s390/ipl: fix off-by-one in update_machine_ipl_properties()
[qemu/ar7.git] / target / arm / helper.c
blobd2ec2c53510f0ec514e3529b66cf2527841b9a98
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/tcg.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #endif
38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
40 #ifndef CONFIG_USER_ONLY
42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
43 MMUAccessType access_type, ARMMMUIdx mmu_idx,
44 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
45 target_ulong *page_size_ptr,
46 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
47 #endif
49 static void switch_mode(CPUARMState *env, int mode);
51 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
53 ARMCPU *cpu = env_archcpu(env);
54 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
56 /* VFP data registers are always little-endian. */
57 if (reg < nregs) {
58 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
60 if (arm_feature(env, ARM_FEATURE_NEON)) {
61 /* Aliases for Q regs. */
62 nregs += 16;
63 if (reg < nregs) {
64 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
65 return gdb_get_reg128(buf, q[0], q[1]);
68 switch (reg - nregs) {
69 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
70 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
71 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
73 return 0;
76 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
78 ARMCPU *cpu = env_archcpu(env);
79 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
81 if (reg < nregs) {
82 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
83 return 8;
85 if (arm_feature(env, ARM_FEATURE_NEON)) {
86 nregs += 16;
87 if (reg < nregs) {
88 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
89 q[0] = ldq_le_p(buf);
90 q[1] = ldq_le_p(buf + 8);
91 return 16;
94 switch (reg - nregs) {
95 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
96 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
97 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
99 return 0;
102 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
104 switch (reg) {
105 case 0 ... 31:
107 /* 128 bit FP register - quads are in LE order */
108 uint64_t *q = aa64_vfp_qreg(env, reg);
109 return gdb_get_reg128(buf, q[1], q[0]);
111 case 32:
112 /* FPSR */
113 return gdb_get_reg32(buf, vfp_get_fpsr(env));
114 case 33:
115 /* FPCR */
116 return gdb_get_reg32(buf,vfp_get_fpcr(env));
117 default:
118 return 0;
122 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
124 switch (reg) {
125 case 0 ... 31:
126 /* 128 bit FP register */
128 uint64_t *q = aa64_vfp_qreg(env, reg);
129 q[0] = ldq_le_p(buf);
130 q[1] = ldq_le_p(buf + 8);
131 return 16;
133 case 32:
134 /* FPSR */
135 vfp_set_fpsr(env, ldl_p(buf));
136 return 4;
137 case 33:
138 /* FPCR */
139 vfp_set_fpcr(env, ldl_p(buf));
140 return 4;
141 default:
142 return 0;
146 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
148 assert(ri->fieldoffset);
149 if (cpreg_field_is_64bit(ri)) {
150 return CPREG_FIELD64(env, ri);
151 } else {
152 return CPREG_FIELD32(env, ri);
156 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
157 uint64_t value)
159 assert(ri->fieldoffset);
160 if (cpreg_field_is_64bit(ri)) {
161 CPREG_FIELD64(env, ri) = value;
162 } else {
163 CPREG_FIELD32(env, ri) = value;
167 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
169 return (char *)env + ri->fieldoffset;
172 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
174 /* Raw read of a coprocessor register (as needed for migration, etc). */
175 if (ri->type & ARM_CP_CONST) {
176 return ri->resetvalue;
177 } else if (ri->raw_readfn) {
178 return ri->raw_readfn(env, ri);
179 } else if (ri->readfn) {
180 return ri->readfn(env, ri);
181 } else {
182 return raw_read(env, ri);
186 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
187 uint64_t v)
189 /* Raw write of a coprocessor register (as needed for migration, etc).
190 * Note that constant registers are treated as write-ignored; the
191 * caller should check for success by whether a readback gives the
192 * value written.
194 if (ri->type & ARM_CP_CONST) {
195 return;
196 } else if (ri->raw_writefn) {
197 ri->raw_writefn(env, ri, v);
198 } else if (ri->writefn) {
199 ri->writefn(env, ri, v);
200 } else {
201 raw_write(env, ri, v);
206 * arm_get/set_gdb_*: get/set a gdb register
207 * @env: the CPU state
208 * @buf: a buffer to copy to/from
209 * @reg: register number (offset from start of group)
211 * We return the number of bytes copied
214 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
216 ARMCPU *cpu = env_archcpu(env);
217 const ARMCPRegInfo *ri;
218 uint32_t key;
220 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
221 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
222 if (ri) {
223 if (cpreg_field_is_64bit(ri)) {
224 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
225 } else {
226 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
229 return 0;
232 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
234 return 0;
237 #ifdef TARGET_AARCH64
238 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
240 ARMCPU *cpu = env_archcpu(env);
242 switch (reg) {
243 /* The first 32 registers are the zregs */
244 case 0 ... 31:
246 int vq, len = 0;
247 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
248 len += gdb_get_reg128(buf,
249 env->vfp.zregs[reg].d[vq * 2 + 1],
250 env->vfp.zregs[reg].d[vq * 2]);
252 return len;
254 case 32:
255 return gdb_get_reg32(buf, vfp_get_fpsr(env));
256 case 33:
257 return gdb_get_reg32(buf, vfp_get_fpcr(env));
258 /* then 16 predicates and the ffr */
259 case 34 ... 50:
261 int preg = reg - 34;
262 int vq, len = 0;
263 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
264 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
266 return len;
268 case 51:
271 * We report in Vector Granules (VG) which is 64bit in a Z reg
272 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
274 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
275 return gdb_get_reg32(buf, vq * 2);
277 default:
278 /* gdbstub asked for something out our range */
279 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
280 break;
283 return 0;
286 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
288 ARMCPU *cpu = env_archcpu(env);
290 /* The first 32 registers are the zregs */
291 switch (reg) {
292 /* The first 32 registers are the zregs */
293 case 0 ... 31:
295 int vq, len = 0;
296 uint64_t *p = (uint64_t *) buf;
297 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
298 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
299 env->vfp.zregs[reg].d[vq * 2] = *p++;
300 len += 16;
302 return len;
304 case 32:
305 vfp_set_fpsr(env, *(uint32_t *)buf);
306 return 4;
307 case 33:
308 vfp_set_fpcr(env, *(uint32_t *)buf);
309 return 4;
310 case 34 ... 50:
312 int preg = reg - 34;
313 int vq, len = 0;
314 uint64_t *p = (uint64_t *) buf;
315 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
316 env->vfp.pregs[preg].p[vq / 4] = *p++;
317 len += 8;
319 return len;
321 case 51:
322 /* cannot set vg via gdbstub */
323 return 0;
324 default:
325 /* gdbstub asked for something out our range */
326 break;
329 return 0;
331 #endif /* TARGET_AARCH64 */
333 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
335 /* Return true if the regdef would cause an assertion if you called
336 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
337 * program bug for it not to have the NO_RAW flag).
338 * NB that returning false here doesn't necessarily mean that calling
339 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
340 * read/write access functions which are safe for raw use" from "has
341 * read/write access functions which have side effects but has forgotten
342 * to provide raw access functions".
343 * The tests here line up with the conditions in read/write_raw_cp_reg()
344 * and assertions in raw_read()/raw_write().
346 if ((ri->type & ARM_CP_CONST) ||
347 ri->fieldoffset ||
348 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
349 return false;
351 return true;
354 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
356 /* Write the coprocessor state from cpu->env to the (index,value) list. */
357 int i;
358 bool ok = true;
360 for (i = 0; i < cpu->cpreg_array_len; i++) {
361 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
362 const ARMCPRegInfo *ri;
363 uint64_t newval;
365 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
366 if (!ri) {
367 ok = false;
368 continue;
370 if (ri->type & ARM_CP_NO_RAW) {
371 continue;
374 newval = read_raw_cp_reg(&cpu->env, ri);
375 if (kvm_sync) {
377 * Only sync if the previous list->cpustate sync succeeded.
378 * Rather than tracking the success/failure state for every
379 * item in the list, we just recheck "does the raw write we must
380 * have made in write_list_to_cpustate() read back OK" here.
382 uint64_t oldval = cpu->cpreg_values[i];
384 if (oldval == newval) {
385 continue;
388 write_raw_cp_reg(&cpu->env, ri, oldval);
389 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
390 continue;
393 write_raw_cp_reg(&cpu->env, ri, newval);
395 cpu->cpreg_values[i] = newval;
397 return ok;
400 bool write_list_to_cpustate(ARMCPU *cpu)
402 int i;
403 bool ok = true;
405 for (i = 0; i < cpu->cpreg_array_len; i++) {
406 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
407 uint64_t v = cpu->cpreg_values[i];
408 const ARMCPRegInfo *ri;
410 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
411 if (!ri) {
412 ok = false;
413 continue;
415 if (ri->type & ARM_CP_NO_RAW) {
416 continue;
418 /* Write value and confirm it reads back as written
419 * (to catch read-only registers and partially read-only
420 * registers where the incoming migration value doesn't match)
422 write_raw_cp_reg(&cpu->env, ri, v);
423 if (read_raw_cp_reg(&cpu->env, ri) != v) {
424 ok = false;
427 return ok;
430 static void add_cpreg_to_list(gpointer key, gpointer opaque)
432 ARMCPU *cpu = opaque;
433 uint64_t regidx;
434 const ARMCPRegInfo *ri;
436 regidx = *(uint32_t *)key;
437 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
439 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
440 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
441 /* The value array need not be initialized at this point */
442 cpu->cpreg_array_len++;
446 static void count_cpreg(gpointer key, gpointer opaque)
448 ARMCPU *cpu = opaque;
449 uint64_t regidx;
450 const ARMCPRegInfo *ri;
452 regidx = *(uint32_t *)key;
453 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
455 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
456 cpu->cpreg_array_len++;
460 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
462 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
463 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
465 if (aidx > bidx) {
466 return 1;
468 if (aidx < bidx) {
469 return -1;
471 return 0;
474 void init_cpreg_list(ARMCPU *cpu)
476 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
477 * Note that we require cpreg_tuples[] to be sorted by key ID.
479 GList *keys;
480 int arraylen;
482 keys = g_hash_table_get_keys(cpu->cp_regs);
483 keys = g_list_sort(keys, cpreg_key_compare);
485 cpu->cpreg_array_len = 0;
487 g_list_foreach(keys, count_cpreg, cpu);
489 arraylen = cpu->cpreg_array_len;
490 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
491 cpu->cpreg_values = g_new(uint64_t, arraylen);
492 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
493 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
494 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
495 cpu->cpreg_array_len = 0;
497 g_list_foreach(keys, add_cpreg_to_list, cpu);
499 assert(cpu->cpreg_array_len == arraylen);
501 g_list_free(keys);
505 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
506 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
508 * access_el3_aa32ns: Used to check AArch32 register views.
509 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
511 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
512 const ARMCPRegInfo *ri,
513 bool isread)
515 bool secure = arm_is_secure_below_el3(env);
517 assert(!arm_el_is_aa64(env, 3));
518 if (secure) {
519 return CP_ACCESS_TRAP_UNCATEGORIZED;
521 return CP_ACCESS_OK;
524 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
525 const ARMCPRegInfo *ri,
526 bool isread)
528 if (!arm_el_is_aa64(env, 3)) {
529 return access_el3_aa32ns(env, ri, isread);
531 return CP_ACCESS_OK;
534 /* Some secure-only AArch32 registers trap to EL3 if used from
535 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
536 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
537 * We assume that the .access field is set to PL1_RW.
539 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
540 const ARMCPRegInfo *ri,
541 bool isread)
543 if (arm_current_el(env) == 3) {
544 return CP_ACCESS_OK;
546 if (arm_is_secure_below_el3(env)) {
547 return CP_ACCESS_TRAP_EL3;
549 /* This will be EL1 NS and EL2 NS, which just UNDEF */
550 return CP_ACCESS_TRAP_UNCATEGORIZED;
553 /* Check for traps to "powerdown debug" registers, which are controlled
554 * by MDCR.TDOSA
556 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
557 bool isread)
559 int el = arm_current_el(env);
560 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
561 (env->cp15.mdcr_el2 & MDCR_TDE) ||
562 (arm_hcr_el2_eff(env) & HCR_TGE);
564 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
565 return CP_ACCESS_TRAP_EL2;
567 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
568 return CP_ACCESS_TRAP_EL3;
570 return CP_ACCESS_OK;
573 /* Check for traps to "debug ROM" registers, which are controlled
574 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
576 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
577 bool isread)
579 int el = arm_current_el(env);
580 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
581 (env->cp15.mdcr_el2 & MDCR_TDE) ||
582 (arm_hcr_el2_eff(env) & HCR_TGE);
584 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
585 return CP_ACCESS_TRAP_EL2;
587 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
588 return CP_ACCESS_TRAP_EL3;
590 return CP_ACCESS_OK;
593 /* Check for traps to general debug registers, which are controlled
594 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
596 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
597 bool isread)
599 int el = arm_current_el(env);
600 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
601 (env->cp15.mdcr_el2 & MDCR_TDE) ||
602 (arm_hcr_el2_eff(env) & HCR_TGE);
604 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
605 return CP_ACCESS_TRAP_EL2;
607 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
608 return CP_ACCESS_TRAP_EL3;
610 return CP_ACCESS_OK;
613 /* Check for traps to performance monitor registers, which are controlled
614 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
616 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
617 bool isread)
619 int el = arm_current_el(env);
621 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
622 && !arm_is_secure_below_el3(env)) {
623 return CP_ACCESS_TRAP_EL2;
625 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
626 return CP_ACCESS_TRAP_EL3;
628 return CP_ACCESS_OK;
631 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
632 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
633 bool isread)
635 if (arm_current_el(env) == 1) {
636 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
637 if (arm_hcr_el2_eff(env) & trap) {
638 return CP_ACCESS_TRAP_EL2;
641 return CP_ACCESS_OK;
644 /* Check for traps from EL1 due to HCR_EL2.TSW. */
645 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
646 bool isread)
648 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
649 return CP_ACCESS_TRAP_EL2;
651 return CP_ACCESS_OK;
654 /* Check for traps from EL1 due to HCR_EL2.TACR. */
655 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
656 bool isread)
658 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
659 return CP_ACCESS_TRAP_EL2;
661 return CP_ACCESS_OK;
664 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
665 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
666 bool isread)
668 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
669 return CP_ACCESS_TRAP_EL2;
671 return CP_ACCESS_OK;
674 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
676 ARMCPU *cpu = env_archcpu(env);
678 raw_write(env, ri, value);
679 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
682 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
684 ARMCPU *cpu = env_archcpu(env);
686 if (raw_read(env, ri) != value) {
687 /* Unlike real hardware the qemu TLB uses virtual addresses,
688 * not modified virtual addresses, so this causes a TLB flush.
690 tlb_flush(CPU(cpu));
691 raw_write(env, ri, value);
695 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
696 uint64_t value)
698 ARMCPU *cpu = env_archcpu(env);
700 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
701 && !extended_addresses_enabled(env)) {
702 /* For VMSA (when not using the LPAE long descriptor page table
703 * format) this register includes the ASID, so do a TLB flush.
704 * For PMSA it is purely a process ID and no action is needed.
706 tlb_flush(CPU(cpu));
708 raw_write(env, ri, value);
711 /* IS variants of TLB operations must affect all cores */
712 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
713 uint64_t value)
715 CPUState *cs = env_cpu(env);
717 tlb_flush_all_cpus_synced(cs);
720 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
721 uint64_t value)
723 CPUState *cs = env_cpu(env);
725 tlb_flush_all_cpus_synced(cs);
728 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
729 uint64_t value)
731 CPUState *cs = env_cpu(env);
733 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
736 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
737 uint64_t value)
739 CPUState *cs = env_cpu(env);
741 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
745 * Non-IS variants of TLB operations are upgraded to
746 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
747 * force broadcast of these operations.
749 static bool tlb_force_broadcast(CPUARMState *env)
751 return (env->cp15.hcr_el2 & HCR_FB) &&
752 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
755 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
756 uint64_t value)
758 /* Invalidate all (TLBIALL) */
759 CPUState *cs = env_cpu(env);
761 if (tlb_force_broadcast(env)) {
762 tlb_flush_all_cpus_synced(cs);
763 } else {
764 tlb_flush(cs);
768 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
769 uint64_t value)
771 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
772 CPUState *cs = env_cpu(env);
774 value &= TARGET_PAGE_MASK;
775 if (tlb_force_broadcast(env)) {
776 tlb_flush_page_all_cpus_synced(cs, value);
777 } else {
778 tlb_flush_page(cs, value);
782 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
783 uint64_t value)
785 /* Invalidate by ASID (TLBIASID) */
786 CPUState *cs = env_cpu(env);
788 if (tlb_force_broadcast(env)) {
789 tlb_flush_all_cpus_synced(cs);
790 } else {
791 tlb_flush(cs);
795 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
796 uint64_t value)
798 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
799 CPUState *cs = env_cpu(env);
801 value &= TARGET_PAGE_MASK;
802 if (tlb_force_broadcast(env)) {
803 tlb_flush_page_all_cpus_synced(cs, value);
804 } else {
805 tlb_flush_page(cs, value);
809 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
810 uint64_t value)
812 CPUState *cs = env_cpu(env);
814 tlb_flush_by_mmuidx(cs,
815 ARMMMUIdxBit_E10_1 |
816 ARMMMUIdxBit_E10_1_PAN |
817 ARMMMUIdxBit_E10_0 |
818 ARMMMUIdxBit_Stage2);
821 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
822 uint64_t value)
824 CPUState *cs = env_cpu(env);
826 tlb_flush_by_mmuidx_all_cpus_synced(cs,
827 ARMMMUIdxBit_E10_1 |
828 ARMMMUIdxBit_E10_1_PAN |
829 ARMMMUIdxBit_E10_0 |
830 ARMMMUIdxBit_Stage2);
833 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
834 uint64_t value)
836 /* Invalidate by IPA. This has to invalidate any structures that
837 * contain only stage 2 translation information, but does not need
838 * to apply to structures that contain combined stage 1 and stage 2
839 * translation information.
840 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
842 CPUState *cs = env_cpu(env);
843 uint64_t pageaddr;
845 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
846 return;
849 pageaddr = sextract64(value << 12, 0, 40);
851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
854 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
855 uint64_t value)
857 CPUState *cs = env_cpu(env);
858 uint64_t pageaddr;
860 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
861 return;
864 pageaddr = sextract64(value << 12, 0, 40);
866 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
867 ARMMMUIdxBit_Stage2);
870 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
871 uint64_t value)
873 CPUState *cs = env_cpu(env);
875 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
878 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
879 uint64_t value)
881 CPUState *cs = env_cpu(env);
883 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
886 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
887 uint64_t value)
889 CPUState *cs = env_cpu(env);
890 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
892 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
895 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
896 uint64_t value)
898 CPUState *cs = env_cpu(env);
899 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
901 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
902 ARMMMUIdxBit_E2);
905 static const ARMCPRegInfo cp_reginfo[] = {
906 /* Define the secure and non-secure FCSE identifier CP registers
907 * separately because there is no secure bank in V8 (no _EL3). This allows
908 * the secure register to be properly reset and migrated. There is also no
909 * v8 EL1 version of the register so the non-secure instance stands alone.
911 { .name = "FCSEIDR",
912 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
913 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
914 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
915 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
916 { .name = "FCSEIDR_S",
917 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
918 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
919 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
920 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
921 /* Define the secure and non-secure context identifier CP registers
922 * separately because there is no secure bank in V8 (no _EL3). This allows
923 * the secure register to be properly reset and migrated. In the
924 * non-secure case, the 32-bit register will have reset and migration
925 * disabled during registration as it is handled by the 64-bit instance.
927 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
928 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
929 .access = PL1_RW, .accessfn = access_tvm_trvm,
930 .secure = ARM_CP_SECSTATE_NS,
931 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
932 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
933 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
934 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
935 .access = PL1_RW, .accessfn = access_tvm_trvm,
936 .secure = ARM_CP_SECSTATE_S,
937 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
938 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
939 REGINFO_SENTINEL
942 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
943 /* NB: Some of these registers exist in v8 but with more precise
944 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
946 /* MMU Domain access control / MPU write buffer control */
947 { .name = "DACR",
948 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
949 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
950 .writefn = dacr_write, .raw_writefn = raw_write,
951 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
952 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
953 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
954 * For v6 and v5, these mappings are overly broad.
956 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
957 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
958 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
959 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
960 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
961 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
962 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
963 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
964 /* Cache maintenance ops; some of this space may be overridden later. */
965 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
966 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
967 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
968 REGINFO_SENTINEL
971 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
972 /* Not all pre-v6 cores implemented this WFI, so this is slightly
973 * over-broad.
975 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
976 .access = PL1_W, .type = ARM_CP_WFI },
977 REGINFO_SENTINEL
980 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
981 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
982 * is UNPREDICTABLE; we choose to NOP as most implementations do).
984 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
985 .access = PL1_W, .type = ARM_CP_WFI },
986 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
987 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
988 * OMAPCP will override this space.
990 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
991 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
992 .resetvalue = 0 },
993 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
994 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
995 .resetvalue = 0 },
996 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
997 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
998 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
999 .resetvalue = 0 },
1000 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
1001 * implementing it as RAZ means the "debug architecture version" bits
1002 * will read as a reserved value, which should cause Linux to not try
1003 * to use the debug hardware.
1005 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
1006 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1007 /* MMU TLB control. Note that the wildcarding means we cover not just
1008 * the unified TLB ops but also the dside/iside/inner-shareable variants.
1010 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
1011 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
1012 .type = ARM_CP_NO_RAW },
1013 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
1014 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
1015 .type = ARM_CP_NO_RAW },
1016 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
1017 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
1018 .type = ARM_CP_NO_RAW },
1019 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
1020 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
1021 .type = ARM_CP_NO_RAW },
1022 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
1023 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
1024 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
1025 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
1026 REGINFO_SENTINEL
1029 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1030 uint64_t value)
1032 uint32_t mask = 0;
1034 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
1035 if (!arm_feature(env, ARM_FEATURE_V8)) {
1036 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
1037 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
1038 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
1040 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1041 /* VFP coprocessor: cp10 & cp11 [23:20] */
1042 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1044 if (!arm_feature(env, ARM_FEATURE_NEON)) {
1045 /* ASEDIS [31] bit is RAO/WI */
1046 value |= (1 << 31);
1049 /* VFPv3 and upwards with NEON implement 32 double precision
1050 * registers (D0-D31).
1052 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1053 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1054 value |= (1 << 30);
1057 value &= mask;
1061 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1062 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1064 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1065 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1066 value &= ~(0xf << 20);
1067 value |= env->cp15.cpacr_el1 & (0xf << 20);
1070 env->cp15.cpacr_el1 = value;
1073 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1076 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1077 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1079 uint64_t value = env->cp15.cpacr_el1;
1081 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1082 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1083 value &= ~(0xf << 20);
1085 return value;
1089 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1091 /* Call cpacr_write() so that we reset with the correct RAO bits set
1092 * for our CPU features.
1094 cpacr_write(env, ri, 0);
1097 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1098 bool isread)
1100 if (arm_feature(env, ARM_FEATURE_V8)) {
1101 /* Check if CPACR accesses are to be trapped to EL2 */
1102 if (arm_current_el(env) == 1 &&
1103 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
1104 return CP_ACCESS_TRAP_EL2;
1105 /* Check if CPACR accesses are to be trapped to EL3 */
1106 } else if (arm_current_el(env) < 3 &&
1107 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1108 return CP_ACCESS_TRAP_EL3;
1112 return CP_ACCESS_OK;
1115 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1116 bool isread)
1118 /* Check if CPTR accesses are set to trap to EL3 */
1119 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1120 return CP_ACCESS_TRAP_EL3;
1123 return CP_ACCESS_OK;
1126 static const ARMCPRegInfo v6_cp_reginfo[] = {
1127 /* prefetch by MVA in v6, NOP in v7 */
1128 { .name = "MVA_prefetch",
1129 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1130 .access = PL1_W, .type = ARM_CP_NOP },
1131 /* We need to break the TB after ISB to execute self-modifying code
1132 * correctly and also to take any pending interrupts immediately.
1133 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1135 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1136 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1137 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1138 .access = PL0_W, .type = ARM_CP_NOP },
1139 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1140 .access = PL0_W, .type = ARM_CP_NOP },
1141 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1142 .access = PL1_RW, .accessfn = access_tvm_trvm,
1143 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1144 offsetof(CPUARMState, cp15.ifar_ns) },
1145 .resetvalue = 0, },
1146 /* Watchpoint Fault Address Register : should actually only be present
1147 * for 1136, 1176, 11MPCore.
1149 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1150 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1151 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1152 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1153 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1154 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1155 REGINFO_SENTINEL
1158 /* Definitions for the PMU registers */
1159 #define PMCRN_MASK 0xf800
1160 #define PMCRN_SHIFT 11
1161 #define PMCRLC 0x40
1162 #define PMCRDP 0x20
1163 #define PMCRX 0x10
1164 #define PMCRD 0x8
1165 #define PMCRC 0x4
1166 #define PMCRP 0x2
1167 #define PMCRE 0x1
1169 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1170 * which can be written as 1 to trigger behaviour but which stay RAZ).
1172 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1174 #define PMXEVTYPER_P 0x80000000
1175 #define PMXEVTYPER_U 0x40000000
1176 #define PMXEVTYPER_NSK 0x20000000
1177 #define PMXEVTYPER_NSU 0x10000000
1178 #define PMXEVTYPER_NSH 0x08000000
1179 #define PMXEVTYPER_M 0x04000000
1180 #define PMXEVTYPER_MT 0x02000000
1181 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1182 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1183 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1184 PMXEVTYPER_M | PMXEVTYPER_MT | \
1185 PMXEVTYPER_EVTCOUNT)
1187 #define PMCCFILTR 0xf8000000
1188 #define PMCCFILTR_M PMXEVTYPER_M
1189 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1191 static inline uint32_t pmu_num_counters(CPUARMState *env)
1193 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1196 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1197 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1199 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1202 typedef struct pm_event {
1203 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1204 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1205 bool (*supported)(CPUARMState *);
1207 * Retrieve the current count of the underlying event. The programmed
1208 * counters hold a difference from the return value from this function
1210 uint64_t (*get_count)(CPUARMState *);
1212 * Return how many nanoseconds it will take (at a minimum) for count events
1213 * to occur. A negative value indicates the counter will never overflow, or
1214 * that the counter has otherwise arranged for the overflow bit to be set
1215 * and the PMU interrupt to be raised on overflow.
1217 int64_t (*ns_per_count)(uint64_t);
1218 } pm_event;
1220 static bool event_always_supported(CPUARMState *env)
1222 return true;
1225 static uint64_t swinc_get_count(CPUARMState *env)
1228 * SW_INCR events are written directly to the pmevcntr's by writes to
1229 * PMSWINC, so there is no underlying count maintained by the PMU itself
1231 return 0;
1234 static int64_t swinc_ns_per(uint64_t ignored)
1236 return -1;
1240 * Return the underlying cycle count for the PMU cycle counters. If we're in
1241 * usermode, simply return 0.
1243 static uint64_t cycles_get_count(CPUARMState *env)
1245 #ifndef CONFIG_USER_ONLY
1246 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1247 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1248 #else
1249 return cpu_get_host_ticks();
1250 #endif
1253 #ifndef CONFIG_USER_ONLY
1254 static int64_t cycles_ns_per(uint64_t cycles)
1256 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1259 static bool instructions_supported(CPUARMState *env)
1261 return use_icount == 1 /* Precise instruction counting */;
1264 static uint64_t instructions_get_count(CPUARMState *env)
1266 return (uint64_t)cpu_get_icount_raw();
1269 static int64_t instructions_ns_per(uint64_t icount)
1271 return cpu_icount_to_ns((int64_t)icount);
1273 #endif
1275 static bool pmu_8_1_events_supported(CPUARMState *env)
1277 /* For events which are supported in any v8.1 PMU */
1278 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1281 static bool pmu_8_4_events_supported(CPUARMState *env)
1283 /* For events which are supported in any v8.1 PMU */
1284 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1287 static uint64_t zero_event_get_count(CPUARMState *env)
1289 /* For events which on QEMU never fire, so their count is always zero */
1290 return 0;
1293 static int64_t zero_event_ns_per(uint64_t cycles)
1295 /* An event which never fires can never overflow */
1296 return -1;
1299 static const pm_event pm_events[] = {
1300 { .number = 0x000, /* SW_INCR */
1301 .supported = event_always_supported,
1302 .get_count = swinc_get_count,
1303 .ns_per_count = swinc_ns_per,
1305 #ifndef CONFIG_USER_ONLY
1306 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1307 .supported = instructions_supported,
1308 .get_count = instructions_get_count,
1309 .ns_per_count = instructions_ns_per,
1311 { .number = 0x011, /* CPU_CYCLES, Cycle */
1312 .supported = event_always_supported,
1313 .get_count = cycles_get_count,
1314 .ns_per_count = cycles_ns_per,
1316 #endif
1317 { .number = 0x023, /* STALL_FRONTEND */
1318 .supported = pmu_8_1_events_supported,
1319 .get_count = zero_event_get_count,
1320 .ns_per_count = zero_event_ns_per,
1322 { .number = 0x024, /* STALL_BACKEND */
1323 .supported = pmu_8_1_events_supported,
1324 .get_count = zero_event_get_count,
1325 .ns_per_count = zero_event_ns_per,
1327 { .number = 0x03c, /* STALL */
1328 .supported = pmu_8_4_events_supported,
1329 .get_count = zero_event_get_count,
1330 .ns_per_count = zero_event_ns_per,
1335 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1336 * events (i.e. the statistical profiling extension), this implementation
1337 * should first be updated to something sparse instead of the current
1338 * supported_event_map[] array.
1340 #define MAX_EVENT_ID 0x3c
1341 #define UNSUPPORTED_EVENT UINT16_MAX
1342 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1345 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1346 * of ARM event numbers to indices in our pm_events array.
1348 * Note: Events in the 0x40XX range are not currently supported.
