hw/intc/arm_gicv3: Implement ICV_ registers which are just accessors
[qemu/ar7.git] / hw / block / fdc.c
blob17d29e7bc568ec0395526566f0a1863c8773cea8
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
42 #include "qemu/log.h"
44 /********************************************************/
45 /* debug Floppy devices */
47 #define DEBUG_FLOPPY 0
49 #define FLOPPY_DPRINTF(fmt, ...) \
50 do { \
51 if (DEBUG_FLOPPY) { \
52 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
53 } \
54 } while (0)
57 /********************************************************/
58 /* qdev floppy bus */
60 #define TYPE_FLOPPY_BUS "floppy-bus"
61 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
63 typedef struct FDCtrl FDCtrl;
64 typedef struct FDrive FDrive;
65 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
67 typedef struct FloppyBus {
68 BusState bus;
69 FDCtrl *fdc;
70 } FloppyBus;
72 static const TypeInfo floppy_bus_info = {
73 .name = TYPE_FLOPPY_BUS,
74 .parent = TYPE_BUS,
75 .instance_size = sizeof(FloppyBus),
78 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
80 qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
81 bus->fdc = fdc;
85 /********************************************************/
86 /* Floppy drive emulation */
88 typedef enum FDriveRate {
89 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
90 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
91 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
92 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
93 } FDriveRate;
95 typedef enum FDriveSize {
96 FDRIVE_SIZE_UNKNOWN,
97 FDRIVE_SIZE_350,
98 FDRIVE_SIZE_525,
99 } FDriveSize;
101 typedef struct FDFormat {
102 FloppyDriveType drive;
103 uint8_t last_sect;
104 uint8_t max_track;
105 uint8_t max_head;
106 FDriveRate rate;
107 } FDFormat;
109 /* In many cases, the total sector size of a format is enough to uniquely
110 * identify it. However, there are some total sector collisions between
111 * formats of different physical size, and these are noted below by
112 * highlighting the total sector size for entries with collisions. */
113 static const FDFormat fd_formats[] = {
114 /* First entry is default format */
115 /* 1.44 MB 3"1/2 floppy disks */
116 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
117 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
118 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
119 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
120 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
121 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
122 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
123 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
124 /* 2.88 MB 3"1/2 floppy disks */
125 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
126 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
127 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
128 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
129 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
130 /* 720 kB 3"1/2 floppy disks */
131 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
132 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
133 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
134 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
135 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
136 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
137 /* 1.2 MB 5"1/4 floppy disks */
138 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
139 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
140 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
141 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
142 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
143 /* 720 kB 5"1/4 floppy disks */
144 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
145 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
146 /* 360 kB 5"1/4 floppy disks */
147 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
148 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
149 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
150 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
151 /* 320 kB 5"1/4 floppy disks */
152 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
153 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
154 /* 360 kB must match 5"1/4 better than 3"1/2... */
155 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
156 /* end */
157 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
160 static FDriveSize drive_size(FloppyDriveType drive)
162 switch (drive) {
163 case FLOPPY_DRIVE_TYPE_120:
164 return FDRIVE_SIZE_525;
165 case FLOPPY_DRIVE_TYPE_144:
166 case FLOPPY_DRIVE_TYPE_288:
167 return FDRIVE_SIZE_350;
168 default:
169 return FDRIVE_SIZE_UNKNOWN;
173 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
174 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
176 /* Will always be a fixed parameter for us */
177 #define FD_SECTOR_LEN 512
178 #define FD_SECTOR_SC 2 /* Sector size code */
179 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
181 /* Floppy disk drive emulation */
182 typedef enum FDiskFlags {
183 FDISK_DBL_SIDES = 0x01,
184 } FDiskFlags;
186 struct FDrive {
187 FDCtrl *fdctrl;
188 BlockBackend *blk;
189 /* Drive status */
190 FloppyDriveType drive; /* CMOS drive type */
191 uint8_t perpendicular; /* 2.88 MB access mode */
192 /* Position */
193 uint8_t head;
194 uint8_t track;
195 uint8_t sect;
196 /* Media */
197 FloppyDriveType disk; /* Current disk type */
198 FDiskFlags flags;
199 uint8_t last_sect; /* Nb sector per track */
200 uint8_t max_track; /* Nb of tracks */
201 uint16_t bps; /* Bytes per sector */
202 uint8_t ro; /* Is read-only */
203 uint8_t media_changed; /* Is media changed */
204 uint8_t media_rate; /* Data rate of medium */
206 bool media_validated; /* Have we validated the media? */
210 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
212 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
213 * currently goes through some pains to keep seeks within the bounds
214 * established by last_sect and max_track. Correcting this is difficult,
215 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
217 * For now: allow empty drives to have large bounds so we can seek around,
218 * with the understanding that when a diskette is inserted, the bounds will
219 * properly tighten to match the geometry of that inserted medium.
221 static void fd_empty_seek_hack(FDrive *drv)
223 drv->last_sect = 0xFF;
224 drv->max_track = 0xFF;
227 static void fd_init(FDrive *drv)
229 /* Drive */
230 drv->perpendicular = 0;
231 /* Disk */
232 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
233 drv->last_sect = 0;
234 drv->max_track = 0;
235 drv->ro = true;
236 drv->media_changed = 1;
239 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
241 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
242 uint8_t last_sect, uint8_t num_sides)
244 return (((track * num_sides) + head) * last_sect) + sect - 1;
247 /* Returns current position, in sectors, for given drive */
248 static int fd_sector(FDrive *drv)
250 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
251 NUM_SIDES(drv));
254 /* Returns current position, in bytes, for given drive */
255 static int fd_offset(FDrive *drv)
257 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
258 return fd_sector(drv) << BDRV_SECTOR_BITS;
261 /* Seek to a new position:
262 * returns 0 if already on right track
263 * returns 1 if track changed
264 * returns 2 if track is invalid
265 * returns 3 if sector is invalid
266 * returns 4 if seek is disabled
268 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
269 int enable_seek)
271 uint32_t sector;
272 int ret;
274 if (track > drv->max_track ||
275 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
276 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
277 head, track, sect, 1,
278 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
279 drv->max_track, drv->last_sect);
280 return 2;
282 if (sect > drv->last_sect) {
283 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
284 head, track, sect, 1,
285 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
286 drv->max_track, drv->last_sect);
287 return 3;
289 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
290 ret = 0;
291 if (sector != fd_sector(drv)) {
292 #if 0
293 if (!enable_seek) {
294 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
295 " (max=%d %02x %02x)\n",
296 head, track, sect, 1, drv->max_track,
297 drv->last_sect);
298 return 4;
300 #endif
301 drv->head = head;
302 if (drv->track != track) {
303 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
304 drv->media_changed = 0;
306 ret = 1;
308 drv->track = track;
309 drv->sect = sect;
312 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
313 ret = 2;
316 return ret;
319 /* Set drive back to track 0 */
320 static void fd_recalibrate(FDrive *drv)
322 FLOPPY_DPRINTF("recalibrate\n");
323 fd_seek(drv, 0, 0, 1, 1);
327 * Determine geometry based on inserted diskette.
328 * Will not operate on an empty drive.
330 * @return: 0 on success, -1 if the drive is empty.
332 static int pick_geometry(FDrive *drv)
334 BlockBackend *blk = drv->blk;
335 const FDFormat *parse;
336 uint64_t nb_sectors, size;
337 int i;
338 int match, size_match, type_match;
339 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
341 /* We can only pick a geometry if we have a diskette. */
342 if (!drv->blk || !blk_is_inserted(drv->blk) ||
343 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
345 return -1;
348 /* We need to determine the likely geometry of the inserted medium.
349 * In order of preference, we look for:
350 * (1) The same drive type and number of sectors,
351 * (2) The same diskette size and number of sectors,
352 * (3) The same drive type.
354 * In all cases, matches that occur higher in the drive table will take
355 * precedence over matches that occur later in the table.
