2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
44 /********************************************************/
45 /* debug Floppy devices */
47 #define DEBUG_FLOPPY 0
49 #define FLOPPY_DPRINTF(fmt, ...) \
52 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
57 /********************************************************/
60 #define TYPE_FLOPPY_BUS "floppy-bus"
61 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
63 typedef struct FDCtrl FDCtrl
;
64 typedef struct FDrive FDrive
;
65 static FDrive
*get_drv(FDCtrl
*fdctrl
, int unit
);
67 typedef struct FloppyBus
{
72 static const TypeInfo floppy_bus_info
= {
73 .name
= TYPE_FLOPPY_BUS
,
75 .instance_size
= sizeof(FloppyBus
),
78 static void floppy_bus_create(FDCtrl
*fdc
, FloppyBus
*bus
, DeviceState
*dev
)
80 qbus_create_inplace(bus
, sizeof(FloppyBus
), TYPE_FLOPPY_BUS
, dev
, NULL
);
85 /********************************************************/
86 /* Floppy drive emulation */
88 typedef enum FDriveRate
{
89 FDRIVE_RATE_500K
= 0x00, /* 500 Kbps */
90 FDRIVE_RATE_300K
= 0x01, /* 300 Kbps */
91 FDRIVE_RATE_250K
= 0x02, /* 250 Kbps */
92 FDRIVE_RATE_1M
= 0x03, /* 1 Mbps */
95 typedef enum FDriveSize
{
101 typedef struct FDFormat
{
102 FloppyDriveType drive
;
109 /* In many cases, the total sector size of a format is enough to uniquely
110 * identify it. However, there are some total sector collisions between
111 * formats of different physical size, and these are noted below by
112 * highlighting the total sector size for entries with collisions. */
113 static const FDFormat fd_formats
[] = {
114 /* First entry is default format */
115 /* 1.44 MB 3"1/2 floppy disks */
116 { FLOPPY_DRIVE_TYPE_144
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 2880 */
117 { FLOPPY_DRIVE_TYPE_144
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 3200 */
118 { FLOPPY_DRIVE_TYPE_144
, 21, 80, 1, FDRIVE_RATE_500K
, },
119 { FLOPPY_DRIVE_TYPE_144
, 21, 82, 1, FDRIVE_RATE_500K
, },
120 { FLOPPY_DRIVE_TYPE_144
, 21, 83, 1, FDRIVE_RATE_500K
, },
121 { FLOPPY_DRIVE_TYPE_144
, 22, 80, 1, FDRIVE_RATE_500K
, },
122 { FLOPPY_DRIVE_TYPE_144
, 23, 80, 1, FDRIVE_RATE_500K
, },
123 { FLOPPY_DRIVE_TYPE_144
, 24, 80, 1, FDRIVE_RATE_500K
, },
124 /* 2.88 MB 3"1/2 floppy disks */
125 { FLOPPY_DRIVE_TYPE_288
, 36, 80, 1, FDRIVE_RATE_1M
, },
126 { FLOPPY_DRIVE_TYPE_288
, 39, 80, 1, FDRIVE_RATE_1M
, },
127 { FLOPPY_DRIVE_TYPE_288
, 40, 80, 1, FDRIVE_RATE_1M
, },
128 { FLOPPY_DRIVE_TYPE_288
, 44, 80, 1, FDRIVE_RATE_1M
, },
129 { FLOPPY_DRIVE_TYPE_288
, 48, 80, 1, FDRIVE_RATE_1M
, },
130 /* 720 kB 3"1/2 floppy disks */
131 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 3.5" 1440 */
132 { FLOPPY_DRIVE_TYPE_144
, 10, 80, 1, FDRIVE_RATE_250K
, },
133 { FLOPPY_DRIVE_TYPE_144
, 10, 82, 1, FDRIVE_RATE_250K
, },
134 { FLOPPY_DRIVE_TYPE_144
, 10, 83, 1, FDRIVE_RATE_250K
, },
135 { FLOPPY_DRIVE_TYPE_144
, 13, 80, 1, FDRIVE_RATE_250K
, },
136 { FLOPPY_DRIVE_TYPE_144
, 14, 80, 1, FDRIVE_RATE_250K
, },
137 /* 1.2 MB 5"1/4 floppy disks */
138 { FLOPPY_DRIVE_TYPE_120
, 15, 80, 1, FDRIVE_RATE_500K
, },
139 { FLOPPY_DRIVE_TYPE_120
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 2880 */
140 { FLOPPY_DRIVE_TYPE_120
, 18, 82, 1, FDRIVE_RATE_500K
, },
141 { FLOPPY_DRIVE_TYPE_120
, 18, 83, 1, FDRIVE_RATE_500K
, },
142 { FLOPPY_DRIVE_TYPE_120
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 3200 */
143 /* 720 kB 5"1/4 floppy disks */
144 { FLOPPY_DRIVE_TYPE_120
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 5.25" 1440 */
145 { FLOPPY_DRIVE_TYPE_120
, 11, 80, 1, FDRIVE_RATE_250K
, },
146 /* 360 kB 5"1/4 floppy disks */
147 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 1, FDRIVE_RATE_300K
, }, /* 5.25" 720 */
148 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 0, FDRIVE_RATE_300K
, },
149 { FLOPPY_DRIVE_TYPE_120
, 10, 41, 1, FDRIVE_RATE_300K
, },
150 { FLOPPY_DRIVE_TYPE_120
, 10, 42, 1, FDRIVE_RATE_300K
, },
151 /* 320 kB 5"1/4 floppy disks */
152 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 1, FDRIVE_RATE_250K
, },
153 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 0, FDRIVE_RATE_250K
, },
154 /* 360 kB must match 5"1/4 better than 3"1/2... */
155 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 0, FDRIVE_RATE_250K
, }, /* 3.5" 720 */
157 { FLOPPY_DRIVE_TYPE_NONE
, -1, -1, 0, 0, },
160 static FDriveSize
drive_size(FloppyDriveType drive
)
163 case FLOPPY_DRIVE_TYPE_120
:
164 return FDRIVE_SIZE_525
;
165 case FLOPPY_DRIVE_TYPE_144
:
166 case FLOPPY_DRIVE_TYPE_288
:
167 return FDRIVE_SIZE_350
;
169 return FDRIVE_SIZE_UNKNOWN
;
173 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
174 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
176 /* Will always be a fixed parameter for us */
177 #define FD_SECTOR_LEN 512
178 #define FD_SECTOR_SC 2 /* Sector size code */
179 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
181 /* Floppy disk drive emulation */
182 typedef enum FDiskFlags
{
183 FDISK_DBL_SIDES
= 0x01,
190 FloppyDriveType drive
; /* CMOS drive type */
191 uint8_t perpendicular
; /* 2.88 MB access mode */
197 FloppyDriveType disk
; /* Current disk type */
199 uint8_t last_sect
; /* Nb sector per track */
200 uint8_t max_track
; /* Nb of tracks */
201 uint16_t bps
; /* Bytes per sector */
202 uint8_t ro
; /* Is read-only */
203 uint8_t media_changed
; /* Is media changed */
204 uint8_t media_rate
; /* Data rate of medium */
206 bool media_validated
; /* Have we validated the media? */
210 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
);
212 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
213 * currently goes through some pains to keep seeks within the bounds
214 * established by last_sect and max_track. Correcting this is difficult,
215 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
217 * For now: allow empty drives to have large bounds so we can seek around,
218 * with the understanding that when a diskette is inserted, the bounds will
219 * properly tighten to match the geometry of that inserted medium.
221 static void fd_empty_seek_hack(FDrive
*drv
)
223 drv
->last_sect
= 0xFF;
224 drv
->max_track
= 0xFF;
227 static void fd_init(FDrive
*drv
)
230 drv
->perpendicular
= 0;
232 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
236 drv
->media_changed
= 1;
239 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
241 static int fd_sector_calc(uint8_t head
, uint8_t track
, uint8_t sect
,
242 uint8_t last_sect
, uint8_t num_sides
)
244 return (((track
* num_sides
) + head
) * last_sect
) + sect
- 1;
247 /* Returns current position, in sectors, for given drive */
248 static int fd_sector(FDrive
*drv
)
250 return fd_sector_calc(drv
->head
, drv
->track
, drv
->sect
, drv
->last_sect
,
254 /* Returns current position, in bytes, for given drive */
255 static int fd_offset(FDrive
*drv
)
257 g_assert(fd_sector(drv
) < INT_MAX
>> BDRV_SECTOR_BITS
);
258 return fd_sector(drv
) << BDRV_SECTOR_BITS
;
261 /* Seek to a new position:
262 * returns 0 if already on right track
263 * returns 1 if track changed
264 * returns 2 if track is invalid
265 * returns 3 if sector is invalid
266 * returns 4 if seek is disabled
268 static int fd_seek(FDrive
*drv
, uint8_t head
, uint8_t track
, uint8_t sect
,
274 if (track
> drv
->max_track
||
275 (head
!= 0 && (drv
->flags
& FDISK_DBL_SIDES
) == 0)) {
276 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
277 head
, track
, sect
, 1,
278 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
279 drv
->max_track
, drv
->last_sect
);
282 if (sect
> drv
->last_sect
) {
283 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
284 head
, track
, sect
, 1,
285 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
286 drv
->max_track
, drv
->last_sect
);
289 sector
= fd_sector_calc(head
, track
, sect
, drv
->last_sect
, NUM_SIDES(drv
));
291 if (sector
!= fd_sector(drv
)) {
294 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
295 " (max=%d %02x %02x)\n",
296 head
, track
, sect
, 1, drv
->max_track
,
302 if (drv
->track
!= track
) {
303 if (drv
->blk
!= NULL
&& blk_is_inserted(drv
->blk
)) {
304 drv
->media_changed
= 0;
312 if (drv
->blk
== NULL
|| !blk_is_inserted(drv
->blk
)) {
319 /* Set drive back to track 0 */
320 static void fd_recalibrate(FDrive
*drv
)
322 FLOPPY_DPRINTF("recalibrate\n");
323 fd_seek(drv
, 0, 0, 1, 1);
327 * Determine geometry based on inserted diskette.
328 * Will not operate on an empty drive.
330 * @return: 0 on success, -1 if the drive is empty.
332 static int pick_geometry(FDrive
*drv
)
334 BlockBackend
*blk
= drv
->blk
;
335 const FDFormat
*parse
;
336 uint64_t nb_sectors
, size
;
338 int match
, size_match
, type_match
;
339 bool magic
= drv
->drive
== FLOPPY_DRIVE_TYPE_AUTO
;
341 /* We can only pick a geometry if we have a diskette. */
342 if (!drv
->blk
|| !blk_is_inserted(drv
->blk
) ||
343 drv
->drive
== FLOPPY_DRIVE_TYPE_NONE
)
348 /* We need to determine the likely geometry of the inserted medium.
349 * In order of preference, we look for:
350 * (1) The same drive type and number of sectors,
351 * (2) The same diskette size and number of sectors,
352 * (3) The same drive type.
354 * In all cases, matches that occur higher in the drive table will take
355 * precedence over matches that occur later in the table.