1350 void pmu_init(ARMCPU *cpu)
1352 unsigned int i;
1355 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1356 * events to them
1358 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1359 supported_event_map[i] = UNSUPPORTED_EVENT;
1361 cpu->pmceid0 = 0;
1362 cpu->pmceid1 = 0;
1364 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1365 const pm_event *cnt = &pm_events[i];
1366 assert(cnt->number <= MAX_EVENT_ID);
1367 /* We do not currently support events in the 0x40xx range */
1368 assert(cnt->number <= 0x3f);
1370 if (cnt->supported(&cpu->env)) {
1371 supported_event_map[cnt->number] = i;
1372 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1373 if (cnt->number & 0x20) {
1374 cpu->pmceid1 |= event_mask;
1375 } else {
1376 cpu->pmceid0 |= event_mask;
1383 * Check at runtime whether a PMU event is supported for the current machine
1385 static bool event_supported(uint16_t number)
1387 if (number > MAX_EVENT_ID) {
1388 return false;
1390 return supported_event_map[number] != UNSUPPORTED_EVENT;
1393 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1394 bool isread)
1396 /* Performance monitor registers user accessibility is controlled
1397 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1398 * trapping to EL2 or EL3 for other accesses.
1400 int el = arm_current_el(env);
1402 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1403 return CP_ACCESS_TRAP;
1405 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1406 && !arm_is_secure_below_el3(env)) {
1407 return CP_ACCESS_TRAP_EL2;
1409 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1410 return CP_ACCESS_TRAP_EL3;
1413 return CP_ACCESS_OK;
1416 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1417 const ARMCPRegInfo *ri,
1418 bool isread)
1420 /* ER: event counter read trap control */
1421 if (arm_feature(env, ARM_FEATURE_V8)
1422 && arm_current_el(env) == 0
1423 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1424 && isread) {
1425 return CP_ACCESS_OK;
1428 return pmreg_access(env, ri, isread);
1431 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1432 const ARMCPRegInfo *ri,
1433 bool isread)
1435 /* SW: software increment write trap control */
1436 if (arm_feature(env, ARM_FEATURE_V8)
1437 && arm_current_el(env) == 0
1438 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1439 && !isread) {
1440 return CP_ACCESS_OK;
1443 return pmreg_access(env, ri, isread);
1446 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1447 const ARMCPRegInfo *ri,
1448 bool isread)
1450 /* ER: event counter read trap control */
1451 if (arm_feature(env, ARM_FEATURE_V8)
1452 && arm_current_el(env) == 0
1453 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1454 return CP_ACCESS_OK;
1457 return pmreg_access(env, ri, isread);
1460 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1461 const ARMCPRegInfo *ri,
1462 bool isread)
1464 /* CR: cycle counter read trap control */
1465 if (arm_feature(env, ARM_FEATURE_V8)
1466 && arm_current_el(env) == 0
1467 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1468 && isread) {
1469 return CP_ACCESS_OK;
1472 return pmreg_access(env, ri, isread);
1475 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1476 * the current EL, security state, and register configuration.
1478 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1480 uint64_t filter;
1481 bool e, p, u, nsk, nsu, nsh, m;
1482 bool enabled, prohibited, filtered;
1483 bool secure = arm_is_secure(env);
1484 int el = arm_current_el(env);
1485 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1487 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1488 return false;
1491 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1492 (counter < hpmn || counter == 31)) {
1493 e = env->cp15.c9_pmcr & PMCRE;
1494 } else {
1495 e = env->cp15.mdcr_el2 & MDCR_HPME;
1497 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1499 if (!secure) {
1500 if (el == 2 && (counter < hpmn || counter == 31)) {
1501 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1502 } else {
1503 prohibited = false;
1505 } else {
1506 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1507 (env->cp15.mdcr_el3 & MDCR_SPME);
1510 if (prohibited && counter == 31) {
1511 prohibited = env->cp15.c9_pmcr & PMCRDP;
1514 if (counter == 31) {
1515 filter = env->cp15.pmccfiltr_el0;
1516 } else {
1517 filter = env->cp15.c14_pmevtyper[counter];
1520 p = filter & PMXEVTYPER_P;
1521 u = filter & PMXEVTYPER_U;
1522 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1523 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1524 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1525 m = arm_el_is_aa64(env, 1) &&
1526 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1528 if (el == 0) {
1529 filtered = secure ? u : u != nsu;
1530 } else if (el == 1) {
1531 filtered = secure ? p : p != nsk;
1532 } else if (el == 2) {
1533 filtered = !nsh;
1534 } else { /* EL3 */
1535 filtered = m != p;
1538 if (counter != 31) {
1540 * If not checking PMCCNTR, ensure the counter is setup to an event we
1541 * support
1543 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1544 if (!event_supported(event)) {
1545 return false;
1549 return enabled && !prohibited && !filtered;
1552 static void pmu_update_irq(CPUARMState *env)
1554 ARMCPU *cpu = env_archcpu(env);
1555 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1556 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1560 * Ensure c15_ccnt is the guest-visible count so that operations such as
1561 * enabling/disabling the counter or filtering, modifying the count itself,
1562 * etc. can be done logically. This is essentially a no-op if the counter is
1563 * not enabled at the time of the call.
1565 static void pmccntr_op_start(CPUARMState *env)
1567 uint64_t cycles = cycles_get_count(env);
1569 if (pmu_counter_enabled(env, 31)) {
1570 uint64_t eff_cycles = cycles;
1571 if (env->cp15.c9_pmcr & PMCRD) {
1572 /* Increment once every 64 processor clock cycles */
1573 eff_cycles /= 64;
1576 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1578 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1579 1ull << 63 : 1ull << 31;
1580 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1581 env->cp15.c9_pmovsr |= (1 << 31);
1582 pmu_update_irq(env);
1585 env->cp15.c15_ccnt = new_pmccntr;
1587 env->cp15.c15_ccnt_delta = cycles;
1591 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1592 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1593 * pmccntr_op_start.
1595 static void pmccntr_op_finish(CPUARMState *env)
1597 if (pmu_counter_enabled(env, 31)) {
1598 #ifndef CONFIG_USER_ONLY
1599 /* Calculate when the counter will next overflow */
1600 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1601 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1602 remaining_cycles = (uint32_t)remaining_cycles;
1604 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1606 if (overflow_in > 0) {
1607 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1608 overflow_in;
1609 ARMCPU *cpu = env_archcpu(env);
1610 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1612 #endif
1614 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1615 if (env->cp15.c9_pmcr & PMCRD) {
1616 /* Increment once every 64 processor clock cycles */
1617 prev_cycles /= 64;
1619 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1623 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1626 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1627 uint64_t count = 0;
1628 if (event_supported(event)) {
1629 uint16_t event_idx = supported_event_map[event];
1630 count = pm_events[event_idx].get_count(env);
1633 if (pmu_counter_enabled(env, counter)) {
1634 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1636 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1637 env->cp15.c9_pmovsr |= (1 << counter);
1638 pmu_update_irq(env);
1640 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1642 env->cp15.c14_pmevcntr_delta[counter] = count;
1645 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1647 if (pmu_counter_enabled(env, counter)) {
1648 #ifndef CONFIG_USER_ONLY
1649 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1650 uint16_t event_idx = supported_event_map[event];
1651 uint64_t delta = UINT32_MAX -
1652 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1653 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1655 if (overflow_in > 0) {
1656 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1657 overflow_in;
1658 ARMCPU *cpu = env_archcpu(env);
1659 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1661 #endif
1663 env->cp15.c14_pmevcntr_delta[counter] -=
1664 env->cp15.c14_pmevcntr[counter];
1668 void pmu_op_start(CPUARMState *env)
1670 unsigned int i;
1671 pmccntr_op_start(env);
1672 for (i = 0; i < pmu_num_counters(env); i++) {
1673 pmevcntr_op_start(env, i);
1677 void pmu_op_finish(CPUARMState *env)
1679 unsigned int i;
1680 pmccntr_op_finish(env);
1681 for (i = 0; i < pmu_num_counters(env); i++) {
1682 pmevcntr_op_finish(env, i);
1686 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1688 pmu_op_start(&cpu->env);
1691 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1693 pmu_op_finish(&cpu->env);
1696 void arm_pmu_timer_cb(void *opaque)
1698 ARMCPU *cpu = opaque;
1701 * Update all the counter values based on the current underlying counts,
1702 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1703 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1704 * counter may expire.
1706 pmu_op_start(&cpu->env);
1707 pmu_op_finish(&cpu->env);
1710 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1711 uint64_t value)
1713 pmu_op_start(env);
1715 if (value & PMCRC) {
1716 /* The counter has been reset */
1717 env->cp15.c15_ccnt = 0;
1720 if (value & PMCRP) {
1721 unsigned int i;
1722 for (i = 0; i < pmu_num_counters(env); i++) {
1723 env->cp15.c14_pmevcntr[i] = 0;
1727 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1728 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1730 pmu_op_finish(env);
1733 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734 uint64_t value)
1736 unsigned int i;
1737 for (i = 0; i < pmu_num_counters(env); i++) {
1738 /* Increment a counter's count iff: */
1739 if ((value & (1 << i)) && /* counter's bit is set */
1740 /* counter is enabled and not filtered */
1741 pmu_counter_enabled(env, i) &&
1742 /* counter is SW_INCR */
1743 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1744 pmevcntr_op_start(env, i);
1747 * Detect if this write causes an overflow since we can't predict
1748 * PMSWINC overflows like we can for other events
1750 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1752 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1753 env->cp15.c9_pmovsr |= (1 << i);
1754 pmu_update_irq(env);
1757 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1759 pmevcntr_op_finish(env, i);
1764 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1766 uint64_t ret;
1767 pmccntr_op_start(env);
1768 ret = env->cp15.c15_ccnt;
1769 pmccntr_op_finish(env);
1770 return ret;
1773 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1774 uint64_t value)
1776 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1777 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1778 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1779 * accessed.
1781 env->cp15.c9_pmselr = value & 0x1f;
1784 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785 uint64_t value)
1787 pmccntr_op_start(env);
1788 env->cp15.c15_ccnt = value;
1789 pmccntr_op_finish(env);
1792 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1793 uint64_t value)
1795 uint64_t cur_val = pmccntr_read(env, NULL);
1797 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1800 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1801 uint64_t value)
1803 pmccntr_op_start(env);
1804 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1805 pmccntr_op_finish(env);
1808 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1811 pmccntr_op_start(env);
1812 /* M is not accessible from AArch32 */
1813 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1814 (value & PMCCFILTR);
1815 pmccntr_op_finish(env);
1818 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1820 /* M is not visible in AArch32 */
1821 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1824 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1825 uint64_t value)
1827 value &= pmu_counter_mask(env);
1828 env->cp15.c9_pmcnten |= value;
1831 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1832 uint64_t value)
1834 value &= pmu_counter_mask(env);
1835 env->cp15.c9_pmcnten &= ~value;
1838 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1839 uint64_t value)
1841 value &= pmu_counter_mask(env);
1842 env->cp15.c9_pmovsr &= ~value;
1843 pmu_update_irq(env);
1846 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847 uint64_t value)
1849 value &= pmu_counter_mask(env);
1850 env->cp15.c9_pmovsr |= value;
1851 pmu_update_irq(env);
1854 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855 uint64_t value, const uint8_t counter)
1857 if (counter == 31) {
1858 pmccfiltr_write(env, ri, value);
1859 } else if (counter < pmu_num_counters(env)) {
1860 pmevcntr_op_start(env, counter);
1863 * If this counter's event type is changing, store the current
1864 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1865 * pmevcntr_op_finish has the correct baseline when it converts back to
1866 * a delta.
1868 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1869 PMXEVTYPER_EVTCOUNT;
1870 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1871 if (old_event != new_event) {
1872 uint64_t count = 0;
1873 if (event_supported(new_event)) {
1874 uint16_t event_idx = supported_event_map[new_event];
1875 count = pm_events[event_idx].get_count(env);
1877 env->cp15.c14_pmevcntr_delta[counter] = count;
1880 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1881 pmevcntr_op_finish(env, counter);
1883 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1884 * PMSELR value is equal to or greater than the number of implemented
1885 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1889 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1890 const uint8_t counter)
1892 if (counter == 31) {
1893 return env->cp15.pmccfiltr_el0;
1894 } else if (counter < pmu_num_counters(env)) {
1895 return env->cp15.c14_pmevtyper[counter];
1896 } else {
1898 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1899 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1901 return 0;
1905 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1906 uint64_t value)
1908 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1909 pmevtyper_write(env, ri, value, counter);
1912 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1913 uint64_t value)
1915 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1916 env->cp15.c14_pmevtyper[counter] = value;
1919 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1920 * pmu_op_finish calls when loading saved state for a migration. Because
1921 * we're potentially updating the type of event here, the value written to
1922 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1923 * different counter type. Therefore, we need to set this value to the
1924 * current count for the counter type we're writing so that pmu_op_finish
1925 * has the correct count for its calculation.
1927 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1928 if (event_supported(event)) {
1929 uint16_t event_idx = supported_event_map[event];
1930 env->cp15.c14_pmevcntr_delta[counter] =
1931 pm_events[event_idx].get_count(env);
1935 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1937 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1938 return pmevtyper_read(env, ri, counter);
1941 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1942 uint64_t value)
1944 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1947 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1949 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1952 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1953 uint64_t value, uint8_t counter)
1955 if (counter < pmu_num_counters(env)) {
1956 pmevcntr_op_start(env, counter);
1957 env->cp15.c14_pmevcntr[counter] = value;
1958 pmevcntr_op_finish(env, counter);
1961 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1962 * are CONSTRAINED UNPREDICTABLE.
1966 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1967 uint8_t counter)
1969 if (counter < pmu_num_counters(env)) {
1970 uint64_t ret;
1971 pmevcntr_op_start(env, counter);
1972 ret = env->cp15.c14_pmevcntr[counter];
1973 pmevcntr_op_finish(env, counter);
1974 return ret;
1975 } else {
1976 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1977 * are CONSTRAINED UNPREDICTABLE. */
1978 return 0;
1982 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1983 uint64_t value)
1985 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1986 pmevcntr_write(env, ri, value, counter);
1989 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1991 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1992 return pmevcntr_read(env, ri, counter);
1995 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1996 uint64_t value)
1998 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1999 assert(counter < pmu_num_counters(env));
2000 env->cp15.c14_pmevcntr[counter] = value;
2001 pmevcntr_write(env, ri, value, counter);
2004 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
2006 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
2007 assert(counter < pmu_num_counters(env));
2008 return env->cp15.c14_pmevcntr[counter];
2011 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2012 uint64_t value)
2014 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
2017 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2019 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
2022 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2023 uint64_t value)
2025 if (arm_feature(env, ARM_FEATURE_V8)) {
2026 env->cp15.c9_pmuserenr = value & 0xf;
2027 } else {
2028 env->cp15.c9_pmuserenr = value & 1;
2032 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
2033 uint64_t value)
2035 /* We have no event counters so only the C bit can be changed */
2036 value &= pmu_counter_mask(env);
2037 env->cp15.c9_pminten |= value;
2038 pmu_update_irq(env);
2041 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2042 uint64_t value)
2044 value &= pmu_counter_mask(env);
2045 env->cp15.c9_pminten &= ~value;
2046 pmu_update_irq(env);
2049 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2050 uint64_t value)
2052 /* Note that even though the AArch64 view of this register has bits
2053 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2054 * architectural requirements for bits which are RES0 only in some
2055 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2056 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2058 raw_write(env, ri, value & ~0x1FULL);
2061 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2063 /* Begin with base v8.0 state. */
2064 uint32_t valid_mask = 0x3fff;
2065 ARMCPU *cpu = env_archcpu(env);
2067 if (arm_el_is_aa64(env, 3)) {
2068 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
2069 valid_mask &= ~SCR_NET;
2070 } else {
2071 valid_mask &= ~(SCR_RW | SCR_ST);
2074 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2075 valid_mask &= ~SCR_HCE;
2077 /* On ARMv7, SMD (or SCD as it is called in v7) is only
2078 * supported if EL2 exists. The bit is UNK/SBZP when
2079 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2080 * when EL2 is unavailable.
2081 * On ARMv8, this bit is always available.
2083 if (arm_feature(env, ARM_FEATURE_V7) &&
2084 !arm_feature(env, ARM_FEATURE_V8)) {
2085 valid_mask &= ~SCR_SMD;
2088 if (cpu_isar_feature(aa64_lor, cpu)) {
2089 valid_mask |= SCR_TLOR;
2091 if (cpu_isar_feature(aa64_pauth, cpu)) {
2092 valid_mask |= SCR_API | SCR_APK;
2095 /* Clear all-context RES0 bits. */
2096 value &= valid_mask;
2097 raw_write(env, ri, value);
2100 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2101 const ARMCPRegInfo *ri,
2102 bool isread)
2104 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2105 return CP_ACCESS_TRAP_EL2;
2108 return CP_ACCESS_OK;
2111 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2113 ARMCPU *cpu = env_archcpu(env);
2115 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2116 * bank
2118 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2119 ri->secure & ARM_CP_SECSTATE_S);
2121 return cpu->ccsidr[index];
2124 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2125 uint64_t value)
2127 raw_write(env, ri, value & 0xf);
2130 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2132 CPUState *cs = env_cpu(env);
2133 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
2134 uint64_t ret = 0;
2135 bool allow_virt = (arm_current_el(env) == 1 &&
2136 (!arm_is_secure_below_el3(env) ||
2137 (env->cp15.scr_el3 & SCR_EEL2)));
2139 if (allow_virt && (hcr_el2 & HCR_IMO)) {
2140 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2141 ret |= CPSR_I;
2143 } else {
2144 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2145 ret |= CPSR_I;
2149 if (allow_virt && (hcr_el2 & HCR_FMO)) {
2150 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2151 ret |= CPSR_F;
2153 } else {
2154 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2155 ret |= CPSR_F;
2159 /* External aborts are not possible in QEMU so A bit is always clear */
2160 return ret;
2163 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2164 bool isread)
2166 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2167 return CP_ACCESS_TRAP_EL2;
2170 return CP_ACCESS_OK;
2173 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2174 bool isread)
2176 if (arm_feature(env, ARM_FEATURE_V8)) {
2177 return access_aa64_tid1(env, ri, isread);
2180 return CP_ACCESS_OK;
2183 static const ARMCPRegInfo v7_cp_reginfo[] = {
2184 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2185 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2186 .access = PL1_W, .type = ARM_CP_NOP },
2187 /* Performance monitors are implementation defined in v7,
2188 * but with an ARM recommended set of registers, which we
2189 * follow.
2191 * Performance registers fall into three categories:
2192 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2193 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2194 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2195 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2196 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2198 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2199 .access = PL0_RW, .type = ARM_CP_ALIAS,
2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2201 .writefn = pmcntenset_write,
2202 .accessfn = pmreg_access,
2203 .raw_writefn = raw_write },
2204 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2206 .access = PL0_RW, .accessfn = pmreg_access,
2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2208 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2209 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2210 .access = PL0_RW,
2211 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2212 .accessfn = pmreg_access,
2213 .writefn = pmcntenclr_write,
2214 .type = ARM_CP_ALIAS },
2215 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2217 .access = PL0_RW, .accessfn = pmreg_access,
2218 .type = ARM_CP_ALIAS,
2219 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2220 .writefn = pmcntenclr_write },
2221 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2222 .access = PL0_RW, .type = ARM_CP_IO,
2223 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2224 .accessfn = pmreg_access,
2225 .writefn = pmovsr_write,
2226 .raw_writefn = raw_write },
2227 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2228 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2229 .access = PL0_RW, .accessfn = pmreg_access,
2230 .type = ARM_CP_ALIAS | ARM_CP_IO,
2231 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2232 .writefn = pmovsr_write,
2233 .raw_writefn = raw_write },
2234 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2235 .access = PL0_W, .accessfn = pmreg_access_swinc,
2236 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2237 .writefn = pmswinc_write },
2238 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2239 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2240 .access = PL0_W, .accessfn = pmreg_access_swinc,
2241 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2242 .writefn = pmswinc_write },
2243 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2244 .access = PL0_RW, .type = ARM_CP_ALIAS,
2245 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2246 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2247 .raw_writefn = raw_write},
2248 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2249 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2250 .access = PL0_RW, .accessfn = pmreg_access_selr,
2251 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2252 .writefn = pmselr_write, .raw_writefn = raw_write, },
2253 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2254 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2255 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2256 .accessfn = pmreg_access_ccntr },
2257 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2259 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2260 .type = ARM_CP_IO,
2261 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2262 .readfn = pmccntr_read, .writefn = pmccntr_write,
2263 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2264 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2265 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2266 .access = PL0_RW, .accessfn = pmreg_access,
2267 .type = ARM_CP_ALIAS | ARM_CP_IO,
2268 .resetvalue = 0, },
2269 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2270 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2271 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2272 .access = PL0_RW, .accessfn = pmreg_access,
2273 .type = ARM_CP_IO,
2274 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2275 .resetvalue = 0, },
2276 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2277 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2278 .accessfn = pmreg_access,
2279 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2280 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2281 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2282 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2283 .accessfn = pmreg_access,
2284 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2285 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2286 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2287 .accessfn = pmreg_access_xevcntr,
2288 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2289 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2290 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2291 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2292 .accessfn = pmreg_access_xevcntr,
2293 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2294 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2295 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2296 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2297 .resetvalue = 0,
2298 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2299 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2300 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2301 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2302 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2303 .resetvalue = 0,
2304 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2305 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2306 .access = PL1_RW, .accessfn = access_tpm,
2307 .type = ARM_CP_ALIAS | ARM_CP_IO,
2308 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2309 .resetvalue = 0,
2310 .writefn = pmintenset_write, .raw_writefn = raw_write },
2311 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2312 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2313 .access = PL1_RW, .accessfn = access_tpm,
2314 .type = ARM_CP_IO,
2315 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2316 .writefn = pmintenset_write, .raw_writefn = raw_write,
2317 .resetvalue = 0x0 },
2318 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2319 .access = PL1_RW, .accessfn = access_tpm,
2320 .type = ARM_CP_ALIAS | ARM_CP_IO,
2321 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2322 .writefn = pmintenclr_write, },
2323 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2324 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2325 .access = PL1_RW, .accessfn = access_tpm,
2326 .type = ARM_CP_ALIAS | ARM_CP_IO,
2327 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2328 .writefn = pmintenclr_write },
2329 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2330 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2331 .access = PL1_R,
2332 .accessfn = access_aa64_tid2,
2333 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2334 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2335 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2336 .access = PL1_RW,
2337 .accessfn = access_aa64_tid2,
2338 .writefn = csselr_write, .resetvalue = 0,
2339 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2340 offsetof(CPUARMState, cp15.csselr_ns) } },
2341 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2342 * just RAZ for all cores:
2344 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2345 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2346 .access = PL1_R, .type = ARM_CP_CONST,
2347 .accessfn = access_aa64_tid1,
2348 .resetvalue = 0 },
2349 /* Auxiliary fault status registers: these also are IMPDEF, and we
2350 * choose to RAZ/WI for all cores.
2352 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2353 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2354 .access = PL1_RW, .accessfn = access_tvm_trvm,
2355 .type = ARM_CP_CONST, .resetvalue = 0 },
2356 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2357 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2358 .access = PL1_RW, .accessfn = access_tvm_trvm,
2359 .type = ARM_CP_CONST, .resetvalue = 0 },
2360 /* MAIR can just read-as-written because we don't implement caches
2361 * and so don't need to care about memory attributes.
2363 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2364 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2365 .access = PL1_RW, .accessfn = access_tvm_trvm,
2366 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2367 .resetvalue = 0 },
2368 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2369 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2370 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2371 .resetvalue = 0 },
2372 /* For non-long-descriptor page tables these are PRRR and NMRR;
2373 * regardless they still act as reads-as-written for QEMU.
2375 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2376 * allows them to assign the correct fieldoffset based on the endianness
2377 * handled in the field definitions.
2379 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2380 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2381 .access = PL1_RW, .accessfn = access_tvm_trvm,
2382 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2383 offsetof(CPUARMState, cp15.mair0_ns) },
2384 .resetfn = arm_cp_reset_ignore },
2385 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2386 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2387 .access = PL1_RW, .accessfn = access_tvm_trvm,
2388 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2389 offsetof(CPUARMState, cp15.mair1_ns) },
2390 .resetfn = arm_cp_reset_ignore },
2391 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2392 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2393 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2394 /* 32 bit ITLB invalidates */
2395 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397 .writefn = tlbiall_write },
2398 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400 .writefn = tlbimva_write },
2401 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403 .writefn = tlbiasid_write },
2404 /* 32 bit DTLB invalidates */
2405 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2406 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2407 .writefn = tlbiall_write },
2408 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2409 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2410 .writefn = tlbimva_write },
2411 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2412 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2413 .writefn = tlbiasid_write },
2414 /* 32 bit TLB invalidates */
2415 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417 .writefn = tlbiall_write },
2418 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420 .writefn = tlbimva_write },
2421 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2422 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2423 .writefn = tlbiasid_write },
2424 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2425 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2426 .writefn = tlbimvaa_write },
2427 REGINFO_SENTINEL
2430 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2431 /* 32 bit TLB invalidates, Inner Shareable */
2432 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2433 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2434 .writefn = tlbiall_is_write },
2435 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2436 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2437 .writefn = tlbimva_is_write },
2438 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2439 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2440 .writefn = tlbiasid_is_write },
2441 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2442 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2443 .writefn = tlbimvaa_is_write },
2444 REGINFO_SENTINEL
2447 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2448 /* PMOVSSET is not implemented in v7 before v7ve */
2449 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2450 .access = PL0_RW, .accessfn = pmreg_access,
2451 .type = ARM_CP_ALIAS | ARM_CP_IO,
2452 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2453 .writefn = pmovsset_write,
2454 .raw_writefn = raw_write },
2455 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2456 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2457 .access = PL0_RW, .accessfn = pmreg_access,
2458 .type = ARM_CP_ALIAS | ARM_CP_IO,
2459 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2460 .writefn = pmovsset_write,
2461 .raw_writefn = raw_write },
2462 REGINFO_SENTINEL
2465 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2466 uint64_t value)
2468 value &= 1;
2469 env->teecr = value;
2472 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2473 bool isread)
2475 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2476 return CP_ACCESS_TRAP;
2478 return CP_ACCESS_OK;
2481 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2482 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2483 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2484 .resetvalue = 0,
2485 .writefn = teecr_write },
2486 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2487 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2488 .accessfn = teehbr_access, .resetvalue = 0 },
2489 REGINFO_SENTINEL
2492 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2493 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2494 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2495 .access = PL0_RW,
2496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2497 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2498 .access = PL0_RW,
2499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2500 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2501 .resetfn = arm_cp_reset_ignore },
2502 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2503 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2504 .access = PL0_R|PL1_W,
2505 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2506 .resetvalue = 0},
2507 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2508 .access = PL0_R|PL1_W,
2509 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2510 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2511 .resetfn = arm_cp_reset_ignore },
2512 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2513 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2514 .access = PL1_RW,
2515 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2516 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2517 .access = PL1_RW,
2518 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2519 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2520 .resetvalue = 0 },
2521 REGINFO_SENTINEL
2524 #ifndef CONFIG_USER_ONLY
2526 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2527 bool isread)
2529 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2530 * Writable only at the highest implemented exception level.
2532 int el = arm_current_el(env);
2533 uint64_t hcr;
2534 uint32_t cntkctl;
2536 switch (el) {
2537 case 0:
2538 hcr = arm_hcr_el2_eff(env);
2539 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2540 cntkctl = env->cp15.cnthctl_el2;
2541 } else {
2542 cntkctl = env->cp15.c14_cntkctl;
2544 if (!extract32(cntkctl, 0, 2)) {
2545 return CP_ACCESS_TRAP;
2547 break;
2548 case 1:
2549 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2550 arm_is_secure_below_el3(env)) {
2551 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2552 return CP_ACCESS_TRAP_UNCATEGORIZED;
2554 break;
2555 case 2:
2556 case 3:
2557 break;
2560 if (!isread && el < arm_highest_el(env)) {
2561 return CP_ACCESS_TRAP_UNCATEGORIZED;
2564 return CP_ACCESS_OK;
2567 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2568 bool isread)
2570 unsigned int cur_el = arm_current_el(env);
2571 bool secure = arm_is_secure(env);
2572 uint64_t hcr = arm_hcr_el2_eff(env);
2574 switch (cur_el) {
2575 case 0:
2576 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2577 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2578 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2579 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2582 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2583 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2584 return CP_ACCESS_TRAP;
2587 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2588 if (hcr & HCR_E2H) {
2589 if (timeridx == GTIMER_PHYS &&
2590 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2591 return CP_ACCESS_TRAP_EL2;
2593 } else {
2594 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2595 if (arm_feature(env, ARM_FEATURE_EL2) &&
2596 timeridx == GTIMER_PHYS && !secure &&
2597 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2598 return CP_ACCESS_TRAP_EL2;
2601 break;
2603 case 1:
2604 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2605 if (arm_feature(env, ARM_FEATURE_EL2) &&
2606 timeridx == GTIMER_PHYS && !secure &&
2607 (hcr & HCR_E2H
2608 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2609 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2610 return CP_ACCESS_TRAP_EL2;
2612 break;
2614 return CP_ACCESS_OK;
2617 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2618 bool isread)
2620 unsigned int cur_el = arm_current_el(env);
2621 bool secure = arm_is_secure(env);
2622 uint64_t hcr = arm_hcr_el2_eff(env);
2624 switch (cur_el) {
2625 case 0:
2626 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2627 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2628 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2629 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2633 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2634 * EL0 if EL0[PV]TEN is zero.