357 blk_get_geometry(blk, &nb_sectors);
358 match = size_match = type_match = -1;
359 for (i = 0; ; i++) {
360 parse = &fd_formats[i];
361 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
362 break;
364 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
365 if (nb_sectors == size) {
366 if (magic || parse->drive == drv->drive) {
367 /* (1) perfect match -- nb_sectors and drive type */
368 goto out;
369 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
370 /* (2) size match -- nb_sectors and physical medium size */
371 match = (match == -1) ? i : match;
372 } else {
373 /* This is suspicious -- Did the user misconfigure? */
374 size_match = (size_match == -1) ? i : size_match;
376 } else if (type_match == -1) {
377 if ((parse->drive == drv->drive) ||
378 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
379 /* (3) type match -- nb_sectors mismatch, but matches the type
380 * specified explicitly by the user, or matches the fallback
381 * default type when using the drive autodetect mechanism */
382 type_match = i;
387 /* No exact match found */
388 if (match == -1) {
389 if (size_match != -1) {
390 parse = &fd_formats[size_match];
391 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
392 "but inserted medium appears to be a "
393 "%"PRId64" sector '%s' type\n",
394 FloppyDriveType_lookup[drv->drive],
395 nb_sectors,
396 FloppyDriveType_lookup[parse->drive]);
398 match = type_match;
401 /* No match of any kind found -- fd_format is misconfigured, abort. */
402 if (match == -1) {
403 error_setg(&error_abort, "No candidate geometries present in table "
404 " for floppy drive type '%s'",
405 FloppyDriveType_lookup[drv->drive]);
408 parse = &(fd_formats[match]);
410 out:
411 if (parse->max_head == 0) {
412 drv->flags &= ~FDISK_DBL_SIDES;
413 } else {
414 drv->flags |= FDISK_DBL_SIDES;
416 drv->max_track = parse->max_track;
417 drv->last_sect = parse->last_sect;
418 drv->disk = parse->drive;
419 drv->media_rate = parse->rate;
420 return 0;
423 static void pick_drive_type(FDrive *drv)
425 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
426 return;
429 if (pick_geometry(drv) == 0) {
430 drv->drive = drv->disk;
431 } else {
432 drv->drive = get_fallback_drive_type(drv);
435 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
438 /* Revalidate a disk drive after a disk change */
439 static void fd_revalidate(FDrive *drv)
441 int rc;
443 FLOPPY_DPRINTF("revalidate\n");
444 if (drv->blk != NULL) {
445 drv->ro = blk_is_read_only(drv->blk);
446 if (!blk_is_inserted(drv->blk)) {
447 FLOPPY_DPRINTF("No disk in drive\n");
448 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
449 fd_empty_seek_hack(drv);
450 } else if (!drv->media_validated) {
451 rc = pick_geometry(drv);
452 if (rc) {
453 FLOPPY_DPRINTF("Could not validate floppy drive media");
454 } else {
455 drv->media_validated = true;
456 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
457 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
458 drv->max_track, drv->last_sect,
459 drv->ro ? "ro" : "rw");
462 } else {
463 FLOPPY_DPRINTF("No drive connected\n");
464 drv->last_sect = 0;
465 drv->max_track = 0;
466 drv->flags &= ~FDISK_DBL_SIDES;
467 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
468 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
472 static void fd_change_cb(void *opaque, bool load)
474 FDrive *drive = opaque;
476 drive->media_changed = 1;
477 drive->media_validated = false;
478 fd_revalidate(drive);
481 static const BlockDevOps fd_block_ops = {
482 .change_media_cb = fd_change_cb,
486 #define TYPE_FLOPPY_DRIVE "floppy"
487 #define FLOPPY_DRIVE(obj) \
488 OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
490 typedef struct FloppyDrive {
491 DeviceState qdev;
492 uint32_t unit;
493 BlockConf conf;
494 FloppyDriveType type;
495 } FloppyDrive;
497 static Property floppy_drive_properties[] = {
498 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
499 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
500 DEFINE_PROP_DEFAULT("drive-type", FloppyDrive, type,
501 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
502 FloppyDriveType),
503 DEFINE_PROP_END_OF_LIST(),
506 static int floppy_drive_init(DeviceState *qdev)
508 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
509 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
510 FDrive *drive;
511 int ret;
513 if (dev->unit == -1) {
514 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
515 drive = get_drv(bus->fdc, dev->unit);
516 if (!drive->blk) {
517 break;
522 if (dev->unit >= MAX_FD) {
523 error_report("Can't create floppy unit %d, bus supports only %d units",
524 dev->unit, MAX_FD);
525 return -1;
528 drive = get_drv(bus->fdc, dev->unit);
529 if (drive->blk) {
530 error_report("Floppy unit %d is in use", dev->unit);
531 return -1;
534 if (!dev->conf.blk) {
535 /* Anonymous BlockBackend for an empty drive */
536 dev->conf.blk = blk_new();
537 ret = blk_attach_dev(dev->conf.blk, qdev);
538 assert(ret == 0);
541 blkconf_blocksizes(&dev->conf);
542 if (dev->conf.logical_block_size != 512 ||
543 dev->conf.physical_block_size != 512)
545 error_report("Physical and logical block size must be 512 for floppy");
546 return -1;
549 /* rerror/werror aren't supported by fdc and therefore not even registered
550 * with qdev. So set the defaults manually before they are used in
551 * blkconf_apply_backend_options(). */
552 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
553 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
554 blkconf_apply_backend_options(&dev->conf);
556 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
557 * for empty drives. */
558 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
559 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
560 error_report("fdc doesn't support drive option werror");
561 return -1;
563 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
564 error_report("fdc doesn't support drive option rerror");
565 return -1;
568 drive->blk = dev->conf.blk;
569 drive->fdctrl = bus->fdc;
571 fd_init(drive);
572 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
574 /* Keep 'type' qdev property and FDrive->drive in sync */
575 drive->drive = dev->type;
576 pick_drive_type(drive);
577 dev->type = drive->drive;
579 fd_revalidate(drive);
581 return 0;
584 static void floppy_drive_class_init(ObjectClass *klass, void *data)
586 DeviceClass *k = DEVICE_CLASS(klass);
587 k->init = floppy_drive_init;
588 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
589 k->bus_type = TYPE_FLOPPY_BUS;
590 k->props = floppy_drive_properties;
591 k->desc = "virtual floppy drive";
594 static const TypeInfo floppy_drive_info = {
595 .name = TYPE_FLOPPY_DRIVE,
596 .parent = TYPE_DEVICE,
597 .instance_size = sizeof(FloppyDrive),
598 .class_init = floppy_drive_class_init,
601 /********************************************************/
602 /* Intel 82078 floppy disk controller emulation */
604 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
605 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
606 static int fdctrl_transfer_handler (void *opaque, int nchan,
607 int dma_pos, int dma_len);
608 static void fdctrl_raise_irq(FDCtrl *fdctrl);
609 static FDrive *get_cur_drv(FDCtrl *fdctrl);
611 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
612 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
613 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
614 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
615 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
616 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
617 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
618 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
619 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
620 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
621 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
622 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
624 enum {
625 FD_DIR_WRITE = 0,
626 FD_DIR_READ = 1,
627 FD_DIR_SCANE = 2,
628 FD_DIR_SCANL = 3,
629 FD_DIR_SCANH = 4,
630 FD_DIR_VERIFY = 5,
633 enum {
634 FD_STATE_MULTI = 0x01, /* multi track flag */
635 FD_STATE_FORMAT = 0x02, /* format flag */
638 enum {
639 FD_REG_SRA = 0x00,
640 FD_REG_SRB = 0x01,
641 FD_REG_DOR = 0x02,
642 FD_REG_TDR = 0x03,
643 FD_REG_MSR = 0x04,
644 FD_REG_DSR = 0x04,
645 FD_REG_FIFO = 0x05,
646 FD_REG_DIR = 0x07,
647 FD_REG_CCR = 0x07,
650 enum {
651 FD_CMD_READ_TRACK = 0x02,
652 FD_CMD_SPECIFY = 0x03,
653 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
654 FD_CMD_WRITE = 0x05,
655 FD_CMD_READ = 0x06,
656 FD_CMD_RECALIBRATE = 0x07,
657 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
658 FD_CMD_WRITE_DELETED = 0x09,
659 FD_CMD_READ_ID = 0x0a,
660 FD_CMD_READ_DELETED = 0x0c,
661 FD_CMD_FORMAT_TRACK = 0x0d,
662 FD_CMD_DUMPREG = 0x0e,
663 FD_CMD_SEEK = 0x0f,
664 FD_CMD_VERSION = 0x10,
665 FD_CMD_SCAN_EQUAL = 0x11,
666 FD_CMD_PERPENDICULAR_MODE = 0x12,
667 FD_CMD_CONFIGURE = 0x13,
668 FD_CMD_LOCK = 0x14,
669 FD_CMD_VERIFY = 0x16,
670 FD_CMD_POWERDOWN_MODE = 0x17,
671 FD_CMD_PART_ID = 0x18,
672 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
673 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
674 FD_CMD_SAVE = 0x2e,
675 FD_CMD_OPTION = 0x33,
676 FD_CMD_RESTORE = 0x4e,
677 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
678 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
679 FD_CMD_FORMAT_AND_WRITE = 0xcd,
680 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
683 enum {
684 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
685 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
686 FD_CONFIG_POLL = 0x10, /* Poll enabled */
687 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
688 FD_CONFIG_EIS = 0x40, /* No implied seeks */
691 enum {
692 FD_SR0_DS0 = 0x01,
693 FD_SR0_DS1 = 0x02,
694 FD_SR0_HEAD = 0x04,
695 FD_SR0_EQPMT = 0x10,
696 FD_SR0_SEEK = 0x20,
697 FD_SR0_ABNTERM = 0x40,
698 FD_SR0_INVCMD = 0x80,
699 FD_SR0_RDYCHG = 0xc0,
702 enum {
703 FD_SR1_MA = 0x01, /* Missing address mark */
704 FD_SR1_NW = 0x02, /* Not writable */
705 FD_SR1_EC = 0x80, /* End of cylinder */
708 enum {
709 FD_SR2_SNS = 0x04, /* Scan not satisfied */
710 FD_SR2_SEH = 0x08, /* Scan equal hit */
713 enum {
714 FD_SRA_DIR = 0x01,
715 FD_SRA_nWP = 0x02,
716 FD_SRA_nINDX = 0x04,
717 FD_SRA_HDSEL = 0x08,
718 FD_SRA_nTRK0 = 0x10,
719 FD_SRA_STEP = 0x20,
720 FD_SRA_nDRV2 = 0x40,
721 FD_SRA_INTPEND = 0x80,
724 enum {
725 FD_SRB_MTR0 = 0x01,
726 FD_SRB_MTR1 = 0x02,
727 FD_SRB_WGATE = 0x04,
728 FD_SRB_RDATA = 0x08,
729 FD_SRB_WDATA = 0x10,
730 FD_SRB_DR0 = 0x20,
733 enum {
734 #if MAX_FD == 4
735 FD_DOR_SELMASK = 0x03,
736 #else
737 FD_DOR_SELMASK = 0x01,
738 #endif
739 FD_DOR_nRESET = 0x04,
740 FD_DOR_DMAEN = 0x08,
741 FD_DOR_MOTEN0 = 0x10,
742 FD_DOR_MOTEN1 = 0x20,
743 FD_DOR_MOTEN2 = 0x40,
744 FD_DOR_MOTEN3 = 0x80,
747 enum {
748 #if MAX_FD == 4
749 FD_TDR_BOOTSEL = 0x0c,
750 #else
751 FD_TDR_BOOTSEL = 0x04,
752 #endif
755 enum {
756 FD_DSR_DRATEMASK= 0x03,
757 FD_DSR_PWRDOWN = 0x40,
758 FD_DSR_SWRESET = 0x80,
761 enum {
762 FD_MSR_DRV0BUSY = 0x01,
763 FD_MSR_DRV1BUSY = 0x02,
764 FD_MSR_DRV2BUSY = 0x04,
765 FD_MSR_DRV3BUSY = 0x08,
766 FD_MSR_CMDBUSY = 0x10,
767 FD_MSR_NONDMA = 0x20,
768 FD_MSR_DIO = 0x40,
769 FD_MSR_RQM = 0x80,
772 enum {
773 FD_DIR_DSKCHG = 0x80,
777 * See chapter 5.0 "Controller phases" of the spec:
779 * Command phase:
780 * The host writes a command and its parameters into the FIFO. The command
781 * phase is completed when all parameters for the command have been supplied,
782 * and execution phase is entered.
