOW2_DISCARD_ALWAYS);
1937 goto fail;
1940 if (l2_refcount == 1) {
1941 l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1942 } else {
1943 l2_slice[j] = cpu_to_be64(offset);
1945 l2_dirty = true;
1948 if (is_active_l1) {
1949 if (l2_dirty) {
1950 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1951 qcow2_cache_depends_on_flush(s->l2_table_cache);
1953 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1954 } else {
1955 if (l2_dirty) {
1956 ret = qcow2_pre_write_overlap_check(
1957 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
1958 slice_offset, slice_size2);
1959 if (ret < 0) {
1960 goto fail;
1963 ret = bdrv_pwrite(bs->file, slice_offset,
1964 l2_slice, slice_size2);
1965 if (ret < 0) {
1966 goto fail;
1972 (*visited_l1_entries)++;
1973 if (status_cb) {
1974 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1978 ret = 0;
1980 fail:
1981 if (l2_slice) {
1982 if (!is_active_l1) {
1983 qemu_vfree(l2_slice);
1984 } else {
1985 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1988 return ret;
1992 * For backed images, expands all zero clusters on the image. For non-backed
1993 * images, deallocates all non-pre-allocated zero clusters (and claims the
1994 * allocation for pre-allocated ones). This is important for downgrading to a
1995 * qcow2 version which doesn't yet support metadata zero clusters.
1997 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1998 BlockDriverAmendStatusCB *status_cb,
1999 void *cb_opaque)
2001 BDRVQcow2State *s = bs->opaque;
2002 uint64_t *l1_table = NULL;
2003 int64_t l1_entries = 0, visited_l1_entries = 0;
2004 int ret;
2005 int i, j;
2007 if (status_cb) {
2008 l1_entries = s->l1_size;
2009 for (i = 0; i < s->nb_snapshots; i++) {
2010 l1_entries += s->snapshots[i].l1_size;
2014 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2015 &visited_l1_entries, l1_entries,
2016 status_cb, cb_opaque);
2017 if (ret < 0) {
2018 goto fail;
2021 /* Inactive L1 tables may point to active L2 tables - therefore it is
2022 * necessary to flush the L2 table cache before trying to access the L2
2023 * tables pointed to by inactive L1 entries (else we might try to expand
2024 * zero clusters that have already been expanded); furthermore, it is also
2025 * necessary to empty the L2 table cache, since it may contain tables which
2026 * are now going to be modified directly on disk, bypassing the cache.
2027 * qcow2_cache_empty() does both for us. */
2028 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2029 if (ret < 0) {
2030 goto fail;
2033 for (i = 0; i < s->nb_snapshots; i++) {
2034 int l1_size2;
2035 uint64_t *new_l1_table;
2036 Error *local_err = NULL;
2038 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2039 s->snapshots[i].l1_size, sizeof(uint64_t),
2040 QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2041 &local_err);
2042 if (ret < 0) {
2043 error_report_err(local_err);
2044 goto fail;
2047 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2048 new_l1_table = g_try_realloc(l1_table, l1_size2);
2050 if (!new_l1_table) {
2051 ret = -ENOMEM;
2052 goto fail;
2055 l1_table = new_l1_table;
2057 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2058 l1_table, l1_size2);
2059 if (ret < 0) {
2060 goto fail;
2063 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2064 be64_to_cpus(&l1_table[j]);
2067 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2068 &visited_l1_entries, l1_entries,
2069 status_cb, cb_opaque);
2070 if (ret < 0) {
2071 goto fail;
2075 ret = 0;
2077 fail:
2078 g_free(l1_table);
2079 return ret;