2636 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2637 return CP_ACCESS_TRAP;
2639 /* fall through */
2641 case 1:
2642 if (arm_feature(env, ARM_FEATURE_EL2) &&
2643 timeridx == GTIMER_PHYS && !secure) {
2644 if (hcr & HCR_E2H) {
2645 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2646 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2647 return CP_ACCESS_TRAP_EL2;
2649 } else {
2650 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2651 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2652 return CP_ACCESS_TRAP_EL2;
2656 break;
2658 return CP_ACCESS_OK;
2661 static CPAccessResult gt_pct_access(CPUARMState *env,
2662 const ARMCPRegInfo *ri,
2663 bool isread)
2665 return gt_counter_access(env, GTIMER_PHYS, isread);
2668 static CPAccessResult gt_vct_access(CPUARMState *env,
2669 const ARMCPRegInfo *ri,
2670 bool isread)
2672 return gt_counter_access(env, GTIMER_VIRT, isread);
2675 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2676 bool isread)
2678 return gt_timer_access(env, GTIMER_PHYS, isread);
2681 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2682 bool isread)
2684 return gt_timer_access(env, GTIMER_VIRT, isread);
2687 static CPAccessResult gt_stimer_access(CPUARMState *env,
2688 const ARMCPRegInfo *ri,
2689 bool isread)
2691 /* The AArch64 register view of the secure physical timer is
2692 * always accessible from EL3, and configurably accessible from
2693 * Secure EL1.
2695 switch (arm_current_el(env)) {
2696 case 1:
2697 if (!arm_is_secure(env)) {
2698 return CP_ACCESS_TRAP;
2700 if (!(env->cp15.scr_el3 & SCR_ST)) {
2701 return CP_ACCESS_TRAP_EL3;
2703 return CP_ACCESS_OK;
2704 case 0:
2705 case 2:
2706 return CP_ACCESS_TRAP;
2707 case 3:
2708 return CP_ACCESS_OK;
2709 default:
2710 g_assert_not_reached();
2714 static uint64_t gt_get_countervalue(CPUARMState *env)
2716 ARMCPU *cpu = env_archcpu(env);
2718 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2721 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2723 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2725 if (gt->ctl & 1) {
2726 /* Timer enabled: calculate and set current ISTATUS, irq, and
2727 * reset timer to when ISTATUS next has to change
2729 uint64_t offset = timeridx == GTIMER_VIRT ?
2730 cpu->env.cp15.cntvoff_el2 : 0;
2731 uint64_t count = gt_get_countervalue(&cpu->env);
2732 /* Note that this must be unsigned 64 bit arithmetic: */
2733 int istatus = count - offset >= gt->cval;
2734 uint64_t nexttick;
2735 int irqstate;
2737 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2739 irqstate = (istatus && !(gt->ctl & 2));
2740 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2742 if (istatus) {
2743 /* Next transition is when count rolls back over to zero */
2744 nexttick = UINT64_MAX;
2745 } else {
2746 /* Next transition is when we hit cval */
2747 nexttick = gt->cval + offset;
2749 /* Note that the desired next expiry time might be beyond the
2750 * signed-64-bit range of a QEMUTimer -- in this case we just
2751 * set the timer for as far in the future as possible. When the
2752 * timer expires we will reset the timer for any remaining period.
2754 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2755 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2756 } else {
2757 timer_mod(cpu->gt_timer[timeridx], nexttick);
2759 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2760 } else {
2761 /* Timer disabled: ISTATUS and timer output always clear */
2762 gt->ctl &= ~4;
2763 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2764 timer_del(cpu->gt_timer[timeridx]);
2765 trace_arm_gt_recalc_disabled(timeridx);
2769 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2770 int timeridx)
2772 ARMCPU *cpu = env_archcpu(env);
2774 timer_del(cpu->gt_timer[timeridx]);
2777 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2779 return gt_get_countervalue(env);
2782 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2784 uint64_t hcr;
2786 switch (arm_current_el(env)) {
2787 case 2:
2788 hcr = arm_hcr_el2_eff(env);
2789 if (hcr & HCR_E2H) {
2790 return 0;
2792 break;
2793 case 0:
2794 hcr = arm_hcr_el2_eff(env);
2795 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2796 return 0;
2798 break;
2801 return env->cp15.cntvoff_el2;
2804 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2806 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2809 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2810 int timeridx,
2811 uint64_t value)
2813 trace_arm_gt_cval_write(timeridx, value);
2814 env->cp15.c14_timer[timeridx].cval = value;
2815 gt_recalc_timer(env_archcpu(env), timeridx);
2818 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2819 int timeridx)
2821 uint64_t offset = 0;
2823 switch (timeridx) {
2824 case GTIMER_VIRT:
2825 case GTIMER_HYPVIRT:
2826 offset = gt_virt_cnt_offset(env);
2827 break;
2830 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2831 (gt_get_countervalue(env) - offset));
2834 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2835 int timeridx,
2836 uint64_t value)
2838 uint64_t offset = 0;
2840 switch (timeridx) {
2841 case GTIMER_VIRT:
2842 case GTIMER_HYPVIRT:
2843 offset = gt_virt_cnt_offset(env);
2844 break;
2847 trace_arm_gt_tval_write(timeridx, value);
2848 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2849 sextract64(value, 0, 32);
2850 gt_recalc_timer(env_archcpu(env), timeridx);
2853 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2854 int timeridx,
2855 uint64_t value)
2857 ARMCPU *cpu = env_archcpu(env);
2858 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2860 trace_arm_gt_ctl_write(timeridx, value);
2861 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2862 if ((oldval ^ value) & 1) {
2863 /* Enable toggled */
2864 gt_recalc_timer(cpu, timeridx);
2865 } else if ((oldval ^ value) & 2) {
2866 /* IMASK toggled: don't need to recalculate,
2867 * just set the interrupt line based on ISTATUS
2869 int irqstate = (oldval & 4) && !(value & 2);
2871 trace_arm_gt_imask_toggle(timeridx, irqstate);
2872 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2876 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2878 gt_timer_reset(env, ri, GTIMER_PHYS);
2881 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2882 uint64_t value)
2884 gt_cval_write(env, ri, GTIMER_PHYS, value);
2887 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2889 return gt_tval_read(env, ri, GTIMER_PHYS);
2892 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2893 uint64_t value)
2895 gt_tval_write(env, ri, GTIMER_PHYS, value);
2898 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2899 uint64_t value)
2901 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2904 static int gt_phys_redir_timeridx(CPUARMState *env)
2906 switch (arm_mmu_idx(env)) {
2907 case ARMMMUIdx_E20_0:
2908 case ARMMMUIdx_E20_2:
2909 case ARMMMUIdx_E20_2_PAN:
2910 return GTIMER_HYP;
2911 default:
2912 return GTIMER_PHYS;
2916 static int gt_virt_redir_timeridx(CPUARMState *env)
2918 switch (arm_mmu_idx(env)) {
2919 case ARMMMUIdx_E20_0:
2920 case ARMMMUIdx_E20_2:
2921 case ARMMMUIdx_E20_2_PAN:
2922 return GTIMER_HYPVIRT;
2923 default:
2924 return GTIMER_VIRT;
2928 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2929 const ARMCPRegInfo *ri)
2931 int timeridx = gt_phys_redir_timeridx(env);
2932 return env->cp15.c14_timer[timeridx].cval;
2935 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2936 uint64_t value)
2938 int timeridx = gt_phys_redir_timeridx(env);
2939 gt_cval_write(env, ri, timeridx, value);
2942 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2943 const ARMCPRegInfo *ri)
2945 int timeridx = gt_phys_redir_timeridx(env);
2946 return gt_tval_read(env, ri, timeridx);
2949 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950 uint64_t value)
2952 int timeridx = gt_phys_redir_timeridx(env);
2953 gt_tval_write(env, ri, timeridx, value);
2956 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2957 const ARMCPRegInfo *ri)
2959 int timeridx = gt_phys_redir_timeridx(env);
2960 return env->cp15.c14_timer[timeridx].ctl;
2963 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2964 uint64_t value)
2966 int timeridx = gt_phys_redir_timeridx(env);
2967 gt_ctl_write(env, ri, timeridx, value);
2970 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2972 gt_timer_reset(env, ri, GTIMER_VIRT);
2975 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2976 uint64_t value)
2978 gt_cval_write(env, ri, GTIMER_VIRT, value);
2981 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2983 return gt_tval_read(env, ri, GTIMER_VIRT);
2986 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2987 uint64_t value)
2989 gt_tval_write(env, ri, GTIMER_VIRT, value);
2992 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2993 uint64_t value)
2995 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2998 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2999 uint64_t value)
3001 ARMCPU *cpu = env_archcpu(env);
3003 trace_arm_gt_cntvoff_write(value);
3004 raw_write(env, ri, value);
3005 gt_recalc_timer(cpu, GTIMER_VIRT);
3008 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3009 const ARMCPRegInfo *ri)
3011 int timeridx = gt_virt_redir_timeridx(env);
3012 return env->cp15.c14_timer[timeridx].cval;
3015 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016 uint64_t value)
3018 int timeridx = gt_virt_redir_timeridx(env);
3019 gt_cval_write(env, ri, timeridx, value);
3022 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3023 const ARMCPRegInfo *ri)
3025 int timeridx = gt_virt_redir_timeridx(env);
3026 return gt_tval_read(env, ri, timeridx);
3029 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3030 uint64_t value)
3032 int timeridx = gt_virt_redir_timeridx(env);
3033 gt_tval_write(env, ri, timeridx, value);
3036 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3037 const ARMCPRegInfo *ri)
3039 int timeridx = gt_virt_redir_timeridx(env);
3040 return env->cp15.c14_timer[timeridx].ctl;
3043 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3044 uint64_t value)
3046 int timeridx = gt_virt_redir_timeridx(env);
3047 gt_ctl_write(env, ri, timeridx, value);
3050 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3052 gt_timer_reset(env, ri, GTIMER_HYP);
3055 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3056 uint64_t value)
3058 gt_cval_write(env, ri, GTIMER_HYP, value);
3061 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3063 return gt_tval_read(env, ri, GTIMER_HYP);
3066 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3067 uint64_t value)
3069 gt_tval_write(env, ri, GTIMER_HYP, value);
3072 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3073 uint64_t value)
3075 gt_ctl_write(env, ri, GTIMER_HYP, value);
3078 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3080 gt_timer_reset(env, ri, GTIMER_SEC);
3083 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3084 uint64_t value)
3086 gt_cval_write(env, ri, GTIMER_SEC, value);
3089 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3091 return gt_tval_read(env, ri, GTIMER_SEC);
3094 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3095 uint64_t value)
3097 gt_tval_write(env, ri, GTIMER_SEC, value);
3100 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3101 uint64_t value)
3103 gt_ctl_write(env, ri, GTIMER_SEC, value);
3106 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3108 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3111 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3112 uint64_t value)
3114 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3117 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3119 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3122 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123 uint64_t value)
3125 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3128 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3129 uint64_t value)
3131 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3134 void arm_gt_ptimer_cb(void *opaque)
3136 ARMCPU *cpu = opaque;
3138 gt_recalc_timer(cpu, GTIMER_PHYS);
3141 void arm_gt_vtimer_cb(void *opaque)
3143 ARMCPU *cpu = opaque;
3145 gt_recalc_timer(cpu, GTIMER_VIRT);
3148 void arm_gt_htimer_cb(void *opaque)
3150 ARMCPU *cpu = opaque;
3152 gt_recalc_timer(cpu, GTIMER_HYP);
3155 void arm_gt_stimer_cb(void *opaque)
3157 ARMCPU *cpu = opaque;
3159 gt_recalc_timer(cpu, GTIMER_SEC);
3162 void arm_gt_hvtimer_cb(void *opaque)
3164 ARMCPU *cpu = opaque;
3166 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3169 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3171 ARMCPU *cpu = env_archcpu(env);
3173 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3176 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3177 /* Note that CNTFRQ is purely reads-as-written for the benefit
3178 * of software; writing it doesn't actually change the timer frequency.
3179 * Our reset value matches the fixed frequency we implement the timer at.
3181 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3182 .type = ARM_CP_ALIAS,
3183 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3184 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3186 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3187 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3188 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3189 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3190 .resetfn = arm_gt_cntfrq_reset,
3192 /* overall control: mostly access permissions */
3193 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3194 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3195 .access = PL1_RW,
3196 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3197 .resetvalue = 0,
3199 /* per-timer control */
3200 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3201 .secure = ARM_CP_SECSTATE_NS,
3202 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3203 .accessfn = gt_ptimer_access,
3204 .fieldoffset = offsetoflow32(CPUARMState,
3205 cp15.c14_timer[GTIMER_PHYS].ctl),
3206 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3207 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3209 { .name = "CNTP_CTL_S",
3210 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3211 .secure = ARM_CP_SECSTATE_S,
3212 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3213 .accessfn = gt_ptimer_access,
3214 .fieldoffset = offsetoflow32(CPUARMState,
3215 cp15.c14_timer[GTIMER_SEC].ctl),
3216 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3218 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3219 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3220 .type = ARM_CP_IO, .access = PL0_RW,
3221 .accessfn = gt_ptimer_access,
3222 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3223 .resetvalue = 0,
3224 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3225 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3227 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3228 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3229 .accessfn = gt_vtimer_access,
3230 .fieldoffset = offsetoflow32(CPUARMState,
3231 cp15.c14_timer[GTIMER_VIRT].ctl),
3232 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3233 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3235 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3236 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3237 .type = ARM_CP_IO, .access = PL0_RW,
3238 .accessfn = gt_vtimer_access,
3239 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3240 .resetvalue = 0,
3241 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3242 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3244 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3245 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3246 .secure = ARM_CP_SECSTATE_NS,
3247 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3248 .accessfn = gt_ptimer_access,
3249 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3251 { .name = "CNTP_TVAL_S",
3252 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3253 .secure = ARM_CP_SECSTATE_S,
3254 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3255 .accessfn = gt_ptimer_access,
3256 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3258 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3259 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3260 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3261 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3262 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3264 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3265 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3266 .accessfn = gt_vtimer_access,
3267 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3269 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3270 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3271 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3272 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3273 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3275 /* The counter itself */
3276 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3277 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3278 .accessfn = gt_pct_access,
3279 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3281 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3282 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3283 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3284 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3286 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3287 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3288 .accessfn = gt_vct_access,
3289 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3291 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3292 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3293 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3294 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3296 /* Comparison value, indicating when the timer goes off */
3297 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3298 .secure = ARM_CP_SECSTATE_NS,
3299 .access = PL0_RW,
3300 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3301 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3302 .accessfn = gt_ptimer_access,
3303 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3304 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3306 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3307 .secure = ARM_CP_SECSTATE_S,
3308 .access = PL0_RW,
3309 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3310 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3311 .accessfn = gt_ptimer_access,
3312 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3314 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3315 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3316 .access = PL0_RW,
3317 .type = ARM_CP_IO,
3318 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3319 .resetvalue = 0, .accessfn = gt_ptimer_access,
3320 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3321 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3323 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3324 .access = PL0_RW,
3325 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3326 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3327 .accessfn = gt_vtimer_access,
3328 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3329 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3331 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3333 .access = PL0_RW,
3334 .type = ARM_CP_IO,
3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3336 .resetvalue = 0, .accessfn = gt_vtimer_access,
3337 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3338 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3340 /* Secure timer -- this is actually restricted to only EL3
3341 * and configurably Secure-EL1 via the accessfn.
3343 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3345 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3346 .accessfn = gt_stimer_access,
3347 .readfn = gt_sec_tval_read,
3348 .writefn = gt_sec_tval_write,
3349 .resetfn = gt_sec_timer_reset,
3351 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3352 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3353 .type = ARM_CP_IO, .access = PL1_RW,
3354 .accessfn = gt_stimer_access,
3355 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3356 .resetvalue = 0,
3357 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3359 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3360 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3361 .type = ARM_CP_IO, .access = PL1_RW,
3362 .accessfn = gt_stimer_access,
3363 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3364 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3366 REGINFO_SENTINEL
3369 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3370 bool isread)
3372 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3373 return CP_ACCESS_TRAP;
3375 return CP_ACCESS_OK;
3378 #else
3380 /* In user-mode most of the generic timer registers are inaccessible
3381 * however modern kernels (4.12+) allow access to cntvct_el0
3384 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3386 ARMCPU *cpu = env_archcpu(env);
3388 /* Currently we have no support for QEMUTimer in linux-user so we
3389 * can't call gt_get_countervalue(env), instead we directly
3390 * call the lower level functions.
3392 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3395 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3396 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3397 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3398 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3399 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3400 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3402 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3403 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3404 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3405 .readfn = gt_virt_cnt_read,
3407 REGINFO_SENTINEL
3410 #endif
3412 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3414 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3415 raw_write(env, ri, value);
3416 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3417 raw_write(env, ri, value & 0xfffff6ff);
3418 } else {
3419 raw_write(env, ri, value & 0xfffff1ff);
3423 #ifndef CONFIG_USER_ONLY
3424 /* get_phys_addr() isn't present for user-mode-only targets */
3426 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3427 bool isread)
3429 if (ri->opc2 & 4) {
3430 /* The ATS12NSO* operations must trap to EL3 if executed in
3431 * Secure EL1 (which can only happen if EL3 is AArch64).
3432 * They are simply UNDEF if executed from NS EL1.
3433 * They function normally from EL2 or EL3.
3435 if (arm_current_el(env) == 1) {
3436 if (arm_is_secure_below_el3(env)) {
3437 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3439 return CP_ACCESS_TRAP_UNCATEGORIZED;
3442 return CP_ACCESS_OK;
3445 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3446 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3448 hwaddr phys_addr;
3449 target_ulong page_size;
3450 int prot;
3451 bool ret;
3452 uint64_t par64;
3453 bool format64 = false;
3454 MemTxAttrs attrs = {};
3455 ARMMMUFaultInfo fi = {};
3456 ARMCacheAttrs cacheattrs = {};
3458 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3459 &prot, &page_size, &fi, &cacheattrs);
3461 if (ret) {
3463 * Some kinds of translation fault must cause exceptions rather
3464 * than being reported in the PAR.
3466 int current_el = arm_current_el(env);
3467 int target_el;
3468 uint32_t syn, fsr, fsc;
3469 bool take_exc = false;
3471 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3472 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3474 * Synchronous stage 2 fault on an access made as part of the
3475 * translation table walk for AT S1E0* or AT S1E1* insn
3476 * executed from NS EL1. If this is a synchronous external abort
3477 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3478 * to EL3. Otherwise the fault is taken as an exception to EL2,
3479 * and HPFAR_EL2 holds the faulting IPA.
3481 if (fi.type == ARMFault_SyncExternalOnWalk &&
3482 (env->cp15.scr_el3 & SCR_EA)) {
3483 target_el = 3;
3484 } else {
3485 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3486 target_el = 2;
3488 take_exc = true;
3489 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3491 * Synchronous external aborts during a translation table walk
3492 * are taken as Data Abort exceptions.
3494 if (fi.stage2) {
3495 if (current_el == 3) {
3496 target_el = 3;
3497 } else {
3498 target_el = 2;
3500 } else {
3501 target_el = exception_target_el(env);
3503 take_exc = true;
3506 if (take_exc) {
3507 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3508 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3509 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3510 fsr = arm_fi_to_lfsc(&fi);
3511 fsc = extract32(fsr, 0, 6);
3512 } else {
3513 fsr = arm_fi_to_sfsc(&fi);
3514 fsc = 0x3f;
3517 * Report exception with ESR indicating a fault due to a
3518 * translation table walk for a cache maintenance instruction.
3520 syn = syn_data_abort_no_iss(current_el == target_el,
3521 fi.ea, 1, fi.s1ptw, 1, fsc);
3522 env->exception.vaddress = value;
3523 env->exception.fsr = fsr;
3524 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3528 if (is_a64(env)) {
3529 format64 = true;
3530 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3532 * ATS1Cxx:
3533 * * TTBCR.EAE determines whether the result is returned using the
3534 * 32-bit or the 64-bit PAR format
3535 * * Instructions executed in Hyp mode always use the 64bit format
3537 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3538 * * The Non-secure TTBCR.EAE bit is set to 1
3539 * * The implementation includes EL2, and the value of HCR.VM is 1
3541 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3543 * ATS1Hx always uses the 64bit format.
3545 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3547 if (arm_feature(env, ARM_FEATURE_EL2)) {
3548 if (mmu_idx == ARMMMUIdx_E10_0 ||
3549 mmu_idx == ARMMMUIdx_E10_1 ||
3550 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3551 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3552 } else {
3553 format64 |= arm_current_el(env) == 2;
3558 if (format64) {
3559 /* Create a 64-bit PAR */
3560 par64 = (1 << 11); /* LPAE bit always set */
3561 if (!ret) {
3562 par64 |= phys_addr & ~0xfffULL;
3563 if (!attrs.secure) {
3564 par64 |= (1 << 9); /* NS */
3566 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3567 par64 |= cacheattrs.shareability << 7; /* SH */
3568 } else {
3569 uint32_t fsr = arm_fi_to_lfsc(&fi);
3571 par64 |= 1; /* F */
3572 par64 |= (fsr & 0x3f) << 1; /* FS */
3573 if (fi.stage2) {
3574 par64 |= (1 << 9); /* S */
3576 if (fi.s1ptw) {
3577 par64 |= (1 << 8); /* PTW */
3580 } else {
3581 /* fsr is a DFSR/IFSR value for the short descriptor
3582 * translation table format (with WnR always clear).
3583 * Convert it to a 32-bit PAR.
3585 if (!ret) {
3586 /* We do not set any attribute bits in the PAR */
3587 if (page_size == (1 << 24)
3588 && arm_feature(env, ARM_FEATURE_V7)) {
3589 par64 = (phys_addr & 0xff000000) | (1 << 1);
3590 } else {
3591 par64 = phys_addr & 0xfffff000;
3593 if (!attrs.secure) {
3594 par64 |= (1 << 9); /* NS */
3596 } else {
3597 uint32_t fsr = arm_fi_to_sfsc(&fi);
3599 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3600 ((fsr & 0xf) << 1) | 1;
3603 return par64;
3606 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3608 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3609 uint64_t par64;
3610 ARMMMUIdx mmu_idx;
3611 int el = arm_current_el(env);
3612 bool secure = arm_is_secure_below_el3(env);
3614 switch (ri->opc2 & 6) {
3615 case 0:
3616 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3617 switch (el) {
3618 case 3:
3619 mmu_idx = ARMMMUIdx_SE3;
3620 break;
3621 case 2:
3622 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */
3623 /* fall through */
3624 case 1:
3625 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3626 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3627 : ARMMMUIdx_Stage1_E1_PAN);
3628 } else {
3629 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3631 break;
3632 default:
3633 g_assert_not_reached();
3635 break;
3636 case 2:
3637 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3638 switch (el) {
3639 case 3:
3640 mmu_idx = ARMMMUIdx_SE10_0;
3641 break;
3642 case 2:
3643 mmu_idx = ARMMMUIdx_Stage1_E0;
3644 break;
3645 case 1:
3646 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3647 break;
3648 default:
3649 g_assert_not_reached();
3651 break;
3652 case 4:
3653 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3654 mmu_idx = ARMMMUIdx_E10_1;
3655 break;
3656 case 6:
3657 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3658 mmu_idx = ARMMMUIdx_E10_0;
3659 break;
3660 default:
3661 g_assert_not_reached();
3664 par64 = do_ats_write(env, value, access_type, mmu_idx);
3666 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3669 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3670 uint64_t value)
3672 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3673 uint64_t par64;
3675 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3677 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3680 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3681 bool isread)
3683 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3684 return CP_ACCESS_TRAP;
3686 return CP_ACCESS_OK;
3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3690 uint64_t value)
3692 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3693 ARMMMUIdx mmu_idx;
3694 int secure = arm_is_secure_below_el3(env);
3696 switch (ri->opc2 & 6) {
3697 case 0:
3698 switch (ri->opc1) {
3699 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3700 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3701 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3702 : ARMMMUIdx_Stage1_E1_PAN);
3703 } else {
3704 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3706 break;
3707 case 4: /* AT S1E2R, AT S1E2W */
3708 mmu_idx = ARMMMUIdx_E2;
3709 break;
3710 case 6: /* AT S1E3R, AT S1E3W */
3711 mmu_idx = ARMMMUIdx_SE3;
3712 break;
3713 default:
3714 g_assert_not_reached();
3716 break;
3717 case 2: /* AT S1E0R, AT S1E0W */
3718 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3719 break;
3720 case 4: /* AT S12E1R, AT S12E1W */
3721 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3722 break;
3723 case 6: /* AT S12E0R, AT S12E0W */
3724 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3725 break;
3726 default:
3727 g_assert_not_reached();
3730 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3732 #endif
3734 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3735 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3736 .access = PL1_RW, .resetvalue = 0,
3737 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3738 offsetoflow32(CPUARMState, cp15.par_ns) },
3739 .writefn = par_write },
3740 #ifndef CONFIG_USER_ONLY
3741 /* This underdecoding is safe because the reginfo is NO_RAW. */
3742 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3743 .access = PL1_W, .accessfn = ats_access,
3744 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3745 #endif
3746 REGINFO_SENTINEL
3749 /* Return basic MPU access permission bits. */
3750 static uint32_t simple_mpu_ap_bits(uint32_t val)
3752 uint32_t ret;
3753 uint32_t mask;
3754 int i;
3755 ret = 0;
3756 mask = 3;
3757 for (i = 0; i < 16; i += 2) {
3758 ret |= (val >> i) & mask;
3759 mask <<= 2;
3761 return ret;
3764 /* Pad basic MPU access permission bits to extended format. */
3765 static uint32_t extended_mpu_ap_bits(uint32_t val)
3767 uint32_t ret;
3768 uint32_t mask;
3769 int i;
3770 ret = 0;
3771 mask = 3;
3772 for (i = 0; i < 16; i += 2) {
3773 ret |= (val & mask) << i;
3774 mask <<= 2;
3776 return ret;
3779 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3780 uint64_t value)
3782 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3785 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3787 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3790 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3791 uint64_t value)
3793 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3796 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3798 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3801 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3803 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3805 if (!u32p) {
3806 return 0;
3809 u32p += env->pmsav7.rnr[M_REG_NS];
3810 return *u32p;
3813 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3814 uint64_t value)
3816 ARMCPU *cpu = env_archcpu(env);
3817 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3819 if (!u32p) {
3820 return;
3823 u32p += env->pmsav7.rnr[M_REG_NS];
3824 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3825 *u32p = value;
3828 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3829 uint64_t value)
3831 ARMCPU *cpu = env_archcpu(env);
3832 uint32_t nrgs = cpu->pmsav7_dregion;
3834 if (value >= nrgs) {
3835 qemu_log_mask(LOG_GUEST_ERROR,
3836 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3837 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3838 return;
3841 raw_write(env, ri, value);
3844 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3845 /* Reset for all these registers is handled in arm_cpu_reset(),
3846 * because the PMSAv7 is also used by M-profile CPUs, which do
3847 * not register cpregs but still need the state to be reset.
3849 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3850 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3851 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3852 .readfn = pmsav7_read, .writefn = pmsav7_write,
3853 .resetfn = arm_cp_reset_ignore },
3854 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3855 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3856 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3857 .readfn = pmsav7_read, .writefn = pmsav7_write,
3858 .resetfn = arm_cp_reset_ignore },
3859 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3860 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3861 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3862 .readfn = pmsav7_read, .writefn = pmsav7_write,
3863 .resetfn = arm_cp_reset_ignore },
3864 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3865 .access = PL1_RW,
3866 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3867 .writefn = pmsav7_rgnr_write,
3868 .resetfn = arm_cp_reset_ignore },
3869 REGINFO_SENTINEL
3872 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3873 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3874 .access = PL1_RW, .type = ARM_CP_ALIAS,
3875 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3876 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3877 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3878 .access = PL1_RW, .type = ARM_CP_ALIAS,
3879 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3880 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3881 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3882 .access = PL1_RW,
3883 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3884 .resetvalue = 0, },
3885 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3886 .access = PL1_RW,
3887 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3888 .resetvalue = 0, },
3889 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3890 .access = PL1_RW,
3891 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3892 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3893 .access = PL1_RW,
3894 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3895 /* Protection region base and size registers */
3896 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3897 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3898 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3899 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3900 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3901 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3902 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3903 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3904 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3905 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3906 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3907 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3908 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3909 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3910 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3911 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3912 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3913 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3914 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3915 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3916 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3917 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3918 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3919 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3920 REGINFO_SENTINEL
3923 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3924 uint64_t value)
3926 TCR *tcr = raw_ptr(env, ri);
3927 int maskshift = extract32(value, 0, 3);
3929 if (!arm_feature(env, ARM_FEATURE_V8)) {
3930 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3931 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3932 * using Long-desciptor translation table format */
3933 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3934 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3935 /* In an implementation that includes the Security Extensions
3936 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3937 * Short-descriptor translation table format.
3939 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3940 } else {
3941 value &= TTBCR_N;
3945 /* Update the masks corresponding to the TCR bank being written
3946 * Note that we always calculate mask and base_mask, but
3947 * they are only used for short-descriptor tables (ie if EAE is 0);
3948 * for long-descriptor tables the TCR fields are used differently
3949 * and the mask and base_mask values are meaningless.
3951 tcr->raw_tcr = value;
3952 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3953 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3956 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3957 uint64_t value)
3959 ARMCPU *cpu = env_archcpu(env);
3960 TCR *tcr = raw_ptr(env, ri);
3962 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3963 /* With LPAE the TTBCR could result in a change of ASID
3964 * via the TTBCR.A1 bit, so do a TLB flush.
3966 tlb_flush(CPU(cpu));
3968 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3969 value = deposit64(tcr->raw_tcr, 0, 32, value);
3970 vmsa_ttbcr_raw_write(env, ri, value);
3973 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3975 TCR *tcr = raw_ptr(env, ri);
3977 /* Reset both the TCR as well as the masks corresponding to the bank of
3978 * the TCR being reset.
3980 tcr->raw_tcr = 0;
3981 tcr->mask = 0;
3982 tcr->base_mask = 0xffffc000u;
3985 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3986 uint64_t value)
3988 ARMCPU *cpu = env_archcpu(env);
3989 TCR *tcr = raw_ptr(env, ri);
3991 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3992 tlb_flush(CPU(cpu));
3993 tcr->raw_tcr = value;
3996 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3997 uint64_t value)
3999 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4000 if (cpreg_field_is_64bit(ri) &&
4001 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4002 ARMCPU *cpu = env_archcpu(env);
4003 tlb_flush(CPU(cpu));
4005 raw_write(env, ri, value);
4008 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4009 uint64_t value)
4012 * If we are running with E2&0 regime, then an ASID is active.