784 * Execution phase:
785 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
786 * contains the payload now, otherwise it's unused. When all bytes of the
787 * required data have been transferred, the state is switched to either result
788 * phase (if the command produces status bytes) or directly back into the
789 * command phase for the next command.
791 * Result phase:
792 * The host reads out the FIFO, which contains one or more result bytes now.
794 enum {
795 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
796 FD_PHASE_RECONSTRUCT = 0,
798 FD_PHASE_COMMAND = 1,
799 FD_PHASE_EXECUTION = 2,
800 FD_PHASE_RESULT = 3,
803 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
804 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
806 struct FDCtrl {
807 MemoryRegion iomem;
808 qemu_irq irq;
809 /* Controller state */
810 QEMUTimer *result_timer;
811 int dma_chann;
812 uint8_t phase;
813 IsaDma *dma;
814 /* Controller's identification */
815 uint8_t version;
816 /* HW */
817 uint8_t sra;
818 uint8_t srb;
819 uint8_t dor;
820 uint8_t dor_vmstate; /* only used as temp during vmstate */
821 uint8_t tdr;
822 uint8_t dsr;
823 uint8_t msr;
824 uint8_t cur_drv;
825 uint8_t status0;
826 uint8_t status1;
827 uint8_t status2;
828 /* Command FIFO */
829 uint8_t *fifo;
830 int32_t fifo_size;
831 uint32_t data_pos;
832 uint32_t data_len;
833 uint8_t data_state;
834 uint8_t data_dir;
835 uint8_t eot; /* last wanted sector */
836 /* States kept only to be returned back */
837 /* precompensation */
838 uint8_t precomp_trk;
839 uint8_t config;
840 uint8_t lock;
841 /* Power down config (also with status regB access mode */
842 uint8_t pwrd;
843 /* Floppy drives */
844 FloppyBus bus;
845 uint8_t num_floppies;
846 FDrive drives[MAX_FD];
847 struct {
848 BlockBackend *blk;
849 FloppyDriveType type;
850 } qdev_for_drives[MAX_FD];
851 int reset_sensei;
852 uint32_t check_media_rate;
853 FloppyDriveType fallback; /* type=auto failure fallback */
854 /* Timers state */
855 uint8_t timer0;
856 uint8_t timer1;
857 PortioList portio_list;
860 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
862 return drv->fdctrl->fallback;
865 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
866 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
868 typedef struct FDCtrlSysBus {
869 /*< private >*/
870 SysBusDevice parent_obj;
871 /*< public >*/
873 struct FDCtrl state;
874 } FDCtrlSysBus;
876 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
878 typedef struct FDCtrlISABus {
879 ISADevice parent_obj;
881 uint32_t iobase;
882 uint32_t irq;
883 uint32_t dma;
884 struct FDCtrl state;
885 int32_t bootindexA;
886 int32_t bootindexB;
887 } FDCtrlISABus;
889 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
891 FDCtrl *fdctrl = opaque;
892 uint32_t retval;
894 reg &= 7;
895 switch (reg) {
896 case FD_REG_SRA:
897 retval = fdctrl_read_statusA(fdctrl);
898 break;
899 case FD_REG_SRB:
900 retval = fdctrl_read_statusB(fdctrl);
901 break;
902 case FD_REG_DOR:
903 retval = fdctrl_read_dor(fdctrl);
904 break;
905 case FD_REG_TDR:
906 retval = fdctrl_read_tape(fdctrl);
907 break;
908 case FD_REG_MSR:
909 retval = fdctrl_read_main_status(fdctrl);
910 break;
911 case FD_REG_FIFO:
912 retval = fdctrl_read_data(fdctrl);
913 break;
914 case FD_REG_DIR:
915 retval = fdctrl_read_dir(fdctrl);
916 break;
917 default:
918 retval = (uint32_t)(-1);
919 break;
921 FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
923 return retval;
926 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
928 FDCtrl *fdctrl = opaque;
930 FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
932 reg &= 7;
933 switch (reg) {
934 case FD_REG_DOR:
935 fdctrl_write_dor(fdctrl, value);
936 break;
937 case FD_REG_TDR:
938 fdctrl_write_tape(fdctrl, value);
939 break;
940 case FD_REG_DSR:
941 fdctrl_write_rate(fdctrl, value);
942 break;
943 case FD_REG_FIFO:
944 fdctrl_write_data(fdctrl, value);
945 break;
946 case FD_REG_CCR:
947 fdctrl_write_ccr(fdctrl, value);
948 break;
949 default:
950 break;
954 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
955 unsigned ize)
957 return fdctrl_read(opaque, (uint32_t)reg);
960 static void fdctrl_write_mem (void *opaque, hwaddr reg,
961 uint64_t value, unsigned size)
963 fdctrl_write(opaque, (uint32_t)reg, value);
966 static const MemoryRegionOps fdctrl_mem_ops = {
967 .read = fdctrl_read_mem,
968 .write = fdctrl_write_mem,
969 .endianness = DEVICE_NATIVE_ENDIAN,
972 static const MemoryRegionOps fdctrl_mem_strict_ops = {
973 .read = fdctrl_read_mem,
974 .write = fdctrl_write_mem,
975 .endianness = DEVICE_NATIVE_ENDIAN,
976 .valid = {
977 .min_access_size = 1,
978 .max_access_size = 1,
982 static bool fdrive_media_changed_needed(void *opaque)
984 FDrive *drive = opaque;
986 return (drive->blk != NULL && drive->media_changed != 1);
989 static const VMStateDescription vmstate_fdrive_media_changed = {
990 .name = "fdrive/media_changed",
991 .version_id = 1,
992 .minimum_version_id = 1,
993 .needed = fdrive_media_changed_needed,
994 .fields = (VMStateField[]) {
995 VMSTATE_UINT8(media_changed, FDrive),
996 VMSTATE_END_OF_LIST()
1000 static bool fdrive_media_rate_needed(void *opaque)
1002 FDrive *drive = opaque;
1004 return drive->fdctrl->check_media_rate;
1007 static const VMStateDescription vmstate_fdrive_media_rate = {
1008 .name = "fdrive/media_rate",
1009 .version_id = 1,
1010 .minimum_version_id = 1,
1011 .needed = fdrive_media_rate_needed,
1012 .fields = (VMStateField[]) {
1013 VMSTATE_UINT8(media_rate, FDrive),
1014 VMSTATE_END_OF_LIST()
1018 static bool fdrive_perpendicular_needed(void *opaque)
1020 FDrive *drive = opaque;
1022 return drive->perpendicular != 0;
1025 static const VMStateDescription vmstate_fdrive_perpendicular = {
1026 .name = "fdrive/perpendicular",
1027 .version_id = 1,
1028 .minimum_version_id = 1,
1029 .needed = fdrive_perpendicular_needed,
1030 .fields = (VMStateField[]) {
1031 VMSTATE_UINT8(perpendicular, FDrive),
1032 VMSTATE_END_OF_LIST()
1036 static int fdrive_post_load(void *opaque, int version_id)
1038 fd_revalidate(opaque);
1039 return 0;
1042 static const VMStateDescription vmstate_fdrive = {
1043 .name = "fdrive",
1044 .version_id = 1,
1045 .minimum_version_id = 1,
1046 .post_load = fdrive_post_load,
1047 .fields = (VMStateField[]) {
1048 VMSTATE_UINT8(head, FDrive),
1049 VMSTATE_UINT8(track, FDrive),
1050 VMSTATE_UINT8(sect, FDrive),
1051 VMSTATE_END_OF_LIST()
1053 .subsections = (const VMStateDescription*[]) {
1054 &vmstate_fdrive_media_changed,
1055 &vmstate_fdrive_media_rate,
1056 &vmstate_fdrive_perpendicular,
1057 NULL
1062 * Reconstructs the phase from register values according to the logic that was
1063 * implemented in qemu 2.3. This is the default value that is used if the phase
1064 * subsection is not present on migration.
1066 * Don't change this function to reflect newer qemu versions, it is part of
1067 * the migration ABI.