357 blk_get_geometry(blk
, &nb_sectors
);
358 match
= size_match
= type_match
= -1;
360 parse
= &fd_formats
[i
];
361 if (parse
->drive
== FLOPPY_DRIVE_TYPE_NONE
) {
364 size
= (parse
->max_head
+ 1) * parse
->max_track
* parse
->last_sect
;
365 if (nb_sectors
== size
) {
366 if (magic
|| parse
->drive
== drv
->drive
) {
367 /* (1) perfect match -- nb_sectors and drive type */
369 } else if (drive_size(parse
->drive
) == drive_size(drv
->drive
)) {
370 /* (2) size match -- nb_sectors and physical medium size */
371 match
= (match
== -1) ? i
: match
;
373 /* This is suspicious -- Did the user misconfigure? */
374 size_match
= (size_match
== -1) ? i
: size_match
;
376 } else if (type_match
== -1) {
377 if ((parse
->drive
== drv
->drive
) ||
378 (magic
&& (parse
->drive
== get_fallback_drive_type(drv
)))) {
379 /* (3) type match -- nb_sectors mismatch, but matches the type
380 * specified explicitly by the user, or matches the fallback
381 * default type when using the drive autodetect mechanism */
387 /* No exact match found */
389 if (size_match
!= -1) {
390 parse
= &fd_formats
[size_match
];
391 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
392 "but inserted medium appears to be a "
393 "%"PRId64
" sector '%s' type\n",
394 FloppyDriveType_lookup
[drv
->drive
],
396 FloppyDriveType_lookup
[parse
->drive
]);
401 /* No match of any kind found -- fd_format is misconfigured, abort. */
403 error_setg(&error_abort
, "No candidate geometries present in table "
404 " for floppy drive type '%s'",
405 FloppyDriveType_lookup
[drv
->drive
]);
408 parse
= &(fd_formats
[match
]);
411 if (parse
->max_head
== 0) {
412 drv
->flags
&= ~FDISK_DBL_SIDES
;
414 drv
->flags
|= FDISK_DBL_SIDES
;
416 drv
->max_track
= parse
->max_track
;
417 drv
->last_sect
= parse
->last_sect
;
418 drv
->disk
= parse
->drive
;
419 drv
->media_rate
= parse
->rate
;
423 static void pick_drive_type(FDrive
*drv
)
425 if (drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
) {
429 if (pick_geometry(drv
) == 0) {
430 drv
->drive
= drv
->disk
;
432 drv
->drive
= get_fallback_drive_type(drv
);
435 g_assert(drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
);
438 /* Revalidate a disk drive after a disk change */
439 static void fd_revalidate(FDrive
*drv
)
443 FLOPPY_DPRINTF("revalidate\n");
444 if (drv
->blk
!= NULL
) {
445 drv
->ro
= blk_is_read_only(drv
->blk
);
446 if (!blk_is_inserted(drv
->blk
)) {
447 FLOPPY_DPRINTF("No disk in drive\n");
448 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
449 fd_empty_seek_hack(drv
);
450 } else if (!drv
->media_validated
) {
451 rc
= pick_geometry(drv
);
453 FLOPPY_DPRINTF("Could not validate floppy drive media");
455 drv
->media_validated
= true;
456 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
457 (drv
->flags
& FDISK_DBL_SIDES
) ? 2 : 1,
458 drv
->max_track
, drv
->last_sect
,
459 drv
->ro
? "ro" : "rw");
463 FLOPPY_DPRINTF("No drive connected\n");
466 drv
->flags
&= ~FDISK_DBL_SIDES
;
467 drv
->drive
= FLOPPY_DRIVE_TYPE_NONE
;
468 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
472 static void fd_change_cb(void *opaque
, bool load
)
474 FDrive
*drive
= opaque
;
476 drive
->media_changed
= 1;
477 drive
->media_validated
= false;
478 fd_revalidate(drive
);
481 static const BlockDevOps fd_block_ops
= {
482 .change_media_cb
= fd_change_cb
,
486 #define TYPE_FLOPPY_DRIVE "floppy"
487 #define FLOPPY_DRIVE(obj) \
488 OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
490 typedef struct FloppyDrive
{
494 FloppyDriveType type
;
497 static Property floppy_drive_properties
[] = {
498 DEFINE_PROP_UINT32("unit", FloppyDrive
, unit
, -1),
499 DEFINE_BLOCK_PROPERTIES(FloppyDrive
, conf
),
500 DEFINE_PROP_DEFAULT("drive-type", FloppyDrive
, type
,
501 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
503 DEFINE_PROP_END_OF_LIST(),
506 static int floppy_drive_init(DeviceState
*qdev
)
508 FloppyDrive
*dev
= FLOPPY_DRIVE(qdev
);
509 FloppyBus
*bus
= FLOPPY_BUS(qdev
->parent_bus
);
513 if (dev
->unit
== -1) {
514 for (dev
->unit
= 0; dev
->unit
< MAX_FD
; dev
->unit
++) {
515 drive
= get_drv(bus
->fdc
, dev
->unit
);
522 if (dev
->unit
>= MAX_FD
) {
523 error_report("Can't create floppy unit %d, bus supports only %d units",
528 drive
= get_drv(bus
->fdc
, dev
->unit
);
530 error_report("Floppy unit %d is in use", dev
->unit
);
534 if (!dev
->conf
.blk
) {
535 /* Anonymous BlockBackend for an empty drive */
536 dev
->conf
.blk
= blk_new();
537 ret
= blk_attach_dev(dev
->conf
.blk
, qdev
);
541 blkconf_blocksizes(&dev
->conf
);
542 if (dev
->conf
.logical_block_size
!= 512 ||
543 dev
->conf
.physical_block_size
!= 512)
545 error_report("Physical and logical block size must be 512 for floppy");
549 /* rerror/werror aren't supported by fdc and therefore not even registered
550 * with qdev. So set the defaults manually before they are used in
551 * blkconf_apply_backend_options(). */
552 dev
->conf
.rerror
= BLOCKDEV_ON_ERROR_AUTO
;
553 dev
->conf
.werror
= BLOCKDEV_ON_ERROR_AUTO
;
554 blkconf_apply_backend_options(&dev
->conf
);
556 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
557 * for empty drives. */
558 if (blk_get_on_error(dev
->conf
.blk
, 0) != BLOCKDEV_ON_ERROR_ENOSPC
&&
559 blk_get_on_error(dev
->conf
.blk
, 0) != BLOCKDEV_ON_ERROR_REPORT
) {
560 error_report("fdc doesn't support drive option werror");
563 if (blk_get_on_error(dev
->conf
.blk
, 1) != BLOCKDEV_ON_ERROR_REPORT
) {
564 error_report("fdc doesn't support drive option rerror");
568 drive
->blk
= dev
->conf
.blk
;
569 drive
->fdctrl
= bus
->fdc
;
572 blk_set_dev_ops(drive
->blk
, &fd_block_ops
, drive
);
574 /* Keep 'type' qdev property and FDrive->drive in sync */
575 drive
->drive
= dev
->type
;
576 pick_drive_type(drive
);
577 dev
->type
= drive
->drive
;
579 fd_revalidate(drive
);
584 static void floppy_drive_class_init(ObjectClass
*klass
, void *data
)
586 DeviceClass
*k
= DEVICE_CLASS(klass
);
587 k
->init
= floppy_drive_init
;
588 set_bit(DEVICE_CATEGORY_STORAGE
, k
->categories
);
589 k
->bus_type
= TYPE_FLOPPY_BUS
;
590 k
->props
= floppy_drive_properties
;
591 k
->desc
= "virtual floppy drive";
594 static const TypeInfo floppy_drive_info
= {
595 .name
= TYPE_FLOPPY_DRIVE
,
596 .parent
= TYPE_DEVICE
,
597 .instance_size
= sizeof(FloppyDrive
),
598 .class_init
= floppy_drive_class_init
,
601 /********************************************************/
602 /* Intel 82078 floppy disk controller emulation */
604 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
);
605 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
);
606 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
607 int dma_pos
, int dma_len
);
608 static void fdctrl_raise_irq(FDCtrl
*fdctrl
);
609 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
);
611 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
);
612 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
);
613 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
);
614 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
);
615 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
);
616 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
);
617 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
);
618 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
);
619 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
);
620 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
);
621 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
);
622 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
);
634 FD_STATE_MULTI
= 0x01, /* multi track flag */
635 FD_STATE_FORMAT
= 0x02, /* format flag */
651 FD_CMD_READ_TRACK
= 0x02,
652 FD_CMD_SPECIFY
= 0x03,
653 FD_CMD_SENSE_DRIVE_STATUS
= 0x04,
656 FD_CMD_RECALIBRATE
= 0x07,
657 FD_CMD_SENSE_INTERRUPT_STATUS
= 0x08,
658 FD_CMD_WRITE_DELETED
= 0x09,
659 FD_CMD_READ_ID
= 0x0a,
660 FD_CMD_READ_DELETED
= 0x0c,
661 FD_CMD_FORMAT_TRACK
= 0x0d,
662 FD_CMD_DUMPREG
= 0x0e,
664 FD_CMD_VERSION
= 0x10,
665 FD_CMD_SCAN_EQUAL
= 0x11,
666 FD_CMD_PERPENDICULAR_MODE
= 0x12,
667 FD_CMD_CONFIGURE
= 0x13,
669 FD_CMD_VERIFY
= 0x16,
670 FD_CMD_POWERDOWN_MODE
= 0x17,
671 FD_CMD_PART_ID
= 0x18,
672 FD_CMD_SCAN_LOW_OR_EQUAL
= 0x19,
673 FD_CMD_SCAN_HIGH_OR_EQUAL
= 0x1d,
675 FD_CMD_OPTION
= 0x33,
676 FD_CMD_RESTORE
= 0x4e,
677 FD_CMD_DRIVE_SPECIFICATION_COMMAND
= 0x8e,
678 FD_CMD_RELATIVE_SEEK_OUT
= 0x8f,
679 FD_CMD_FORMAT_AND_WRITE
= 0xcd,
680 FD_CMD_RELATIVE_SEEK_IN
= 0xcf,
684 FD_CONFIG_PRETRK
= 0xff, /* Pre-compensation set to track 0 */
685 FD_CONFIG_FIFOTHR
= 0x0f, /* FIFO threshold set to 1 byte */
686 FD_CONFIG_POLL
= 0x10, /* Poll enabled */
687 FD_CONFIG_EFIFO
= 0x20, /* FIFO disabled */
688 FD_CONFIG_EIS
= 0x40, /* No implied seeks */
697 FD_SR0_ABNTERM
= 0x40,
698 FD_SR0_INVCMD
= 0x80,
699 FD_SR0_RDYCHG
= 0xc0,
703 FD_SR1_MA
= 0x01, /* Missing address mark */
704 FD_SR1_NW
= 0x02, /* Not writable */
705 FD_SR1_EC
= 0x80, /* End of cylinder */
709 FD_SR2_SNS
= 0x04, /* Scan not satisfied */
710 FD_SR2_SEH
= 0x08, /* Scan equal hit */
721 FD_SRA_INTPEND
= 0x80,
735 FD_DOR_SELMASK
= 0x03,
737 FD_DOR_SELMASK
= 0x01,
739 FD_DOR_nRESET
= 0x04,
741 FD_DOR_MOTEN0
= 0x10,
742 FD_DOR_MOTEN1
= 0x20,
743 FD_DOR_MOTEN2
= 0x40,
744 FD_DOR_MOTEN3
= 0x80,
749 FD_TDR_BOOTSEL
= 0x0c,
751 FD_TDR_BOOTSEL
= 0x04,
756 FD_DSR_DRATEMASK
= 0x03,
757 FD_DSR_PWRDOWN
= 0x40,
758 FD_DSR_SWRESET
= 0x80,
762 FD_MSR_DRV0BUSY
= 0x01,
763 FD_MSR_DRV1BUSY
= 0x02,
764 FD_MSR_DRV2BUSY
= 0x04,
765 FD_MSR_DRV3BUSY
= 0x08,
766 FD_MSR_CMDBUSY
= 0x10,
767 FD_MSR_NONDMA
= 0x20,
773 FD_DIR_DSKCHG
= 0x80,
777 * See chapter 5.0 "Controller phases" of the spec:
780 * The host writes a command and its parameters into the FIFO. The command
781 * phase is completed when all parameters for the command have been supplied,
782 * and execution phase is entered.