4013 * Flush if that might be changing. Note we're not checking
4014 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4015 * holds the active ASID, only checking the field that might.
4017 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4018 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4019 tlb_flush_by_mmuidx(env_cpu(env),
4020 ARMMMUIdxBit_E20_2 |
4021 ARMMMUIdxBit_E20_2_PAN |
4022 ARMMMUIdxBit_E20_0);
4024 raw_write(env, ri, value);
4027 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4028 uint64_t value)
4030 ARMCPU *cpu = env_archcpu(env);
4031 CPUState *cs = CPU(cpu);
4034 * A change in VMID to the stage2 page table (Stage2) invalidates
4035 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4037 if (raw_read(env, ri) != value) {
4038 tlb_flush_by_mmuidx(cs,
4039 ARMMMUIdxBit_E10_1 |
4040 ARMMMUIdxBit_E10_1_PAN |
4041 ARMMMUIdxBit_E10_0 |
4042 ARMMMUIdxBit_Stage2);
4043 raw_write(env, ri, value);
4047 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4048 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4049 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4050 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4051 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4052 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4053 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4054 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4055 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4056 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4057 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4058 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4059 offsetof(CPUARMState, cp15.dfar_ns) } },
4060 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4061 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4062 .access = PL1_RW, .accessfn = access_tvm_trvm,
4063 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4064 .resetvalue = 0, },
4065 REGINFO_SENTINEL
4068 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4069 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4070 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4071 .access = PL1_RW, .accessfn = access_tvm_trvm,
4072 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4073 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4074 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4075 .access = PL1_RW, .accessfn = access_tvm_trvm,
4076 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4077 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4078 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4079 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4080 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4081 .access = PL1_RW, .accessfn = access_tvm_trvm,
4082 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4083 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4084 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4085 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4086 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4087 .access = PL1_RW, .accessfn = access_tvm_trvm,
4088 .writefn = vmsa_tcr_el12_write,
4089 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4090 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4091 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4092 .access = PL1_RW, .accessfn = access_tvm_trvm,
4093 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4094 .raw_writefn = vmsa_ttbcr_raw_write,
4095 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4096 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4097 REGINFO_SENTINEL
4100 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4101 * qemu tlbs nor adjusting cached masks.
4103 static const ARMCPRegInfo ttbcr2_reginfo = {
4104 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4105 .access = PL1_RW, .accessfn = access_tvm_trvm,
4106 .type = ARM_CP_ALIAS,
4107 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4108 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4111 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4112 uint64_t value)
4114 env->cp15.c15_ticonfig = value & 0xe7;
4115 /* The OS_TYPE bit in this register changes the reported CPUID! */
4116 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4117 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4120 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4121 uint64_t value)
4123 env->cp15.c15_threadid = value & 0xffff;
4126 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4127 uint64_t value)
4129 /* Wait-for-interrupt (deprecated) */
4130 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4133 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4134 uint64_t value)
4136 /* On OMAP there are registers indicating the max/min index of dcache lines
4137 * containing a dirty line; cache flush operations have to reset these.
4139 env->cp15.c15_i_max = 0x000;
4140 env->cp15.c15_i_min = 0xff0;
4143 static const ARMCPRegInfo omap_cp_reginfo[] = {
4144 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4145 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4146 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4147 .resetvalue = 0, },
4148 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4149 .access = PL1_RW, .type = ARM_CP_NOP },
4150 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4151 .access = PL1_RW,
4152 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4153 .writefn = omap_ticonfig_write },
4154 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4155 .access = PL1_RW,
4156 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4157 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4158 .access = PL1_RW, .resetvalue = 0xff0,
4159 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4160 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4161 .access = PL1_RW,
4162 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4163 .writefn = omap_threadid_write },
4164 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4165 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4166 .type = ARM_CP_NO_RAW,
4167 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4168 /* TODO: Peripheral port remap register:
4169 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4170 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4171 * when MMU is off.
4173 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4174 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4175 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4176 .writefn = omap_cachemaint_write },
4177 { .name = "C9", .cp = 15, .crn = 9,
4178 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4179 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4180 REGINFO_SENTINEL
4183 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4184 uint64_t value)
4186 env->cp15.c15_cpar = value & 0x3fff;
4189 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4190 { .name = "XSCALE_CPAR",
4191 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4192 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4193 .writefn = xscale_cpar_write, },
4194 { .name = "XSCALE_AUXCR",
4195 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4196 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4197 .resetvalue = 0, },
4198 /* XScale specific cache-lockdown: since we have no cache we NOP these
4199 * and hope the guest does not really rely on cache behaviour.
4201 { .name = "XSCALE_LOCK_ICACHE_LINE",
4202 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4203 .access = PL1_W, .type = ARM_CP_NOP },
4204 { .name = "XSCALE_UNLOCK_ICACHE",
4205 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4206 .access = PL1_W, .type = ARM_CP_NOP },
4207 { .name = "XSCALE_DCACHE_LOCK",
4208 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4209 .access = PL1_RW, .type = ARM_CP_NOP },
4210 { .name = "XSCALE_UNLOCK_DCACHE",
4211 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4212 .access = PL1_W, .type = ARM_CP_NOP },
4213 REGINFO_SENTINEL
4216 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4217 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4218 * implementation of this implementation-defined space.
4219 * Ideally this should eventually disappear in favour of actually
4220 * implementing the correct behaviour for all cores.
4222 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4223 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4224 .access = PL1_RW,
4225 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4226 .resetvalue = 0 },
4227 REGINFO_SENTINEL
4230 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4231 /* Cache status: RAZ because we have no cache so it's always clean */
4232 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4233 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4234 .resetvalue = 0 },
4235 REGINFO_SENTINEL
4238 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4239 /* We never have a a block transfer operation in progress */
4240 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4241 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4242 .resetvalue = 0 },
4243 /* The cache ops themselves: these all NOP for QEMU */
4244 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4245 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4246 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4247 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4248 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4249 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4250 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4251 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4252 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4253 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4254 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4255 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4256 REGINFO_SENTINEL
4259 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4260 /* The cache test-and-clean instructions always return (1 << 30)
4261 * to indicate that there are no dirty cache lines.
4263 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4264 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4265 .resetvalue = (1 << 30) },
4266 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4267 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4268 .resetvalue = (1 << 30) },
4269 REGINFO_SENTINEL
4272 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4273 /* Ignore ReadBuffer accesses */
4274 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4275 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4276 .access = PL1_RW, .resetvalue = 0,
4277 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4278 REGINFO_SENTINEL
4281 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4283 ARMCPU *cpu = env_archcpu(env);
4284 unsigned int cur_el = arm_current_el(env);
4285 bool secure = arm_is_secure(env);
4287 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4288 return env->cp15.vpidr_el2;
4290 return raw_read(env, ri);
4293 static uint64_t mpidr_read_val(CPUARMState *env)
4295 ARMCPU *cpu = env_archcpu(env);
4296 uint64_t mpidr = cpu->mp_affinity;
4298 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4299 mpidr |= (1U << 31);
4300 /* Cores which are uniprocessor (non-coherent)
4301 * but still implement the MP extensions set
4302 * bit 30. (For instance, Cortex-R5).
4304 if (cpu->mp_is_up) {
4305 mpidr |= (1u << 30);
4308 return mpidr;
4311 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4313 unsigned int cur_el = arm_current_el(env);
4314 bool secure = arm_is_secure(env);
4316 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4317 return env->cp15.vmpidr_el2;
4319 return mpidr_read_val(env);
4322 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4323 /* NOP AMAIR0/1 */
4324 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4325 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4326 .access = PL1_RW, .accessfn = access_tvm_trvm,
4327 .type = ARM_CP_CONST, .resetvalue = 0 },
4328 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4329 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4330 .access = PL1_RW, .accessfn = access_tvm_trvm,
4331 .type = ARM_CP_CONST, .resetvalue = 0 },
4332 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4333 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4334 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4335 offsetof(CPUARMState, cp15.par_ns)} },
4336 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4337 .access = PL1_RW, .accessfn = access_tvm_trvm,
4338 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4339 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4340 offsetof(CPUARMState, cp15.ttbr0_ns) },
4341 .writefn = vmsa_ttbr_write, },
4342 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4343 .access = PL1_RW, .accessfn = access_tvm_trvm,
4344 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4345 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4346 offsetof(CPUARMState, cp15.ttbr1_ns) },
4347 .writefn = vmsa_ttbr_write, },
4348 REGINFO_SENTINEL
4351 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4353 return vfp_get_fpcr(env);
4356 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4357 uint64_t value)
4359 vfp_set_fpcr(env, value);
4362 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4364 return vfp_get_fpsr(env);
4367 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4368 uint64_t value)
4370 vfp_set_fpsr(env, value);
4373 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4374 bool isread)
4376 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4377 return CP_ACCESS_TRAP;
4379 return CP_ACCESS_OK;
4382 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4383 uint64_t value)
4385 env->daif = value & PSTATE_DAIF;
4388 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4390 return env->pstate & PSTATE_PAN;
4393 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4394 uint64_t value)
4396 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4399 static const ARMCPRegInfo pan_reginfo = {
4400 .name = "PAN", .state = ARM_CP_STATE_AA64,
4401 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4402 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4403 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4406 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4408 return env->pstate & PSTATE_UAO;
4411 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4412 uint64_t value)
4414 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4417 static const ARMCPRegInfo uao_reginfo = {
4418 .name = "UAO", .state = ARM_CP_STATE_AA64,
4419 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4420 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4421 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4424 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4425 const ARMCPRegInfo *ri,
4426 bool isread)
4428 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4429 switch (arm_current_el(env)) {
4430 case 0:
4431 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4432 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4433 return CP_ACCESS_TRAP;
4435 /* fall through */
4436 case 1:
4437 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4438 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4439 return CP_ACCESS_TRAP_EL2;
4441 break;
4443 return CP_ACCESS_OK;
4446 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4447 const ARMCPRegInfo *ri,
4448 bool isread)
4450 /* Cache invalidate/clean to Point of Unification... */
4451 switch (arm_current_el(env)) {
4452 case 0:
4453 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4454 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4455 return CP_ACCESS_TRAP;
4457 /* fall through */
4458 case 1:
4459 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4460 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4461 return CP_ACCESS_TRAP_EL2;
4463 break;
4465 return CP_ACCESS_OK;
4468 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4469 * Page D4-1736 (DDI0487A.b)
4472 static int vae1_tlbmask(CPUARMState *env)
4474 /* Since we exclude secure first, we may read HCR_EL2 directly. */
4475 if (arm_is_secure_below_el3(env)) {
4476 return ARMMMUIdxBit_SE10_1 |
4477 ARMMMUIdxBit_SE10_1_PAN |
4478 ARMMMUIdxBit_SE10_0;
4479 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4480 == (HCR_E2H | HCR_TGE)) {
4481 return ARMMMUIdxBit_E20_2 |
4482 ARMMMUIdxBit_E20_2_PAN |
4483 ARMMMUIdxBit_E20_0;
4484 } else {
4485 return ARMMMUIdxBit_E10_1 |
4486 ARMMMUIdxBit_E10_1_PAN |
4487 ARMMMUIdxBit_E10_0;
4491 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4492 uint64_t value)
4494 CPUState *cs = env_cpu(env);
4495 int mask = vae1_tlbmask(env);
4497 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4500 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4501 uint64_t value)
4503 CPUState *cs = env_cpu(env);
4504 int mask = vae1_tlbmask(env);
4506 if (tlb_force_broadcast(env)) {
4507 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4508 } else {
4509 tlb_flush_by_mmuidx(cs, mask);
4513 static int alle1_tlbmask(CPUARMState *env)
4516 * Note that the 'ALL' scope must invalidate both stage 1 and
4517 * stage 2 translations, whereas most other scopes only invalidate
4518 * stage 1 translations.
4520 if (arm_is_secure_below_el3(env)) {
4521 return ARMMMUIdxBit_SE10_1 |
4522 ARMMMUIdxBit_SE10_1_PAN |
4523 ARMMMUIdxBit_SE10_0;
4524 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
4525 return ARMMMUIdxBit_E10_1 |
4526 ARMMMUIdxBit_E10_1_PAN |
4527 ARMMMUIdxBit_E10_0 |
4528 ARMMMUIdxBit_Stage2;
4529 } else {
4530 return ARMMMUIdxBit_E10_1 |
4531 ARMMMUIdxBit_E10_1_PAN |
4532 ARMMMUIdxBit_E10_0;
4536 static int e2_tlbmask(CPUARMState *env)
4538 /* TODO: ARMv8.4-SecEL2 */
4539 return ARMMMUIdxBit_E20_0 |
4540 ARMMMUIdxBit_E20_2 |
4541 ARMMMUIdxBit_E20_2_PAN |
4542 ARMMMUIdxBit_E2;
4545 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4546 uint64_t value)
4548 CPUState *cs = env_cpu(env);
4549 int mask = alle1_tlbmask(env);
4551 tlb_flush_by_mmuidx(cs, mask);
4554 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4555 uint64_t value)
4557 CPUState *cs = env_cpu(env);
4558 int mask = e2_tlbmask(env);
4560 tlb_flush_by_mmuidx(cs, mask);
4563 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4564 uint64_t value)
4566 ARMCPU *cpu = env_archcpu(env);
4567 CPUState *cs = CPU(cpu);
4569 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4572 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4573 uint64_t value)
4575 CPUState *cs = env_cpu(env);
4576 int mask = alle1_tlbmask(env);
4578 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4581 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4582 uint64_t value)
4584 CPUState *cs = env_cpu(env);
4585 int mask = e2_tlbmask(env);
4587 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4590 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4591 uint64_t value)
4593 CPUState *cs = env_cpu(env);
4595 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4598 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4599 uint64_t value)
4601 /* Invalidate by VA, EL2
4602 * Currently handles both VAE2 and VALE2, since we don't support
4603 * flush-last-level-only.
4605 CPUState *cs = env_cpu(env);
4606 int mask = e2_tlbmask(env);
4607 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4609 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4612 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4613 uint64_t value)
4615 /* Invalidate by VA, EL3
4616 * Currently handles both VAE3 and VALE3, since we don't support
4617 * flush-last-level-only.
4619 ARMCPU *cpu = env_archcpu(env);
4620 CPUState *cs = CPU(cpu);
4621 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4623 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4626 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4627 uint64_t value)
4629 CPUState *cs = env_cpu(env);
4630 int mask = vae1_tlbmask(env);
4631 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4633 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4636 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4637 uint64_t value)
4639 /* Invalidate by VA, EL1&0 (AArch64 version).
4640 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4641 * since we don't support flush-for-specific-ASID-only or
4642 * flush-last-level-only.
4644 CPUState *cs = env_cpu(env);
4645 int mask = vae1_tlbmask(env);
4646 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4648 if (tlb_force_broadcast(env)) {
4649 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4650 } else {
4651 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4655 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4656 uint64_t value)
4658 CPUState *cs = env_cpu(env);
4659 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4661 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4662 ARMMMUIdxBit_E2);
4665 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4666 uint64_t value)
4668 CPUState *cs = env_cpu(env);
4669 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4671 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4672 ARMMMUIdxBit_SE3);
4675 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4676 uint64_t value)
4678 /* Invalidate by IPA. This has to invalidate any structures that
4679 * contain only stage 2 translation information, but does not need
4680 * to apply to structures that contain combined stage 1 and stage 2
4681 * translation information.
4682 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4684 ARMCPU *cpu = env_archcpu(env);
4685 CPUState *cs = CPU(cpu);
4686 uint64_t pageaddr;
4688 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4689 return;
4692 pageaddr = sextract64(value << 12, 0, 48);
4694 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
4697 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4698 uint64_t value)
4700 CPUState *cs = env_cpu(env);
4701 uint64_t pageaddr;
4703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4704 return;
4707 pageaddr = sextract64(value << 12, 0, 48);
4709 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4710 ARMMMUIdxBit_Stage2);
4713 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4714 bool isread)
4716 int cur_el = arm_current_el(env);
4718 if (cur_el < 2) {
4719 uint64_t hcr = arm_hcr_el2_eff(env);
4721 if (cur_el == 0) {
4722 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4723 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4724 return CP_ACCESS_TRAP_EL2;
4726 } else {
4727 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4728 return CP_ACCESS_TRAP;
4730 if (hcr & HCR_TDZ) {
4731 return CP_ACCESS_TRAP_EL2;
4734 } else if (hcr & HCR_TDZ) {
4735 return CP_ACCESS_TRAP_EL2;
4738 return CP_ACCESS_OK;
4741 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4743 ARMCPU *cpu = env_archcpu(env);
4744 int dzp_bit = 1 << 4;
4746 /* DZP indicates whether DC ZVA access is allowed */
4747 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4748 dzp_bit = 0;
4750 return cpu->dcz_blocksize | dzp_bit;
4753 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4754 bool isread)
4756 if (!(env->pstate & PSTATE_SP)) {
4757 /* Access to SP_EL0 is undefined if it's being used as
4758 * the stack pointer.
4760 return CP_ACCESS_TRAP_UNCATEGORIZED;
4762 return CP_ACCESS_OK;
4765 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4767 return env->pstate & PSTATE_SP;
4770 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4772 update_spsel(env, val);
4775 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4776 uint64_t value)
4778 ARMCPU *cpu = env_archcpu(env);
4780 if (raw_read(env, ri) == value) {
4781 /* Skip the TLB flush if nothing actually changed; Linux likes
4782 * to do a lot of pointless SCTLR writes.
4784 return;
4787 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4788 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4789 value &= ~SCTLR_M;
4792 raw_write(env, ri, value);
4793 /* ??? Lots of these bits are not implemented. */
4794 /* This may enable/disable the MMU, so do a TLB flush. */
4795 tlb_flush(CPU(cpu));
4797 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4799 * Normally we would always end the TB on an SCTLR write; see the
4800 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4801 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4802 * of hflags from the translator, so do it here.
4804 arm_rebuild_hflags(env);
4808 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4809 bool isread)
4811 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4812 return CP_ACCESS_TRAP_FP_EL2;
4814 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4815 return CP_ACCESS_TRAP_FP_EL3;
4817 return CP_ACCESS_OK;
4820 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4821 uint64_t value)
4823 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4826 static const ARMCPRegInfo v8_cp_reginfo[] = {
4827 /* Minimal set of EL0-visible registers. This will need to be expanded
4828 * significantly for system emulation of AArch64 CPUs.
4830 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4831 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4832 .access = PL0_RW, .type = ARM_CP_NZCV },
4833 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4834 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4835 .type = ARM_CP_NO_RAW,
4836 .access = PL0_RW, .accessfn = aa64_daif_access,
4837 .fieldoffset = offsetof(CPUARMState, daif),
4838 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4839 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4840 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4841 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4842 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4843 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4844 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4845 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4846 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4847 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4848 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4849 .access = PL0_R, .type = ARM_CP_NO_RAW,
4850 .readfn = aa64_dczid_read },
4851 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4852 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4853 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4854 #ifndef CONFIG_USER_ONLY
4855 /* Avoid overhead of an access check that always passes in user-mode */
4856 .accessfn = aa64_zva_access,
4857 #endif
4859 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4860 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4861 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4862 /* Cache ops: all NOPs since we don't emulate caches */
4863 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4864 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4865 .access = PL1_W, .type = ARM_CP_NOP,
4866 .accessfn = aa64_cacheop_pou_access },
4867 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4868 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4869 .access = PL1_W, .type = ARM_CP_NOP,
4870 .accessfn = aa64_cacheop_pou_access },
4871 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4872 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4873 .access = PL0_W, .type = ARM_CP_NOP,
4874 .accessfn = aa64_cacheop_pou_access },
4875 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4876 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4877 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4878 .type = ARM_CP_NOP },
4879 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4880 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4881 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4882 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4884 .access = PL0_W, .type = ARM_CP_NOP,
4885 .accessfn = aa64_cacheop_poc_access },
4886 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4887 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4888 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4889 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4890 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4891 .access = PL0_W, .type = ARM_CP_NOP,
4892 .accessfn = aa64_cacheop_pou_access },
4893 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4894 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4895 .access = PL0_W, .type = ARM_CP_NOP,
4896 .accessfn = aa64_cacheop_poc_access },
4897 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4898 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4899 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4900 /* TLBI operations */
4901 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4903 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4904 .writefn = tlbi_aa64_vmalle1is_write },
4905 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4907 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4908 .writefn = tlbi_aa64_vae1is_write },
4909 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4911 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4912 .writefn = tlbi_aa64_vmalle1is_write },
4913 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4915 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4916 .writefn = tlbi_aa64_vae1is_write },
4917 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4918 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4919 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4920 .writefn = tlbi_aa64_vae1is_write },
4921 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4922 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4923 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4924 .writefn = tlbi_aa64_vae1is_write },
4925 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4926 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4927 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4928 .writefn = tlbi_aa64_vmalle1_write },
4929 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4930 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4931 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4932 .writefn = tlbi_aa64_vae1_write },
4933 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4934 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4935 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4936 .writefn = tlbi_aa64_vmalle1_write },
4937 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4938 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4939 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4940 .writefn = tlbi_aa64_vae1_write },
4941 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4942 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4943 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4944 .writefn = tlbi_aa64_vae1_write },
4945 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4946 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4947 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4948 .writefn = tlbi_aa64_vae1_write },
4949 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4950 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4951 .access = PL2_W, .type = ARM_CP_NO_RAW,
4952 .writefn = tlbi_aa64_ipas2e1is_write },
4953 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4954 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4955 .access = PL2_W, .type = ARM_CP_NO_RAW,
4956 .writefn = tlbi_aa64_ipas2e1is_write },
4957 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4958 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4959 .access = PL2_W, .type = ARM_CP_NO_RAW,
4960 .writefn = tlbi_aa64_alle1is_write },
4961 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4962 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4963 .access = PL2_W, .type = ARM_CP_NO_RAW,
4964 .writefn = tlbi_aa64_alle1is_write },
4965 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4966 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4967 .access = PL2_W, .type = ARM_CP_NO_RAW,
4968 .writefn = tlbi_aa64_ipas2e1_write },
4969 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4970 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4971 .access = PL2_W, .type = ARM_CP_NO_RAW,
4972 .writefn = tlbi_aa64_ipas2e1_write },
4973 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4974 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4975 .access = PL2_W, .type = ARM_CP_NO_RAW,
4976 .writefn = tlbi_aa64_alle1_write },
4977 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4978 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4979 .access = PL2_W, .type = ARM_CP_NO_RAW,
4980 .writefn = tlbi_aa64_alle1is_write },
4981 #ifndef CONFIG_USER_ONLY
4982 /* 64 bit address translation operations */
4983 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4984 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4985 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4986 .writefn = ats_write64 },
4987 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4988 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4989 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4990 .writefn = ats_write64 },
4991 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4992 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4993 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4994 .writefn = ats_write64 },
4995 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4996 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4997 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4998 .writefn = ats_write64 },
4999 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5000 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5001 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5002 .writefn = ats_write64 },
5003 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5004 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5005 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5006 .writefn = ats_write64 },
5007 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5008 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5009 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5010 .writefn = ats_write64 },
5011 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5012 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5013 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5014 .writefn = ats_write64 },
5015 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5016 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5017 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5018 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5019 .writefn = ats_write64 },
5020 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5021 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5022 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5023 .writefn = ats_write64 },
5024 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5025 .type = ARM_CP_ALIAS,
5026 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5027 .access = PL1_RW, .resetvalue = 0,
5028 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5029 .writefn = par_write },
5030 #endif
5031 /* TLB invalidate last level of translation table walk */
5032 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5033 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5034 .writefn = tlbimva_is_write },
5035 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5036 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5037 .writefn = tlbimvaa_is_write },
5038 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5039 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5040 .writefn = tlbimva_write },
5041 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5042 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5043 .writefn = tlbimvaa_write },
5044 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5045 .type = ARM_CP_NO_RAW, .access = PL2_W,
5046 .writefn = tlbimva_hyp_write },
5047 { .name = "TLBIMVALHIS",
5048 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5049 .type = ARM_CP_NO_RAW, .access = PL2_W,
5050 .writefn = tlbimva_hyp_is_write },
5051 { .name = "TLBIIPAS2",
5052 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5053 .type = ARM_CP_NO_RAW, .access = PL2_W,
5054 .writefn = tlbiipas2_write },
5055 { .name = "TLBIIPAS2IS",
5056 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5057 .type = ARM_CP_NO_RAW, .access = PL2_W,
5058 .writefn = tlbiipas2_is_write },
5059 { .name = "TLBIIPAS2L",
5060 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5061 .type = ARM_CP_NO_RAW, .access = PL2_W,
5062 .writefn = tlbiipas2_write },
5063 { .name = "TLBIIPAS2LIS",
5064 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5065 .type = ARM_CP_NO_RAW, .access = PL2_W,
5066 .writefn = tlbiipas2_is_write },
5067 /* 32 bit cache operations */
5068 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5069 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5070 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5071 .type = ARM_CP_NOP, .access = PL1_W },
5072 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5073 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5074 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5075 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5076 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5077 .type = ARM_CP_NOP, .access = PL1_W },
5078 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5079 .type = ARM_CP_NOP, .access = PL1_W },
5080 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5081 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5082 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5083 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5084 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5085 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5086 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5087 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5088 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5089 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5090 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5091 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5092 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5093 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5094 /* MMU Domain access control / MPU write buffer control */
5095 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5096 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5097 .writefn = dacr_write, .raw_writefn = raw_write,
5098 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5099 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5100 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5101 .type = ARM_CP_ALIAS,
5102 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5103 .access = PL1_RW,
5104 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5105 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5106 .type = ARM_CP_ALIAS,
5107 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5108 .access = PL1_RW,
5109 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5110 /* We rely on the access checks not allowing the guest to write to the
5111 * state field when SPSel indicates that it's being used as the stack
5112 * pointer.
5114 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5115 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5116 .access = PL1_RW, .accessfn = sp_el0_access,
5117 .type = ARM_CP_ALIAS,
5118 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5119 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5120 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5121 .access = PL2_RW, .type = ARM_CP_ALIAS,
5122 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5123 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5124 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5125 .type = ARM_CP_NO_RAW,
5126 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5127 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5128 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5129 .type = ARM_CP_ALIAS,
5130 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5131 .access = PL2_RW, .accessfn = fpexc32_access },
5132 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5133 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5134 .access = PL2_RW, .resetvalue = 0,
5135 .writefn = dacr_write, .raw_writefn = raw_write,
5136 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5137 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5138 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5139 .access = PL2_RW, .resetvalue = 0,
5140 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5141 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5142 .type = ARM_CP_ALIAS,
5143 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5144 .access = PL2_RW,
5145 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5146 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5147 .type = ARM_CP_ALIAS,
5148 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5149 .access = PL2_RW,
5150 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5151 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5152 .type = ARM_CP_ALIAS,
5153 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5154 .access = PL2_RW,
5155 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5156 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5157 .type = ARM_CP_ALIAS,
5158 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5159 .access = PL2_RW,
5160 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5161 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5162 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5163 .resetvalue = 0,
5164 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5165 { .name = "SDCR", .type = ARM_CP_ALIAS,
5166 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5167 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5168 .writefn = sdcr_write,
5169 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5170 REGINFO_SENTINEL
5173 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5174 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5175 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5176 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5177 .access = PL2_RW,
5178 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5179 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5180 .type = ARM_CP_NO_RAW,
5181 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5182 .access = PL2_RW,
5183 .type = ARM_CP_CONST, .resetvalue = 0 },
5184 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5185 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5186 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5187 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5188 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5189 .access = PL2_RW,
5190 .type = ARM_CP_CONST, .resetvalue = 0 },
5191 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5192 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5193 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5194 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5195 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5196 .access = PL2_RW, .type = ARM_CP_CONST,
5197 .resetvalue = 0 },
5198 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5199 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5200 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5201 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5202 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5203 .access = PL2_RW, .type = ARM_CP_CONST,
5204 .resetvalue = 0 },
5205 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5206 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5207 .access = PL2_RW, .type = ARM_CP_CONST,
5208 .resetvalue = 0 },
5209 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5210 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5211 .access = PL2_RW, .type = ARM_CP_CONST,
5212 .resetvalue = 0 },
5213 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5214 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5215 .access = PL2_RW, .type = ARM_CP_CONST,
5216 .resetvalue = 0 },
5217 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5218 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5219 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5220 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5221 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5222 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5223 .type = ARM_CP_CONST, .resetvalue = 0 },
5224 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5225 .cp = 15, .opc1 = 6, .crm = 2,
5226 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5227 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5228 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5229 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5230 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5231 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5232 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5233 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5234 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5235 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5236 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5237 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5238 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5239 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5240 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5241 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5242 .resetvalue = 0 },
5243 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5244 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5245 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5246 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5247 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5248 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5249 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5250 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5251 .resetvalue = 0 },
5252 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5253 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5254 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5255 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5256 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5257 .resetvalue = 0 },
5258 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5259 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5260 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5261 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5262 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5263 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5264 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5265 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5266 .access = PL2_RW, .accessfn = access_tda,
5267 .type = ARM_CP_CONST, .resetvalue = 0 },
5268 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5269 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5270 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5271 .type = ARM_CP_CONST, .resetvalue = 0 },
5272 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5273 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5274 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5275 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5276 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5277 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5278 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5279 .type = ARM_CP_CONST,
5280 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5281 .access = PL2_RW, .resetvalue = 0 },
5282 REGINFO_SENTINEL
5285 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5286 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5287 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5288 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5289 .access = PL2_RW,
5290 .type = ARM_CP_CONST, .resetvalue = 0 },
5291 REGINFO_SENTINEL
5294 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5296 ARMCPU *cpu = env_archcpu(env);
5298 if (arm_feature(env, ARM_FEATURE_V8)) {
5299 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5300 } else {
5301 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5304 if (arm_feature(env, ARM_FEATURE_EL3)) {
5305 valid_mask &= ~HCR_HCD;
5306 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5307 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5308 * However, if we're using the SMC PSCI conduit then QEMU is
5309 * effectively acting like EL3 firmware and so the guest at
5310 * EL2 should retain the ability to prevent EL1 from being
5311 * able to make SMC calls into the ersatz firmware, so in
5312 * that case HCR.TSC should be read/write.