1069 static int reconstruct_phase(FDCtrl *fdctrl)
1071 if (fdctrl->msr & FD_MSR_NONDMA) {
1072 return FD_PHASE_EXECUTION;
1073 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1074 /* qemu 2.3 disabled RQM only during DMA transfers */
1075 return FD_PHASE_EXECUTION;
1076 } else if (fdctrl->msr & FD_MSR_DIO) {
1077 return FD_PHASE_RESULT;
1078 } else {
1079 return FD_PHASE_COMMAND;
1083 static void fdc_pre_save(void *opaque)
1085 FDCtrl *s = opaque;
1087 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1090 static int fdc_pre_load(void *opaque)
1092 FDCtrl *s = opaque;
1093 s->phase = FD_PHASE_RECONSTRUCT;
1094 return 0;
1097 static int fdc_post_load(void *opaque, int version_id)
1099 FDCtrl *s = opaque;
1101 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1102 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1104 if (s->phase == FD_PHASE_RECONSTRUCT) {
1105 s->phase = reconstruct_phase(s);
1108 return 0;
1111 static bool fdc_reset_sensei_needed(void *opaque)
1113 FDCtrl *s = opaque;
1115 return s->reset_sensei != 0;
1118 static const VMStateDescription vmstate_fdc_reset_sensei = {
1119 .name = "fdc/reset_sensei",
1120 .version_id = 1,
1121 .minimum_version_id = 1,
1122 .needed = fdc_reset_sensei_needed,
1123 .fields = (VMStateField[]) {
1124 VMSTATE_INT32(reset_sensei, FDCtrl),
1125 VMSTATE_END_OF_LIST()
1129 static bool fdc_result_timer_needed(void *opaque)
1131 FDCtrl *s = opaque;
1133 return timer_pending(s->result_timer);
1136 static const VMStateDescription vmstate_fdc_result_timer = {
1137 .name = "fdc/result_timer",
1138 .version_id = 1,
1139 .minimum_version_id = 1,
1140 .needed = fdc_result_timer_needed,
1141 .fields = (VMStateField[]) {
1142 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1143 VMSTATE_END_OF_LIST()
1147 static bool fdc_phase_needed(void *opaque)
1149 FDCtrl *fdctrl = opaque;
1151 return reconstruct_phase(fdctrl) != fdctrl->phase;
1154 static const VMStateDescription vmstate_fdc_phase = {
1155 .name = "fdc/phase",
1156 .version_id = 1,
1157 .minimum_version_id = 1,
1158 .needed = fdc_phase_needed,
1159 .fields = (VMStateField[]) {
1160 VMSTATE_UINT8(phase, FDCtrl),
1161 VMSTATE_END_OF_LIST()
1165 static const VMStateDescription vmstate_fdc = {
1166 .name = "fdc",
1167 .version_id = 2,
1168 .minimum_version_id = 2,
1169 .pre_save = fdc_pre_save,
1170 .pre_load = fdc_pre_load,
1171 .post_load = fdc_post_load,
1172 .fields = (VMStateField[]) {
1173 /* Controller State */
1174 VMSTATE_UINT8(sra, FDCtrl),
1175 VMSTATE_UINT8(srb, FDCtrl),
1176 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1177 VMSTATE_UINT8(tdr, FDCtrl),
1178 VMSTATE_UINT8(dsr, FDCtrl),
1179 VMSTATE_UINT8(msr, FDCtrl),
1180 VMSTATE_UINT8(status0, FDCtrl),
1181 VMSTATE_UINT8(status1, FDCtrl),
1182 VMSTATE_UINT8(status2, FDCtrl),
1183 /* Command FIFO */
1184 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1185 uint8_t),
1186 VMSTATE_UINT32(data_pos, FDCtrl),
1187 VMSTATE_UINT32(data_len, FDCtrl),
1188 VMSTATE_UINT8(data_state, FDCtrl),
1189 VMSTATE_UINT8(data_dir, FDCtrl),
1190 VMSTATE_UINT8(eot, FDCtrl),
1191 /* States kept only to be returned back */
1192 VMSTATE_UINT8(timer0, FDCtrl),
1193 VMSTATE_UINT8(timer1, FDCtrl),
1194 VMSTATE_UINT8(precomp_trk, FDCtrl),
1195 VMSTATE_UINT8(config, FDCtrl),
1196 VMSTATE_UINT8(lock, FDCtrl),
1197 VMSTATE_UINT8(pwrd, FDCtrl),
1198 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
1199 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1200 vmstate_fdrive, FDrive),
1201 VMSTATE_END_OF_LIST()
1203 .subsections = (const VMStateDescription*[]) {
1204 &vmstate_fdc_reset_sensei,
1205 &vmstate_fdc_result_timer,
1206 &vmstate_fdc_phase,
1207 NULL
1211 static void fdctrl_external_reset_sysbus(DeviceState *d)
1213 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1214 FDCtrl *s = &sys->state;
1216 fdctrl_reset(s, 0);
1219 static void fdctrl_external_reset_isa(DeviceState *d)
1221 FDCtrlISABus *isa = ISA_FDC(d);
1222 FDCtrl *s = &isa->state;
1224 fdctrl_reset(s, 0);
1227 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1229 //FDCtrl *s = opaque;
1231 if (level) {
1232 // XXX
1233 FLOPPY_DPRINTF("TC pulsed\n");
1237 /* Change IRQ state */
1238 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1240 fdctrl->status0 = 0;
1241 if (!(fdctrl->sra & FD_SRA_INTPEND))
1242 return;
1243 FLOPPY_DPRINTF("Reset interrupt\n");
1244 qemu_set_irq(fdctrl->irq, 0);
1245 fdctrl->sra &= ~FD_SRA_INTPEND;
1248 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1250 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1251 qemu_set_irq(fdctrl->irq, 1);
1252 fdctrl->sra |= FD_SRA_INTPEND;
1255 fdctrl->reset_sensei = 0;
1256 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1259 /* Reset controller */
1260 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1262 int i;
1264 FLOPPY_DPRINTF("reset controller\n");
1265 fdctrl_reset_irq(fdctrl);
1266 /* Initialise controller */
1267 fdctrl->sra = 0;
1268 fdctrl->srb = 0xc0;
1269 if (!fdctrl->drives[1].blk) {
1270 fdctrl->sra |= FD_SRA_nDRV2;
1272 fdctrl->cur_drv = 0;
1273 fdctrl->dor = FD_DOR_nRESET;
1274 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1275 fdctrl->msr = FD_MSR_RQM;
1276 fdctrl->reset_sensei = 0;
1277 timer_del(fdctrl->result_timer);
1278 /* FIFO state */
1279 fdctrl->data_pos = 0;
1280 fdctrl->data_len = 0;
1281 fdctrl->data_state = 0;
1282 fdctrl->data_dir = FD_DIR_WRITE;
1283 for (i = 0; i < MAX_FD; i++)
1284 fd_recalibrate(&fdctrl->drives[i]);
1285 fdctrl_to_command_phase(fdctrl);
1286 if (do_irq) {
1287 fdctrl->status0 |= FD_SR0_RDYCHG;
1288 fdctrl_raise_irq(fdctrl);
1289 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1293 static inline FDrive *drv0(FDCtrl *fdctrl)
1295 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1298 static inline FDrive *drv1(FDCtrl *fdctrl)
1300 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1301 return &fdctrl->drives[1];
1302 else
1303 return &fdctrl->drives[0];
1306 #if MAX_FD == 4
1307 static inline FDrive *drv2(FDCtrl *fdctrl)
1309 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1310 return &fdctrl->drives[2];
1311 else
1312 return &fdctrl->drives[1];
1315 static inline FDrive *drv3(FDCtrl *fdctrl)
1317 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1318 return &fdctrl->drives[3];
1319 else
1320 return &fdctrl->drives[2];
1322 #endif
1324 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1326 switch (unit) {
1327 case 0: return drv0(fdctrl);
1328 case 1: return drv1(fdctrl);
1329 #if MAX_FD == 4
1330 case 2: return drv2(fdctrl);
1331 case 3: return drv3(fdctrl);
1332 #endif
1333 default: return NULL;
1337 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1339 return get_drv(fdctrl, fdctrl->cur_drv);
1342 /* Status A register : 0x00 (read-only) */
1343 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1345 uint32_t retval = fdctrl->sra;
1347 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1349 return retval;
1352 /* Status B register : 0x01 (read-only) */
1353 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1355 uint32_t retval = fdctrl->srb;
1357 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1359 return retval;
1362 /* Digital output register : 0x02 */
1363 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1365 uint32_t retval = fdctrl->dor;
1367 /* Selected drive */
1368 retval |= fdctrl->cur_drv;
1369 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1371 return retval;
1374 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1376 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1378 /* Motors */
1379 if (value & FD_DOR_MOTEN0)
1380 fdctrl->srb |= FD_SRB_MTR0;
1381 else
1382 fdctrl->srb &= ~FD_SRB_MTR0;
1383 if (value & FD_DOR_MOTEN1)
1384 fdctrl->srb |= FD_SRB_MTR1;
1385 else
1386 fdctrl->srb &= ~FD_SRB_MTR1;
1388 /* Drive */
1389 if (value & 1)
1390 fdctrl->srb |= FD_SRB_DR0;
1391 else
1392 fdctrl->srb &= ~FD_SRB_DR0;
1394 /* Reset */
1395 if (!(value & FD_DOR_nRESET)) {
1396 if (fdctrl->dor & FD_DOR_nRESET) {
1397 FLOPPY_DPRINTF("controller enter RESET state\n");
1399 } else {
1400 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1401 FLOPPY_DPRINTF("controller out of RESET state\n");
1402 fdctrl_reset(fdctrl, 1);
1403 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1406 /* Selected drive */
1407 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1409 fdctrl->dor = value;
1412 /* Tape drive register : 0x03 */
1413 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1415 uint32_t retval = fdctrl->tdr;
1417 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1419 return retval;
1422 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1424 /* Reset mode */
1425 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1426 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1427 return;
1429 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1430 /* Disk boot selection indicator */
1431 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1432 /* Tape indicators: never allow */
1435 /* Main status register : 0x04 (read) */
1436 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1438 uint32_t retval = fdctrl->msr;
1440 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1441 fdctrl->dor |= FD_DOR_nRESET;
1443 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1445 return retval;
1448 /* Data select rate register : 0x04 (write) */
1449 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1451 /* Reset mode */
1452 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1453 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1454 return;
1456 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1457 /* Reset: autoclear */
1458 if (value & FD_DSR_SWRESET) {
1459 fdctrl->dor &= ~FD_DOR_nRESET;
1460 fdctrl_reset(fdctrl, 1);
1461 fdctrl->dor |= FD_DOR_nRESET;
1463 if (value & FD_DSR_PWRDOWN) {
1464 fdctrl_reset(fdctrl, 1);
1466 fdctrl->dsr = value;
1469 /* Configuration control register: 0x07 (write) */
1470 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1472 /* Reset mode */
1473 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1474 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1475 return;
1477 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1479 /* Only the rate selection bits used in AT mode, and we
1480 * store those in the DSR.