785 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
786 * contains the payload now, otherwise it's unused. When all bytes of the
787 * required data have been transferred, the state is switched to either result
788 * phase (if the command produces status bytes) or directly back into the
789 * command phase for the next command.
792 * The host reads out the FIFO, which contains one or more result bytes now.
795 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
796 FD_PHASE_RECONSTRUCT
= 0,
798 FD_PHASE_COMMAND
= 1,
799 FD_PHASE_EXECUTION
= 2,
803 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
804 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
809 /* Controller state */
810 QEMUTimer
*result_timer
;
814 /* Controller's identification */
820 uint8_t dor_vmstate
; /* only used as temp during vmstate */
835 uint8_t eot
; /* last wanted sector */
836 /* States kept only to be returned back */
837 /* precompensation */
841 /* Power down config (also with status regB access mode */
845 uint8_t num_floppies
;
846 FDrive drives
[MAX_FD
];
849 FloppyDriveType type
;
850 } qdev_for_drives
[MAX_FD
];
852 uint32_t check_media_rate
;
853 FloppyDriveType fallback
; /* type=auto failure fallback */
857 PortioList portio_list
;
860 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
)
862 return drv
->fdctrl
->fallback
;
865 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
866 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
868 typedef struct FDCtrlSysBus
{
870 SysBusDevice parent_obj
;
876 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
878 typedef struct FDCtrlISABus
{
879 ISADevice parent_obj
;
889 static uint32_t fdctrl_read (void *opaque
, uint32_t reg
)
891 FDCtrl
*fdctrl
= opaque
;
897 retval
= fdctrl_read_statusA(fdctrl
);
900 retval
= fdctrl_read_statusB(fdctrl
);
903 retval
= fdctrl_read_dor(fdctrl
);
906 retval
= fdctrl_read_tape(fdctrl
);
909 retval
= fdctrl_read_main_status(fdctrl
);
912 retval
= fdctrl_read_data(fdctrl
);
915 retval
= fdctrl_read_dir(fdctrl
);
918 retval
= (uint32_t)(-1);
921 FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg
& 7, retval
);
926 static void fdctrl_write (void *opaque
, uint32_t reg
, uint32_t value
)
928 FDCtrl
*fdctrl
= opaque
;
930 FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg
& 7, value
);
935 fdctrl_write_dor(fdctrl
, value
);
938 fdctrl_write_tape(fdctrl
, value
);
941 fdctrl_write_rate(fdctrl
, value
);
944 fdctrl_write_data(fdctrl
, value
);
947 fdctrl_write_ccr(fdctrl
, value
);
954 static uint64_t fdctrl_read_mem (void *opaque
, hwaddr reg
,
957 return fdctrl_read(opaque
, (uint32_t)reg
);
960 static void fdctrl_write_mem (void *opaque
, hwaddr reg
,
961 uint64_t value
, unsigned size
)
963 fdctrl_write(opaque
, (uint32_t)reg
, value
);
966 static const MemoryRegionOps fdctrl_mem_ops
= {
967 .read
= fdctrl_read_mem
,
968 .write
= fdctrl_write_mem
,
969 .endianness
= DEVICE_NATIVE_ENDIAN
,
972 static const MemoryRegionOps fdctrl_mem_strict_ops
= {
973 .read
= fdctrl_read_mem
,
974 .write
= fdctrl_write_mem
,
975 .endianness
= DEVICE_NATIVE_ENDIAN
,
977 .min_access_size
= 1,
978 .max_access_size
= 1,
982 static bool fdrive_media_changed_needed(void *opaque
)
984 FDrive
*drive
= opaque
;
986 return (drive
->blk
!= NULL
&& drive
->media_changed
!= 1);
989 static const VMStateDescription vmstate_fdrive_media_changed
= {
990 .name
= "fdrive/media_changed",
992 .minimum_version_id
= 1,
993 .needed
= fdrive_media_changed_needed
,
994 .fields
= (VMStateField
[]) {
995 VMSTATE_UINT8(media_changed
, FDrive
),
996 VMSTATE_END_OF_LIST()
1000 static bool fdrive_media_rate_needed(void *opaque
)
1002 FDrive
*drive
= opaque
;
1004 return drive
->fdctrl
->check_media_rate
;
1007 static const VMStateDescription vmstate_fdrive_media_rate
= {
1008 .name
= "fdrive/media_rate",
1010 .minimum_version_id
= 1,
1011 .needed
= fdrive_media_rate_needed
,
1012 .fields
= (VMStateField
[]) {
1013 VMSTATE_UINT8(media_rate
, FDrive
),
1014 VMSTATE_END_OF_LIST()
1018 static bool fdrive_perpendicular_needed(void *opaque
)
1020 FDrive
*drive
= opaque
;
1022 return drive
->perpendicular
!= 0;
1025 static const VMStateDescription vmstate_fdrive_perpendicular
= {
1026 .name
= "fdrive/perpendicular",
1028 .minimum_version_id
= 1,
1029 .needed
= fdrive_perpendicular_needed
,
1030 .fields
= (VMStateField
[]) {
1031 VMSTATE_UINT8(perpendicular
, FDrive
),
1032 VMSTATE_END_OF_LIST()
1036 static int fdrive_post_load(void *opaque
, int version_id
)
1038 fd_revalidate(opaque
);
1042 static const VMStateDescription vmstate_fdrive
= {
1045 .minimum_version_id
= 1,
1046 .post_load
= fdrive_post_load
,
1047 .fields
= (VMStateField
[]) {
1048 VMSTATE_UINT8(head
, FDrive
),
1049 VMSTATE_UINT8(track
, FDrive
),
1050 VMSTATE_UINT8(sect
, FDrive
),
1051 VMSTATE_END_OF_LIST()
1053 .subsections
= (const VMStateDescription
*[]) {
1054 &vmstate_fdrive_media_changed
,
1055 &vmstate_fdrive_media_rate
,
1056 &vmstate_fdrive_perpendicular
,
1062 * Reconstructs the phase from register values according to the logic that was
1063 * implemented in qemu 2.3. This is the default value that is used if the phase
1064 * subsection is not present on migration.
1066 * Don't change this function to reflect newer qemu versions, it is part of
1067 * the migration ABI.
1069 static int reconstruct_phase(FDCtrl
*fdctrl
)
1071 if (fdctrl
->msr
& FD_MSR_NONDMA
) {
1072 return FD_PHASE_EXECUTION
;
1073 } else if ((fdctrl
->msr
& FD_MSR_RQM
) == 0) {
1074 /* qemu 2.3 disabled RQM only during DMA transfers */
1075 return FD_PHASE_EXECUTION
;
1076 } else if (fdctrl
->msr
& FD_MSR_DIO
) {
1077 return FD_PHASE_RESULT
;
1079 return FD_PHASE_COMMAND
;
1083 static void fdc_pre_save(void *opaque
)
1087 s
->dor_vmstate
= s
->dor
| GET_CUR_DRV(s
);
1090 static int fdc_pre_load(void *opaque
)
1093 s
->phase
= FD_PHASE_RECONSTRUCT
;
1097 static int fdc_post_load(void *opaque
, int version_id
)
1101 SET_CUR_DRV(s
, s
->dor_vmstate
& FD_DOR_SELMASK
);
1102 s
->dor
= s
->dor_vmstate
& ~FD_DOR_SELMASK
;
1104 if (s
->phase
== FD_PHASE_RECONSTRUCT
) {
1105 s
->phase
= reconstruct_phase(s
);
1111 static bool fdc_reset_sensei_needed(void *opaque
)
1115 return s
->reset_sensei
!= 0;
1118 static const VMStateDescription vmstate_fdc_reset_sensei
= {
1119 .name
= "fdc/reset_sensei",
1121 .minimum_version_id
= 1,
1122 .needed
= fdc_reset_sensei_needed
,
1123 .fields
= (VMStateField
[]) {
1124 VMSTATE_INT32(reset_sensei
, FDCtrl
),
1125 VMSTATE_END_OF_LIST()
1129 static bool fdc_result_timer_needed(void *opaque
)
1133 return timer_pending(s
->result_timer
);
1136 static const VMStateDescription vmstate_fdc_result_timer
= {
1137 .name
= "fdc/result_timer",
1139 .minimum_version_id
= 1,
1140 .needed
= fdc_result_timer_needed
,
1141 .fields
= (VMStateField
[]) {
1142 VMSTATE_TIMER_PTR(result_timer
, FDCtrl
),
1143 VMSTATE_END_OF_LIST()
1147 static bool fdc_phase_needed(void *opaque
)
1149 FDCtrl
*fdctrl
= opaque
;
1151 return reconstruct_phase(fdctrl
) != fdctrl
->phase
;
1154 static const VMStateDescription vmstate_fdc_phase
= {
1155 .name
= "fdc/phase",
1157 .minimum_version_id
= 1,
1158 .needed
= fdc_phase_needed
,
1159 .fields
= (VMStateField
[]) {
1160 VMSTATE_UINT8(phase
, FDCtrl
),
1161 VMSTATE_END_OF_LIST()
1165 static const VMStateDescription vmstate_fdc
= {
1168 .minimum_version_id
= 2,
1169 .pre_save
= fdc_pre_save
,
1170 .pre_load
= fdc_pre_load
,
1171 .post_load
= fdc_post_load
,
1172 .fields
= (VMStateField
[]) {
1173 /* Controller State */
1174 VMSTATE_UINT8(sra
, FDCtrl
),
1175 VMSTATE_UINT8(srb
, FDCtrl
),
1176 VMSTATE_UINT8(dor_vmstate
, FDCtrl
),
1177 VMSTATE_UINT8(tdr
, FDCtrl
),
1178 VMSTATE_UINT8(dsr
, FDCtrl
),
1179 VMSTATE_UINT8(msr
, FDCtrl
),
1180 VMSTATE_UINT8(status0
, FDCtrl
),
1181 VMSTATE_UINT8(status1
, FDCtrl
),
1182 VMSTATE_UINT8(status2
, FDCtrl
),
1184 VMSTATE_VARRAY_INT32(fifo
, FDCtrl
, fifo_size
, 0, vmstate_info_uint8
,
1186 VMSTATE_UINT32(data_pos