5314 valid_mask &= ~HCR_TSC;
5317 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5318 if (cpu_isar_feature(aa64_vh, cpu)) {
5319 valid_mask |= HCR_E2H;
5321 if (cpu_isar_feature(aa64_lor, cpu)) {
5322 valid_mask |= HCR_TLOR;
5324 if (cpu_isar_feature(aa64_pauth, cpu)) {
5325 valid_mask |= HCR_API | HCR_APK;
5329 /* Clear RES0 bits. */
5330 value &= valid_mask;
5332 /* These bits change the MMU setup:
5333 * HCR_VM enables stage 2 translation
5334 * HCR_PTW forbids certain page-table setups
5335 * HCR_DC Disables stage1 and enables stage2 translation
5337 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
5338 tlb_flush(CPU(cpu));
5340 env->cp15.hcr_el2 = value;
5343 * Updates to VI and VF require us to update the status of
5344 * virtual interrupts, which are the logical OR of these bits
5345 * and the state of the input lines from the GIC. (This requires
5346 * that we have the iothread lock, which is done by marking the
5347 * reginfo structs as ARM_CP_IO.)
5348 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5349 * possible for it to be taken immediately, because VIRQ and
5350 * VFIQ are masked unless running at EL0 or EL1, and HCR
5351 * can only be written at EL2.
5353 g_assert(qemu_mutex_iothread_locked());
5354 arm_cpu_update_virq(cpu);
5355 arm_cpu_update_vfiq(cpu);
5358 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5360 do_hcr_write(env, value, 0);
5363 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5364 uint64_t value)
5366 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5367 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5368 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5371 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5372 uint64_t value)
5374 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5375 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5376 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5380 * Return the effective value of HCR_EL2.
5381 * Bits that are not included here:
5382 * RW (read from SCR_EL3.RW as needed)
5384 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5386 uint64_t ret = env->cp15.hcr_el2;
5388 if (arm_is_secure_below_el3(env)) {
5390 * "This register has no effect if EL2 is not enabled in the
5391 * current Security state". This is ARMv8.4-SecEL2 speak for
5392 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5394 * Prior to that, the language was "In an implementation that
5395 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5396 * as if this field is 0 for all purposes other than a direct
5397 * read or write access of HCR_EL2". With lots of enumeration
5398 * on a per-field basis. In current QEMU, this is condition
5399 * is arm_is_secure_below_el3.
5401 * Since the v8.4 language applies to the entire register, and
5402 * appears to be backward compatible, use that.
5404 return 0;
5408 * For a cpu that supports both aarch64 and aarch32, we can set bits
5409 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5410 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5412 if (!arm_el_is_aa64(env, 2)) {
5413 uint64_t aa32_valid;
5416 * These bits are up-to-date as of ARMv8.6.
5417 * For HCR, it's easiest to list just the 2 bits that are invalid.
5418 * For HCR2, list those that are valid.
5420 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5421 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5422 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5423 ret &= aa32_valid;
5426 if (ret & HCR_TGE) {
5427 /* These bits are up-to-date as of ARMv8.6. */
5428 if (ret & HCR_E2H) {
5429 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5430 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5431 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5432 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5433 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5434 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5435 } else {
5436 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5438 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5439 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5440 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5441 HCR_TLOR);
5444 return ret;
5447 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5448 uint64_t value)
5451 * For A-profile AArch32 EL3, if NSACR.CP10
5452 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5454 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5455 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5456 value &= ~(0x3 << 10);
5457 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5459 env->cp15.cptr_el[2] = value;
5462 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5465 * For A-profile AArch32 EL3, if NSACR.CP10
5466 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5468 uint64_t value = env->cp15.cptr_el[2];
5470 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5471 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5472 value |= 0x3 << 10;
5474 return value;
5477 static const ARMCPRegInfo el2_cp_reginfo[] = {
5478 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5479 .type = ARM_CP_IO,
5480 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5481 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5482 .writefn = hcr_write },
5483 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5484 .type = ARM_CP_ALIAS | ARM_CP_IO,
5485 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5486 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5487 .writefn = hcr_writelow },
5488 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5489 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5490 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5491 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5492 .type = ARM_CP_ALIAS,
5493 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5494 .access = PL2_RW,
5495 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5496 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5497 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5498 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5499 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5500 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5501 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5502 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5503 .type = ARM_CP_ALIAS,
5504 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5505 .access = PL2_RW,
5506 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5507 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5508 .type = ARM_CP_ALIAS,
5509 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5510 .access = PL2_RW,
5511 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5512 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5513 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5514 .access = PL2_RW, .writefn = vbar_write,
5515 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5516 .resetvalue = 0 },
5517 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5518 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5519 .access = PL3_RW, .type = ARM_CP_ALIAS,
5520 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5521 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5522 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5523 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5524 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5525 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5526 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5527 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5528 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5529 .resetvalue = 0 },
5530 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5531 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5532 .access = PL2_RW, .type = ARM_CP_ALIAS,
5533 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5534 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5535 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5536 .access = PL2_RW, .type = ARM_CP_CONST,
5537 .resetvalue = 0 },
5538 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5539 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5540 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5541 .access = PL2_RW, .type = ARM_CP_CONST,
5542 .resetvalue = 0 },
5543 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5544 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5545 .access = PL2_RW, .type = ARM_CP_CONST,
5546 .resetvalue = 0 },
5547 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5548 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5549 .access = PL2_RW, .type = ARM_CP_CONST,
5550 .resetvalue = 0 },
5551 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5552 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5553 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5554 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5555 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5556 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5557 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5558 .type = ARM_CP_ALIAS,
5559 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5560 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5561 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5562 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5563 .access = PL2_RW,
5564 /* no .writefn needed as this can't cause an ASID change;
5565 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5567 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5568 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5569 .cp = 15, .opc1 = 6, .crm = 2,
5570 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5571 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5572 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5573 .writefn = vttbr_write },
5574 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5575 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5576 .access = PL2_RW, .writefn = vttbr_write,
5577 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5578 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5579 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5580 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5581 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5582 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5583 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5584 .access = PL2_RW, .resetvalue = 0,
5585 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5586 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5587 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5588 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5589 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5590 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5591 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5592 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5593 { .name = "TLBIALLNSNH",
5594 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5595 .type = ARM_CP_NO_RAW, .access = PL2_W,
5596 .writefn = tlbiall_nsnh_write },
5597 { .name = "TLBIALLNSNHIS",
5598 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5599 .type = ARM_CP_NO_RAW, .access = PL2_W,
5600 .writefn = tlbiall_nsnh_is_write },
5601 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5602 .type = ARM_CP_NO_RAW, .access = PL2_W,
5603 .writefn = tlbiall_hyp_write },
5604 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5605 .type = ARM_CP_NO_RAW, .access = PL2_W,
5606 .writefn = tlbiall_hyp_is_write },
5607 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5608 .type = ARM_CP_NO_RAW, .access = PL2_W,
5609 .writefn = tlbimva_hyp_write },
5610 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5611 .type = ARM_CP_NO_RAW, .access = PL2_W,
5612 .writefn = tlbimva_hyp_is_write },
5613 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5614 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5615 .type = ARM_CP_NO_RAW, .access = PL2_W,
5616 .writefn = tlbi_aa64_alle2_write },
5617 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5618 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5619 .type = ARM_CP_NO_RAW, .access = PL2_W,
5620 .writefn = tlbi_aa64_vae2_write },
5621 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5622 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5623 .access = PL2_W, .type = ARM_CP_NO_RAW,
5624 .writefn = tlbi_aa64_vae2_write },
5625 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5626 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5627 .access = PL2_W, .type = ARM_CP_NO_RAW,
5628 .writefn = tlbi_aa64_alle2is_write },
5629 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5630 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5631 .type = ARM_CP_NO_RAW, .access = PL2_W,
5632 .writefn = tlbi_aa64_vae2is_write },
5633 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5634 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5635 .access = PL2_W, .type = ARM_CP_NO_RAW,
5636 .writefn = tlbi_aa64_vae2is_write },
5637 #ifndef CONFIG_USER_ONLY
5638 /* Unlike the other EL2-related AT operations, these must
5639 * UNDEF from EL3 if EL2 is not implemented, which is why we
5640 * define them here rather than with the rest of the AT ops.
5642 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5643 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5644 .access = PL2_W, .accessfn = at_s1e2_access,
5645 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5646 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5647 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5648 .access = PL2_W, .accessfn = at_s1e2_access,
5649 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5650 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5651 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5652 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5653 * to behave as if SCR.NS was 1.
5655 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5656 .access = PL2_W,
5657 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5658 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5659 .access = PL2_W,
5660 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5661 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5662 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5663 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5664 * reset values as IMPDEF. We choose to reset to 3 to comply with
5665 * both ARMv7 and ARMv8.
5667 .access = PL2_RW, .resetvalue = 3,
5668 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5669 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5670 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5671 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5672 .writefn = gt_cntvoff_write,
5673 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5674 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5675 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5676 .writefn = gt_cntvoff_write,
5677 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5678 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5679 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5680 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5681 .type = ARM_CP_IO, .access = PL2_RW,
5682 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5683 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5684 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5685 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5686 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5687 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5688 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5689 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5690 .resetfn = gt_hyp_timer_reset,
5691 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5692 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5693 .type = ARM_CP_IO,
5694 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5695 .access = PL2_RW,
5696 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5697 .resetvalue = 0,
5698 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5699 #endif
5700 /* The only field of MDCR_EL2 that has a defined architectural reset value
5701 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5702 * don't implement any PMU event counters, so using zero as a reset
5703 * value for MDCR_EL2 is okay
5705 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5706 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5707 .access = PL2_RW, .resetvalue = 0,
5708 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5709 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5710 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5711 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5712 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5713 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5714 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5715 .access = PL2_RW,
5716 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5717 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5718 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5719 .access = PL2_RW,
5720 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5721 REGINFO_SENTINEL
5724 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5725 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5726 .type = ARM_CP_ALIAS | ARM_CP_IO,
5727 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5728 .access = PL2_RW,
5729 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5730 .writefn = hcr_writehigh },
5731 REGINFO_SENTINEL
5734 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5735 bool isread)
5737 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5738 * At Secure EL1 it traps to EL3.
5740 if (arm_current_el(env) == 3) {
5741 return CP_ACCESS_OK;
5743 if (arm_is_secure_below_el3(env)) {
5744 return CP_ACCESS_TRAP_EL3;
5746 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5747 if (isread) {
5748 return CP_ACCESS_OK;
5750 return CP_ACCESS_TRAP_UNCATEGORIZED;
5753 static const ARMCPRegInfo el3_cp_reginfo[] = {
5754 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5755 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5756 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5757 .resetvalue = 0, .writefn = scr_write },
5758 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5759 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5760 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5761 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5762 .writefn = scr_write },
5763 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5764 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5765 .access = PL3_RW, .resetvalue = 0,
5766 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5767 { .name = "SDER",
5768 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5769 .access = PL3_RW, .resetvalue = 0,
5770 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5771 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5772 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5773 .writefn = vbar_write, .resetvalue = 0,
5774 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5775 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5776 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5777 .access = PL3_RW, .resetvalue = 0,
5778 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5779 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5780 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5781 .access = PL3_RW,
5782 /* no .writefn needed as this can't cause an ASID change;
5783 * we must provide a .raw_writefn and .resetfn because we handle
5784 * reset and migration for the AArch32 TTBCR(S), which might be
5785 * using mask and base_mask.
5787 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5788 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5789 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5790 .type = ARM_CP_ALIAS,
5791 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5792 .access = PL3_RW,
5793 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5794 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5795 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5796 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5797 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5798 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5799 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5800 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5801 .type = ARM_CP_ALIAS,
5802 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5803 .access = PL3_RW,
5804 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5805 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5806 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5807 .access = PL3_RW, .writefn = vbar_write,
5808 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5809 .resetvalue = 0 },
5810 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5811 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5812 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5813 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5814 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5815 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5816 .access = PL3_RW, .resetvalue = 0,
5817 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5818 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5819 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5820 .access = PL3_RW, .type = ARM_CP_CONST,
5821 .resetvalue = 0 },
5822 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5823 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5824 .access = PL3_RW, .type = ARM_CP_CONST,
5825 .resetvalue = 0 },
5826 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5827 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5828 .access = PL3_RW, .type = ARM_CP_CONST,
5829 .resetvalue = 0 },
5830 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5831 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5832 .access = PL3_W, .type = ARM_CP_NO_RAW,
5833 .writefn = tlbi_aa64_alle3is_write },
5834 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5835 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5836 .access = PL3_W, .type = ARM_CP_NO_RAW,
5837 .writefn = tlbi_aa64_vae3is_write },
5838 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5839 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5840 .access = PL3_W, .type = ARM_CP_NO_RAW,
5841 .writefn = tlbi_aa64_vae3is_write },
5842 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5843 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5844 .access = PL3_W, .type = ARM_CP_NO_RAW,
5845 .writefn = tlbi_aa64_alle3_write },
5846 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5847 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5848 .access = PL3_W, .type = ARM_CP_NO_RAW,
5849 .writefn = tlbi_aa64_vae3_write },
5850 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5851 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5852 .access = PL3_W, .type = ARM_CP_NO_RAW,
5853 .writefn = tlbi_aa64_vae3_write },
5854 REGINFO_SENTINEL
5857 #ifndef CONFIG_USER_ONLY
5858 /* Test if system register redirection is to occur in the current state. */
5859 static bool redirect_for_e2h(CPUARMState *env)
5861 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5864 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5866 CPReadFn *readfn;
5868 if (redirect_for_e2h(env)) {
5869 /* Switch to the saved EL2 version of the register. */
5870 ri = ri->opaque;
5871 readfn = ri->readfn;
5872 } else {
5873 readfn = ri->orig_readfn;
5875 if (readfn == NULL) {
5876 readfn = raw_read;
5878 return readfn(env, ri);
5881 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5882 uint64_t value)
5884 CPWriteFn *writefn;
5886 if (redirect_for_e2h(env)) {
5887 /* Switch to the saved EL2 version of the register. */
5888 ri = ri->opaque;
5889 writefn = ri->writefn;
5890 } else {
5891 writefn = ri->orig_writefn;
5893 if (writefn == NULL) {
5894 writefn = raw_write;
5896 writefn(env, ri, value);
5899 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5901 struct E2HAlias {
5902 uint32_t src_key, dst_key, new_key;
5903 const char *src_name, *dst_name, *new_name;
5904 bool (*feature)(const ARMISARegisters *id);
5907 #define K(op0, op1, crn, crm, op2) \
5908 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5910 static const struct E2HAlias aliases[] = {
5911 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5912 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5913 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5914 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5915 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5916 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5917 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5918 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5919 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5920 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5921 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5922 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5923 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5924 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5925 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5926 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5927 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5928 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5929 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5930 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5931 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5932 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5933 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5934 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5935 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5936 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5937 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5938 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5939 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5940 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5941 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5942 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5945 * Note that redirection of ZCR is mentioned in the description
5946 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5947 * not in the summary table.
5949 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5950 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5952 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5953 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5955 #undef K
5957 size_t i;
5959 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5960 const struct E2HAlias *a = &aliases[i];
5961 ARMCPRegInfo *src_reg, *dst_reg;
5963 if (a->feature && !a->feature(&cpu->isar)) {
5964 continue;
5967 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5968 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5969 g_assert(src_reg != NULL);
5970 g_assert(dst_reg != NULL);
5972 /* Cross-compare names to detect typos in the keys. */
5973 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5974 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5976 /* None of the core system registers use opaque; we will. */
5977 g_assert(src_reg->opaque == NULL);
5979 /* Create alias before redirection so we dup the right data. */
5980 if (a->new_key) {
5981 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5982 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5983 bool ok;
5985 new_reg->name = a->new_name;
5986 new_reg->type |= ARM_CP_ALIAS;
5987 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5988 new_reg->access &= PL2_RW | PL3_RW;
5990 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5991 g_assert(ok);
5994 src_reg->opaque = dst_reg;
5995 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5996 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5997 if (!src_reg->raw_readfn) {
5998 src_reg->raw_readfn = raw_read;
6000 if (!src_reg->raw_writefn) {
6001 src_reg->raw_writefn = raw_write;
6003 src_reg->readfn = el2_e2h_read;
6004 src_reg->writefn = el2_e2h_write;
6007 #endif
6009 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6010 bool isread)
6012 int cur_el = arm_current_el(env);
6014 if (cur_el < 2) {
6015 uint64_t hcr = arm_hcr_el2_eff(env);
6017 if (cur_el == 0) {
6018 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6019 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6020 return CP_ACCESS_TRAP_EL2;
6022 } else {
6023 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6024 return CP_ACCESS_TRAP;
6026 if (hcr & HCR_TID2) {
6027 return CP_ACCESS_TRAP_EL2;
6030 } else if (hcr & HCR_TID2) {
6031 return CP_ACCESS_TRAP_EL2;
6035 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6036 return CP_ACCESS_TRAP_EL2;
6039 return CP_ACCESS_OK;
6042 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6043 uint64_t value)
6045 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6046 * read via a bit in OSLSR_EL1.
6048 int oslock;
6050 if (ri->state == ARM_CP_STATE_AA32) {
6051 oslock = (value == 0xC5ACCE55);
6052 } else {
6053 oslock = value & 1;
6056 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6059 static const ARMCPRegInfo debug_cp_reginfo[] = {
6060 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6061 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6062 * unlike DBGDRAR it is never accessible from EL0.
6063 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6064 * accessor.
6066 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6067 .access = PL0_R, .accessfn = access_tdra,
6068 .type = ARM_CP_CONST, .resetvalue = 0 },
6069 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6070 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6071 .access = PL1_R, .accessfn = access_tdra,
6072 .type = ARM_CP_CONST, .resetvalue = 0 },
6073 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6074 .access = PL0_R, .accessfn = access_tdra,
6075 .type = ARM_CP_CONST, .resetvalue = 0 },
6076 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6077 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6078 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6079 .access = PL1_RW, .accessfn = access_tda,
6080 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6081 .resetvalue = 0 },
6082 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6083 * We don't implement the configurable EL0 access.
6085 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6086 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6087 .type = ARM_CP_ALIAS,
6088 .access = PL1_R, .accessfn = access_tda,
6089 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6090 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6091 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6092 .access = PL1_W, .type = ARM_CP_NO_RAW,
6093 .accessfn = access_tdosa,
6094 .writefn = oslar_write },
6095 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6096 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6097 .access = PL1_R, .resetvalue = 10,
6098 .accessfn = access_tdosa,
6099 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6100 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6101 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6102 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6103 .access = PL1_RW, .accessfn = access_tdosa,
6104 .type = ARM_CP_NOP },
6105 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6106 * implement vector catch debug events yet.
6108 { .name = "DBGVCR",
6109 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6110 .access = PL1_RW, .accessfn = access_tda,
6111 .type = ARM_CP_NOP },
6112 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6113 * to save and restore a 32-bit guest's DBGVCR)
6115 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6116 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6117 .access = PL2_RW, .accessfn = access_tda,
6118 .type = ARM_CP_NOP },
6119 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6120 * Channel but Linux may try to access this register. The 32-bit
6121 * alias is DBGDCCINT.
6123 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6124 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6125 .access = PL1_RW, .accessfn = access_tda,
6126 .type = ARM_CP_NOP },
6127 REGINFO_SENTINEL
6130 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6131 /* 64 bit access versions of the (dummy) debug registers */
6132 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6133 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6134 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6135 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6136 REGINFO_SENTINEL
6139 /* Return the exception level to which exceptions should be taken
6140 * via SVEAccessTrap. If an exception should be routed through
6141 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6142 * take care of raising that exception.
6143 * C.f. the ARM pseudocode function CheckSVEEnabled.
6145 int sve_exception_el(CPUARMState *env, int el)
6147 #ifndef CONFIG_USER_ONLY
6148 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6150 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6151 bool disabled = false;
6153 /* The CPACR.ZEN controls traps to EL1:
6154 * 0, 2 : trap EL0 and EL1 accesses
6155 * 1 : trap only EL0 accesses
6156 * 3 : trap no accesses
6158 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6159 disabled = true;
6160 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6161 disabled = el == 0;
6163 if (disabled) {
6164 /* route_to_el2 */
6165 return hcr_el2 & HCR_TGE ? 2 : 1;
6168 /* Check CPACR.FPEN. */
6169 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6170 disabled = true;
6171 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6172 disabled = el == 0;
6174 if (disabled) {
6175 return 0;
6179 /* CPTR_EL2. Since TZ and TFP are positive,
6180 * they will be zero when EL2 is not present.
6182 if (el <= 2 && !arm_is_secure_below_el3(env)) {
6183 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6184 return 2;
6186 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6187 return 0;
6191 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6192 if (arm_feature(env, ARM_FEATURE_EL3)
6193 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6194 return 3;
6196 #endif
6197 return 0;
6200 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6202 uint32_t end_len;
6204 end_len = start_len &= 0xf;
6205 if (!test_bit(start_len, cpu->sve_vq_map)) {
6206 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6207 assert(end_len < start_len);
6209 return end_len;
6213 * Given that SVE is enabled, return the vector length for EL.
6215 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6217 ARMCPU *cpu = env_archcpu(env);
6218 uint32_t zcr_len = cpu->sve_max_vq - 1;
6220 if (el <= 1) {
6221 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6223 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6224 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6226 if (arm_feature(env, ARM_FEATURE_EL3)) {
6227 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6230 return sve_zcr_get_valid_len(cpu, zcr_len);
6233 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6234 uint64_t value)
6236 int cur_el = arm_current_el(env);
6237 int old_len = sve_zcr_len_for_el(env, cur_el);
6238 int new_len;
6240 /* Bits other than [3:0] are RAZ/WI. */
6241 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6242 raw_write(env, ri, value & 0xf);
6245 * Because we arrived here, we know both FP and SVE are enabled;
6246 * otherwise we would have trapped access to the ZCR_ELn register.
6248 new_len = sve_zcr_len_for_el(env, cur_el);
6249 if (new_len < old_len) {
6250 aarch64_sve_narrow_vq(env, new_len + 1);
6254 static const ARMCPRegInfo zcr_el1_reginfo = {
6255 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6256 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6257 .access = PL1_RW, .type = ARM_CP_SVE,
6258 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6259 .writefn = zcr_write, .raw_writefn = raw_write
6262 static const ARMCPRegInfo zcr_el2_reginfo = {
6263 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6264 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6265 .access = PL2_RW, .type = ARM_CP_SVE,
6266 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6267 .writefn = zcr_write, .raw_writefn = raw_write
6270 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6271 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6272 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6273 .access = PL2_RW, .type = ARM_CP_SVE,
6274 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6277 static const ARMCPRegInfo zcr_el3_reginfo = {
6278 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6279 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6280 .access = PL3_RW, .type = ARM_CP_SVE,
6281 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6282 .writefn = zcr_write, .raw_writefn = raw_write
6285 void hw_watchpoint_update(ARMCPU *cpu, int n)
6287 CPUARMState *env = &cpu->env;
6288 vaddr len = 0;
6289 vaddr wvr = env->cp15.dbgwvr[n];
6290 uint64_t wcr = env->cp15.dbgwcr[n];
6291 int mask;
6292 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6294 if (env->cpu_watchpoint[n]) {
6295 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6296 env->cpu_watchpoint[n] = NULL;
6299 if (!extract64(wcr, 0, 1)) {
6300 /* E bit clear : watchpoint disabled */
6301 return;
6304 switch (extract64(wcr, 3, 2)) {
6305 case 0:
6306 /* LSC 00 is reserved and must behave as if the wp is disabled */
6307 return;
6308 case 1:
6309 flags |= BP_MEM_READ;
6310 break;
6311 case 2:
6312 flags |= BP_MEM_WRITE;
6313 break;
6314 case 3:
6315 flags |= BP_MEM_ACCESS;
6316 break;
6319 /* Attempts to use both MASK and BAS fields simultaneously are
6320 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6321 * thus generating a watchpoint for every byte in the masked region.
6323 mask = extract64(wcr, 24, 4);
6324 if (mask == 1 || mask == 2) {
6325 /* Reserved values of MASK; we must act as if the mask value was
6326 * some non-reserved value, or as if the watchpoint were disabled.
6327 * We choose the latter.
6329 return;
6330 } else if (mask) {
6331 /* Watchpoint covers an aligned area up to 2GB in size */
6332 len = 1ULL << mask;
6333 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6334 * whether the watchpoint fires when the unmasked bits match; we opt
6335 * to generate the exceptions.
6337 wvr &= ~(len - 1);
6338 } else {
6339 /* Watchpoint covers bytes defined by the byte address select bits */
6340 int bas = extract64(wcr, 5, 8);
6341 int basstart;
6343 if (bas == 0) {
6344 /* This must act as if the watchpoint is disabled */
6345 return;
6348 if (extract64(wvr, 2, 1)) {
6349 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6350 * ignored, and BAS[3:0] define which bytes to watch.
6352 bas &= 0xf;
6354 /* The BAS bits are supposed to be programmed to indicate a contiguous
6355 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6356 * we fire for each byte in the word/doubleword addressed by the WVR.
6357 * We choose to ignore any non-zero bits after the first range of 1s.
6359 basstart = ctz32(bas);
6360 len = cto32(bas >> basstart);
6361 wvr += basstart;
6364 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6365 &env->cpu_watchpoint[n]);
6368 void hw_watchpoint_update_all(ARMCPU *cpu)
6370 int i;
6371 CPUARMState *env = &cpu->env;
6373 /* Completely clear out existing QEMU watchpoints and our array, to
6374 * avoid possible stale entries following migration load.
6376 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6377 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6379 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6380 hw_watchpoint_update(cpu, i);
6384 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6385 uint64_t value)
6387 ARMCPU *cpu = env_archcpu(env);
6388 int i = ri->crm;
6390 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6391 * register reads and behaves as if values written are sign extended.
6392 * Bits [1:0] are RES0.
6394 value = sextract64(value, 0, 49) & ~3ULL;
6396 raw_write(env, ri, value);
6397 hw_watchpoint_update(cpu, i);
6400 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6401 uint64_t value)
6403 ARMCPU *cpu = env_archcpu(env);
6404 int i = ri->crm;
6406 raw_write(env, ri, value);
6407 hw_watchpoint_update(cpu, i);
6410 void hw_breakpoint_update(ARMCPU *cpu, int n)
6412 CPUARMState *env = &cpu->env;
6413 uint64_t bvr = env->cp15.dbgbvr[n];
6414 uint64_t bcr = env->cp15.dbgbcr[n];
6415 vaddr addr;
6416 int bt;
6417 int flags = BP_CPU;
6419 if (env->cpu_breakpoint[n]) {
6420 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6421 env->cpu_breakpoint[n] = NULL;
6424 if (!extract64(bcr, 0, 1)) {
6425 /* E bit clear : watchpoint disabled */
6426 return;
6429 bt = extract64(bcr, 20, 4);
6431 switch (bt) {
6432 case 4: /* unlinked address mismatch (reserved if AArch64) */
6433 case 5: /* linked address mismatch (reserved if AArch64) */
6434 qemu_log_mask(LOG_UNIMP,
6435 "arm: address mismatch breakpoint types not implemented\n");
6436 return;
6437 case 0: /* unlinked address match */
6438 case 1: /* linked address match */
6440 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6441 * we behave as if the register was sign extended. Bits [1:0] are
6442 * RES0. The BAS field is used to allow setting breakpoints on 16
6443 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6444 * a bp will fire if the addresses covered by the bp and the addresses
6445 * covered by the insn overlap but the insn doesn't start at the
6446 * start of the bp address range. We choose to require the insn and
6447 * the bp to have the same address. The constraints on writing to
6448 * BAS enforced in dbgbcr_write mean we have only four cases:
6449 * 0b0000 => no breakpoint
6450 * 0b0011 => breakpoint on addr
6451 * 0b1100 => breakpoint on addr + 2
6452 * 0b1111 => breakpoint on addr
6453 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6455 int bas = extract64(bcr, 5, 4);
6456 addr = sextract64(bvr, 0, 49) & ~3ULL;
6457 if (bas == 0) {
6458 return;
6460 if (bas == 0xc) {
6461 addr += 2;
6463 break;
6465 case 2: /* unlinked context ID match */
6466 case 8: /* unlinked VMID match (reserved if no EL2) */
6467 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6468 qemu_log_mask(LOG_UNIMP,
6469 "arm: unlinked context breakpoint types not implemented\n");
6470 return;
6471 case 9: /* linked VMID match (reserved if no EL2) */
6472 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6473 case 3: /* linked context ID match */
6474 default:
6475 /* We must generate no events for Linked context matches (unless
6476 * they are linked to by some other bp/wp, which is handled in
6477 * updates for the linking bp/wp). We choose to also generate no events
6478 * for reserved values.
6480 return;
6483 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6486 void hw_breakpoint_update_all(ARMCPU *cpu)
6488 int i;
6489 CPUARMState *env = &cpu->env;
6491 /* Completely clear out existing QEMU breakpoints and our array, to
6492 * avoid possible stale entries following migration load.
6494 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6495 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6497 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6498 hw_breakpoint_update(cpu, i);
6502 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6503 uint64_t value)
6505 ARMCPU *cpu = env_archcpu(env);
6506 int i = ri->crm;
6508 raw_write(env, ri, value);
6509 hw_breakpoint_update(cpu, i);
6512 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6513 uint64_t value)
6515 ARMCPU *cpu = env_archcpu(env);
6516 int i = ri->crm;
6518 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6519 * copy of BAS[0].
6521 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6522 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6524 raw_write(env, ri, value);
6525 hw_breakpoint_update(cpu, i);
6528 static void define_debug_regs(ARMCPU *cpu)
6530 /* Define v7 and v8 architectural debug registers.
6531 * These are just dummy implementations for now.