1482 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1483 (value & FD_DSR_DRATEMASK);
1486 static int fdctrl_media_changed(FDrive *drv)
1488 return drv->media_changed;
1491 /* Digital input register : 0x07 (read-only) */
1492 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1494 uint32_t retval = 0;
1496 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1497 retval |= FD_DIR_DSKCHG;
1499 if (retval != 0) {
1500 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1503 return retval;
1506 /* Clear the FIFO and update the state for receiving the next command */
1507 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1509 fdctrl->phase = FD_PHASE_COMMAND;
1510 fdctrl->data_dir = FD_DIR_WRITE;
1511 fdctrl->data_pos = 0;
1512 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1513 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1514 fdctrl->msr |= FD_MSR_RQM;
1517 /* Update the state to allow the guest to read out the command status.
1518 * @fifo_len is the number of result bytes to be read out. */
1519 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1521 fdctrl->phase = FD_PHASE_RESULT;
1522 fdctrl->data_dir = FD_DIR_READ;
1523 fdctrl->data_len = fifo_len;
1524 fdctrl->data_pos = 0;
1525 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1528 /* Set an error: unimplemented/unknown command */
1529 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1531 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1532 fdctrl->fifo[0]);
1533 fdctrl->fifo[0] = FD_SR0_INVCMD;
1534 fdctrl_to_result_phase(fdctrl, 1);
1537 /* Seek to next sector
1538 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1539 * otherwise returns 1
1541 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1543 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1544 cur_drv->head, cur_drv->track, cur_drv->sect,
1545 fd_sector(cur_drv));
1546 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1547 error in fact */
1548 uint8_t new_head = cur_drv->head;
1549 uint8_t new_track = cur_drv->track;
1550 uint8_t new_sect = cur_drv->sect;
1552 int ret = 1;
1554 if (new_sect >= cur_drv->last_sect ||
1555 new_sect == fdctrl->eot) {
1556 new_sect = 1;
1557 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1558 if (new_head == 0 &&
1559 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1560 new_head = 1;
1561 } else {
1562 new_head = 0;
1563 new_track++;
1564 fdctrl->status0 |= FD_SR0_SEEK;
1565 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1566 ret = 0;
1569 } else {
1570 fdctrl->status0 |= FD_SR0_SEEK;
1571 new_track++;
1572 ret = 0;
1574 if (ret == 1) {
1575 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1576 new_head, new_track, new_sect, fd_sector(cur_drv));
1578 } else {
1579 new_sect++;
1581 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1582 return ret;
1585 /* Callback for transfer end (stop or abort) */
1586 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1587 uint8_t status1, uint8_t status2)
1589 FDrive *cur_drv;
1590 cur_drv = get_cur_drv(fdctrl);
1592 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1593 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1594 if (cur_drv->head) {
1595 fdctrl->status0 |= FD_SR0_HEAD;
1597 fdctrl->status0 |= status0;
1599 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1600 status0, status1, status2, fdctrl->status0);
1601 fdctrl->fifo[0] = fdctrl->status0;
1602 fdctrl->fifo[1] = status1;
1603 fdctrl->fifo[2] = status2;
1604 fdctrl->fifo[3] = cur_drv->track;
1605 fdctrl->fifo[4] = cur_drv->head;
1606 fdctrl->fifo[5] = cur_drv->sect;
1607 fdctrl->fifo[6] = FD_SECTOR_SC;
1608 fdctrl->data_dir = FD_DIR_READ;
1609 if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1610 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1611 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1613 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1614 fdctrl->msr &= ~FD_MSR_NONDMA;
1616 fdctrl_to_result_phase(fdctrl, 7);
1617 fdctrl_raise_irq(fdctrl);
1620 /* Prepare a data transfer (either DMA or FIFO) */
1621 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1623 FDrive *cur_drv;
1624 uint8_t kh, kt, ks;
1626 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1627 cur_drv = get_cur_drv(fdctrl);
1628 kt = fdctrl->fifo[2];
1629 kh = fdctrl->fifo[3];
1630 ks = fdctrl->fifo[4];
1631 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1632 GET_CUR_DRV(fdctrl), kh, kt, ks,
1633 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1634 NUM_SIDES(cur_drv)));
1635 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1636 case 2:
1637 /* sect too big */
1638 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1639 fdctrl->fifo[3] = kt;
1640 fdctrl->fifo[4] = kh;
1641 fdctrl->fifo[5] = ks;
1642 return;
1643 case 3:
1644 /* track too big */
1645 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1646 fdctrl->fifo[3] = kt;
1647 fdctrl->fifo[4] = kh;
1648 fdctrl->fifo[5] = ks;
1649 return;
1650 case 4:
1651 /* No seek enabled */
1652 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1653 fdctrl->fifo[3] = kt;
1654 fdctrl->fifo[4] = kh;
1655 fdctrl->fifo[5] = ks;
1656 return;
1657 case 1:
1658 fdctrl->status0 |= FD_SR0_SEEK;
1659 break;
1660 default:
1661 break;
1664 /* Check the data rate. If the programmed data rate does not match
1665 * the currently inserted medium, the operation has to fail. */
1666 if (fdctrl->check_media_rate &&
1667 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1668 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1669 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1670 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1671 fdctrl->fifo[3] = kt;
1672 fdctrl->fifo[4] = kh;
1673 fdctrl->fifo[5] = ks;
1674 return;
1677 /* Set the FIFO state */
1678 fdctrl->data_dir = direction;
1679 fdctrl->data_pos = 0;
1680 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1681 if (fdctrl->fifo[0] & 0x80)
1682 fdctrl->data_state |= FD_STATE_MULTI;
1683 else
1684 fdctrl->data_state &= ~FD_STATE_MULTI;
1685 if (fdctrl->fifo[5] == 0) {
1686 fdctrl->data_len = fdctrl->fifo[8];
1687 } else {
1688 int tmp;
1689 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1690 tmp = (fdctrl->fifo[6] - ks + 1);
1691 if (fdctrl->fifo[0] & 0x80)
1692 tmp += fdctrl->fifo[6];
1693 fdctrl->data_len *= tmp;
1695 fdctrl->eot = fdctrl->fifo[6];
1696 if (fdctrl->dor & FD_DOR_DMAEN) {
1697 IsaDmaTransferMode dma_mode;
1698 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1699 bool dma_mode_ok;
1700 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1701 dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1702 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1703 dma_mode, direction,
1704 (128 << fdctrl->fifo[5]) *
1705 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1706 switch (direction) {
1707 case FD_DIR_SCANE:
1708 case FD_DIR_SCANL:
1709 case FD_DIR_SCANH:
1710 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1711 break;
1712 case FD_DIR_WRITE:
1713 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1714 break;
1715 case FD_DIR_READ:
1716 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1717 break;
1718 case FD_DIR_VERIFY:
1719 dma_mode_ok = true;
1720 break;
1721 default:
1722 dma_mode_ok = false;
1723 break;
1725 if (dma_mode_ok) {
1726 /* No access is allowed until DMA transfer has completed */
1727 fdctrl->msr &= ~FD_MSR_RQM;
1728 if (direction != FD_DIR_VERIFY) {
1729 /* Now, we just have to wait for the DMA controller to
1730 * recall us...
1732 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1733 k->schedule(fdctrl->dma);
1734 } else {
1735 /* Start transfer */
1736 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1737 fdctrl->data_len);
1739 return;
1740 } else {
1741 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1742 direction);
1745 FLOPPY_DPRINTF("start non-DMA transfer\n");
1746 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1747 if (direction != FD_DIR_WRITE)
1748 fdctrl->msr |= FD_MSR_DIO;
1749 /* IO based transfer: calculate len */
1750 fdctrl_raise_irq(fdctrl);
1753 /* Prepare a transfer of deleted data */
1754 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1756 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1758 /* We don't handle deleted data,
1759 * so we don't return *ANYTHING*
1761 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1764 /* handlers for DMA transfers */
1765 static int fdctrl_transfer_handler (void *opaque, int nchan,
1766 int dma_pos, int dma_len)
1768 FDCtrl *fdctrl;
1769 FDrive *cur_drv;
1770 int len, start_pos, rel_pos;
1771 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1772 IsaDmaClass *k;
1774 fdctrl = opaque;
1775 if (fdctrl->msr & FD_MSR_RQM) {
1776 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1777 return 0;
1779 k = ISADMA_GET_CLASS(fdctrl->dma);
1780 cur_drv = get_cur_drv(fdctrl);
1781 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1782 fdctrl->data_dir == FD_DIR_SCANH)
1783 status2 = FD_SR2_SNS;
1784 if (dma_len > fdctrl->data_len)
1785 dma_len = fdctrl->data_len;
1786 if (cur_drv->blk == NULL) {
1787 if (fdctrl->data_dir == FD_DIR_WRITE)
1788 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1789 else
1790 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1791 len = 0;
1792 goto transfer_error;
1794 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1795 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1796 len = dma_len - fdctrl->data_pos;
1797 if (len + rel_pos > FD_SECTOR_LEN)
1798 len = FD_SECTOR_LEN - rel_pos;
1799 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1800 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1801 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1802 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1803 fd_sector(cur_drv) * FD_SECTOR_LEN);
1804 if (fdctrl->data_dir != FD_DIR_WRITE ||
1805 len < FD_SECTOR_LEN || rel_pos != 0) {
1806 /* READ & SCAN commands and realign to a sector for WRITE */
1807 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1808 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1809 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1810 fd_sector(cur_drv));
1811 /* Sure, image size is too small... */
1812 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1815 switch (fdctrl->data_dir) {
1816 case FD_DIR_READ:
1817 /* READ commands */
1818 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1819 fdctrl->data_pos, len);
1820 break;
1821 case FD_DIR_WRITE:
1822 /* WRITE commands */
1823 if (cur_drv->ro) {
1824 /* Handle readonly medium early, no need to do DMA, touch the
1825 * LED or attempt any writes. A real floppy doesn't attempt
1826 * to write to readonly media either. */
1827 fdctrl_stop_transfer(fdctrl,
1828 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1829 0x00);
1830 goto transfer_error;
1833 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1834 fdctrl->data_pos, len);
1835 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1836 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1837 FLOPPY_DPRINTF("error writing sector %d\n",