, FDCtrl
),
1187 VMSTATE_UINT32(data_len
, FDCtrl
),
1188 VMSTATE_UINT8(data_state
, FDCtrl
),
1189 VMSTATE_UINT8(data_dir
, FDCtrl
),
1190 VMSTATE_UINT8(eot
, FDCtrl
),
1191 /* States kept only to be returned back */
1192 VMSTATE_UINT8(timer0
, FDCtrl
),
1193 VMSTATE_UINT8(timer1
, FDCtrl
),
1194 VMSTATE_UINT8(precomp_trk
, FDCtrl
),
1195 VMSTATE_UINT8(config
, FDCtrl
),
1196 VMSTATE_UINT8(lock
, FDCtrl
),
1197 VMSTATE_UINT8(pwrd
, FDCtrl
),
1198 VMSTATE_UINT8_EQUAL(num_floppies
, FDCtrl
),
1199 VMSTATE_STRUCT_ARRAY(drives
, FDCtrl
, MAX_FD
, 1,
1200 vmstate_fdrive
, FDrive
),
1201 VMSTATE_END_OF_LIST()
1203 .subsections
= (const VMStateDescription
*[]) {
1204 &vmstate_fdc_reset_sensei
,
1205 &vmstate_fdc_result_timer
,
1211 static void fdctrl_external_reset_sysbus(DeviceState
*d
)
1213 FDCtrlSysBus
*sys
= SYSBUS_FDC(d
);
1214 FDCtrl
*s
= &sys
->state
;
1219 static void fdctrl_external_reset_isa(DeviceState
*d
)
1221 FDCtrlISABus
*isa
= ISA_FDC(d
);
1222 FDCtrl
*s
= &isa
->state
;
1227 static void fdctrl_handle_tc(void *opaque
, int irq
, int level
)
1229 //FDCtrl *s = opaque;
1233 FLOPPY_DPRINTF("TC pulsed\n");
1237 /* Change IRQ state */
1238 static void fdctrl_reset_irq(FDCtrl
*fdctrl
)
1240 fdctrl
->status0
= 0;
1241 if (!(fdctrl
->sra
& FD_SRA_INTPEND
))
1243 FLOPPY_DPRINTF("Reset interrupt\n");
1244 qemu_set_irq(fdctrl
->irq
, 0);
1245 fdctrl
->sra
&= ~FD_SRA_INTPEND
;
1248 static void fdctrl_raise_irq(FDCtrl
*fdctrl
)
1250 if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
1251 qemu_set_irq(fdctrl
->irq
, 1);
1252 fdctrl
->sra
|= FD_SRA_INTPEND
;
1255 fdctrl
->reset_sensei
= 0;
1256 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl
->status0
);
1259 /* Reset controller */
1260 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
)
1264 FLOPPY_DPRINTF("reset controller\n");
1265 fdctrl_reset_irq(fdctrl
);
1266 /* Initialise controller */
1269 if (!fdctrl
->drives
[1].blk
) {
1270 fdctrl
->sra
|= FD_SRA_nDRV2
;
1272 fdctrl
->cur_drv
= 0;
1273 fdctrl
->dor
= FD_DOR_nRESET
;
1274 fdctrl
->dor
|= (fdctrl
->dma_chann
!= -1) ? FD_DOR_DMAEN
: 0;
1275 fdctrl
->msr
= FD_MSR_RQM
;
1276 fdctrl
->reset_sensei
= 0;
1277 timer_del(fdctrl
->result_timer
);
1279 fdctrl
->data_pos
= 0;
1280 fdctrl
->data_len
= 0;
1281 fdctrl
->data_state
= 0;
1282 fdctrl
->data_dir
= FD_DIR_WRITE
;
1283 for (i
= 0; i
< MAX_FD
; i
++)
1284 fd_recalibrate(&fdctrl
->drives
[i
]);
1285 fdctrl_to_command_phase(fdctrl
);
1287 fdctrl
->status0
|= FD_SR0_RDYCHG
;
1288 fdctrl_raise_irq(fdctrl
);
1289 fdctrl
->reset_sensei
= FD_RESET_SENSEI_COUNT
;
1293 static inline FDrive
*drv0(FDCtrl
*fdctrl
)
1295 return &fdctrl
->drives
[(fdctrl
->tdr
& FD_TDR_BOOTSEL
) >> 2];
1298 static inline FDrive
*drv1(FDCtrl
*fdctrl
)
1300 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (1 << 2))
1301 return &fdctrl
->drives
[1];
1303 return &fdctrl
->drives
[0];
1307 static inline FDrive
*drv2(FDCtrl
*fdctrl
)
1309 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (2 << 2))
1310 return &fdctrl
->drives
[2];
1312 return &fdctrl
->drives
[1];
1315 static inline FDrive
*drv3(FDCtrl
*fdctrl
)
1317 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (3 << 2))
1318 return &fdctrl
->drives
[3];
1320 return &fdctrl
->drives
[2];
1324 static FDrive
*get_drv(FDCtrl
*fdctrl
, int unit
)
1327 case 0: return drv0(fdctrl
);
1328 case 1: return drv1(fdctrl
);
1330 case 2: return drv2(fdctrl
);
1331 case 3: return drv3(fdctrl
);
1333 default: return NULL
;
1337 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
)
1339 return get_drv(fdctrl
, fdctrl
->cur_drv
);
1342 /* Status A register : 0x00 (read-only) */
1343 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
)
1345 uint32_t retval
= fdctrl
->sra
;
1347 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval
);
1352 /* Status B register : 0x01 (read-only) */
1353 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
)
1355 uint32_t retval
= fdctrl
->srb
;
1357 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval
);
1362 /* Digital output register : 0x02 */
1363 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
)
1365 uint32_t retval
= fdctrl
->dor
;
1367 /* Selected drive */
1368 retval
|= fdctrl
->cur_drv
;
1369 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval
);
1374 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
)
1376 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value
);
1379 if (value
& FD_DOR_MOTEN0
)
1380 fdctrl
->srb
|= FD_SRB_MTR0
;
1382 fdctrl
->srb
&= ~FD_SRB_MTR0
;
1383 if (value
& FD_DOR_MOTEN1
)
1384 fdctrl
->srb
|= FD_SRB_MTR1
;
1386 fdctrl
->srb
&= ~FD_SRB_MTR1
;
1390 fdctrl
->srb
|= FD_SRB_DR0
;
1392 fdctrl
->srb
&= ~FD_SRB_DR0
;
1395 if (!(value
& FD_DOR_nRESET
)) {
1396 if (fdctrl
->dor
& FD_DOR_nRESET
) {
1397 FLOPPY_DPRINTF("controller enter RESET state\n");
1400 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1401 FLOPPY_DPRINTF("controller out of RESET state\n");
1402 fdctrl_reset(fdctrl
, 1);
1403 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1406 /* Selected drive */
1407 fdctrl
->cur_drv
= value
& FD_DOR_SELMASK
;
1409 fdctrl
->dor
= value
;
1412 /* Tape drive register : 0x03 */
1413 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
)
1415 uint32_t retval
= fdctrl
->tdr
;
1417 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval
);
1422 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
)
1425 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1426 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1429 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value
);
1430 /* Disk boot selection indicator */
1431 fdctrl
->tdr
= value
& FD_TDR_BOOTSEL
;
1432 /* Tape indicators: never allow */
1435 /* Main status register : 0x04 (read) */
1436 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
)
1438 uint32_t retval
= fdctrl
->msr
;
1440 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1441 fdctrl
->dor
|= FD_DOR_nRESET
;
1443 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval
);
1448 /* Data select rate register : 0x04 (write) */
1449 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
)
1452 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1453 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1456 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value
);
1457 /* Reset: autoclear */
1458 if (value
& FD_DSR_SWRESET
) {
1459 fdctrl
->dor
&= ~FD_DOR_nRESET
;
1460 fdctrl_reset(fdctrl
, 1);
1461 fdctrl
->dor
|= FD_DOR_nRESET
;
1463 if (value
& FD_DSR_PWRDOWN
) {
1464 fdctrl_reset(fdctrl
, 1);
1466 fdctrl
->dsr
= value
;
1469 /* Configuration control register: 0x07 (write) */
1470 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
)
1473 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1474 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1477 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value
);
1479 /* Only the rate selection bits used in AT mode, and we
1480 * store those in the DSR.
1482 fdctrl
->dsr
= (fdctrl
->dsr
& ~FD_DSR_DRATEMASK
) |
1483 (value
& FD_DSR_DRATEMASK
);
1486 static int fdctrl_media_changed(FDrive
*drv
)
1488 return drv
->media_changed
;
1491 /* Digital input register : 0x07 (read-only) */
1492 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
)
1494 uint32_t retval
= 0;
1496 if (fdctrl_media_changed(get_cur_drv(fdctrl
))) {
1497 retval
|= FD_DIR_DSKCHG
;
1500 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval
);
1506 /* Clear the FIFO and update the state for receiving the next command */
1507 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
)
1509 fdctrl
->phase
= FD_PHASE_COMMAND
;
1510 fdctrl
->data_dir
= FD_DIR_WRITE
;
1511 fdctrl
->data_pos
= 0;
1512 fdctrl
->data_len
= 1; /* Accept command byte, adjust for params later */
1513 fdctrl
->msr
&= ~(FD_MSR_CMDBUSY
| FD_MSR_DIO
);
1514 fdctrl
->msr
|= FD_MSR_RQM
;
1517 /* Update the state to allow the guest to read out the command status.