6533 int i;
6534 int wrps, brps, ctx_cmps;
6535 ARMCPRegInfo dbgdidr = {
6536 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6537 .access = PL0_R, .accessfn = access_tda,
6538 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6541 /* Note that all these register fields hold "number of Xs minus 1". */
6542 brps = arm_num_brps(cpu);
6543 wrps = arm_num_wrps(cpu);
6544 ctx_cmps = arm_num_ctx_cmps(cpu);
6546 assert(ctx_cmps <= brps);
6548 define_one_arm_cp_reg(cpu, &dbgdidr);
6549 define_arm_cp_regs(cpu, debug_cp_reginfo);
6551 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6552 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6555 for (i = 0; i < brps; i++) {
6556 ARMCPRegInfo dbgregs[] = {
6557 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6558 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6559 .access = PL1_RW, .accessfn = access_tda,
6560 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6561 .writefn = dbgbvr_write, .raw_writefn = raw_write
6563 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6564 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6565 .access = PL1_RW, .accessfn = access_tda,
6566 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6567 .writefn = dbgbcr_write, .raw_writefn = raw_write
6569 REGINFO_SENTINEL
6571 define_arm_cp_regs(cpu, dbgregs);
6574 for (i = 0; i < wrps; i++) {
6575 ARMCPRegInfo dbgregs[] = {
6576 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6577 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6578 .access = PL1_RW, .accessfn = access_tda,
6579 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6580 .writefn = dbgwvr_write, .raw_writefn = raw_write
6582 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6583 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6584 .access = PL1_RW, .accessfn = access_tda,
6585 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6586 .writefn = dbgwcr_write, .raw_writefn = raw_write
6588 REGINFO_SENTINEL
6590 define_arm_cp_regs(cpu, dbgregs);
6594 static void define_pmu_regs(ARMCPU *cpu)
6597 * v7 performance monitor control register: same implementor
6598 * field as main ID register, and we implement four counters in
6599 * addition to the cycle count register.
6601 unsigned int i, pmcrn = 4;
6602 ARMCPRegInfo pmcr = {
6603 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6604 .access = PL0_RW,
6605 .type = ARM_CP_IO | ARM_CP_ALIAS,
6606 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6607 .accessfn = pmreg_access, .writefn = pmcr_write,
6608 .raw_writefn = raw_write,
6610 ARMCPRegInfo pmcr64 = {
6611 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6612 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6613 .access = PL0_RW, .accessfn = pmreg_access,
6614 .type = ARM_CP_IO,
6615 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6616 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6617 PMCRLC,
6618 .writefn = pmcr_write, .raw_writefn = raw_write,
6620 define_one_arm_cp_reg(cpu, &pmcr);
6621 define_one_arm_cp_reg(cpu, &pmcr64);
6622 for (i = 0; i < pmcrn; i++) {
6623 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6624 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6625 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6626 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6627 ARMCPRegInfo pmev_regs[] = {
6628 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6629 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6630 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6631 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6632 .accessfn = pmreg_access },
6633 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6634 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6635 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6636 .type = ARM_CP_IO,
6637 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6638 .raw_readfn = pmevcntr_rawread,
6639 .raw_writefn = pmevcntr_rawwrite },
6640 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6641 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6642 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6643 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6644 .accessfn = pmreg_access },
6645 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6646 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6647 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6648 .type = ARM_CP_IO,
6649 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6650 .raw_writefn = pmevtyper_rawwrite },
6651 REGINFO_SENTINEL
6653 define_arm_cp_regs(cpu, pmev_regs);
6654 g_free(pmevcntr_name);
6655 g_free(pmevcntr_el0_name);
6656 g_free(pmevtyper_name);
6657 g_free(pmevtyper_el0_name);
6659 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6660 ARMCPRegInfo v81_pmu_regs[] = {
6661 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6662 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6663 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6664 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6665 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6666 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6667 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6668 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6669 REGINFO_SENTINEL
6671 define_arm_cp_regs(cpu, v81_pmu_regs);
6673 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6674 static const ARMCPRegInfo v84_pmmir = {
6675 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6676 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6677 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6678 .resetvalue = 0
6680 define_one_arm_cp_reg(cpu, &v84_pmmir);
6684 /* We don't know until after realize whether there's a GICv3
6685 * attached, and that is what registers the gicv3 sysregs.
6686 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6687 * at runtime.
6689 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6691 ARMCPU *cpu = env_archcpu(env);
6692 uint64_t pfr1 = cpu->id_pfr1;
6694 if (env->gicv3state) {
6695 pfr1 |= 1 << 28;
6697 return pfr1;
6700 #ifndef CONFIG_USER_ONLY
6701 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6703 ARMCPU *cpu = env_archcpu(env);
6704 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6706 if (env->gicv3state) {
6707 pfr0 |= 1 << 24;
6709 return pfr0;
6711 #endif
6713 /* Shared logic between LORID and the rest of the LOR* registers.
6714 * Secure state has already been delt with.
6716 static CPAccessResult access_lor_ns(CPUARMState *env)
6718 int el = arm_current_el(env);
6720 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6721 return CP_ACCESS_TRAP_EL2;
6723 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6724 return CP_ACCESS_TRAP_EL3;
6726 return CP_ACCESS_OK;
6729 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
6730 bool isread)
6732 if (arm_is_secure_below_el3(env)) {
6733 /* Access ok in secure mode. */
6734 return CP_ACCESS_OK;
6736 return access_lor_ns(env);
6739 static CPAccessResult access_lor_other(CPUARMState *env,
6740 const ARMCPRegInfo *ri, bool isread)
6742 if (arm_is_secure_below_el3(env)) {
6743 /* Access denied in secure mode. */
6744 return CP_ACCESS_TRAP;
6746 return access_lor_ns(env);
6750 * A trivial implementation of ARMv8.1-LOR leaves all of these
6751 * registers fixed at 0, which indicates that there are zero
6752 * supported Limited Ordering regions.
6754 static const ARMCPRegInfo lor_reginfo[] = {
6755 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6756 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6757 .access = PL1_RW, .accessfn = access_lor_other,
6758 .type = ARM_CP_CONST, .resetvalue = 0 },
6759 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6760 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6761 .access = PL1_RW, .accessfn = access_lor_other,
6762 .type = ARM_CP_CONST, .resetvalue = 0 },
6763 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6764 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6765 .access = PL1_RW, .accessfn = access_lor_other,
6766 .type = ARM_CP_CONST, .resetvalue = 0 },
6767 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6768 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6769 .access = PL1_RW, .accessfn = access_lor_other,
6770 .type = ARM_CP_CONST, .resetvalue = 0 },
6771 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6772 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6773 .access = PL1_R, .accessfn = access_lorid,
6774 .type = ARM_CP_CONST, .resetvalue = 0 },
6775 REGINFO_SENTINEL
6778 #ifdef TARGET_AARCH64
6779 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6780 bool isread)
6782 int el = arm_current_el(env);
6784 if (el < 2 &&
6785 arm_feature(env, ARM_FEATURE_EL2) &&
6786 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6787 return CP_ACCESS_TRAP_EL2;
6789 if (el < 3 &&
6790 arm_feature(env, ARM_FEATURE_EL3) &&
6791 !(env->cp15.scr_el3 & SCR_APK)) {
6792 return CP_ACCESS_TRAP_EL3;
6794 return CP_ACCESS_OK;
6797 static const ARMCPRegInfo pauth_reginfo[] = {
6798 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6799 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6800 .access = PL1_RW, .accessfn = access_pauth,
6801 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6802 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6803 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6804 .access = PL1_RW, .accessfn = access_pauth,
6805 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6806 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6807 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6808 .access = PL1_RW, .accessfn = access_pauth,
6809 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6810 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6811 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6812 .access = PL1_RW, .accessfn = access_pauth,
6813 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6814 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6815 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6816 .access = PL1_RW, .accessfn = access_pauth,
6817 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6818 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6819 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6820 .access = PL1_RW, .accessfn = access_pauth,
6821 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6822 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6823 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6824 .access = PL1_RW, .accessfn = access_pauth,
6825 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6826 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6827 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6828 .access = PL1_RW, .accessfn = access_pauth,
6829 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6830 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6831 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6832 .access = PL1_RW, .accessfn = access_pauth,
6833 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6834 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6836 .access = PL1_RW, .accessfn = access_pauth,
6837 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6838 REGINFO_SENTINEL
6841 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6843 Error *err = NULL;
6844 uint64_t ret;
6846 /* Success sets NZCV = 0000. */
6847 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6849 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6851 * ??? Failed, for unknown reasons in the crypto subsystem.
6852 * The best we can do is log the reason and return the
6853 * timed-out indication to the guest. There is no reason
6854 * we know to expect this failure to be transitory, so the
6855 * guest may well hang retrying the operation.
6857 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6858 ri->name, error_get_pretty(err));
6859 error_free(err);
6861 env->ZF = 0; /* NZCF = 0100 */
6862 return 0;
6864 return ret;
6867 /* We do not support re-seeding, so the two registers operate the same. */
6868 static const ARMCPRegInfo rndr_reginfo[] = {
6869 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6870 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6871 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6872 .access = PL0_R, .readfn = rndr_readfn },
6873 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6874 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6875 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6876 .access = PL0_R, .readfn = rndr_readfn },
6877 REGINFO_SENTINEL
6880 #ifndef CONFIG_USER_ONLY
6881 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6882 uint64_t value)
6884 ARMCPU *cpu = env_archcpu(env);
6885 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6886 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6887 uint64_t vaddr_in = (uint64_t) value;
6888 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6889 void *haddr;
6890 int mem_idx = cpu_mmu_index(env, false);
6892 /* This won't be crossing page boundaries */
6893 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6894 if (haddr) {
6896 ram_addr_t offset;
6897 MemoryRegion *mr;
6899 /* RCU lock is already being held */
6900 mr = memory_region_from_host(haddr, &offset);
6902 if (mr) {
6903 memory_region_do_writeback(mr, offset, dline_size);
6908 static const ARMCPRegInfo dcpop_reg[] = {
6909 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6910 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6911 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6912 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6913 REGINFO_SENTINEL
6916 static const ARMCPRegInfo dcpodp_reg[] = {
6917 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6918 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6919 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6920 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6921 REGINFO_SENTINEL
6923 #endif /*CONFIG_USER_ONLY*/
6925 #endif
6927 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
6928 bool isread)
6930 int el = arm_current_el(env);
6932 if (el == 0) {
6933 uint64_t sctlr = arm_sctlr(env, el);
6934 if (!(sctlr & SCTLR_EnRCTX)) {
6935 return CP_ACCESS_TRAP;
6937 } else if (el == 1) {
6938 uint64_t hcr = arm_hcr_el2_eff(env);
6939 if (hcr & HCR_NV) {
6940 return CP_ACCESS_TRAP_EL2;
6943 return CP_ACCESS_OK;
6946 static const ARMCPRegInfo predinv_reginfo[] = {
6947 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
6948 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
6949 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6950 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
6951 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
6952 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6953 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
6954 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
6955 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6957 * Note the AArch32 opcodes have a different OPC1.
6959 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
6960 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
6961 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6962 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
6963 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
6964 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6965 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
6966 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
6967 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6968 REGINFO_SENTINEL
6971 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6973 /* Read the high 32 bits of the current CCSIDR */
6974 return extract64(ccsidr_read(env, ri), 32, 32);
6977 static const ARMCPRegInfo ccsidr2_reginfo[] = {
6978 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
6979 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
6980 .access = PL1_R,
6981 .accessfn = access_aa64_tid2,
6982 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
6983 REGINFO_SENTINEL
6986 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6987 bool isread)
6989 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
6990 return CP_ACCESS_TRAP_EL2;
6993 return CP_ACCESS_OK;
6996 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6997 bool isread)
6999 if (arm_feature(env, ARM_FEATURE_V8)) {
7000 return access_aa64_tid3(env, ri, isread);
7003 return CP_ACCESS_OK;
7006 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7007 bool isread)
7009 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7010 return CP_ACCESS_TRAP_EL2;
7013 return CP_ACCESS_OK;
7016 static const ARMCPRegInfo jazelle_regs[] = {
7017 { .name = "JIDR",
7018 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7019 .access = PL1_R, .accessfn = access_jazelle,
7020 .type = ARM_CP_CONST, .resetvalue = 0 },
7021 { .name = "JOSCR",
7022 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7023 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7024 { .name = "JMCR",
7025 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7026 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7027 REGINFO_SENTINEL
7030 static const ARMCPRegInfo vhe_reginfo[] = {
7031 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7032 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7033 .access = PL2_RW,
7034 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7035 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7036 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7037 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7038 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7039 #ifndef CONFIG_USER_ONLY
7040 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7041 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7042 .fieldoffset =
7043 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7044 .type = ARM_CP_IO, .access = PL2_RW,
7045 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7046 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7047 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7048 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7049 .resetfn = gt_hv_timer_reset,
7050 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7051 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7052 .type = ARM_CP_IO,
7053 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7054 .access = PL2_RW,
7055 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7056 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7057 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7058 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7059 .type = ARM_CP_IO | ARM_CP_ALIAS,
7060 .access = PL2_RW, .accessfn = e2h_access,
7061 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7062 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7063 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7064 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7065 .type = ARM_CP_IO | ARM_CP_ALIAS,
7066 .access = PL2_RW, .accessfn = e2h_access,
7067 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7068 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7069 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7070 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7071 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7072 .access = PL2_RW, .accessfn = e2h_access,
7073 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7074 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7075 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7076 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7077 .access = PL2_RW, .accessfn = e2h_access,
7078 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7079 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7080 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7081 .type = ARM_CP_IO | ARM_CP_ALIAS,
7082 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7083 .access = PL2_RW, .accessfn = e2h_access,
7084 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7085 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7086 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7087 .type = ARM_CP_IO | ARM_CP_ALIAS,
7088 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7089 .access = PL2_RW, .accessfn = e2h_access,
7090 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7091 #endif
7092 REGINFO_SENTINEL
7095 #ifndef CONFIG_USER_ONLY
7096 static const ARMCPRegInfo ats1e1_reginfo[] = {
7097 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7098 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7099 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7100 .writefn = ats_write64 },
7101 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7102 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7103 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7104 .writefn = ats_write64 },
7105 REGINFO_SENTINEL
7108 static const ARMCPRegInfo ats1cp_reginfo[] = {
7109 { .name = "ATS1CPRP",
7110 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7111 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7112 .writefn = ats_write },
7113 { .name = "ATS1CPWP",
7114 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7115 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7116 .writefn = ats_write },
7117 REGINFO_SENTINEL
7119 #endif
7122 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7123 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7124 * is non-zero, which is never for ARMv7, optionally in ARMv8
7125 * and mandatorily for ARMv8.2 and up.
7126 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7127 * implementation is RAZ/WI we can ignore this detail, as we
7128 * do for ACTLR.
7130 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7131 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7132 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7133 .access = PL1_RW, .accessfn = access_tacr,
7134 .type = ARM_CP_CONST, .resetvalue = 0 },
7135 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7136 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7137 .access = PL2_RW, .type = ARM_CP_CONST,
7138 .resetvalue = 0 },
7139 REGINFO_SENTINEL
7142 void register_cp_regs_for_features(ARMCPU *cpu)
7144 /* Register all the coprocessor registers based on feature bits */
7145 CPUARMState *env = &cpu->env;
7146 if (arm_feature(env, ARM_FEATURE_M)) {
7147 /* M profile has no coprocessor registers */
7148 return;
7151 define_arm_cp_regs(cpu, cp_reginfo);
7152 if (!arm_feature(env, ARM_FEATURE_V8)) {
7153 /* Must go early as it is full of wildcards that may be
7154 * overridden by later definitions.
7156 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7159 if (arm_feature(env, ARM_FEATURE_V6)) {
7160 /* The ID registers all have impdef reset values */
7161 ARMCPRegInfo v6_idregs[] = {
7162 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7164 .access = PL1_R, .type = ARM_CP_CONST,
7165 .accessfn = access_aa32_tid3,
7166 .resetvalue = cpu->id_pfr0 },
7167 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7168 * the value of the GIC field until after we define these regs.
7170 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7172 .access = PL1_R, .type = ARM_CP_NO_RAW,
7173 .accessfn = access_aa32_tid3,
7174 .readfn = id_pfr1_read,
7175 .writefn = arm_cp_write_ignore },
7176 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7177 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7178 .access = PL1_R, .type = ARM_CP_CONST,
7179 .accessfn = access_aa32_tid3,
7180 .resetvalue = cpu->isar.id_dfr0 },
7181 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7182 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7183 .access = PL1_R, .type = ARM_CP_CONST,
7184 .accessfn = access_aa32_tid3,
7185 .resetvalue = cpu->id_afr0 },
7186 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7188 .access = PL1_R, .type = ARM_CP_CONST,
7189 .accessfn = access_aa32_tid3,
7190 .resetvalue = cpu->isar.id_mmfr0 },
7191 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7192 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7193 .access = PL1_R, .type = ARM_CP_CONST,
7194 .accessfn = access_aa32_tid3,
7195 .resetvalue = cpu->isar.id_mmfr1 },
7196 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7197 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7198 .access = PL1_R, .type = ARM_CP_CONST,
7199 .accessfn = access_aa32_tid3,
7200 .resetvalue = cpu->isar.id_mmfr2 },
7201 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7202 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7203 .access = PL1_R, .type = ARM_CP_CONST,
7204 .accessfn = access_aa32_tid3,
7205 .resetvalue = cpu->isar.id_mmfr3 },
7206 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7207 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7208 .access = PL1_R, .type = ARM_CP_CONST,
7209 .accessfn = access_aa32_tid3,
7210 .resetvalue = cpu->isar.id_isar0 },
7211 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7213 .access = PL1_R, .type = ARM_CP_CONST,
7214 .accessfn = access_aa32_tid3,
7215 .resetvalue = cpu->isar.id_isar1 },
7216 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7217 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7218 .access = PL1_R, .type = ARM_CP_CONST,
7219 .accessfn = access_aa32_tid3,
7220 .resetvalue = cpu->isar.id_isar2 },
7221 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7223 .access = PL1_R, .type = ARM_CP_CONST,
7224 .accessfn = access_aa32_tid3,
7225 .resetvalue = cpu->isar.id_isar3 },
7226 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7228 .access = PL1_R, .type = ARM_CP_CONST,
7229 .accessfn = access_aa32_tid3,
7230 .resetvalue = cpu->isar.id_isar4 },
7231 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7233 .access = PL1_R, .type = ARM_CP_CONST,
7234 .accessfn = access_aa32_tid3,
7235 .resetvalue = cpu->isar.id_isar5 },
7236 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7238 .access = PL1_R, .type = ARM_CP_CONST,
7239 .accessfn = access_aa32_tid3,
7240 .resetvalue = cpu->isar.id_mmfr4 },
7241 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7242 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7243 .access = PL1_R, .type = ARM_CP_CONST,
7244 .accessfn = access_aa32_tid3,
7245 .resetvalue = cpu->isar.id_isar6 },
7246 REGINFO_SENTINEL
7248 define_arm_cp_regs(cpu, v6_idregs);
7249 define_arm_cp_regs(cpu, v6_cp_reginfo);
7250 } else {
7251 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7253 if (arm_feature(env, ARM_FEATURE_V6K)) {
7254 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7256 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7257 !arm_feature(env, ARM_FEATURE_PMSA)) {
7258 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7260 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7261 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7263 if (arm_feature(env, ARM_FEATURE_V7)) {
7264 ARMCPRegInfo clidr = {
7265 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7266 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7267 .access = PL1_R, .type = ARM_CP_CONST,
7268 .accessfn = access_aa64_tid2,
7269 .resetvalue = cpu->clidr
7271 define_one_arm_cp_reg(cpu, &clidr);
7272 define_arm_cp_regs(cpu, v7_cp_reginfo);
7273 define_debug_regs(cpu);
7274 define_pmu_regs(cpu);
7275 } else {
7276 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7278 if (arm_feature(env, ARM_FEATURE_V8)) {
7279 /* AArch64 ID registers, which all have impdef reset values.
7280 * Note that within the ID register ranges the unused slots
7281 * must all RAZ, not UNDEF; future architecture versions may
7282 * define new registers here.
7284 ARMCPRegInfo v8_idregs[] = {
7286 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7287 * emulation because we don't know the right value for the
7288 * GIC field until after we define these regs.
7290 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7291 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7292 .access = PL1_R,
7293 #ifdef CONFIG_USER_ONLY
7294 .type = ARM_CP_CONST,
7295 .resetvalue = cpu->isar.id_aa64pfr0
7296 #else
7297 .type = ARM_CP_NO_RAW,
7298 .accessfn = access_aa64_tid3,
7299 .readfn = id_aa64pfr0_read,
7300 .writefn = arm_cp_write_ignore
7301 #endif
7303 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7305 .access = PL1_R, .type = ARM_CP_CONST,
7306 .accessfn = access_aa64_tid3,
7307 .resetvalue = cpu->isar.id_aa64pfr1},
7308 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7309 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7310 .access = PL1_R, .type = ARM_CP_CONST,
7311 .accessfn = access_aa64_tid3,
7312 .resetvalue = 0 },
7313 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7314 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7315 .access = PL1_R, .type = ARM_CP_CONST,
7316 .accessfn = access_aa64_tid3,
7317 .resetvalue = 0 },
7318 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7319 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7320 .access = PL1_R, .type = ARM_CP_CONST,
7321 .accessfn = access_aa64_tid3,
7322 /* At present, only SVEver == 0 is defined anyway. */
7323 .resetvalue = 0 },
7324 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7325 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7326 .access = PL1_R, .type = ARM_CP_CONST,
7327 .accessfn = access_aa64_tid3,
7328 .resetvalue = 0 },
7329 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7330 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7331 .access = PL1_R, .type = ARM_CP_CONST,
7332 .accessfn = access_aa64_tid3,
7333 .resetvalue = 0 },
7334 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7335 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7336 .access = PL1_R, .type = ARM_CP_CONST,
7337 .accessfn = access_aa64_tid3,
7338 .resetvalue = 0 },
7339 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7340 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7341 .access = PL1_R, .type = ARM_CP_CONST,
7342 .accessfn = access_aa64_tid3,
7343 .resetvalue = cpu->isar.id_aa64dfr0 },
7344 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7345 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7346 .access = PL1_R, .type = ARM_CP_CONST,
7347 .accessfn = access_aa64_tid3,
7348 .resetvalue = cpu->isar.id_aa64dfr1 },
7349 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7350 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7351 .access = PL1_R, .type = ARM_CP_CONST,
7352 .accessfn = access_aa64_tid3,
7353 .resetvalue = 0 },
7354 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7355 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7356 .access = PL1_R, .type = ARM_CP_CONST,
7357 .accessfn = access_aa64_tid3,
7358 .resetvalue = 0 },
7359 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7360 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7361 .access = PL1_R, .type = ARM_CP_CONST,
7362 .accessfn = access_aa64_tid3,
7363 .resetvalue = cpu->id_aa64afr0 },
7364 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7365 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7366 .access = PL1_R, .type = ARM_CP_CONST,
7367 .accessfn = access_aa64_tid3,
7368 .resetvalue = cpu->id_aa64afr1 },
7369 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7370 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7371 .access = PL1_R, .type = ARM_CP_CONST,
7372 .accessfn = access_aa64_tid3,
7373 .resetvalue = 0 },
7374 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7375 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7376 .access = PL1_R, .type = ARM_CP_CONST,
7377 .accessfn = access_aa64_tid3,
7378 .resetvalue = 0 },
7379 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7380 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7381 .access = PL1_R, .type = ARM_CP_CONST,
7382 .accessfn = access_aa64_tid3,
7383 .resetvalue = cpu->isar.id_aa64isar0 },
7384 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7385 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7386 .access = PL1_R, .type = ARM_CP_CONST,
7387 .accessfn = access_aa64_tid3,
7388 .resetvalue = cpu->isar.id_aa64isar1 },
7389 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7390 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7391 .access = PL1_R, .type = ARM_CP_CONST,
7392 .accessfn = access_aa64_tid3,
7393 .resetvalue = 0 },
7394 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7395 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7396 .access = PL1_R, .type = ARM_CP_CONST,
7397 .accessfn = access_aa64_tid3,
7398 .resetvalue = 0 },
7399 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7401 .access = PL1_R, .type = ARM_CP_CONST,
7402 .accessfn = access_aa64_tid3,
7403 .resetvalue = 0 },
7404 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7405 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7406 .access = PL1_R, .type = ARM_CP_CONST,
7407 .accessfn = access_aa64_tid3,
7408 .resetvalue = 0 },
7409 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7411 .access = PL1_R, .type = ARM_CP_CONST,
7412 .accessfn = access_aa64_tid3,
7413 .resetvalue = 0 },
7414 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7416 .access = PL1_R, .type = ARM_CP_CONST,
7417 .accessfn = access_aa64_tid3,
7418 .resetvalue = 0 },
7419 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7420 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7421 .access = PL1_R, .type = ARM_CP_CONST,
7422 .accessfn = access_aa64_tid3,
7423 .resetvalue = cpu->isar.id_aa64mmfr0 },
7424 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7425 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7426 .access = PL1_R, .type = ARM_CP_CONST,
7427 .accessfn = access_aa64_tid3,
7428 .resetvalue = cpu->isar.id_aa64mmfr1 },
7429 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7430 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7431 .access = PL1_R, .type = ARM_CP_CONST,
7432 .accessfn = access_aa64_tid3,
7433 .resetvalue = cpu->isar.id_aa64mmfr2 },
7434 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7436 .access = PL1_R, .type = ARM_CP_CONST,
7437 .accessfn = access_aa64_tid3,
7438 .resetvalue = 0 },
7439 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7441 .access = PL1_R, .type = ARM_CP_CONST,
7442 .accessfn = access_aa64_tid3,
7443 .resetvalue = 0 },
7444 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7445 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7446 .access = PL1_R, .type = ARM_CP_CONST,
7447 .accessfn = access_aa64_tid3,
7448 .resetvalue = 0 },
7449 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7450 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7451 .access = PL1_R, .type = ARM_CP_CONST,
7452 .accessfn = access_aa64_tid3,
7453 .resetvalue = 0 },
7454 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7456 .access = PL1_R, .type = ARM_CP_CONST,
7457 .accessfn = access_aa64_tid3,
7458 .resetvalue = 0 },
7459 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7461 .access = PL1_R, .type = ARM_CP_CONST,
7462 .accessfn = access_aa64_tid3,
7463 .resetvalue = cpu->isar.mvfr0 },
7464 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7465 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7466 .access = PL1_R, .type = ARM_CP_CONST,
7467 .accessfn = access_aa64_tid3,
7468 .resetvalue = cpu->isar.mvfr1 },
7469 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7470 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7471 .access = PL1_R, .type = ARM_CP_CONST,
7472 .accessfn = access_aa64_tid3,
7473 .resetvalue = cpu->isar.mvfr2 },
7474 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7476 .access = PL1_R, .type = ARM_CP_CONST,
7477 .accessfn = access_aa64_tid3,
7478 .resetvalue = 0 },
7479 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7481 .access = PL1_R, .type = ARM_CP_CONST,
7482 .accessfn = access_aa64_tid3,
7483 .resetvalue = 0 },
7484 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7485 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7486 .access = PL1_R, .type = ARM_CP_CONST,
7487 .accessfn = access_aa64_tid3,
7488 .resetvalue = 0 },
7489 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7491 .access = PL1_R, .type = ARM_CP_CONST,
7492 .accessfn = access_aa64_tid3,
7493 .resetvalue = 0 },
7494 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7496 .access = PL1_R, .type = ARM_CP_CONST,
7497 .accessfn = access_aa64_tid3,
7498 .resetvalue = 0 },
7499 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7500 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7501 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7502 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7503 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7504 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7505 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7506 .resetvalue = cpu->pmceid0 },
7507 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7508 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7509 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7510 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7511 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7512 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7513 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7514 .resetvalue = cpu->pmceid1 },
7515 REGINFO_SENTINEL
7517 #ifdef CONFIG_USER_ONLY
7518 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7519 { .name = "ID_AA64PFR0_EL1",
7520 .exported_bits = 0x000f000f00ff0000,
7521 .fixed_bits = 0x0000000000000011 },
7522 { .name = "ID_AA64PFR1_EL1",
7523 .exported_bits = 0x00000000000000f0 },
7524 { .name = "ID_AA64PFR*_EL1_RESERVED",
7525 .is_glob = true },
7526 { .name = "ID_AA64ZFR0_EL1" },
7527 { .name = "ID_AA64MMFR0_EL1",
7528 .fixed_bits = 0x00000000ff000000 },
7529 { .name = "ID_AA64MMFR1_EL1" },
7530 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7531 .is_glob = true },
7532 { .name = "ID_AA64DFR0_EL1",
7533 .fixed_bits = 0x0000000000000006 },
7534 { .name = "ID_AA64DFR1_EL1" },
7535 { .name = "ID_AA64DFR*_EL1_RESERVED",
7536 .is_glob = true },
7537 { .name = "ID_AA64AFR*",
7538 .is_glob = true },
7539 { .name = "ID_AA64ISAR0_EL1",
7540 .exported_bits = 0x00fffffff0fffff0 },
7541 { .name = "ID_AA64ISAR1_EL1",
7542 .exported_bits = 0x000000f0ffffffff },
7543 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7544 .is_glob = true },
7545 REGUSERINFO_SENTINEL
7547 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7548 #endif
7549 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7550 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7551 !arm_feature(env, ARM_FEATURE_EL2)) {
7552 ARMCPRegInfo rvbar = {
7553 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7554 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7555 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7557 define_one_arm_cp_reg(cpu, &rvbar);
7559 define_arm_cp_regs(cpu, v8_idregs);
7560 define_arm_cp_regs(cpu, v8_cp_reginfo);
7562 if (arm_feature(env, ARM_FEATURE_EL2)) {
7563 uint64_t vmpidr_def = mpidr_read_val(env);
7564 ARMCPRegInfo vpidr_regs[] = {
7565 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7566 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7567 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7568 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7569 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7570 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7571 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7572 .access = PL2_RW, .resetvalue = cpu->midr,
7573 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7574 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7575 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7576 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7577 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7578 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7579 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7580 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7581 .access = PL2_RW,
7582 .resetvalue = vmpidr_def,
7583 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7584 REGINFO_SENTINEL
7586 define_arm_cp_regs(cpu, vpidr_regs);
7587 define_arm_cp_regs(cpu, el2_cp_reginfo);
7588 if (arm_feature(env, ARM_FEATURE_V8)) {
7589 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7591 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7592 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7593 ARMCPRegInfo rvbar = {
7594 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7595 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7596 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7598 define_one_arm_cp_reg(cpu, &rvbar);
7600 } else {
7601 /* If EL2 is missing but higher ELs are enabled, we need to
7602 * register the no_el2 reginfos.