1838 fd_sector(cur_drv));
1839 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1840 goto transfer_error;
1842 break;
1843 case FD_DIR_VERIFY:
1844 /* VERIFY commands */
1845 break;
1846 default:
1847 /* SCAN commands */
1849 uint8_t tmpbuf[FD_SECTOR_LEN];
1850 int ret;
1851 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1852 len);
1853 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1854 if (ret == 0) {
1855 status2 = FD_SR2_SEH;
1856 goto end_transfer;
1858 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1859 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1860 status2 = 0x00;
1861 goto end_transfer;
1864 break;
1866 fdctrl->data_pos += len;
1867 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1868 if (rel_pos == 0) {
1869 /* Seek to next sector */
1870 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1871 break;
1874 end_transfer:
1875 len = fdctrl->data_pos - start_pos;
1876 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1877 fdctrl->data_pos, len, fdctrl->data_len);
1878 if (fdctrl->data_dir == FD_DIR_SCANE ||
1879 fdctrl->data_dir == FD_DIR_SCANL ||
1880 fdctrl->data_dir == FD_DIR_SCANH)
1881 status2 = FD_SR2_SEH;
1882 fdctrl->data_len -= len;
1883 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1884 transfer_error:
1886 return len;
1889 /* Data register : 0x05 */
1890 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1892 FDrive *cur_drv;
1893 uint32_t retval = 0;
1894 uint32_t pos;
1896 cur_drv = get_cur_drv(fdctrl);
1897 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1898 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1899 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1900 return 0;
1903 /* If data_len spans multiple sectors, the current position in the FIFO
1904 * wraps around while fdctrl->data_pos is the real position in the whole
1905 * request. */
1906 pos = fdctrl->data_pos;
1907 pos %= FD_SECTOR_LEN;
1909 switch (fdctrl->phase) {
1910 case FD_PHASE_EXECUTION:
1911 assert(fdctrl->msr & FD_MSR_NONDMA);
1912 if (pos == 0) {
1913 if (fdctrl->data_pos != 0)
1914 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1915 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1916 fd_sector(cur_drv));
1917 return 0;
1919 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1920 BDRV_SECTOR_SIZE)
1921 < 0) {
1922 FLOPPY_DPRINTF("error getting sector %d\n",
1923 fd_sector(cur_drv));
1924 /* Sure, image size is too small... */
1925 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1929 if (++fdctrl->data_pos == fdctrl->data_len) {
1930 fdctrl->msr &= ~FD_MSR_RQM;
1931 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1933 break;
1935 case FD_PHASE_RESULT:
1936 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1937 if (++fdctrl->data_pos == fdctrl->data_len) {
1938 fdctrl->msr &= ~FD_MSR_RQM;
1939 fdctrl_to_command_phase(fdctrl);
1940 fdctrl_reset_irq(fdctrl);
1942 break;
1944 case FD_PHASE_COMMAND:
1945 default:
1946 abort();
1949 retval = fdctrl->fifo[pos];
1950 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1952 return retval;
1955 static void fdctrl_format_sector(FDCtrl *fdctrl)
1957 FDrive *cur_drv;
1958 uint8_t kh, kt, ks;
1960 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1961 cur_drv = get_cur_drv(fdctrl);
1962 kt = fdctrl->fifo[6];
1963 kh = fdctrl->fifo[7];
1964 ks = fdctrl->fifo[8];
1965 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1966 GET_CUR_DRV(fdctrl), kh, kt, ks,
1967 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1968 NUM_SIDES(cur_drv)));
1969 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1970 case 2:
1971 /* sect too big */
1972 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1973 fdctrl->fifo[3] = kt;
1974 fdctrl->fifo[4] = kh;
1975 fdctrl->fifo[5] = ks;
1976 return;
1977 case 3:
1978 /* track too big */
1979 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1980 fdctrl->fifo[3] = kt;
1981 fdctrl->fifo[4] = kh;
1982 fdctrl->fifo[5] = ks;
1983 return;
1984 case 4:
1985 /* No seek enabled */
1986 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1987 fdctrl->fifo[3] = kt;
1988 fdctrl->fifo[4] = kh;
1989 fdctrl->fifo[5] = ks;
1990 return;
1991 case 1:
1992 fdctrl->status0 |= FD_SR0_SEEK;
1993 break;
1994 default:
1995 break;
1997 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1998 if (cur_drv->blk == NULL ||
1999 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2000 BDRV_SECTOR_SIZE, 0) < 0) {
2001 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2002 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2003 } else {
2004 if (cur_drv->sect == cur_drv->last_sect) {
2005 fdctrl->data_state &= ~FD_STATE_FORMAT;
2006 /* Last sector done */
2007 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2008 } else {
2009 /* More to do */
2010 fdctrl->data_pos = 0;
2011 fdctrl->data_len = 4;
2016 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2018 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2019 fdctrl->fifo[0] = fdctrl->lock << 4;
2020 fdctrl_to_result_phase(fdctrl, 1);
2023 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2025 FDrive *cur_drv = get_cur_drv(fdctrl);
2027 /* Drives position */
2028 fdctrl->fifo[0] = drv0(fdctrl)->track;
2029 fdctrl->fifo[1] = drv1(fdctrl)->track;
2030 #if MAX_FD == 4
2031 fdctrl->fifo[2] = drv2(fdctrl)->track;
2032 fdctrl->fifo[3] = drv3(fdctrl)->track;
2033 #else
2034 fdctrl->fifo[2] = 0;
2035 fdctrl->fifo[3] = 0;
2036 #endif
2037 /* timers */
2038 fdctrl->fifo[4] = fdctrl->timer0;
2039 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2040 fdctrl->fifo[6] = cur_drv->last_sect;
2041 fdctrl->fifo[7] = (fdctrl->lock << 7) |
2042 (cur_drv->perpendicular << 2);
2043 fdctrl->fifo[8] = fdctrl->config;
2044 fdctrl->fifo[9] = fdctrl->precomp_trk;
2045 fdctrl_to_result_phase(fdctrl, 10);
2048 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2050 /* Controller's version */
2051 fdctrl->fifo[0] = fdctrl->version;
2052 fdctrl_to_result_phase(fdctrl, 1);
2055 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2057 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2058 fdctrl_to_result_phase(fdctrl, 1);
2061 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2063 FDrive *cur_drv = get_cur_drv(fdctrl);
2065 /* Drives position */
2066 drv0(fdctrl)->track = fdctrl->fifo[3];
2067 drv1(fdctrl)->track = fdctrl->fifo[4];
2068 #if MAX_FD == 4
2069 drv2(fdctrl)->track = fdctrl->fifo[5];
2070 drv3(fdctrl)->track = fdctrl->fifo[6];
2071 #endif
2072 /* timers */
2073 fdctrl->timer0 = fdctrl->fifo[7];
2074 fdctrl->timer1 = fdctrl->fifo[8];
2075 cur_drv->last_sect = fdctrl->fifo[9];
2076 fdctrl->lock = fdctrl->fifo[10] >> 7;
2077 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2078 fdctrl->config = fdctrl->fifo[11];
2079 fdctrl->precomp_trk = fdctrl->fifo[12];
2080 fdctrl->pwrd = fdctrl->fifo[13];
2081 fdctrl_to_command_phase(fdctrl);
2084 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2086 FDrive *cur_drv = get_cur_drv(fdctrl);
2088 fdctrl->fifo[0] = 0;
2089 fdctrl->fifo[1] = 0;
2090 /* Drives position */
2091 fdctrl->fifo[2] = drv0(fdctrl)->track;
2092 fdctrl->fifo[3] = drv1(fdctrl)->track;
2093 #if MAX_FD == 4
2094 fdctrl->fifo[4] = drv2(fdctrl)->track;
2095 fdctrl->fifo[5] = drv3(fdctrl)->track;
2096 #else
2097 fdctrl->fifo[4] = 0;
2098 fdctrl->fifo[5] = 0;
2099 #endif
2100 /* timers */
2101 fdctrl->fifo[6] = fdctrl->timer0;
2102 fdctrl->fifo[7] = fdctrl->timer1;
2103 fdctrl->fifo[8] = cur_drv->last_sect;
2104 fdctrl->fifo[9] = (fdctrl->lock << 7) |
2105 (cur_drv->perpendicular << 2);
2106 fdctrl->fifo[10] = fdctrl->config;
2107 fdctrl->fifo[11] = fdctrl->precomp_trk;
2108 fdctrl->fifo[12] = fdctrl->pwrd;
2109 fdctrl->fifo[13] = 0;
2110 fdctrl->fifo[14] = 0;
2111 fdctrl_to_result_phase(fdctrl, 15);
2114 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2116 FDrive *cur_drv = get_cur_drv(fdctrl);
2118 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2119 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2120 (NANOSECONDS_PER_SECOND / 50));
2123 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2125 FDrive *cur_drv;
2127 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2128 cur_drv = get_cur_drv(fdctrl);
2129 fdctrl->data_state |= FD_STATE_FORMAT;
2130 if (fdctrl->fifo[0] & 0x80)
2131 fdctrl->data_state |= FD_STATE_MULTI;
2132 else
2133 fdctrl->data_state &= ~FD_STATE_MULTI;
2134 cur_drv->bps =
2135 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2136 #if 0
2137 cur_drv->last_sect =
2138 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2139 fdctrl->fifo[3] / 2;
2140 #else
2141 cur_drv->last_sect = fdctrl->fifo[3];
2142 #endif
2143 /* TODO: implement format using DMA expected by the Bochs BIOS
2144 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2145 * the sector with the specified fill byte
2147 fdctrl->data_state &= ~FD_STATE_FORMAT;
2148 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2151 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2153 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2154 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2155 if (fdctrl->fifo[2] & 1)
2156 fdctrl->dor &= ~FD_DOR_DMAEN;
2157 else
2158 fdctrl->dor |= FD_DOR_DMAEN;
2159 /* No result back */
2160 fdctrl_to_command_phase(fdctrl);
2163 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2165 FDrive *cur_drv;
2167 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2168 cur_drv = get_cur_drv(fdctrl);
2169 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2170 /* 1 Byte status back */
2171 fdctrl->fifo[0] = (cur_drv->ro << 6) |
2172 (cur_drv->track == 0 ? 0x10 : 0x00) |
2173 (cur_drv->head << 2) |
2174 GET_CUR_DRV(fdctrl) |
2175 0x28;
2176 fdctrl_to_result_phase(fdctrl, 1);
2179 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2181 FDrive *cur_drv;
2183 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2184 cur_drv = get_cur_drv(fdctrl);
2185 fd_recalibrate(cur_drv);
2186 fdctrl_to_command_phase(fdctrl);
2187 /* Raise Interrupt */
2188 fdctrl->status0 |= FD_SR0_SEEK;
2189 fdctrl_raise_irq(fdctrl);
2192 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2194 FDrive *cur_drv = get_cur_drv(fdctrl);
2196 if (fdctrl->reset_sensei > 0) {
2197 fdctrl->fifo[0] =
2198 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2199 fdctrl->reset_sensei--;
2200 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2201 fdctrl->fifo[0] = FD_SR0_INVCMD;
2202 fdctrl_to_result_phase(fdctrl, 1);
2203 return;
2204 } else {
2205 fdctrl->fifo[0] =
2206 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2207 | GET_CUR_DRV(fdctrl);
2210 fdctrl->fifo[1] = cur_drv->track;
2211 fdctrl_to_result_phase(fdctrl, 2);
2212 fdctrl_reset_irq(fdctrl);
2213 fdctrl->status0 = FD_SR0_RDYCHG;
2216 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2218 FDrive *cur_drv;
2220 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2221 cur_drv = get_cur_drv(fdctrl);
2222 fdctrl_to_command_phase(fdctrl);
2223 /* The seek command just sends step pulses to the drive and doesn't care if
2224 * there is a medium inserted of if it's banging the head against the drive.