1518 * @fifo_len is the number of result bytes to be read out. */
1519 static void fdctrl_to_result_phase(FDCtrl
*fdctrl
, int fifo_len
)
1521 fdctrl
->phase
= FD_PHASE_RESULT
;
1522 fdctrl
->data_dir
= FD_DIR_READ
;
1523 fdctrl
->data_len
= fifo_len
;
1524 fdctrl
->data_pos
= 0;
1525 fdctrl
->msr
|= FD_MSR_CMDBUSY
| FD_MSR_RQM
| FD_MSR_DIO
;
1528 /* Set an error: unimplemented/unknown command */
1529 static void fdctrl_unimplemented(FDCtrl
*fdctrl
, int direction
)
1531 qemu_log_mask(LOG_UNIMP
, "fdc: unimplemented command 0x%02x\n",
1533 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
1534 fdctrl_to_result_phase(fdctrl
, 1);
1537 /* Seek to next sector
1538 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1539 * otherwise returns 1
1541 static int fdctrl_seek_to_next_sect(FDCtrl
*fdctrl
, FDrive
*cur_drv
)
1543 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1544 cur_drv
->head
, cur_drv
->track
, cur_drv
->sect
,
1545 fd_sector(cur_drv
));
1546 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1548 uint8_t new_head
= cur_drv
->head
;
1549 uint8_t new_track
= cur_drv
->track
;
1550 uint8_t new_sect
= cur_drv
->sect
;
1554 if (new_sect
>= cur_drv
->last_sect
||
1555 new_sect
== fdctrl
->eot
) {
1557 if (FD_MULTI_TRACK(fdctrl
->data_state
)) {
1558 if (new_head
== 0 &&
1559 (cur_drv
->flags
& FDISK_DBL_SIDES
) != 0) {
1564 fdctrl
->status0
|= FD_SR0_SEEK
;
1565 if ((cur_drv
->flags
& FDISK_DBL_SIDES
) == 0) {
1570 fdctrl
->status0
|= FD_SR0_SEEK
;
1575 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1576 new_head
, new_track
, new_sect
, fd_sector(cur_drv
));
1581 fd_seek(cur_drv
, new_head
, new_track
, new_sect
, 1);
1585 /* Callback for transfer end (stop or abort) */
1586 static void fdctrl_stop_transfer(FDCtrl
*fdctrl
, uint8_t status0
,
1587 uint8_t status1
, uint8_t status2
)
1590 cur_drv
= get_cur_drv(fdctrl
);
1592 fdctrl
->status0
&= ~(FD_SR0_DS0
| FD_SR0_DS1
| FD_SR0_HEAD
);
1593 fdctrl
->status0
|= GET_CUR_DRV(fdctrl
);
1594 if (cur_drv
->head
) {
1595 fdctrl
->status0
|= FD_SR0_HEAD
;
1597 fdctrl
->status0
|= status0
;
1599 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1600 status0
, status1
, status2
, fdctrl
->status0
);
1601 fdctrl
->fifo
[0] = fdctrl
->status0
;
1602 fdctrl
->fifo
[1] = status1
;
1603 fdctrl
->fifo
[2] = status2
;
1604 fdctrl
->fifo
[3] = cur_drv
->track
;
1605 fdctrl
->fifo
[4] = cur_drv
->head
;
1606 fdctrl
->fifo
[5] = cur_drv
->sect
;
1607 fdctrl
->fifo
[6] = FD_SECTOR_SC
;
1608 fdctrl
->data_dir
= FD_DIR_READ
;
1609 if (!(fdctrl
->msr
& FD_MSR_NONDMA
)) {
1610 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1611 k
->release_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1613 fdctrl
->msr
|= FD_MSR_RQM
| FD_MSR_DIO
;
1614 fdctrl
->msr
&= ~FD_MSR_NONDMA
;
1616 fdctrl_to_result_phase(fdctrl
, 7);
1617 fdctrl_raise_irq(fdctrl
);
1620 /* Prepare a data transfer (either DMA or FIFO) */
1621 static void fdctrl_start_transfer(FDCtrl
*fdctrl
, int direction
)
1626 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1627 cur_drv
= get_cur_drv(fdctrl
);
1628 kt
= fdctrl
->fifo
[2];
1629 kh
= fdctrl
->fifo
[3];
1630 ks
= fdctrl
->fifo
[4];
1631 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1632 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1633 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1634 NUM_SIDES(cur_drv
)));
1635 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1638 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1639 fdctrl
->fifo
[3] = kt
;
1640 fdctrl
->fifo
[4] = kh
;
1641 fdctrl
->fifo
[5] = ks
;
1645 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1646 fdctrl
->fifo
[3] = kt
;
1647 fdctrl
->fifo
[4] = kh
;
1648 fdctrl
->fifo
[5] = ks
;
1651 /* No seek enabled */
1652 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1653 fdctrl
->fifo
[3] = kt
;
1654 fdctrl
->fifo
[4] = kh
;
1655 fdctrl
->fifo
[5] = ks
;
1658 fdctrl
->status0
|= FD_SR0_SEEK
;
1664 /* Check the data rate. If the programmed data rate does not match
1665 * the currently inserted medium, the operation has to fail. */
1666 if (fdctrl
->check_media_rate
&&
1667 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
1668 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1669 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
1670 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
1671 fdctrl
->fifo
[3] = kt
;
1672 fdctrl
->fifo
[4] = kh
;
1673 fdctrl
->fifo
[5] = ks
;
1677 /* Set the FIFO state */
1678 fdctrl
->data_dir
= direction
;
1679 fdctrl
->data_pos
= 0;
1680 assert(fdctrl
->msr
& FD_MSR_CMDBUSY
);
1681 if (fdctrl
->fifo
[0] & 0x80)
1682 fdctrl
->data_state
|= FD_STATE_MULTI
;
1684 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
1685 if (fdctrl
->fifo
[5] == 0) {
1686 fdctrl
->data_len
= fdctrl
->fifo
[8];
1689 fdctrl
->data_len
= 128 << (fdctrl
->fifo
[5] > 7 ? 7 : fdctrl
->fifo
[5]);
1690 tmp
= (fdctrl
->fifo
[6] - ks
+ 1);
1691 if (fdctrl
->fifo
[0] & 0x80)
1692 tmp
+= fdctrl
->fifo
[6];
1693 fdctrl
->data_len
*= tmp
;
1695 fdctrl
->eot
= fdctrl
->fifo
[6];
1696 if (fdctrl
->dor
& FD_DOR_DMAEN
) {
1697 IsaDmaTransferMode dma_mode
;
1698 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1700 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1701 dma_mode
= k
->get_transfer_mode(fdctrl
->dma
, fdctrl
->dma_chann
);
1702 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1703 dma_mode
, direction
,
1704 (128 << fdctrl
->fifo
[5]) *
1705 (cur_drv
->last_sect
- ks
+ 1), fdctrl
->data_len
);
1706 switch (direction
) {
1710 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_VERIFY
);
1713 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_WRITE
);
1716 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_READ
);
1722 dma_mode_ok
= false;
1726 /* No access is allowed until DMA transfer has completed */
1727 fdctrl
->msr
&= ~FD_MSR_RQM
;
1728 if (direction
!= FD_DIR_VERIFY
) {
1729 /* Now, we just have to wait for the DMA controller to
1732 k
->hold_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1733 k
->schedule(fdctrl
->dma
);
1735 /* Start transfer */
1736 fdctrl_transfer_handler(fdctrl
, fdctrl
->dma_chann
, 0,
1741 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode
,
1745 FLOPPY_DPRINTF("start non-DMA transfer\n");
1746 fdctrl
->msr
|= FD_MSR_NONDMA
| FD_MSR_RQM
;
1747 if (direction
!= FD_DIR_WRITE
)
1748 fdctrl
->msr
|= FD_MSR_DIO
;
1749 /* IO based transfer: calculate len */
1750 fdctrl_raise_irq(fdctrl
);
1753 /* Prepare a transfer of deleted data */
1754 static void fdctrl_start_transfer_del(FDCtrl
*fdctrl
, int direction
)
1756 qemu_log_mask(LOG_UNIMP
, "fdctrl_start_transfer_del() unimplemented\n");
1758 /* We don't handle deleted data,
1759 * so we don't return *ANYTHING*
1761 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1764 /* handlers for DMA transfers */
1765 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
1766 int dma_pos
, int dma_len
)
1770 int len
, start_pos
, rel_pos
;
1771 uint8_t status0
= 0x00, status1
= 0x00, status2
= 0x00;
1775 if (fdctrl
->msr
& FD_MSR_RQM
) {
1776 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1779 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1780 cur_drv
= get_cur_drv(fdctrl
);
1781 if (fdctrl
->data_dir
== FD_DIR_SCANE
|| fdctrl
->data_dir
== FD_DIR_SCANL
||
1782 fdctrl
->data_dir
== FD_DIR_SCANH
)
1783 status2
= FD_SR2_SNS
;
1784 if (dma_len
> fdctrl
->data_len
)
1785 dma_len
= fdctrl
->data_len
;
1786 if (cur_drv
->blk
== NULL
) {
1787 if (fdctrl
->data_dir
== FD_DIR_WRITE
)
1788 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1790 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1792 goto transfer_error
;
1794 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1795 for (start_pos
= fdctrl
->data_pos
; fdctrl
->data_pos
< dma_len
;) {
1796 len
= dma_len
- fdctrl
->data_pos
;
1797 if (len
+ rel_pos
> FD_SECTOR_LEN
)
1798 len
= FD_SECTOR_LEN
- rel_pos
;
1799 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1800 "(%d-0x%08x 0x%08x)\n", len
, dma_len
, fdctrl
->data_pos
,
1801 fdctrl
->data_len
, GET_CUR_DRV(fdctrl
), cur_drv
->head
,
1802 cur_drv
->track
, cur_drv
->sect
, fd_sector(cur_drv
),
1803 fd_sector(cur_drv
) * FD_SECTOR_LEN
);
1804 if (fdctrl
->data_dir
!= FD_DIR_WRITE
||
1805 len
< FD_SECTOR_LEN
|| rel_pos
!= 0) {
1806 /* READ & SCAN commands and realign to a sector for WRITE */
1807 if (blk_pread(cur_drv
->blk
, fd_offset(cur_drv
),
1808 fdctrl
->fifo
, BDRV_SECTOR_SIZE
) < 0) {
1809 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1810 fd_sector(cur_drv
));
1811 /* Sure, image size is too small... */
1812 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1815 switch (fdctrl
->data_dir
) {
1818 k
->write_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1819 fdctrl
->data_pos
, len
);
1822 /* WRITE commands */
1824 /* Handle readonly medium early, no need to do DMA, touch the
1825 * LED or attempt any writes. A real floppy doesn't attempt
1826 * to write to readonly media either. */
1827 fdctrl_stop_transfer(fdctrl
,
1828 FD_SR0_ABNTERM
| FD_SR0_SEEK
, FD_SR1_NW
,
1830 goto transfer_error
;
1833 k
->read_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1834 fdctrl
->data_pos
, len
);
1835 if (blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
),
1836 fdctrl
->fifo
, BDRV_SECTOR_SIZE
, 0) < 0) {
1837 FLOPPY_DPRINTF("error writing sector %d\n",
1838 fd_sector(cur_drv
));
1839 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1840 goto transfer_error
;
1844 /* VERIFY commands */
1849 uint8_t tmpbuf
[FD_SECTOR_LEN
];
1851 k
->read_memory(fdctrl
->dma
, nchan
, tmpbuf
, fdctrl
->data_pos
,
1853 ret
= memcmp(tmpbuf
, fdctrl
->fifo
+ rel_pos
, len
);
1855 status2
= FD_SR2_SEH
;
1858 if ((ret
< 0 && fdctrl
->data_dir
== FD_DIR_SCANL
) ||
1859 (ret
> 0 && fdctrl
->data_dir
== FD_DIR_SCANH
)) {
1866 fdctrl
->data_pos
+= len
;
1867 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1869 /* Seek to next sector */
1870 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
))
1875 len
= fdctrl