7604 if (arm_feature(env, ARM_FEATURE_EL3)) {
7605 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7606 * of MIDR_EL1 and MPIDR_EL1.
7608 ARMCPRegInfo vpidr_regs[] = {
7609 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7610 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7611 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
7612 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7613 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7614 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7615 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7616 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
7617 .type = ARM_CP_NO_RAW,
7618 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7619 REGINFO_SENTINEL
7621 define_arm_cp_regs(cpu, vpidr_regs);
7622 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7623 if (arm_feature(env, ARM_FEATURE_V8)) {
7624 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7628 if (arm_feature(env, ARM_FEATURE_EL3)) {
7629 define_arm_cp_regs(cpu, el3_cp_reginfo);
7630 ARMCPRegInfo el3_regs[] = {
7631 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7632 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7633 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7634 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7635 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7636 .access = PL3_RW,
7637 .raw_writefn = raw_write, .writefn = sctlr_write,
7638 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7639 .resetvalue = cpu->reset_sctlr },
7640 REGINFO_SENTINEL
7643 define_arm_cp_regs(cpu, el3_regs);
7645 /* The behaviour of NSACR is sufficiently various that we don't
7646 * try to describe it in a single reginfo:
7647 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7648 * reads as constant 0xc00 from NS EL1 and NS EL2
7649 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7650 * if v7 without EL3, register doesn't exist
7651 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7653 if (arm_feature(env, ARM_FEATURE_EL3)) {
7654 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7655 ARMCPRegInfo nsacr = {
7656 .name = "NSACR", .type = ARM_CP_CONST,
7657 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7658 .access = PL1_RW, .accessfn = nsacr_access,
7659 .resetvalue = 0xc00
7661 define_one_arm_cp_reg(cpu, &nsacr);
7662 } else {
7663 ARMCPRegInfo nsacr = {
7664 .name = "NSACR",
7665 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7666 .access = PL3_RW | PL1_R,
7667 .resetvalue = 0,
7668 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7670 define_one_arm_cp_reg(cpu, &nsacr);
7672 } else {
7673 if (arm_feature(env, ARM_FEATURE_V8)) {
7674 ARMCPRegInfo nsacr = {
7675 .name = "NSACR", .type = ARM_CP_CONST,
7676 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7677 .access = PL1_R,
7678 .resetvalue = 0xc00
7680 define_one_arm_cp_reg(cpu, &nsacr);
7684 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7685 if (arm_feature(env, ARM_FEATURE_V6)) {
7686 /* PMSAv6 not implemented */
7687 assert(arm_feature(env, ARM_FEATURE_V7));
7688 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7689 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7690 } else {
7691 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7693 } else {
7694 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7695 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7696 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7697 if (cpu_isar_feature(aa32_hpd, cpu)) {
7698 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7701 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7702 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7704 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7705 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7707 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7708 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7710 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7711 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7713 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7714 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7716 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7717 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7719 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7720 define_arm_cp_regs(cpu, omap_cp_reginfo);
7722 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7723 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7725 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7726 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7728 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7729 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7731 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7732 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7734 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7735 define_arm_cp_regs(cpu, jazelle_regs);
7737 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7738 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7739 * be read-only (ie write causes UNDEF exception).
7742 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7743 /* Pre-v8 MIDR space.
7744 * Note that the MIDR isn't a simple constant register because
7745 * of the TI925 behaviour where writes to another register can
7746 * cause the MIDR value to change.
7748 * Unimplemented registers in the c15 0 0 0 space default to
7749 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7750 * and friends override accordingly.
7752 { .name = "MIDR",
7753 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7754 .access = PL1_R, .resetvalue = cpu->midr,
7755 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7756 .readfn = midr_read,
7757 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7758 .type = ARM_CP_OVERRIDE },
7759 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7760 { .name = "DUMMY",
7761 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7762 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7763 { .name = "DUMMY",
7764 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7765 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7766 { .name = "DUMMY",
7767 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7768 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7769 { .name = "DUMMY",
7770 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7771 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7772 { .name = "DUMMY",
7773 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7774 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7775 REGINFO_SENTINEL
7777 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7778 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7780 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7781 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7782 .readfn = midr_read },
7783 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7784 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7785 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7786 .access = PL1_R, .resetvalue = cpu->midr },
7787 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7788 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7789 .access = PL1_R, .resetvalue = cpu->midr },
7790 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7792 .access = PL1_R,
7793 .accessfn = access_aa64_tid1,
7794 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7795 REGINFO_SENTINEL
7797 ARMCPRegInfo id_cp_reginfo[] = {
7798 /* These are common to v8 and pre-v8 */
7799 { .name = "CTR",
7800 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7801 .access = PL1_R, .accessfn = ctr_el0_access,
7802 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7803 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7804 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7805 .access = PL0_R, .accessfn = ctr_el0_access,
7806 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7807 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7808 { .name = "TCMTR",
7809 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7810 .access = PL1_R,
7811 .accessfn = access_aa32_tid1,
7812 .type = ARM_CP_CONST, .resetvalue = 0 },
7813 REGINFO_SENTINEL
7815 /* TLBTR is specific to VMSA */
7816 ARMCPRegInfo id_tlbtr_reginfo = {
7817 .name = "TLBTR",
7818 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7819 .access = PL1_R,
7820 .accessfn = access_aa32_tid1,
7821 .type = ARM_CP_CONST, .resetvalue = 0,
7823 /* MPUIR is specific to PMSA V6+ */
7824 ARMCPRegInfo id_mpuir_reginfo = {
7825 .name = "MPUIR",
7826 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7827 .access = PL1_R, .type = ARM_CP_CONST,
7828 .resetvalue = cpu->pmsav7_dregion << 8
7830 ARMCPRegInfo crn0_wi_reginfo = {
7831 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7832 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7833 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7835 #ifdef CONFIG_USER_ONLY
7836 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7837 { .name = "MIDR_EL1",
7838 .exported_bits = 0x00000000ffffffff },
7839 { .name = "REVIDR_EL1" },
7840 REGUSERINFO_SENTINEL
7842 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7843 #endif
7844 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7845 arm_feature(env, ARM_FEATURE_STRONGARM)) {
7846 ARMCPRegInfo *r;
7847 /* Register the blanket "writes ignored" value first to cover the
7848 * whole space. Then update the specific ID registers to allow write
7849 * access, so that they ignore writes rather than causing them to
7850 * UNDEF.
7852 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7853 for (r = id_pre_v8_midr_cp_reginfo;
7854 r->type != ARM_CP_SENTINEL; r++) {
7855 r->access = PL1_RW;
7857 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7858 r->access = PL1_RW;
7860 id_mpuir_reginfo.access = PL1_RW;
7861 id_tlbtr_reginfo.access = PL1_RW;
7863 if (arm_feature(env, ARM_FEATURE_V8)) {
7864 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7865 } else {
7866 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7868 define_arm_cp_regs(cpu, id_cp_reginfo);
7869 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7870 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7871 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7872 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7876 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7877 ARMCPRegInfo mpidr_cp_reginfo[] = {
7878 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7879 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7880 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
7881 REGINFO_SENTINEL
7883 #ifdef CONFIG_USER_ONLY
7884 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7885 { .name = "MPIDR_EL1",
7886 .fixed_bits = 0x0000000080000000 },
7887 REGUSERINFO_SENTINEL
7889 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7890 #endif
7891 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7894 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7895 ARMCPRegInfo auxcr_reginfo[] = {
7896 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7897 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7898 .access = PL1_RW, .accessfn = access_tacr,
7899 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
7900 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
7901 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
7902 .access = PL2_RW, .type = ARM_CP_CONST,
7903 .resetvalue = 0 },
7904 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
7905 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
7906 .access = PL3_RW, .type = ARM_CP_CONST,
7907 .resetvalue = 0 },
7908 REGINFO_SENTINEL
7910 define_arm_cp_regs(cpu, auxcr_reginfo);
7911 if (cpu_isar_feature(aa32_ac2, cpu)) {
7912 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
7916 if (arm_feature(env, ARM_FEATURE_CBAR)) {
7918 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
7919 * There are two flavours:
7920 * (1) older 32-bit only cores have a simple 32-bit CBAR
7921 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
7922 * 32-bit register visible to AArch32 at a different encoding
7923 * to the "flavour 1" register and with the bits rearranged to
7924 * be able to squash a 64-bit address into the 32-bit view.
7925 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
7926 * in future if we support AArch32-only configs of some of the
7927 * AArch64 cores we might need to add a specific feature flag
7928 * to indicate cores with "flavour 2" CBAR.
7930 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7931 /* 32 bit view is [31:18] 0...0 [43:32]. */
7932 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
7933 | extract64(cpu->reset_cbar, 32, 12);
7934 ARMCPRegInfo cbar_reginfo[] = {
7935 { .name = "CBAR",
7936 .type = ARM_CP_CONST,
7937 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
7938 .access = PL1_R, .resetvalue = cbar32 },
7939 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
7940 .type = ARM_CP_CONST,
7941 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
7942 .access = PL1_R, .resetvalue = cpu->reset_cbar },
7943 REGINFO_SENTINEL
7945 /* We don't implement a r/w 64 bit CBAR currently */
7946 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
7947 define_arm_cp_regs(cpu, cbar_reginfo);
7948 } else {
7949 ARMCPRegInfo cbar = {
7950 .name = "CBAR",
7951 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
7952 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
7953 .fieldoffset = offsetof(CPUARMState,
7954 cp15.c15_config_base_address)
7956 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
7957 cbar.access = PL1_R;
7958 cbar.fieldoffset = 0;
7959 cbar.type = ARM_CP_CONST;
7961 define_one_arm_cp_reg(cpu, &cbar);
7965 if (arm_feature(env, ARM_FEATURE_VBAR)) {
7966 ARMCPRegInfo vbar_cp_reginfo[] = {
7967 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
7968 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
7969 .access = PL1_RW, .writefn = vbar_write,
7970 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
7971 offsetof(CPUARMState, cp15.vbar_ns) },
7972 .resetvalue = 0 },
7973 REGINFO_SENTINEL
7975 define_arm_cp_regs(cpu, vbar_cp_reginfo);
7978 /* Generic registers whose values depend on the implementation */
7980 ARMCPRegInfo sctlr = {
7981 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
7982 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
7983 .access = PL1_RW, .accessfn = access_tvm_trvm,
7984 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
7985 offsetof(CPUARMState, cp15.sctlr_ns) },
7986 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
7987 .raw_writefn = raw_write,
7989 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7990 /* Normally we would always end the TB on an SCTLR write, but Linux
7991 * arch/arm/mach-pxa/sleep.S expects two instructions following
7992 * an MMU enable to execute from cache. Imitate this behaviour.
7994 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
7996 define_one_arm_cp_reg(cpu, &sctlr);
7999 if (cpu_isar_feature(aa64_lor, cpu)) {
8000 define_arm_cp_regs(cpu, lor_reginfo);
8002 if (cpu_isar_feature(aa64_pan, cpu)) {
8003 define_one_arm_cp_reg(cpu, &pan_reginfo);
8005 #ifndef CONFIG_USER_ONLY
8006 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8007 define_arm_cp_regs(cpu, ats1e1_reginfo);
8009 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8010 define_arm_cp_regs(cpu, ats1cp_reginfo);
8012 #endif
8013 if (cpu_isar_feature(aa64_uao, cpu)) {
8014 define_one_arm_cp_reg(cpu, &uao_reginfo);
8017 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8018 define_arm_cp_regs(cpu, vhe_reginfo);
8021 if (cpu_isar_feature(aa64_sve, cpu)) {
8022 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8023 if (arm_feature(env, ARM_FEATURE_EL2)) {
8024 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8025 } else {
8026 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8028 if (arm_feature(env, ARM_FEATURE_EL3)) {
8029 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8033 #ifdef TARGET_AARCH64
8034 if (cpu_isar_feature(aa64_pauth, cpu)) {
8035 define_arm_cp_regs(cpu, pauth_reginfo);
8037 if (cpu_isar_feature(aa64_rndr, cpu)) {
8038 define_arm_cp_regs(cpu, rndr_reginfo);
8040 #ifndef CONFIG_USER_ONLY
8041 /* Data Cache clean instructions up to PoP */
8042 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8043 define_one_arm_cp_reg(cpu, dcpop_reg);
8045 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8046 define_one_arm_cp_reg(cpu, dcpodp_reg);
8049 #endif /*CONFIG_USER_ONLY*/
8050 #endif
8052 if (cpu_isar_feature(any_predinv, cpu)) {
8053 define_arm_cp_regs(cpu, predinv_reginfo);
8056 if (cpu_isar_feature(any_ccidx, cpu)) {
8057 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8060 #ifndef CONFIG_USER_ONLY
8062 * Register redirections and aliases must be done last,
8063 * after the registers from the other extensions have been defined.
8065 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8066 define_arm_vh_e2h_redirects_aliases(cpu);
8068 #endif
8071 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8073 CPUState *cs = CPU(cpu);
8074 CPUARMState *env = &cpu->env;
8076 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8078 * The lower part of each SVE register aliases to the FPU
8079 * registers so we don't need to include both.
8081 #ifdef TARGET_AARCH64
8082 if (isar_feature_aa64_sve(&cpu->isar)) {
8083 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8084 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8085 "sve-registers.xml", 0);
8086 } else
8087 #endif
8089 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8090 aarch64_fpu_gdb_set_reg,
8091 34, "aarch64-fpu.xml", 0);
8093 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8094 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8095 51, "arm-neon.xml", 0);
8096 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8097 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8098 35, "arm-vfp3.xml", 0);
8099 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8100 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8101 19, "arm-vfp.xml", 0);
8103 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8104 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8105 "system-registers.xml", 0);
8109 /* Sort alphabetically by type name, except for "any". */
8110 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8112 ObjectClass *class_a = (ObjectClass *)a;
8113 ObjectClass *class_b = (ObjectClass *)b;
8114 const char *name_a, *name_b;
8116 name_a = object_class_get_name(class_a);
8117 name_b = object_class_get_name(class_b);
8118 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8119 return 1;
8120 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8121 return -1;
8122 } else {
8123 return strcmp(name_a, name_b);
8127 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8129 ObjectClass *oc = data;
8130 const char *typename;
8131 char *name;
8133 typename = object_class_get_name(oc);
8134 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8135 qemu_printf(" %s\n", name);
8136 g_free(name);
8139 void arm_cpu_list(void)
8141 GSList *list;
8143 list = object_class_get_list(TYPE_ARM_CPU, false);
8144 list = g_slist_sort(list, arm_cpu_list_compare);
8145 qemu_printf("Available CPUs:\n");
8146 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8147 g_slist_free(list);
8150 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8152 ObjectClass *oc = data;
8153 CpuDefinitionInfoList **cpu_list = user_data;
8154 CpuDefinitionInfoList *entry;
8155 CpuDefinitionInfo *info;
8156 const char *typename;
8158 typename = object_class_get_name(oc);
8159 info = g_malloc0(sizeof(*info));
8160 info->name = g_strndup(typename,
8161 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8162 info->q_typename = g_strdup(typename);
8164 entry = g_malloc0(sizeof(*entry));
8165 entry->value = info;
8166 entry->next = *cpu_list;
8167 *cpu_list = entry;
8170 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8172 CpuDefinitionInfoList *cpu_list = NULL;
8173 GSList *list;
8175 list = object_class_get_list(TYPE_ARM_CPU, false);
8176 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8177 g_slist_free(list);
8179 return cpu_list;
8182 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8183 void *opaque, int state, int secstate,
8184 int crm, int opc1, int opc2,
8185 const char *name)
8187 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8188 * add a single reginfo struct to the hash table.
8190 uint32_t *key = g_new(uint32_t, 1);
8191 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8192 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8193 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8195 r2->name = g_strdup(name);
8196 /* Reset the secure state to the specific incoming state. This is
8197 * necessary as the register may have been defined with both states.
8199 r2->secure = secstate;
8201 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8202 /* Register is banked (using both entries in array).
8203 * Overwriting fieldoffset as the array is only used to define
8204 * banked registers but later only fieldoffset is used.
8206 r2->fieldoffset = r->bank_fieldoffsets[ns];
8209 if (state == ARM_CP_STATE_AA32) {
8210 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8211 /* If the register is banked then we don't need to migrate or
8212 * reset the 32-bit instance in certain cases:
8214 * 1) If the register has both 32-bit and 64-bit instances then we
8215 * can count on the 64-bit instance taking care of the
8216 * non-secure bank.
8217 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8218 * taking care of the secure bank. This requires that separate
8219 * 32 and 64-bit definitions are provided.
8221 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8222 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8223 r2->type |= ARM_CP_ALIAS;
8225 } else if ((secstate != r->secure) && !ns) {
8226 /* The register is not banked so we only want to allow migration of
8227 * the non-secure instance.
8229 r2->type |= ARM_CP_ALIAS;
8232 if (r->state == ARM_CP_STATE_BOTH) {
8233 /* We assume it is a cp15 register if the .cp field is left unset.
8235 if (r2->cp == 0) {
8236 r2->cp = 15;
8239 #ifdef HOST_WORDS_BIGENDIAN
8240 if (r2->fieldoffset) {
8241 r2->fieldoffset += sizeof(uint32_t);
8243 #endif
8246 if (state == ARM_CP_STATE_AA64) {
8247 /* To allow abbreviation of ARMCPRegInfo
8248 * definitions, we treat cp == 0 as equivalent to
8249 * the value for "standard guest-visible sysreg".
8250 * STATE_BOTH definitions are also always "standard
8251 * sysreg" in their AArch64 view (the .cp value may
8252 * be non-zero for the benefit of the AArch32 view).
8254 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8255 r2->cp = CP_REG_ARM64_SYSREG_CP;
8257 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8258 r2->opc0, opc1, opc2);
8259 } else {
8260 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8262 if (opaque) {
8263 r2->opaque = opaque;
8265 /* reginfo passed to helpers is correct for the actual access,
8266 * and is never ARM_CP_STATE_BOTH:
8268 r2->state = state;
8269 /* Make sure reginfo passed to helpers for wildcarded regs
8270 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8272 r2->crm = crm;
8273 r2->opc1 = opc1;
8274 r2->opc2 = opc2;
8275 /* By convention, for wildcarded registers only the first
8276 * entry is used for migration; the others are marked as
8277 * ALIAS so we don't try to transfer the register
8278 * multiple times. Special registers (ie NOP/WFI) are
8279 * never migratable and not even raw-accessible.
8281 if ((r->type & ARM_CP_SPECIAL)) {
8282 r2->type |= ARM_CP_NO_RAW;
8284 if (((r->crm == CP_ANY) && crm != 0) ||
8285 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8286 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8287 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8290 /* Check that raw accesses are either forbidden or handled. Note that
8291 * we can't assert this earlier because the setup of fieldoffset for
8292 * banked registers has to be done first.
8294 if (!(r2->type & ARM_CP_NO_RAW)) {
8295 assert(!raw_accessors_invalid(r2));
8298 /* Overriding of an existing definition must be explicitly
8299 * requested.
8301 if (!(r->type & ARM_CP_OVERRIDE)) {
8302 ARMCPRegInfo *oldreg;
8303 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8304 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8305 fprintf(stderr, "Register redefined: cp=%d %d bit "
8306 "crn=%d crm=%d opc1=%d opc2=%d, "
8307 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8308 r2->crn, r2->crm, r2->opc1, r2->opc2,
8309 oldreg->name, r2->name);
8310 g_assert_not_reached();
8313 g_hash_table_insert(cpu->cp_regs, key, r2);
8317 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8318 const ARMCPRegInfo *r, void *opaque)
8320 /* Define implementations of coprocessor registers.
8321 * We store these in a hashtable because typically
8322 * there are less than 150 registers in a space which
8323 * is 16*16*16*8*8 = 262144 in size.
8324 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8325 * If a register is defined twice then the second definition is
8326 * used, so this can be used to define some generic registers and
8327 * then override them with implementation specific variations.
8328 * At least one of the original and the second definition should
8329 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8330 * against accidental use.
8332 * The state field defines whether the register is to be
8333 * visible in the AArch32 or AArch64 execution state. If the
8334 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8335 * reginfo structure for the AArch32 view, which sees the lower
8336 * 32 bits of the 64 bit register.
8338 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8339 * be wildcarded. AArch64 registers are always considered to be 64
8340 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8341 * the register, if any.
8343 int crm, opc1, opc2, state;
8344 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8345 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8346 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8347 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8348 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8349 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8350 /* 64 bit registers have only CRm and Opc1 fields */
8351 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8352 /* op0 only exists in the AArch64 encodings */
8353 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8354 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8355 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8356 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8357 * encodes a minimum access level for the register. We roll this
8358 * runtime check into our general permission check code, so check
8359 * here that the reginfo's specified permissions are strict enough
8360 * to encompass the generic architectural permission check.
8362 if (r->state != ARM_CP_STATE_AA32) {
8363 int mask = 0;
8364 switch (r->opc1) {
8365 case 0:
8366 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8367 mask = PL0U_R | PL1_RW;
8368 break;
8369 case 1: case 2:
8370 /* min_EL EL1 */
8371 mask = PL1_RW;
8372 break;
8373 case 3:
8374 /* min_EL EL0 */
8375 mask = PL0_RW;
8376 break;
8377 case 4:
8378 case 5:
8379 /* min_EL EL2 */
8380 mask = PL2_RW;
8381 break;
8382 case 6:
8383 /* min_EL EL3 */
8384 mask = PL3_RW;
8385 break;
8386 case 7:
8387 /* min_EL EL1, secure mode only (we don't check the latter) */
8388 mask = PL1_RW;
8389 break;
8390 default:
8391 /* broken reginfo with out-of-range opc1 */
8392 assert(false);
8393 break;
8395 /* assert our permissions are not too lax (stricter is fine) */
8396 assert((r->access & ~mask) == 0);
8399 /* Check that the register definition has enough info to handle
8400 * reads and writes if they are permitted.
8402 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8403 if (r->access & PL3_R) {
8404 assert((r->fieldoffset ||
8405 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8406 r->readfn);
8408 if (r->access & PL3_W) {
8409 assert((r->fieldoffset ||
8410 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8411 r->writefn);
8414 /* Bad type field probably means missing sentinel at end of reg list */
8415 assert(cptype_valid(r->type));
8416 for (crm = crmmin; crm <= crmmax; crm++) {
8417 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8418 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8419 for (state = ARM_CP_STATE_AA32;
8420 state <= ARM_CP_STATE_AA64; state++) {
8421 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8422 continue;
8424 if (state == ARM_CP_STATE_AA32) {
8425 /* Under AArch32 CP registers can be common
8426 * (same for secure and non-secure world) or banked.
8428 char *name;
8430 switch (r->secure) {
8431 case ARM_CP_SECSTATE_S:
8432 case ARM_CP_SECSTATE_NS:
8433 add_cpreg_to_hashtable(cpu, r, opaque, state,
8434 r->secure, crm, opc1, opc2,
8435 r->name);
8436 break;
8437 default:
8438 name = g_strdup_printf("%s_S", r->name);
8439 add_cpreg_to_hashtable(cpu, r, opaque, state,
8440 ARM_CP_SECSTATE_S,
8441 crm, opc1, opc2, name);
8442 g_free(name);
8443 add_cpreg_to_hashtable(cpu, r, opaque, state,
8444 ARM_CP_SECSTATE_NS,
8445 crm, opc1, opc2, r->name);
8446 break;
8448 } else {
8449 /* AArch64 registers get mapped to non-secure instance
8450 * of AArch32 */
8451 add_cpreg_to_hashtable(cpu, r, opaque, state,
8452 ARM_CP_SECSTATE_NS,
8453 crm, opc1, opc2, r->name);
8461 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8462 const ARMCPRegInfo *regs, void *opaque)
8464 /* Define a whole list of registers */
8465 const ARMCPRegInfo *r;
8466 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8467 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8472 * Modify ARMCPRegInfo for access from userspace.
8474 * This is a data driven modification directed by
8475 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8476 * user-space cannot alter any values and dynamic values pertaining to
8477 * execution state are hidden from user space view anyway.
8479 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8481 const ARMCPRegUserSpaceInfo *m;
8482 ARMCPRegInfo *r;
8484 for (m = mods; m->name; m++) {
8485 GPatternSpec *pat = NULL;
8486 if (m->is_glob) {
8487 pat = g_pattern_spec_new(m->name);
8489 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8490 if (pat && g_pattern_match_string(pat, r->name)) {
8491 r->type = ARM_CP_CONST;
8492 r->access = PL0U_R;
8493 r->resetvalue = 0;
8494 /* continue */
8495 } else if (strcmp(r->name, m->name) == 0) {
8496 r->type = ARM_CP_CONST;
8497 r->access = PL0U_R;
8498 r->resetvalue &= m->exported_bits;
8499 r->resetvalue |= m->fixed_bits;
8500 break;
8503 if (pat) {
8504 g_pattern_spec_free(pat);
8509 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8511 return g_hash_table_lookup(cpregs, &encoded_cp);
8514 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8515 uint64_t value)
8517 /* Helper coprocessor write function for write-ignore registers */
8520 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8522 /* Helper coprocessor write function for read-as-zero registers */
8523 return 0;
8526 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8528 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8531 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8533 /* Return true if it is not valid for us to switch to
8534 * this CPU mode (ie all the UNPREDICTABLE cases in
8535 * the ARM ARM CPSRWriteByInstr pseudocode).
8538 /* Changes to or from Hyp via MSR and CPS are illegal. */
8539 if (write_type == CPSRWriteByInstr &&
8540 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8541 mode == ARM_CPU_MODE_HYP)) {
8542 return 1;
8545 switch (mode) {
8546 case ARM_CPU_MODE_USR:
8547 return 0;
8548 case ARM_CPU_MODE_SYS:
8549 case ARM_CPU_MODE_SVC:
8550 case ARM_CPU_MODE_ABT:
8551 case ARM_CPU_MODE_UND:
8552 case ARM_CPU_MODE_IRQ:
8553 case ARM_CPU_MODE_FIQ:
8554 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8555 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8557 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8558 * and CPS are treated as illegal mode changes.
8560 if (write_type == CPSRWriteByInstr &&
8561 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8562 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8563 return 1;
8565 return 0;
8566 case ARM_CPU_MODE_HYP:
8567 return !arm_feature(env, ARM_FEATURE_EL2)
8568 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8569 case ARM_CPU_MODE_MON:
8570 return arm_current_el(env) < 3;
8571 default:
8572 return 1;
8576 uint32_t cpsr_read(CPUARMState *env)
8578 int ZF;
8579 ZF = (env->ZF == 0);
8580 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8581 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8582 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8583 | ((env->condexec_bits & 0xfc) << 8)
8584 | (env->GE << 16) | (env->daif & CPSR_AIF);
8587 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8588 CPSRWriteType write_type)
8590 uint32_t changed_daif;
8592 if (mask & CPSR_NZCV) {
8593 env->ZF = (~val) & CPSR_Z;
8594 env->NF = val;
8595 env->CF = (val >> 29) & 1;
8596 env->VF = (val << 3) & 0x80000000;
8598 if (mask & CPSR_Q)
8599 env->QF = ((val & CPSR_Q) != 0);
8600 if (mask & CPSR_T)
8601 env->thumb = ((val & CPSR_T) != 0);
8602 if (mask & CPSR_IT_0_1) {
8603 env->condexec_bits &= ~3;
8604 env->condexec_bits |= (val >> 25) & 3;
8606 if (mask & CPSR_IT_2_7) {
8607 env->condexec_bits &= 3;
8608 env->condexec_bits |= (val >> 8) & 0xfc;
8610 if (mask & CPSR_GE) {
8611 env->GE = (val >> 16) & 0xf;
8614 /* In a V7 implementation that includes the security extensions but does
8615 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8616 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8617 * bits respectively.
8619 * In a V8 implementation, it is permitted for privileged software to
8620 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8622 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8623 arm_feature(env, ARM_FEATURE_EL3) &&
8624 !arm_feature(env, ARM_FEATURE_EL2) &&
8625 !arm_is_secure(env)) {
8627 changed_daif = (env->daif ^ val) & mask;
8629 if (changed_daif & CPSR_A) {
8630 /* Check to see if we are allowed to change the masking of async
8631 * abort exceptions from a non-secure state.
8633 if (!(env->cp15.scr_el3 & SCR_AW)) {
8634 qemu_log_mask(LOG_GUEST_ERROR,
8635 "Ignoring attempt to switch CPSR_A flag from "
8636 "non-secure world with SCR.AW bit clear\n");
8637 mask &= ~CPSR_A;
8641 if (changed_daif & CPSR_F) {
8642 /* Check to see if we are allowed to change the masking of FIQ
8643 * exceptions from a non-secure state.
8645 if (!(env->cp15.scr_el3 & SCR_FW)) {
8646 qemu_log_mask(LOG_GUEST_ERROR,
8647 "Ignoring attempt to switch CPSR_F flag from "
8648 "non-secure world with SCR.FW bit clear\n");
8649 mask &= ~CPSR_F;
8652 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8653 * If this bit is set software is not allowed to mask
8654 * FIQs, but is allowed to set CPSR_F to 0.
8656 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8657 (val & CPSR_F)) {
8658 qemu_log_mask(LOG_GUEST_ERROR,
8659 "Ignoring attempt to enable CPSR_F flag "
8660 "(non-maskable FIQ [NMFI] support enabled)\n");
8661 mask &= ~CPSR_F;
8666 env->daif &= ~(CPSR_AIF & mask);
8667 env->daif |= val & CPSR_AIF & mask;
8669 if (write_type != CPSRWriteRaw &&
8670 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8671 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8672 /* Note that we can only get here in USR mode if this is a
8673 * gdb stub write; for this case we follow the architectural
8674 * behaviour for guest writes in USR mode of ignoring an attempt
8675 * to switch mode. (Those are caught by translate.c for writes
8676 * triggered by guest instructions.)