2226 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2227 /* Raise Interrupt */
2228 fdctrl->status0 |= FD_SR0_SEEK;
2229 fdctrl_raise_irq(fdctrl);
2232 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2234 FDrive *cur_drv = get_cur_drv(fdctrl);
2236 if (fdctrl->fifo[1] & 0x80)
2237 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2238 /* No result back */
2239 fdctrl_to_command_phase(fdctrl);
2242 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2244 fdctrl->config = fdctrl->fifo[2];
2245 fdctrl->precomp_trk = fdctrl->fifo[3];
2246 /* No result back */
2247 fdctrl_to_command_phase(fdctrl);
2250 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2252 fdctrl->pwrd = fdctrl->fifo[1];
2253 fdctrl->fifo[0] = fdctrl->fifo[1];
2254 fdctrl_to_result_phase(fdctrl, 1);
2257 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2259 /* No result back */
2260 fdctrl_to_command_phase(fdctrl);
2263 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2265 FDrive *cur_drv = get_cur_drv(fdctrl);
2266 uint32_t pos;
2268 pos = fdctrl->data_pos - 1;
2269 pos %= FD_SECTOR_LEN;
2270 if (fdctrl->fifo[pos] & 0x80) {
2271 /* Command parameters done */
2272 if (fdctrl->fifo[pos] & 0x40) {
2273 fdctrl->fifo[0] = fdctrl->fifo[1];
2274 fdctrl->fifo[2] = 0;
2275 fdctrl->fifo[3] = 0;
2276 fdctrl_to_result_phase(fdctrl, 4);
2277 } else {
2278 fdctrl_to_command_phase(fdctrl);
2280 } else if (fdctrl->data_len > 7) {
2281 /* ERROR */
2282 fdctrl->fifo[0] = 0x80 |
2283 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2284 fdctrl_to_result_phase(fdctrl, 1);
2288 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2290 FDrive *cur_drv;
2292 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2293 cur_drv = get_cur_drv(fdctrl);
2294 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2295 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2296 cur_drv->sect, 1);
2297 } else {
2298 fd_seek(cur_drv, cur_drv->head,
2299 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2301 fdctrl_to_command_phase(fdctrl);
2302 /* Raise Interrupt */
2303 fdctrl->status0 |= FD_SR0_SEEK;
2304 fdctrl_raise_irq(fdctrl);
2307 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2309 FDrive *cur_drv;
2311 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2312 cur_drv = get_cur_drv(fdctrl);
2313 if (fdctrl->fifo[2] > cur_drv->track) {
2314 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2315 } else {
2316 fd_seek(cur_drv, cur_drv->head,
2317 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2319 fdctrl_to_command_phase(fdctrl);
2320 /* Raise Interrupt */
2321 fdctrl->status0 |= FD_SR0_SEEK;
2322 fdctrl_raise_irq(fdctrl);
2326 * Handlers for the execution phase of each command
2328 typedef struct FDCtrlCommand {
2329 uint8_t value;
2330 uint8_t mask;
2331 const char* name;
2332 int parameters;
2333 void (*handler)(FDCtrl *fdctrl, int direction);
2334 int direction;
2335 } FDCtrlCommand;
2337 static const FDCtrlCommand handlers[] = {
2338 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2339 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2340 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2341 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2342 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2343 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2344 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2345 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2346 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2347 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2348 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2349 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2350 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2351 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2352 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2353 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2354 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2355 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2356 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2357 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2358 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2359 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2360 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2361 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2362 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2363 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2364 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2365 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2366 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2367 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2368 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2369 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2371 /* Associate command to an index in the 'handlers' array */
2372 static uint8_t command_to_handler[256];
2374 static const FDCtrlCommand *get_command(uint8_t cmd)
2376 int idx;
2378 idx = command_to_handler[cmd];
2379 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2380 return &handlers[idx];
2383 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2385 FDrive *cur_drv;
2386 const FDCtrlCommand *cmd;
2387 uint32_t pos;
2389 /* Reset mode */
2390 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2391 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2392 return;
2394 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2395 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2396 return;
2398 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2400 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2402 /* If data_len spans multiple sectors, the current position in the FIFO
2403 * wraps around while fdctrl->data_pos is the real position in the whole
2404 * request. */
2405 pos = fdctrl->data_pos++;
2406 pos %= FD_SECTOR_LEN;
2407 fdctrl->fifo[pos] = value;
2409 if (fdctrl->data_pos == fdctrl->data_len) {
2410 fdctrl->msr &= ~FD_MSR_RQM;
2413 switch (fdctrl->phase) {
2414 case FD_PHASE_EXECUTION:
2415 /* For DMA requests, RQM should be cleared during execution phase, so
2416 * we would have errored out above. */
2417 assert(fdctrl->msr & FD_MSR_NONDMA);
2419 /* FIFO data write */
2420 if (pos == FD_SECTOR_LEN - 1 ||
2421 fdctrl->data_pos == fdctrl->data_len) {
2422 cur_drv = get_cur_drv(fdctrl);
2423 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2424 BDRV_SECTOR_SIZE, 0) < 0) {
2425 FLOPPY_DPRINTF("error writing sector %d\n",
2426 fd_sector(cur_drv));
2427 break;
2429 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2430 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2431 fd_sector(cur_drv));
2432 break;
2436 /* Switch to result phase when done with the transfer */
2437 if (fdctrl->data_pos == fdctrl->data_len) {
2438 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2440 break;
2442 case FD_PHASE_COMMAND:
2443 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2444 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2446 if (pos == 0) {
2447 /* The first byte specifies the command. Now we start reading
2448 * as many parameters as this command requires. */
2449 cmd = get_command(value);
2450 fdctrl->data_len = cmd->parameters + 1;
2451 if (cmd->parameters) {
2452 fdctrl->msr |= FD_MSR_RQM;
2454 fdctrl->msr |= FD_MSR_CMDBUSY;
2457 if (fdctrl->data_pos == fdctrl->data_len) {
2458 /* We have all parameters now, execute the command */
2459 fdctrl->phase = FD_PHASE_EXECUTION;
2461 if (fdctrl->data_state & FD_STATE_FORMAT) {
2462 fdctrl_format_sector(fdctrl);
2463 break;
2466 cmd = get_command(fdctrl->fifo[0]);
2467 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2468 cmd->handler(fdctrl, cmd->direction);
2470 break;
2472 case FD_PHASE_RESULT:
2473 default:
2474 abort();
2478 static void fdctrl_result_timer(void *opaque)
2480 FDCtrl *fdctrl = opaque;
2481 FDrive *cur_drv = get_cur_drv(fdctrl);
2483 /* Pretend we are spinning.
2484 * This is needed for Coherent, which uses READ ID to check for
2485 * sector interleaving.