->data_pos
- start_pos
;
1876 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1877 fdctrl
->data_pos
, len
, fdctrl
->data_len
);
1878 if (fdctrl
->data_dir
== FD_DIR_SCANE
||
1879 fdctrl
->data_dir
== FD_DIR_SCANL
||
1880 fdctrl
->data_dir
== FD_DIR_SCANH
)
1881 status2
= FD_SR2_SEH
;
1882 fdctrl
->data_len
-= len
;
1883 fdctrl_stop_transfer(fdctrl
, status0
, status1
, status2
);
1889 /* Data register : 0x05 */
1890 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
)
1893 uint32_t retval
= 0;
1896 cur_drv
= get_cur_drv(fdctrl
);
1897 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1898 if (!(fdctrl
->msr
& FD_MSR_RQM
) || !(fdctrl
->msr
& FD_MSR_DIO
)) {
1899 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1903 /* If data_len spans multiple sectors, the current position in the FIFO
1904 * wraps around while fdctrl->data_pos is the real position in the whole
1906 pos
= fdctrl
->data_pos
;
1907 pos
%= FD_SECTOR_LEN
;
1909 switch (fdctrl
->phase
) {
1910 case FD_PHASE_EXECUTION
:
1911 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
1913 if (fdctrl
->data_pos
!= 0)
1914 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
1915 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1916 fd_sector(cur_drv
));
1919 if (blk_pread(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
1922 FLOPPY_DPRINTF("error getting sector %d\n",
1923 fd_sector(cur_drv
));
1924 /* Sure, image size is too small... */
1925 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1929 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1930 fdctrl
->msr
&= ~FD_MSR_RQM
;
1931 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
1935 case FD_PHASE_RESULT
:
1936 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
1937 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1938 fdctrl
->msr
&= ~FD_MSR_RQM
;
1939 fdctrl_to_command_phase(fdctrl
);
1940 fdctrl_reset_irq(fdctrl
);
1944 case FD_PHASE_COMMAND
:
1949 retval
= fdctrl
->fifo
[pos
];
1950 FLOPPY_DPRINTF("data register: 0x%02x\n", retval
);
1955 static void fdctrl_format_sector(FDCtrl
*fdctrl
)
1960 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1961 cur_drv
= get_cur_drv(fdctrl
);
1962 kt
= fdctrl
->fifo
[6];
1963 kh
= fdctrl
->fifo
[7];
1964 ks
= fdctrl
->fifo
[8];
1965 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1966 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1967 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1968 NUM_SIDES(cur_drv
)));
1969 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1972 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1973 fdctrl
->fifo
[3] = kt
;
1974 fdctrl
->fifo
[4] = kh
;
1975 fdctrl
->fifo
[5] = ks
;
1979 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1980 fdctrl
->fifo
[3] = kt
;
1981 fdctrl
->fifo
[4] = kh
;
1982 fdctrl
->fifo
[5] = ks
;
1985 /* No seek enabled */
1986 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1987 fdctrl
->fifo
[3] = kt
;
1988 fdctrl
->fifo
[4] = kh
;
1989 fdctrl
->fifo
[5] = ks
;
1992 fdctrl
->status0
|= FD_SR0_SEEK
;
1997 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1998 if (cur_drv
->blk
== NULL
||
1999 blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
2000 BDRV_SECTOR_SIZE
, 0) < 0) {
2001 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv
));
2002 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
2004 if (cur_drv
->sect
== cur_drv
->last_sect
) {
2005 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
2006 /* Last sector done */
2007 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2010 fdctrl
->data_pos
= 0;
2011 fdctrl
->data_len
= 4;
2016 static void fdctrl_handle_lock(FDCtrl
*fdctrl
, int direction
)
2018 fdctrl
->lock
= (fdctrl
->fifo
[0] & 0x80) ? 1 : 0;
2019 fdctrl
->fifo
[0] = fdctrl
->lock
<< 4;
2020 fdctrl_to_result_phase(fdctrl
, 1);
2023 static void fdctrl_handle_dumpreg(FDCtrl
*fdctrl
, int direction
)
2025 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2027 /* Drives position */
2028 fdctrl
->fifo
[0] = drv0(fdctrl
)->track
;
2029 fdctrl
->fifo
[1] = drv1(fdctrl
)->track
;
2031 fdctrl
->fifo
[2] = drv2(fdctrl
)->track
;
2032 fdctrl
->fifo
[3] = drv3(fdctrl
)->track
;
2034 fdctrl
->fifo
[2] = 0;
2035 fdctrl
->fifo
[3] = 0;
2038 fdctrl
->fifo
[4] = fdctrl
->timer0
;
2039 fdctrl
->fifo
[5] = (fdctrl
->timer1
<< 1) | (fdctrl
->dor
& FD_DOR_DMAEN
? 1 : 0);
2040 fdctrl
->fifo
[6] = cur_drv
->last_sect
;
2041 fdctrl
->fifo
[7] = (fdctrl
->lock
<< 7) |
2042 (cur_drv
->perpendicular
<< 2);
2043 fdctrl
->fifo
[8] = fdctrl
->config
;
2044 fdctrl
->fifo
[9] = fdctrl
->precomp_trk
;
2045 fdctrl_to_result_phase(fdctrl
, 10);
2048 static void fdctrl_handle_version(FDCtrl
*fdctrl
, int direction
)
2050 /* Controller's version */
2051 fdctrl
->fifo
[0] = fdctrl
->version
;
2052 fdctrl_to_result_phase(fdctrl
, 1);
2055 static void fdctrl_handle_partid(FDCtrl
*fdctrl
, int direction
)
2057 fdctrl
->fifo
[0] = 0x41; /* Stepping 1 */
2058 fdctrl_to_result_phase(fdctrl
, 1);
2061 static void fdctrl_handle_restore(FDCtrl
*fdctrl
, int direction
)
2063 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2065 /* Drives position */
2066 drv0(fdctrl
)->track
= fdctrl
->fifo
[3];
2067 drv1(fdctrl
)->track
= fdctrl
->fifo
[4];
2069 drv2(fdctrl
)->track
= fdctrl
->fifo
[5];
2070 drv3(fdctrl
)->track
= fdctrl
->fifo
[6];
2073 fdctrl
->timer0
= fdctrl
->fifo
[7];
2074 fdctrl
->timer1
= fdctrl
->fifo
[8];
2075 cur_drv
->last_sect
= fdctrl
->fifo
[9];
2076 fdctrl
->lock
= fdctrl
->fifo
[10] >> 7;
2077 cur_drv
->perpendicular
= (fdctrl
->fifo
[10] >> 2) & 0xF;
2078 fdctrl
->config
= fdctrl
->fifo
[11];
2079 fdctrl
->precomp_trk
= fdctrl
->fifo
[12];
2080 fdctrl
->pwrd
= fdctrl
->fifo
[13];
2081 fdctrl_to_command_phase(fdctrl
);
2084 static void fdctrl_handle_save(FDCtrl
*fdctrl
, int direction
)
2086 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2088 fdctrl
->fifo
[0] = 0;
2089 fdctrl
->fifo
[1] = 0;
2090 /* Drives position */
2091 fdctrl
->fifo
[2] = drv0(fdctrl
)->track
;
2092 fdctrl
->fifo
[3] = drv1(fdctrl
)->track
;
2094 fdctrl
->fifo
[4] = drv2(fdctrl
)->track
;
2095 fdctrl
->fifo
[5] = drv3(fdctrl
)->track
;
2097 fdctrl
->fifo
[4] = 0;
2098 fdctrl
->fifo
[5] = 0;
2101 fdctrl
->fifo
[6] = fdctrl
->timer0
;
2102 fdctrl
->fifo
[7] = fdctrl
->timer1
;
2103 fdctrl
->fifo
[8] = cur_drv
->last_sect
;
2104 fdctrl
->fifo
[9] = (fdctrl
->lock
<< 7) |
2105 (cur_drv
->perpendicular
<< 2);
2106 fdctrl
->fifo
[10] = fdctrl
->config
;
2107 fdctrl
->fifo
[11] = fdctrl
->precomp_trk
;
2108 fdctrl
->fifo
[12] = fdctrl
->pwrd
;
2109 fdctrl
->fifo
[13] = 0;
2110 fdctrl
->fifo
[14] = 0;
2111 fdctrl_to_result_phase(fdctrl
, 15);
2114 static void fdctrl_handle_readid(FDCtrl
*fdctrl
, int direction
)
2116 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2118 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
2119 timer_mod(fdctrl
->result_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
2120 (NANOSECONDS_PER_SECOND
/ 50));
2123 static void fdctrl_handle_format_track(FDCtrl
*fdctrl
, int direction
)
2127 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2128 cur_drv
= get_cur_drv(fdctrl
);
2129 fdctrl
->data_state
|= FD_STATE_FORMAT
;
2130 if (fdctrl
->fifo
[0] & 0x80)
2131 fdctrl
->data_state
|= FD_STATE_MULTI
;
2133 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
2135 fdctrl
->fifo
[2] > 7 ? 16384 : 128 << fdctrl
->fifo
[2];
2137 cur_drv
->last_sect
=
2138 cur_drv
->flags
& FDISK_DBL_SIDES
? fdctrl
->fifo
[3] :
2139 fdctrl
->fifo
[3] / 2;
2141 cur_drv
->last_sect
= fdctrl
->fifo
[3];
2143 /* TODO: implement format using DMA expected by the Bochs BIOS
2144 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2145 * the sector with the specified fill byte
2147 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
2148 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2151 static void fdctrl_handle_specify(FDCtrl
*fdctrl
, int direction
)
2153 fdctrl
->timer0
= (fdctrl
->fifo
[1] >> 4) & 0xF;
2154 fdctrl
->timer1
= fdctrl
->fifo
[2] >> 1;
2155 if (fdctrl
->fifo
[2] & 1)
2156 fdctrl
->dor
&= ~FD_DOR_DMAEN
;
2158 fdctrl
->dor
|= FD_DOR_DMAEN
;
2159 /* No result back */
2160 fdctrl_to_command_phase(fdctrl
);
2163 static void fdctrl_handle_sense_drive_status(FDCtrl
*fdctrl
, int direction
)
2167 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2168 cur_drv
= get_cur_drv(fdctrl
);
2169 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
2170 /* 1 Byte status back */
2171 fdctrl
->fifo
[0] = (cur_drv
->ro
<< 6) |
2172 (cur_drv
->track
== 0 ? 0x10 : 0x00) |
2173 (cur_drv
->head
<< 2) |
2174 GET_CUR_DRV(fdctrl
) |
2176 fdctrl_to_result_phase(fdctrl
, 1);
2179 static void fdctrl_handle_recalibrate(FDCtrl
*fdctrl
, int direction
)
2183 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2184 cur_drv
= get_cur_drv(fdctrl
);
2185 fd_recalibrate(cur_drv
);
2186 fdctrl_to_command_phase(fdctrl
);
2187 /* Raise Interrupt */
2188 fdctrl
->status0
|= FD_SR0_SEEK
;
2189 fdctrl_raise_irq(fdctrl
);
2192 static void fdctrl_handle_sense_interrupt_status(FDCtrl
*fdctrl
, int direction
)
2194 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2196 if (fdctrl
->reset_sensei
> 0) {
2198 FD_SR0_RDYCHG
+ FD_RESET_SENSEI_COUNT
- fdctrl
->reset_sensei
;
2199 fdctrl
->reset_sensei
--;
2200 } else if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
2201 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
2202 fdctrl_to_result_phase(fdctrl
, 1);
2206 (fdctrl
->status0
& ~(FD_SR0_HEAD
| FD_SR0_DS1
| FD_SR0_DS0
))
2207 | GET_CUR_DRV(fdctrl
);
2210 fdctrl
->fifo
[1] = cur_drv
->track
;
2211 fdctrl_to_result_phase(fdctrl
, 2);
2212 fdctrl_reset_irq(fdctrl
);
2213 fdctrl
->status0
= FD_SR0_RDYCHG
;
2216 static void fdctrl_handle_seek(FDCtrl
*fdctrl
, int direction
)
2220 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2221 cur_drv
= get_cur_drv(fdctrl
);
2222 fdctrl_to_command_phase(fdctrl
);
2223 /* The seek command just sends step pulses to the drive and doesn't care if
2224 * there is a medium inserted of if it's banging the head against the drive.
2226 fd_seek(cur_drv
, cur_drv
->head
, fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2227 /* Raise Interrupt */
2228 fdctrl
->status0
|= FD_SR0_SEEK
;
2229 fdctrl_raise_irq(fdctrl
);
2232 static void fdctrl_handle_perpendicular_mode(FDCtrl
*fdctrl
, int direction
)
2234 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2236 if (fdctrl
->fifo
[1] & 0x80)
2237 cur_drv
->perpendicular
= fdctrl
->fifo
[1] & 0x7;
2238 /* No result back */
2239 fdctrl_to_command_phase(fdctrl
);
2242 static void fdctrl_handle_configure(FDCtrl
*fdctrl
, int direction
)
2244 fdctrl
->config
= fdctrl
->fifo
[2];
2245 fdctrl
->precomp_trk
= fdctrl
->fifo
[3];
2246 /* No result back */
2247 fdctrl_to_command_phase(fdctrl
);
2250 static void fdctrl_handle_powerdown_mode(FDCtrl
*fdctrl
, int direction
)
2252 fdctrl
->pwrd
= fdctrl
->fifo
[1];
2253 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2254 fdctrl_to_result_phase(fdctrl
, 1);
2257 static void fdctrl_handle_option(FDCtrl
*fdctrl
, int direction
)
2259 /* No result back */
2260 fdctrl_to_command_phase(fdctrl
);
2263 static void fdctrl_handle_drive_specification_command(FDCtrl
*fdctrl
, int direction
)
2265 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2268 pos
= fdctrl
->data_pos
- 1;
2269 pos
%= FD_SECTOR_LEN
;
2270 if (fdctrl
->fifo
[pos
] & 0x80) {
2271 /* Command parameters done */
2272 if (fdctrl
->fifo
[pos
] & 0x40) {
2273 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2274 fdctrl
->fifo
[2] = 0;
2275 fdctrl
->fifo
[3] = 0;
2276 fdctrl_to_result_phase(fdctrl
, 4);
2278 fdctrl_to_command_phase(fdctrl
);
2280 } else if (fdctrl
->data_len
> 7) {
2282 fdctrl
->fifo
[0] = 0x80 |
2283 (cur_drv
->head
<< 2) | GET_CUR_DRV(fdctrl
);
2284 fdctrl_to_result_phase(fdctrl
, 1);
2288 static void fdctrl_handle_relative_seek_in(FDCtrl
*fdctrl
, int direction
)
2292 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2293 cur_drv
= get_cur_drv(fdctrl
);
2294 if (fdctrl
->fifo
[2] + cur_drv
->track
>= cur_drv
->max_track
) {
2295 fd_seek(cur_drv
, cur_drv
->head
, cur_drv
->max_track
- 1,
2298 fd_seek(cur_drv
, cur_drv
->head
,
2299 cur_drv
->track
+ fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2301 fdctrl_to_command_phase(fdctrl
);
2302 /* Raise Interrupt */
2303 fdctrl
->status0
|= FD_SR0_SEEK
;
2304 fdctrl_raise_irq(fdctrl
);
2307 static void fdctrl_handle_relative_seek_out(FDCtrl
*fdctrl
, int direction
)
2311 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2312 cur_drv
= get_cur_drv(fdctrl
);
2313 if (fdctrl
->fifo
[2] > cur_drv
->track
) {
2314 fd_seek(cur_drv
, cur_drv
->head
, 0, cur_drv
->sect
, 1);
2316 fd_seek(cur_drv
, cur_drv
->head
,
2317 cur_drv
->track
- fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2319 fdctrl_to_command_phase(fdctrl
);
2320 /* Raise Interrupt */
2321 fdctrl
->status0
|= FD_SR0_SEEK
;
2322 fdctrl_raise_irq(fdctrl
);
2326 * Handlers for the execution phase of each command
2328 typedef struct FDCtrlCommand
{
2333 void (*handler
)(FDCtrl
*fdctrl
, int direction
);
2337 static const FDCtrlCommand handlers
[] = {
2338 { FD_CMD_READ
, 0x1f, "READ", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2339 { FD_CMD_WRITE
, 0x3f, "WRITE", 8, fdctrl_start_transfer
, FD_DIR_WRITE
},
2340 { FD_CMD_SEEK
, 0xff, "SEEK", 2, fdctrl_handle_seek
},
2341 { FD_CMD_SENSE_INTERRUPT_STATUS
, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status
},
2342 { FD_CMD_RECALIBRATE
, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate
},
2343 { FD_CMD_FORMAT_TRACK
, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track
},
2344 { FD_CMD_READ_TRACK
, 0xbf, "READ TRACK", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2345 { FD_CMD_RESTORE
, 0xff, "RESTORE", 17, fdctrl_handle_restore
}, /* part of READ DELETED DATA */
2346 { FD_CMD_SAVE
, 0xff, "SAVE", 0, fdctrl_handle_save
}, /* part of READ DELETED DATA */
2347 { FD_CMD_READ_DELETED
, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_READ
},
2348 { FD_CMD_SCAN_EQUAL
, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANE
},
2349 { FD_CMD_VERIFY
, 0x1f, "VERIFY", 8, fdctrl_start_transfer
, FD_DIR_VERIFY
},
2350 { FD_CMD_SCAN_LOW_OR_EQUAL
, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANL
},
2351 { FD_CMD_SCAN_HIGH_OR_EQUAL
, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANH
},
2352 { FD_CMD_WRITE_DELETED
, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_WRITE
},
2353 { FD_CMD_READ_ID
, 0xbf, "READ ID", 1, fdctrl_handle_readid
},
2354 { FD_CMD_SPECIFY
, 0xff, "SPECIFY", 2, fdctrl_handle_specify
},
2355 { FD_CMD_SENSE_DRIVE_STATUS
, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status
},
2356 { FD_CMD_PERPENDICULAR_MODE
, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode
},
2357 { FD_CMD_CONFIGURE
, 0xff, "CONFIGURE", 3, fdctrl_handle_configure
},
2358 { FD_CMD_POWERDOWN_MODE
, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode
},
2359 { FD_CMD_OPTION
, 0xff, "OPTION", 1, fdctrl_handle_option
},
2360 { FD_CMD_DRIVE_SPECIFICATION_COMMAND
, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command
},
2361 { FD_CMD_RELATIVE_SEEK_OUT
, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out
},
2362 { FD_CMD_FORMAT_AND_WRITE
, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented
},
2363 { FD_CMD_RELATIVE_SEEK_IN
, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in
},
2364 { FD_CMD_LOCK
, 0x7f, "LOCK", 0, fdctrl_handle_lock
},
2365 { FD_CMD_DUMPREG
, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg
},
2366 { FD_CMD_VERSION
, 0xff, "VERSION", 0, fdctrl_handle_version
},
2367 { FD_CMD_PART_ID
, 0xff, "PART ID", 0, fdctrl_handle_partid
},
2368 { FD_CMD_WRITE
, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer
, FD_DIR_WRITE
}, /* not in specification ; BeOS 4.5 bug */
2369 { 0, 0, "unknown", 0, fdctrl_unimplemented
}, /* default handler */
2371 /* Associate command to an index in the 'handlers' array */
2372 static uint8_t command_to_handler
[256];
2374 static const FDCtrlCommand
*get_command(uint8_t cmd
)
2378 idx
= command_to_handler
[cmd
];
2379 FLOPPY_DPRINTF("%s command\n", handlers
[idx
].name
);
2380 return &handlers
[idx
];
2383 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
)
2386 const FDCtrlCommand
*cmd
;
2390 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
2391 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2394 if (!(fdctrl
->msr
& FD_MSR_RQM
) || (fdctrl
->msr
& FD_MSR_DIO
)) {
2395 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2398 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
2400 FLOPPY_DPRINTF("%s: %02x\n", __func__
, value
);
2402 /* If data_len spans multiple sectors, the current position in the FIFO
2403 * wraps around while fdctrl->data_pos is the real position in the whole
2405 pos
= fdctrl
->data_pos
++;
2406 pos
%= FD_SECTOR_LEN
;
2407 fdctrl
->fifo
[pos
] = value
;
2409 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2410 fdctrl
->msr
&= ~FD_MSR_RQM
;
2413 switch (fdctrl
->phase
) {
2414 case FD_PHASE_EXECUTION
:
2415 /* For DMA requests, RQM should be cleared during execution phase, so
2416 * we would have errored out above. */
2417 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
2419 /* FIFO data write */
2420 if (pos
== FD_SECTOR_LEN
- 1 ||
2421 fdctrl
->data_pos
== fdctrl
->data_len
) {
2422 cur_drv
= get_cur_drv(fdctrl
);
2423 if (blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
2424 BDRV_SECTOR_SIZE
, 0) < 0) {
2425 FLOPPY_DPRINTF("error writing sector %d\n",
2426 fd_sector(cur_drv
));
2429 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
2430 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2431 fd_sector(cur_drv
));
2436 /* Switch to result phase when done with the transfer */
2437 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2438 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2442 case FD_PHASE_COMMAND
:
2443 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
2444 assert(fdctrl
->data_pos
< FD_SECTOR_LEN
);
2447 /* The first byte specifies the command. Now we start reading
2448 * as many parameters as this command requires. */
2449 cmd
= get_command(value
);
2450 fdctrl
->data_len
= cmd
->parameters
+ 1;
2451 if (cmd
->parameters
) {
2452 fdctrl
->msr
|= FD_MSR_RQM
;
2454 fdctrl
->msr
|= FD_MSR_CMDBUSY
;
2457 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2458 /* We have all parameters now, execute the command */
2459 fdctrl
->phase
= FD_PHASE_EXECUTION
;
2461 if (fdctrl
->data_state
& FD_STATE_FORMAT
) {
2462 fdctrl_format_sector(fdctrl
);
2466 cmd
= get_command(fdctrl
->fifo
[0]);
2467 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd
->name
);
2468 cmd
->handler(fdctrl
, cmd
->direction
);
2472 case FD_PHASE_RESULT
:
2478 static void fdctrl_result_timer(void *opaque
)
2480 FDCtrl
*fdctrl
= opaque
;
2481 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2483 /* Pretend we are spinning.
2484 * This is needed for Coherent, which uses READ ID to check for
2485 * sector interleaving.