2487 if (cur_drv->last_sect != 0) {
2488 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2490 /* READ_ID can't automatically succeed! */
2491 if (fdctrl->check_media_rate &&
2492 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2493 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2494 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2495 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2496 } else {
2497 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2501 /* Init functions */
2502 static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp,
2503 DeviceState *fdc_dev)
2505 unsigned int i;
2506 FDrive *drive;
2507 DeviceState *dev;
2508 BlockBackend *blk;
2509 Error *local_err = NULL;
2511 for (i = 0; i < MAX_FD; i++) {
2512 drive = &fdctrl->drives[i];
2513 drive->fdctrl = fdctrl;
2515 /* If the drive is not present, we skip creating the qdev device, but
2516 * still have to initialise the controller. */
2517 blk = fdctrl->qdev_for_drives[i].blk;
2518 if (!blk) {
2519 fd_init(drive);
2520 fd_revalidate(drive);
2521 continue;
2524 dev = qdev_create(&fdctrl->bus.bus, "floppy");
2525 qdev_prop_set_uint32(dev, "unit", i);
2526 qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2528 blk_ref(blk);
2529 blk_detach_dev(blk, fdc_dev);
2530 fdctrl->qdev_for_drives[i].blk = NULL;
2531 qdev_prop_set_drive(dev, "drive", blk, &local_err);
2532 blk_unref(blk);
2534 if (local_err) {
2535 error_propagate(errp, local_err);
2536 return;
2539 object_property_set_bool(OBJECT(dev), true, "realized", &local_err);
2540 if (local_err) {
2541 error_propagate(errp, local_err);
2542 return;
2547 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2549 DeviceState *dev;
2550 ISADevice *isadev;
2552 isadev = isa_try_create(bus, TYPE_ISA_FDC);
2553 if (!isadev) {
2554 return NULL;
2556 dev = DEVICE(isadev);
2558 if (fds[0]) {
2559 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2560 &error_fatal);
2562 if (fds[1]) {
2563 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2564 &error_fatal);
2566 qdev_init_nofail(dev);
2568 return isadev;
2571 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2572 hwaddr mmio_base, DriveInfo **fds)
2574 FDCtrl *fdctrl;
2575 DeviceState *dev;
2576 SysBusDevice *sbd;
2577 FDCtrlSysBus *sys;
2579 dev = qdev_create(NULL, "sysbus-fdc");
2580 sys = SYSBUS_FDC(dev);
2581 fdctrl = &sys->state;
2582 fdctrl->dma_chann = dma_chann; /* FIXME */
2583 if (fds[0]) {
2584 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2585 &error_fatal);
2587 if (fds[1]) {
2588 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2589 &error_fatal);
2591 qdev_init_nofail(dev);
2592 sbd = SYS_BUS_DEVICE(dev);
2593 sysbus_connect_irq(sbd, 0, irq);
2594 sysbus_mmio_map(sbd, 0, mmio_base);
2597 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2598 DriveInfo **fds, qemu_irq *fdc_tc)
2600 DeviceState *dev;
2601 FDCtrlSysBus *sys;
2603 dev = qdev_create(NULL, "SUNW,fdtwo");
2604 if (fds[0]) {
2605 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2606 &error_fatal);
2608 qdev_init_nofail(dev);
2609 sys = SYSBUS_FDC(dev);
2610 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2611 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2612 *fdc_tc = qdev_get_gpio_in(dev, 0);
2615 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2616 Error **errp)
2618 int i, j;
2619 static int command_tables_inited = 0;
2621 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2622 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2625 /* Fill 'command_to_handler' lookup table */
2626 if (!command_tables_inited) {
2627 command_tables_inited = 1;
2628 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2629 for (j = 0; j < sizeof(command_to_handler); j++) {
2630 if ((j & handlers[i].mask) == handlers[i].value) {
2631 command_to_handler[j] = i;
2637 FLOPPY_DPRINTF("init controller\n");
2638 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2639 fdctrl->fifo_size = 512;
2640 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2641 fdctrl_result_timer, fdctrl);
2643 fdctrl->version = 0x90; /* Intel 82078 controller */
2644 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2645 fdctrl->num_floppies = MAX_FD;
2647 if (fdctrl->dma_chann != -1) {
2648 IsaDmaClass *k;
2649 assert(fdctrl->dma);
2650 k = ISADMA_GET_CLASS(fdctrl->dma);
2651 k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2652 &fdctrl_transfer_handler, fdctrl);
2655 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2656 fdctrl_connect_drives(fdctrl, errp, dev);
2659 static const MemoryRegionPortio fdc_portio_list[] = {
2660 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2661 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2662 PORTIO_END_OF_LIST(),
2665 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2667 ISADevice *isadev = ISA_DEVICE(dev);
2668 FDCtrlISABus *isa = ISA_FDC(dev);
2669 FDCtrl *fdctrl = &isa->state;
2670 Error *err = NULL;
2672 isa_register_portio_list(isadev, &fdctrl->portio_list,
2673 isa->iobase, fdc_portio_list, fdctrl,
2674 "fdc");
2676 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2677 fdctrl->dma_chann = isa->dma;
2678 if (fdctrl->dma_chann != -1) {
2679 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2680 assert(fdctrl->dma);
2683 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2684 fdctrl_realize_common(dev, fdctrl, &err);
2685 if (err != NULL) {
2686 error_propagate(errp, err);
2687 return;
2691 static void sysbus_fdc_initfn(Object *obj)
2693 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2694 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2695 FDCtrl *fdctrl = &sys->state;
2697 fdctrl->dma_chann = -1;
2699 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2700 "fdc", 0x08);
2701 sysbus_init_mmio(sbd, &fdctrl->iomem);
2704 static void sun4m_fdc_initfn(Object *obj)
2706 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2707 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2708 FDCtrl *fdctrl = &sys->state;
2710 fdctrl->dma_chann = -1;
2712 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2713 fdctrl, "fdctrl", 0x08);
2714 sysbus_init_mmio(sbd, &fdctrl->iomem);
2717 static void sysbus_fdc_common_initfn(Object *obj)
2719 DeviceState *dev = DEVICE(obj);
2720 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2721 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2722 FDCtrl *fdctrl = &sys->state;
2724 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2726 sysbus_init_irq(sbd, &fdctrl->irq);
2727 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2730 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2732 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2733 FDCtrl *fdctrl = &sys->state;
2735 fdctrl_realize_common(dev, fdctrl, errp);
2738 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2740 FDCtrlISABus *isa = ISA_FDC(fdc);
2742 return isa->state.drives[i].drive;
2745 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2746 uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2748 const FDFormat *fdf;
2750 *maxc = *maxh = *maxs = 0;
2751 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2752 if (fdf->drive != type) {
2753 continue;
2755 if (*maxc < fdf->max_track) {
2756 *maxc = fdf->max_track;
2758 if (*maxh < fdf->max_head) {
2759 *maxh = fdf->max_head;
2761 if (*maxs < fdf->last_sect) {
2762 *maxs = fdf->last_sect;
2765 (*maxc)--;
2768 static const VMStateDescription vmstate_isa_fdc ={
2769 .name = "fdc",
2770 .version_id = 2,
2771 .minimum_version_id = 2,
2772 .fields = (VMStateField[]) {
2773 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2774 VMSTATE_END_OF_LIST()
2778 static Property isa_fdc_properties[] = {
2779 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2780 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2781 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2782 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2783 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2784 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2785 0, true),
2786 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2787 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2788 FloppyDriveType),
2789 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2790 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2791 FloppyDriveType),
2792 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2793 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2794 FloppyDriveType),
2795 DEFINE_PROP_END_OF_LIST(),
2798 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2800 DeviceClass *dc = DEVICE_CLASS(klass);
2802 dc->realize = isabus_fdc_realize;
2803 dc->fw_name = "fdc";
2804 dc->reset = fdctrl_external_reset_isa;
2805 dc->vmsd = &vmstate_isa_fdc;
2806 dc->props = isa_fdc_properties;
2807 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2810 static void isabus_fdc_instance_init(Object *obj)
2812 FDCtrlISABus *isa = ISA_FDC(obj);
2814 device_add_bootindex_property(obj, &isa->bootindexA,
2815 "bootindexA", "/floppy@0",
2816 DEVICE(obj), NULL);
2817 device_add_bootindex_property(obj, &isa->bootindexB,
2818 "bootindexB", "/floppy@1",
2819 DEVICE(obj), NULL);
2822 static const TypeInfo isa_fdc_info = {
2823 .name = TYPE_ISA_FDC,
2824 .parent = TYPE_ISA_DEVICE,
2825 .instance_size = sizeof(FDCtrlISABus),
2826 .class_init = isabus_fdc_class_init,
2827 .instance_init = isabus_fdc_instance_init,
2830 static const VMStateDescription vmstate_sysbus_fdc ={
2831 .name = "fdc",
2832 .version_id = 2,
2833 .minimum_version_id = 2,
2834 .fields = (VMStateField[]) {
2835 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2836 VMSTATE_END_OF_LIST()
2840 static Property sysbus_fdc_properties[] = {
2841 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2842 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2843 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2844 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2845 FloppyDriveType),
2846 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2847 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2848 FloppyDriveType),
2849 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2850 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2851 FloppyDriveType),
2852 DEFINE_PROP_END_OF_LIST(),
2855 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2857 DeviceClass *dc = DEVICE_CLASS(klass);
2859 dc->props = sysbus_fdc_properties;
2860 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2863 static const TypeInfo sysbus_fdc_info = {
2864 .name = "sysbus-fdc",
2865 .parent = TYPE_SYSBUS_FDC,
2866 .instance_init = sysbus_fdc_initfn,
2867 .class_init = sysbus_fdc_class_init,
2870 static Property sun4m_fdc_properties[] = {
2871 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2872 DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2873 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2874 FloppyDriveType),
2875 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2876 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2877 FloppyDriveType),
2878 DEFINE_PROP_END_OF_LIST(),
2881 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2883 DeviceClass *dc = DEVICE_CLASS(klass);
2885 dc->props = sun4m_fdc_properties;
2886 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2889 static const TypeInfo sun4m_fdc_info = {
2890 .name = "SUNW,fdtwo",
2891 .parent = TYPE_SYSBUS_FDC,
2892 .instance_init = sun4m_fdc_initfn,
2893 .class_init = sun4m_fdc_class_init,
2896 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2898 DeviceClass *dc = DEVICE_CLASS(klass);
2900 dc->realize = sysbus_fdc_common_realize;
2901 dc->reset = fdctrl_external_reset_sysbus;
2902 dc->vmsd = &vmstate_sysbus_fdc;
2905 static const TypeInfo sysbus_fdc_type_info = {
2906 .name = TYPE_SYSBUS_FDC,
2907 .parent = TYPE_SYS_BUS_DEVICE,
2908 .instance_size = sizeof(FDCtrlSysBus),
2909 .instance_init = sysbus_fdc_common_initfn,
2910 .abstract = true,
2911 .class_init = sysbus_fdc_common_class_init,
2914 static void fdc_register_types(void)
2916 type_register_static(&isa_fdc_info);
2917 type_register_static(&sysbus_fdc_type_info);
2918 type_register_static(&sysbus_fdc_info);
2919 type_register_static(&sun4m_fdc_info);
2920 type_register_static(&floppy_bus_info);
2921 type_register_static(&floppy_drive_info);
2924 type_init(fdc_register_types)