2487 if (cur_drv
->last_sect
!= 0) {
2488 cur_drv
->sect
= (cur_drv
->sect
% cur_drv
->last_sect
) + 1;
2490 /* READ_ID can't automatically succeed! */
2491 if (fdctrl
->check_media_rate
&&
2492 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
2493 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2494 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
2495 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
2497 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2501 /* Init functions */
2502 static void fdctrl_connect_drives(FDCtrl
*fdctrl
, Error
**errp
,
2503 DeviceState
*fdc_dev
)
2509 Error
*local_err
= NULL
;
2511 for (i
= 0; i
< MAX_FD
; i
++) {
2512 drive
= &fdctrl
->drives
[i
];
2513 drive
->fdctrl
= fdctrl
;
2515 /* If the drive is not present, we skip creating the qdev device, but
2516 * still have to initialise the controller. */
2517 blk
= fdctrl
->qdev_for_drives
[i
].blk
;
2520 fd_revalidate(drive
);
2524 dev
= qdev_create(&fdctrl
->bus
.bus
, "floppy");
2525 qdev_prop_set_uint32(dev
, "unit", i
);
2526 qdev_prop_set_enum(dev
, "drive-type", fdctrl
->qdev_for_drives
[i
].type
);
2529 blk_detach_dev(blk
, fdc_dev
);
2530 fdctrl
->qdev_for_drives
[i
].blk
= NULL
;
2531 qdev_prop_set_drive(dev
, "drive", blk
, &local_err
);
2535 error_propagate(errp
, local_err
);
2539 object_property_set_bool(OBJECT(dev
), true, "realized", &local_err
);
2541 error_propagate(errp
, local_err
);
2547 ISADevice
*fdctrl_init_isa(ISABus
*bus
, DriveInfo
**fds
)
2552 isadev
= isa_try_create(bus
, TYPE_ISA_FDC
);
2556 dev
= DEVICE(isadev
);
2559 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2563 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2566 qdev_init_nofail(dev
);
2571 void fdctrl_init_sysbus(qemu_irq irq
, int dma_chann
,
2572 hwaddr mmio_base
, DriveInfo
**fds
)
2579 dev
= qdev_create(NULL
, "sysbus-fdc");
2580 sys
= SYSBUS_FDC(dev
);
2581 fdctrl
= &sys
->state
;
2582 fdctrl
->dma_chann
= dma_chann
; /* FIXME */
2584 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2588 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2591 qdev_init_nofail(dev
);
2592 sbd
= SYS_BUS_DEVICE(dev
);
2593 sysbus_connect_irq(sbd
, 0, irq
);
2594 sysbus_mmio_map(sbd
, 0, mmio_base
);
2597 void sun4m_fdctrl_init(qemu_irq irq
, hwaddr io_base
,
2598 DriveInfo
**fds
, qemu_irq
*fdc_tc
)
2603 dev
= qdev_create(NULL
, "SUNW,fdtwo");
2605 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(fds
[0]),
2608 qdev_init_nofail(dev
);
2609 sys
= SYSBUS_FDC(dev
);
2610 sysbus_connect_irq(SYS_BUS_DEVICE(sys
), 0, irq
);
2611 sysbus_mmio_map(SYS_BUS_DEVICE(sys
), 0, io_base
);
2612 *fdc_tc
= qdev_get_gpio_in(dev
, 0);
2615 static void fdctrl_realize_common(DeviceState
*dev
, FDCtrl
*fdctrl
,
2619 static int command_tables_inited
= 0;
2621 if (fdctrl
->fallback
== FLOPPY_DRIVE_TYPE_AUTO
) {
2622 error_setg(errp
, "Cannot choose a fallback FDrive type of 'auto'");
2625 /* Fill 'command_to_handler' lookup table */
2626 if (!command_tables_inited
) {
2627 command_tables_inited
= 1;
2628 for (i
= ARRAY_SIZE(handlers
) - 1; i
>= 0; i
--) {
2629 for (j
= 0; j
< sizeof(command_to_handler
); j
++) {
2630 if ((j
& handlers
[i
].mask
) == handlers
[i
].value
) {
2631 command_to_handler
[j
] = i
;
2637 FLOPPY_DPRINTF("init controller\n");
2638 fdctrl
->fifo
= qemu_memalign(512, FD_SECTOR_LEN
);
2639 fdctrl
->fifo_size
= 512;
2640 fdctrl
->result_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
2641 fdctrl_result_timer
, fdctrl
);
2643 fdctrl
->version
= 0x90; /* Intel 82078 controller */
2644 fdctrl
->config
= FD_CONFIG_EIS
| FD_CONFIG_EFIFO
; /* Implicit seek, polling & FIFO enabled */
2645 fdctrl
->num_floppies
= MAX_FD
;
2647 if (fdctrl
->dma_chann
!= -1) {
2649 assert(fdctrl
->dma
);
2650 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
2651 k
->register_channel(fdctrl
->dma
, fdctrl
->dma_chann
,
2652 &fdctrl_transfer_handler
, fdctrl
);
2655 floppy_bus_create(fdctrl
, &fdctrl
->bus
, dev
);
2656 fdctrl_connect_drives(fdctrl
, errp
, dev
);
2659 static const MemoryRegionPortio fdc_portio_list
[] = {
2660 { 1, 5, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2661 { 7, 1, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2662 PORTIO_END_OF_LIST(),
2665 static void isabus_fdc_realize(DeviceState
*dev
, Error
**errp
)
2667 ISADevice
*isadev
= ISA_DEVICE(dev
);
2668 FDCtrlISABus
*isa
= ISA_FDC(dev
);
2669 FDCtrl
*fdctrl
= &isa
->state
;
2672 isa_register_portio_list(isadev
, &fdctrl
->portio_list
,
2673 isa
->iobase
, fdc_portio_list
, fdctrl
,
2676 isa_init_irq(isadev
, &fdctrl
->irq
, isa
->irq
);
2677 fdctrl
->dma_chann
= isa
->dma
;
2678 if (fdctrl
->dma_chann
!= -1) {
2679 fdctrl
->dma
= isa_get_dma(isa_bus_from_device(isadev
), isa
->dma
);
2680 assert(fdctrl
->dma
);
2683 qdev_set_legacy_instance_id(dev
, isa
->iobase
, 2);
2684 fdctrl_realize_common(dev
, fdctrl
, &err
);
2686 error_propagate(errp
, err
);
2691 static void sysbus_fdc_initfn(Object
*obj
)
2693 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2694 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2695 FDCtrl
*fdctrl
= &sys
->state
;
2697 fdctrl
->dma_chann
= -1;
2699 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_ops
, fdctrl
,
2701 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2704 static void sun4m_fdc_initfn(Object
*obj
)
2706 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2707 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2708 FDCtrl
*fdctrl
= &sys
->state
;
2710 fdctrl
->dma_chann
= -1;
2712 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_strict_ops
,
2713 fdctrl
, "fdctrl", 0x08);
2714 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2717 static void sysbus_fdc_common_initfn(Object
*obj
)
2719 DeviceState
*dev
= DEVICE(obj
);
2720 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
2721 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2722 FDCtrl
*fdctrl
= &sys
->state
;
2724 qdev_set_legacy_instance_id(dev
, 0 /* io */, 2); /* FIXME */
2726 sysbus_init_irq(sbd
, &fdctrl
->irq
);
2727 qdev_init_gpio_in(dev
, fdctrl_handle_tc
, 1);
2730 static void sysbus_fdc_common_realize(DeviceState
*dev
, Error
**errp
)
2732 FDCtrlSysBus
*sys
= SYSBUS_FDC(dev
);
2733 FDCtrl
*fdctrl
= &sys
->state
;
2735 fdctrl_realize_common(dev
, fdctrl
, errp
);
2738 FloppyDriveType
isa_fdc_get_drive_type(ISADevice
*fdc
, int i
)
2740 FDCtrlISABus
*isa
= ISA_FDC(fdc
);
2742 return isa
->state
.drives
[i
].drive
;
2745 void isa_fdc_get_drive_max_chs(FloppyDriveType type
,
2746 uint8_t *maxc
, uint8_t *maxh
, uint8_t *maxs
)
2748 const FDFormat
*fdf
;
2750 *maxc
= *maxh
= *maxs
= 0;
2751 for (fdf
= fd_formats
; fdf
->drive
!= FLOPPY_DRIVE_TYPE_NONE
; fdf
++) {
2752 if (fdf
->drive
!= type
) {
2755 if (*maxc
< fdf
->max_track
) {
2756 *maxc
= fdf
->max_track
;
2758 if (*maxh
< fdf
->max_head
) {
2759 *maxh
= fdf
->max_head
;
2761 if (*maxs
< fdf
->last_sect
) {
2762 *maxs
= fdf
->last_sect
;
2768 static const VMStateDescription vmstate_isa_fdc
={
2771 .minimum_version_id
= 2,
2772 .fields
= (VMStateField
[]) {
2773 VMSTATE_STRUCT(state
, FDCtrlISABus
, 0, vmstate_fdc
, FDCtrl
),
2774 VMSTATE_END_OF_LIST()
2778 static Property isa_fdc_properties
[] = {
2779 DEFINE_PROP_UINT32("iobase", FDCtrlISABus
, iobase
, 0x3f0),
2780 DEFINE_PROP_UINT32("irq", FDCtrlISABus
, irq
, 6),
2781 DEFINE_PROP_UINT32("dma", FDCtrlISABus
, dma
, 2),
2782 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus
, state
.qdev_for_drives
[0].blk
),
2783 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus
, state
.qdev_for_drives
[1].blk
),
2784 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus
, state
.check_media_rate
,
2786 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus
, state
.qdev_for_drives
[0].type
,
2787 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2789 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus
, state
.qdev_for_drives
[1].type
,
2790 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2792 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus
, state
.fallback
,
2793 FLOPPY_DRIVE_TYPE_288
, qdev_prop_fdc_drive_type
,
2795 DEFINE_PROP_END_OF_LIST(),
2798 static void isabus_fdc_class_init(ObjectClass
*klass
, void *data
)
2800 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2802 dc
->realize
= isabus_fdc_realize
;
2803 dc
->fw_name
= "fdc";
2804 dc
->reset
= fdctrl_external_reset_isa
;
2805 dc
->vmsd
= &vmstate_isa_fdc
;
2806 dc
->props
= isa_fdc_properties
;
2807 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2810 static void isabus_fdc_instance_init(Object
*obj
)
2812 FDCtrlISABus
*isa
= ISA_FDC(obj
);
2814 device_add_bootindex_property(obj
, &isa
->bootindexA
,
2815 "bootindexA", "/floppy@0",
2817 device_add_bootindex_property(obj
, &isa
->bootindexB
,
2818 "bootindexB", "/floppy@1",
2822 static const TypeInfo isa_fdc_info
= {
2823 .name
= TYPE_ISA_FDC
,
2824 .parent
= TYPE_ISA_DEVICE
,
2825 .instance_size
= sizeof(FDCtrlISABus
),
2826 .class_init
= isabus_fdc_class_init
,
2827 .instance_init
= isabus_fdc_instance_init
,
2830 static const VMStateDescription vmstate_sysbus_fdc
={
2833 .minimum_version_id
= 2,
2834 .fields
= (VMStateField
[]) {
2835 VMSTATE_STRUCT(state
, FDCtrlSysBus
, 0, vmstate_fdc
, FDCtrl
),
2836 VMSTATE_END_OF_LIST()
2840 static Property sysbus_fdc_properties
[] = {
2841 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus
, state
.qdev_for_drives
[0].blk
),
2842 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus
, state
.qdev_for_drives
[1].blk
),
2843 DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus
, state
.qdev_for_drives
[0].type
,
2844 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2846 DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus
, state
.qdev_for_drives
[1].type
,
2847 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2849 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus
, state
.fallback
,
2850 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2852 DEFINE_PROP_END_OF_LIST(),
2855 static void sysbus_fdc_class_init(ObjectClass
*klass
, void *data
)
2857 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2859 dc
->props
= sysbus_fdc_properties
;
2860 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2863 static const TypeInfo sysbus_fdc_info
= {
2864 .name
= "sysbus-fdc",
2865 .parent
= TYPE_SYSBUS_FDC
,
2866 .instance_init
= sysbus_fdc_initfn
,
2867 .class_init
= sysbus_fdc_class_init
,
2870 static Property sun4m_fdc_properties
[] = {
2871 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus
, state
.qdev_for_drives
[0].blk
),
2872 DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus
, state
.qdev_for_drives
[0].type
,
2873 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2875 DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus
, state
.fallback
,
2876 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2878 DEFINE_PROP_END_OF_LIST(),
2881 static void sun4m_fdc_class_init(ObjectClass
*klass
, void *data
)
2883 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2885 dc
->props
= sun4m_fdc_properties
;
2886 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2889 static const TypeInfo sun4m_fdc_info
= {
2890 .name
= "SUNW,fdtwo",
2891 .parent
= TYPE_SYSBUS_FDC
,
2892 .instance_init
= sun4m_fdc_initfn
,
2893 .class_init
= sun4m_fdc_class_init
,
2896 static void sysbus_fdc_common_class_init(ObjectClass
*klass
, void *data
)
2898 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2900 dc
->realize
= sysbus_fdc_common_realize
;
2901 dc
->reset
= fdctrl_external_reset_sysbus
;
2902 dc
->vmsd
= &vmstate_sysbus_fdc
;
2905 static const TypeInfo sysbus_fdc_type_info
= {
2906 .name
= TYPE_SYSBUS_FDC
,
2907 .parent
= TYPE_SYS_BUS_DEVICE
,
2908 .instance_size
= sizeof(FDCtrlSysBus
),
2909 .instance_init
= sysbus_fdc_common_initfn
,
2911 .class_init
= sysbus_fdc_common_class_init
,
2914 static void fdc_register_types(void)
2916 type_register_static(&isa_fdc_info
);
2917 type_register_static(&sysbus_fdc_type_info
);
2918 type_register_static(&sysbus_fdc_info
);
2919 type_register_static(&sun4m_fdc_info
);
2920 type_register_static(&floppy_bus_info
);
2921 type_register_static(&floppy_drive_info
);
2924 type_init(fdc_register_types
)