8678 mask &= ~CPSR_M;
8679 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8680 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8681 * v7, and has defined behaviour in v8:
8682 * + leave CPSR.M untouched
8683 * + allow changes to the other CPSR fields
8684 * + set PSTATE.IL
8685 * For user changes via the GDB stub, we don't set PSTATE.IL,
8686 * as this would be unnecessarily harsh for a user error.
8688 mask &= ~CPSR_M;
8689 if (write_type != CPSRWriteByGDBStub &&
8690 arm_feature(env, ARM_FEATURE_V8)) {
8691 mask |= CPSR_IL;
8692 val |= CPSR_IL;
8694 qemu_log_mask(LOG_GUEST_ERROR,
8695 "Illegal AArch32 mode switch attempt from %s to %s\n",
8696 aarch32_mode_name(env->uncached_cpsr),
8697 aarch32_mode_name(val));
8698 } else {
8699 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8700 write_type == CPSRWriteExceptionReturn ?
8701 "Exception return from AArch32" :
8702 "AArch32 mode switch from",
8703 aarch32_mode_name(env->uncached_cpsr),
8704 aarch32_mode_name(val), env->regs[15]);
8705 switch_mode(env, val & CPSR_M);
8708 mask &= ~CACHED_CPSR_BITS;
8709 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8712 /* Sign/zero extend */
8713 uint32_t HELPER(sxtb16)(uint32_t x)
8715 uint32_t res;
8716 res = (uint16_t)(int8_t)x;
8717 res |= (uint32_t)(int8_t)(x >> 16) << 16;
8718 return res;
8721 uint32_t HELPER(uxtb16)(uint32_t x)
8723 uint32_t res;
8724 res = (uint16_t)(uint8_t)x;
8725 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8726 return res;
8729 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8731 if (den == 0)
8732 return 0;
8733 if (num == INT_MIN && den == -1)
8734 return INT_MIN;
8735 return num / den;
8738 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8740 if (den == 0)
8741 return 0;
8742 return num / den;
8745 uint32_t HELPER(rbit)(uint32_t x)
8747 return revbit32(x);
8750 #ifdef CONFIG_USER_ONLY
8752 static void switch_mode(CPUARMState *env, int mode)
8754 ARMCPU *cpu = env_archcpu(env);
8756 if (mode != ARM_CPU_MODE_USR) {
8757 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8761 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8762 uint32_t cur_el, bool secure)
8764 return 1;
8767 void aarch64_sync_64_to_32(CPUARMState *env)
8769 g_assert_not_reached();
8772 #else
8774 static void switch_mode(CPUARMState *env, int mode)
8776 int old_mode;
8777 int i;
8779 old_mode = env->uncached_cpsr & CPSR_M;
8780 if (mode == old_mode)
8781 return;
8783 if (old_mode == ARM_CPU_MODE_FIQ) {
8784 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8785 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8786 } else if (mode == ARM_CPU_MODE_FIQ) {
8787 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8788 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8791 i = bank_number(old_mode);
8792 env->banked_r13[i] = env->regs[13];
8793 env->banked_spsr[i] = env->spsr;
8795 i = bank_number(mode);
8796 env->regs[13] = env->banked_r13[i];
8797 env->spsr = env->banked_spsr[i];
8799 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8800 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8803 /* Physical Interrupt Target EL Lookup Table
8805 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8807 * The below multi-dimensional table is used for looking up the target
8808 * exception level given numerous condition criteria. Specifically, the
8809 * target EL is based on SCR and HCR routing controls as well as the
8810 * currently executing EL and secure state.
8812 * Dimensions:
8813 * target_el_table[2][2][2][2][2][4]
8814 * | | | | | +--- Current EL
8815 * | | | | +------ Non-secure(0)/Secure(1)
8816 * | | | +--------- HCR mask override
8817 * | | +------------ SCR exec state control
8818 * | +--------------- SCR mask override
8819 * +------------------ 32-bit(0)/64-bit(1) EL3
8821 * The table values are as such:
8822 * 0-3 = EL0-EL3
8823 * -1 = Cannot occur
8825 * The ARM ARM target EL table includes entries indicating that an "exception
8826 * is not taken". The two cases where this is applicable are:
8827 * 1) An exception is taken from EL3 but the SCR does not have the exception
8828 * routed to EL3.
8829 * 2) An exception is taken from EL2 but the HCR does not have the exception
8830 * routed to EL2.
8831 * In these two cases, the below table contain a target of EL1. This value is
8832 * returned as it is expected that the consumer of the table data will check
8833 * for "target EL >= current EL" to ensure the exception is not taken.
8835 * SCR HCR
8836 * 64 EA AMO From
8837 * BIT IRQ IMO Non-secure Secure
8838 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
8840 static const int8_t target_el_table[2][2][2][2][2][4] = {
8841 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8842 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
8843 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8844 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
8845 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8846 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
8847 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8848 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
8849 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
8850 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
8851 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
8852 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
8853 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8854 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
8855 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8856 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
8860 * Determine the target EL for physical exceptions
8862 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8863 uint32_t cur_el, bool secure)
8865 CPUARMState *env = cs->env_ptr;
8866 bool rw;
8867 bool scr;
8868 bool hcr;
8869 int target_el;
8870 /* Is the highest EL AArch64? */
8871 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
8872 uint64_t hcr_el2;
8874 if (arm_feature(env, ARM_FEATURE_EL3)) {
8875 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
8876 } else {
8877 /* Either EL2 is the highest EL (and so the EL2 register width
8878 * is given by is64); or there is no EL2 or EL3, in which case
8879 * the value of 'rw' does not affect the table lookup anyway.
8881 rw = is64;
8884 hcr_el2 = arm_hcr_el2_eff(env);
8885 switch (excp_idx) {
8886 case EXCP_IRQ:
8887 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
8888 hcr = hcr_el2 & HCR_IMO;
8889 break;
8890 case EXCP_FIQ:
8891 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
8892 hcr = hcr_el2 & HCR_FMO;
8893 break;
8894 default:
8895 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
8896 hcr = hcr_el2 & HCR_AMO;
8897 break;
8901 * For these purposes, TGE and AMO/IMO/FMO both force the
8902 * interrupt to EL2. Fold TGE into the bit extracted above.
8904 hcr |= (hcr_el2 & HCR_TGE) != 0;
8906 /* Perform a table-lookup for the target EL given the current state */
8907 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
8909 assert(target_el > 0);
8911 return target_el;
8914 void arm_log_exception(int idx)
8916 if (qemu_loglevel_mask(CPU_LOG_INT)) {
8917 const char *exc = NULL;
8918 static const char * const excnames[] = {
8919 [EXCP_UDEF] = "Undefined Instruction",
8920 [EXCP_SWI] = "SVC",
8921 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8922 [EXCP_DATA_ABORT] = "Data Abort",
8923 [EXCP_IRQ] = "IRQ",
8924 [EXCP_FIQ] = "FIQ",
8925 [EXCP_BKPT] = "Breakpoint",
8926 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8927 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8928 [EXCP_HVC] = "Hypervisor Call",
8929 [EXCP_HYP_TRAP] = "Hypervisor Trap",
8930 [EXCP_SMC] = "Secure Monitor Call",
8931 [EXCP_VIRQ] = "Virtual IRQ",
8932 [EXCP_VFIQ] = "Virtual FIQ",
8933 [EXCP_SEMIHOST] = "Semihosting call",
8934 [EXCP_NOCP] = "v7M NOCP UsageFault",
8935 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8936 [EXCP_STKOF] = "v8M STKOF UsageFault",
8937 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
8938 [EXCP_LSERR] = "v8M LSERR UsageFault",
8939 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
8942 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8943 exc = excnames[idx];
8945 if (!exc) {
8946 exc = "unknown";
8948 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8953 * Function used to synchronize QEMU's AArch64 register set with AArch32
8954 * register set. This is necessary when switching between AArch32 and AArch64
8955 * execution state.
8957 void aarch64_sync_32_to_64(CPUARMState *env)
8959 int i;
8960 uint32_t mode = env->uncached_cpsr & CPSR_M;
8962 /* We can blanket copy R[0:7] to X[0:7] */
8963 for (i = 0; i < 8; i++) {
8964 env->xregs[i] = env->regs[i];
8968 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8969 * Otherwise, they come from the banked user regs.
8971 if (mode == ARM_CPU_MODE_FIQ) {
8972 for (i = 8; i < 13; i++) {
8973 env->xregs[i] = env->usr_regs[i - 8];
8975 } else {
8976 for (i = 8; i < 13; i++) {
8977 env->xregs[i] = env->regs[i];
8982 * Registers x13-x23 are the various mode SP and FP registers. Registers
8983 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8984 * from the mode banked register.
8986 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8987 env->xregs[13] = env->regs[13];
8988 env->xregs[14] = env->regs[14];
8989 } else {
8990 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8991 /* HYP is an exception in that it is copied from r14 */
8992 if (mode == ARM_CPU_MODE_HYP) {
8993 env->xregs[14] = env->regs[14];
8994 } else {
8995 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8999 if (mode == ARM_CPU_MODE_HYP) {
9000 env->xregs[15] = env->regs[13];
9001 } else {
9002 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9005 if (mode == ARM_CPU_MODE_IRQ) {
9006 env->xregs[16] = env->regs[14];
9007 env->xregs[17] = env->regs[13];
9008 } else {
9009 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9010 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9013 if (mode == ARM_CPU_MODE_SVC) {
9014 env->xregs[18] = env->regs[14];
9015 env->xregs[19] = env->regs[13];
9016 } else {
9017 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9018 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9021 if (mode == ARM_CPU_MODE_ABT) {
9022 env->xregs[20] = env->regs[14];
9023 env->xregs[21] = env->regs[13];
9024 } else {
9025 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9026 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9029 if (mode == ARM_CPU_MODE_UND) {
9030 env->xregs[22] = env->regs[14];
9031 env->xregs[23] = env->regs[13];
9032 } else {
9033 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9034 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9038 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9039 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9040 * FIQ bank for r8-r14.
9042 if (mode == ARM_CPU_MODE_FIQ) {
9043 for (i = 24; i < 31; i++) {
9044 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9046 } else {
9047 for (i = 24; i < 29; i++) {
9048 env->xregs[i] = env->fiq_regs[i - 24];
9050 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9051 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9054 env->pc = env->regs[15];
9058 * Function used to synchronize QEMU's AArch32 register set with AArch64
9059 * register set. This is necessary when switching between AArch32 and AArch64
9060 * execution state.
9062 void aarch64_sync_64_to_32(CPUARMState *env)
9064 int i;
9065 uint32_t mode = env->uncached_cpsr & CPSR_M;
9067 /* We can blanket copy X[0:7] to R[0:7] */
9068 for (i = 0; i < 8; i++) {
9069 env->regs[i] = env->xregs[i];
9073 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9074 * Otherwise, we copy x8-x12 into the banked user regs.
9076 if (mode == ARM_CPU_MODE_FIQ) {
9077 for (i = 8; i < 13; i++) {
9078 env->usr_regs[i - 8] = env->xregs[i];
9080 } else {
9081 for (i = 8; i < 13; i++) {
9082 env->regs[i] = env->xregs[i];
9087 * Registers r13 & r14 depend on the current mode.
9088 * If we are in a given mode, we copy the corresponding x registers to r13
9089 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9090 * for the mode.
9092 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9093 env->regs[13] = env->xregs[13];
9094 env->regs[14] = env->xregs[14];
9095 } else {
9096 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9099 * HYP is an exception in that it does not have its own banked r14 but
9100 * shares the USR r14
9102 if (mode == ARM_CPU_MODE_HYP) {
9103 env->regs[14] = env->xregs[14];
9104 } else {
9105 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9109 if (mode == ARM_CPU_MODE_HYP) {
9110 env->regs[13] = env->xregs[15];
9111 } else {
9112 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9115 if (mode == ARM_CPU_MODE_IRQ) {
9116 env->regs[14] = env->xregs[16];
9117 env->regs[13] = env->xregs[17];
9118 } else {
9119 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9120 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9123 if (mode == ARM_CPU_MODE_SVC) {
9124 env->regs[14] = env->xregs[18];
9125 env->regs[13] = env->xregs[19];
9126 } else {
9127 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9128 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9131 if (mode == ARM_CPU_MODE_ABT) {
9132 env->regs[14] = env->xregs[20];
9133 env->regs[13] = env->xregs[21];
9134 } else {
9135 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9136 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9139 if (mode == ARM_CPU_MODE_UND) {
9140 env->regs[14] = env->xregs[22];
9141 env->regs[13] = env->xregs[23];
9142 } else {
9143 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9144 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9147 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9148 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9149 * FIQ bank for r8-r14.
9151 if (mode == ARM_CPU_MODE_FIQ) {
9152 for (i = 24; i < 31; i++) {
9153 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9155 } else {
9156 for (i = 24; i < 29; i++) {
9157 env->fiq_regs[i - 24] = env->xregs[i];
9159 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9160 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9163 env->regs[15] = env->pc;
9166 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9167 uint32_t mask, uint32_t offset,
9168 uint32_t newpc)
9170 int new_el;
9172 /* Change the CPU state so as to actually take the exception. */
9173 switch_mode(env, new_mode);
9174 new_el = arm_current_el(env);
9177 * For exceptions taken to AArch32 we must clear the SS bit in both
9178 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9180 env->uncached_cpsr &= ~PSTATE_SS;
9181 env->spsr = cpsr_read(env);
9182 /* Clear IT bits. */
9183 env->condexec_bits = 0;
9184 /* Switch to the new mode, and to the correct instruction set. */
9185 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9186 /* Set new mode endianness */
9187 env->uncached_cpsr &= ~CPSR_E;
9188 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9189 env->uncached_cpsr |= CPSR_E;
9191 /* J and IL must always be cleared for exception entry */
9192 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9193 env->daif |= mask;
9195 if (new_mode == ARM_CPU_MODE_HYP) {
9196 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9197 env->elr_el[2] = env->regs[15];
9198 } else {
9199 /* CPSR.PAN is normally preserved preserved unless... */
9200 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9201 switch (new_el) {
9202 case 3:
9203 if (!arm_is_secure_below_el3(env)) {
9204 /* ... the target is EL3, from non-secure state. */
9205 env->uncached_cpsr &= ~CPSR_PAN;
9206 break;
9208 /* ... the target is EL3, from secure state ... */
9209 /* fall through */
9210 case 1:
9211 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9212 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9213 env->uncached_cpsr |= CPSR_PAN;
9215 break;
9219 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9220 * and we should just guard the thumb mode on V4
9222 if (arm_feature(env, ARM_FEATURE_V4T)) {
9223 env->thumb =
9224 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9226 env->regs[14] = env->regs[15] + offset;
9228 env->regs[15] = newpc;
9229 arm_rebuild_hflags(env);
9232 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9235 * Handle exception entry to Hyp mode; this is sufficiently
9236 * different to entry to other AArch32 modes that we handle it
9237 * separately here.
9239 * The vector table entry used is always the 0x14 Hyp mode entry point,
9240 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9241 * The offset applied to the preferred return address is always zero
9242 * (see DDI0487C.a section G1.12.3).
9243 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9245 uint32_t addr, mask;
9246 ARMCPU *cpu = ARM_CPU(cs);
9247 CPUARMState *env = &cpu->env;
9249 switch (cs->exception_index) {
9250 case EXCP_UDEF:
9251 addr = 0x04;
9252 break;
9253 case EXCP_SWI:
9254 addr = 0x14;
9255 break;
9256 case EXCP_BKPT:
9257 /* Fall through to prefetch abort. */
9258 case EXCP_PREFETCH_ABORT:
9259 env->cp15.ifar_s = env->exception.vaddress;
9260 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9261 (uint32_t)env->exception.vaddress);
9262 addr = 0x0c;
9263 break;
9264 case EXCP_DATA_ABORT:
9265 env->cp15.dfar_s = env->exception.vaddress;
9266 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9267 (uint32_t)env->exception.vaddress);
9268 addr = 0x10;
9269 break;
9270 case EXCP_IRQ:
9271 addr = 0x18;
9272 break;
9273 case EXCP_FIQ:
9274 addr = 0x1c;
9275 break;
9276 case EXCP_HVC:
9277 addr = 0x08;
9278 break;
9279 case EXCP_HYP_TRAP:
9280 addr = 0x14;
9281 break;
9282 default:
9283 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9286 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9287 if (!arm_feature(env, ARM_FEATURE_V8)) {
9289 * QEMU syndrome values are v8-style. v7 has the IL bit
9290 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9291 * If this is a v7 CPU, squash the IL bit in those cases.
9293 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9294 (cs->exception_index == EXCP_DATA_ABORT &&
9295 !(env->exception.syndrome & ARM_EL_ISV)) ||
9296 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9297 env->exception.syndrome &= ~ARM_EL_IL;
9300 env->cp15.esr_el[2] = env->exception.syndrome;
9303 if (arm_current_el(env) != 2 && addr < 0x14) {
9304 addr = 0x14;
9307 mask = 0;
9308 if (!(env->cp15.scr_el3 & SCR_EA)) {
9309 mask |= CPSR_A;
9311 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9312 mask |= CPSR_I;
9314 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9315 mask |= CPSR_F;
9318 addr += env->cp15.hvbar;
9320 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9323 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9325 ARMCPU *cpu = ARM_CPU(cs);
9326 CPUARMState *env = &cpu->env;
9327 uint32_t addr;
9328 uint32_t mask;
9329 int new_mode;
9330 uint32_t offset;
9331 uint32_t moe;
9333 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9334 switch (syn_get_ec(env->exception.syndrome)) {
9335 case EC_BREAKPOINT:
9336 case EC_BREAKPOINT_SAME_EL:
9337 moe = 1;
9338 break;
9339 case EC_WATCHPOINT:
9340 case EC_WATCHPOINT_SAME_EL:
9341 moe = 10;
9342 break;
9343 case EC_AA32_BKPT:
9344 moe = 3;
9345 break;
9346 case EC_VECTORCATCH:
9347 moe = 5;
9348 break;
9349 default:
9350 moe = 0;
9351 break;
9354 if (moe) {
9355 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9358 if (env->exception.target_el == 2) {
9359 arm_cpu_do_interrupt_aarch32_hyp(cs);
9360 return;
9363 switch (cs->exception_index) {
9364 case EXCP_UDEF:
9365 new_mode = ARM_CPU_MODE_UND;
9366 addr = 0x04;
9367 mask = CPSR_I;
9368 if (env->thumb)
9369 offset = 2;
9370 else
9371 offset = 4;
9372 break;
9373 case EXCP_SWI:
9374 new_mode = ARM_CPU_MODE_SVC;
9375 addr = 0x08;
9376 mask = CPSR_I;
9377 /* The PC already points to the next instruction. */
9378 offset = 0;
9379 break;
9380 case EXCP_BKPT:
9381 /* Fall through to prefetch abort. */
9382 case EXCP_PREFETCH_ABORT:
9383 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9384 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9385 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9386 env->exception.fsr, (uint32_t)env->exception.vaddress);
9387 new_mode = ARM_CPU_MODE_ABT;
9388 addr = 0x0c;
9389 mask = CPSR_A | CPSR_I;
9390 offset = 4;
9391 break;
9392 case EXCP_DATA_ABORT:
9393 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9394 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9395 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9396 env->exception.fsr,
9397 (uint32_t)env->exception.vaddress);
9398 new_mode = ARM_CPU_MODE_ABT;
9399 addr = 0x10;
9400 mask = CPSR_A | CPSR_I;
9401 offset = 8;
9402 break;
9403 case EXCP_IRQ:
9404 new_mode = ARM_CPU_MODE_IRQ;
9405 addr = 0x18;
9406 /* Disable IRQ and imprecise data aborts. */
9407 mask = CPSR_A | CPSR_I;
9408 offset = 4;
9409 if (env->cp15.scr_el3 & SCR_IRQ) {
9410 /* IRQ routed to monitor mode */
9411 new_mode = ARM_CPU_MODE_MON;
9412 mask |= CPSR_F;
9414 break;
9415 case EXCP_FIQ:
9416 new_mode = ARM_CPU_MODE_FIQ;
9417 addr = 0x1c;
9418 /* Disable FIQ, IRQ and imprecise data aborts. */
9419 mask = CPSR_A | CPSR_I | CPSR_F;
9420 if (env->cp15.scr_el3 & SCR_FIQ) {
9421 /* FIQ routed to monitor mode */
9422 new_mode = ARM_CPU_MODE_MON;
9424 offset = 4;
9425 break;
9426 case EXCP_VIRQ:
9427 new_mode = ARM_CPU_MODE_IRQ;
9428 addr = 0x18;
9429 /* Disable IRQ and imprecise data aborts. */
9430 mask = CPSR_A | CPSR_I;
9431 offset = 4;
9432 break;
9433 case EXCP_VFIQ:
9434 new_mode = ARM_CPU_MODE_FIQ;
9435 addr = 0x1c;
9436 /* Disable FIQ, IRQ and imprecise data aborts. */
9437 mask = CPSR_A | CPSR_I | CPSR_F;
9438 offset = 4;
9439 break;
9440 case EXCP_SMC:
9441 new_mode = ARM_CPU_MODE_MON;
9442 addr = 0x08;
9443 mask = CPSR_A | CPSR_I | CPSR_F;
9444 offset = 0;
9445 break;
9446 default:
9447 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9448 return; /* Never happens. Keep compiler happy. */
9451 if (new_mode == ARM_CPU_MODE_MON) {
9452 addr += env->cp15.mvbar;
9453 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9454 /* High vectors. When enabled, base address cannot be remapped. */
9455 addr += 0xffff0000;
9456 } else {
9457 /* ARM v7 architectures provide a vector base address register to remap
9458 * the interrupt vector table.
9459 * This register is only followed in non-monitor mode, and is banked.
9460 * Note: only bits 31:5 are valid.
9462 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9465 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9466 env->cp15.scr_el3 &= ~SCR_NS;
9469 take_aarch32_exception(env, new_mode, mask, offset, addr);
9472 /* Handle exception entry to a target EL which is using AArch64 */
9473 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9475 ARMCPU *cpu = ARM_CPU(cs);
9476 CPUARMState *env = &cpu->env;
9477 unsigned int new_el = env->exception.target_el;
9478 target_ulong addr = env->cp15.vbar_el[new_el];
9479 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9480 unsigned int old_mode;
9481 unsigned int cur_el = arm_current_el(env);
9484 * Note that new_el can never be 0. If cur_el is 0, then
9485 * el0_a64 is is_a64(), else el0_a64 is ignored.
9487 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9489 if (cur_el < new_el) {
9490 /* Entry vector offset depends on whether the implemented EL
9491 * immediately lower than the target level is using AArch32 or AArch64
9493 bool is_aa64;
9494 uint64_t hcr;
9496 switch (new_el) {
9497 case 3:
9498 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9499 break;
9500 case 2:
9501 hcr = arm_hcr_el2_eff(env);
9502 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9503 is_aa64 = (hcr & HCR_RW) != 0;
9504 break;
9506 /* fall through */
9507 case 1:
9508 is_aa64 = is_a64(env);
9509 break;
9510 default:
9511 g_assert_not_reached();
9514 if (is_aa64) {
9515 addr += 0x400;
9516 } else {
9517 addr += 0x600;
9519 } else if (pstate_read(env) & PSTATE_SP) {
9520 addr += 0x200;
9523 switch (cs->exception_index) {
9524 case EXCP_PREFETCH_ABORT:
9525 case EXCP_DATA_ABORT:
9526 env->cp15.far_el[new_el] = env->exception.vaddress;
9527 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9528 env->cp15.far_el[new_el]);
9529 /* fall through */
9530 case EXCP_BKPT:
9531 case EXCP_UDEF:
9532 case EXCP_SWI:
9533 case EXCP_HVC:
9534 case EXCP_HYP_TRAP:
9535 case EXCP_SMC:
9536 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9538 * QEMU internal FP/SIMD syndromes from AArch32 include the
9539 * TA and coproc fields which are only exposed if the exception
9540 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9541 * AArch64 format syndrome.
9543 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9545 env->cp15.esr_el[new_el] = env->exception.syndrome;
9546 break;
9547 case EXCP_IRQ:
9548 case EXCP_VIRQ:
9549 addr += 0x80;
9550 break;
9551 case EXCP_FIQ:
9552 case EXCP_VFIQ:
9553 addr += 0x100;
9554 break;
9555 default:
9556 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9559 if (is_a64(env)) {
9560 old_mode = pstate_read(env);
9561 aarch64_save_sp(env, arm_current_el(env));
9562 env->elr_el[new_el] = env->pc;
9563 } else {
9564 old_mode = cpsr_read(env);
9565 env->elr_el[new_el] = env->regs[15];
9567 aarch64_sync_32_to_64(env);
9569 env->condexec_bits = 0;
9571 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9573 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9574 env->elr_el[new_el]);
9576 if (cpu_isar_feature(aa64_pan, cpu)) {
9577 /* The value of PSTATE.PAN is normally preserved, except when ... */
9578 new_mode |= old_mode & PSTATE_PAN;
9579 switch (new_el) {
9580 case 2:
9581 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
9582 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9583 != (HCR_E2H | HCR_TGE)) {
9584 break;
9586 /* fall through */
9587 case 1:
9588 /* ... the target is EL1 ... */
9589 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
9590 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9591 new_mode |= PSTATE_PAN;
9593 break;
9597 pstate_write(env, PSTATE_DAIF | new_mode);
9598 env->aarch64 = 1;
9599 aarch64_restore_sp(env, new_el);
9600 helper_rebuild_hflags_a64(env, new_el);
9602 env->pc = addr;
9604 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9605 new_el, env->pc, pstate_read(env));
9609 * Do semihosting call and set the appropriate return value. All the
9610 * permission and validity checks have been done at translate time.
9612 * We only see semihosting exceptions in TCG only as they are not
9613 * trapped to the hypervisor in KVM.
9615 #ifdef CONFIG_TCG
9616 static void handle_semihosting(CPUState *cs)
9618 ARMCPU *cpu = ARM_CPU(cs);
9619 CPUARMState *env = &cpu->env;
9621 if (is_a64(env)) {
9622 qemu_log_mask(CPU_LOG_INT,
9623 "...handling as semihosting call 0x%" PRIx64 "\n",
9624 env->xregs[0]);
9625 env->xregs[0] = do_arm_semihosting(env);
9626 env->pc += 4;
9627 } else {
9628 qemu_log_mask(CPU_LOG_INT,
9629 "...handling as semihosting call 0x%x\n",
9630 env->regs[0]);
9631 env->regs[0] = do_arm_semihosting(env);
9632 env->regs[15] += env->thumb ? 2 : 4;
9635 #endif
9637 /* Handle a CPU exception for A and R profile CPUs.
9638 * Do any appropriate logging, handle PSCI calls, and then hand off
9639 * to the AArch64-entry or AArch32-entry function depending on the
9640 * target exception level's register width.
9642 void arm_cpu_do_interrupt(CPUState *cs)
9644 ARMCPU *cpu = ARM_CPU(cs);
9645 CPUARMState *env = &cpu->env;
9646 unsigned int new_el = env->exception.target_el;
9648 assert(!arm_feature(env, ARM_FEATURE_M));
9650 arm_log_exception(cs->exception_index);
9651 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9652 new_el);
9653 if (qemu_loglevel_mask(CPU_LOG_INT)
9654 && !excp_is_internal(cs->exception_index)) {
9655 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9656 syn_get_ec(env->exception.syndrome),
9657 env->exception.syndrome);
9660 if (arm_is_psci_call(cpu, cs->exception_index)) {
9661 arm_handle_psci_call(cpu);
9662 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9663 return;
9667 * Semihosting semantics depend on the register width of the code
9668 * that caused the exception, not the target exception level, so
9669 * must be handled here.
9671 #ifdef CONFIG_TCG
9672 if (cs->exception_index == EXCP_SEMIHOST) {
9673 handle_semihosting(cs);
9674 return;
9676 #endif
9678 /* Hooks may change global state so BQL should be held, also the
9679 * BQL needs to be held for any modification of
9680 * cs->interrupt_request.
9682 g_assert(qemu_mutex_iothread_locked());
9684 arm_call_pre_el_change_hook(cpu);
9686 assert(!excp_is_internal(cs->exception_index));
9687 if (arm_el_is_aa64(env, new_el)) {
9688 arm_cpu_do_interrupt_aarch64(cs);
9689 } else {
9690 arm_cpu_do_interrupt_aarch32(cs);
9693 arm_call_el_change_hook(cpu);
9695 if (!kvm_enabled()) {
9696 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9699 #endif /* !CONFIG_USER_ONLY */
9701 /* Return the exception level which controls this address translation regime */
9702 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9704 switch (mmu_idx) {
9705 case ARMMMUIdx_E20_0:
9706 case ARMMMUIdx_E20_2:
9707 case ARMMMUIdx_E20_2_PAN:
9708 case ARMMMUIdx_Stage2:
9709 case ARMMMUIdx_E2:
9710 return 2;
9711 case ARMMMUIdx_SE3:
9712 return 3;
9713 case ARMMMUIdx_SE10_0:
9714 return arm_el_is_aa64(env, 3) ? 1 : 3;
9715 case ARMMMUIdx_SE10_1:
9716 case ARMMMUIdx_SE10_1_PAN:
9717 case ARMMMUIdx_Stage1_E0:
9718 case ARMMMUIdx_Stage1_E1:
9719 case ARMMMUIdx_Stage1_E1_PAN:
9720 case ARMMMUIdx_E10_0:
9721 case ARMMMUIdx_E10_1:
9722 case ARMMMUIdx_E10_1_PAN:
9723 case ARMMMUIdx_MPrivNegPri:
9724 case ARMMMUIdx_MUserNegPri:
9725 case ARMMMUIdx_MPriv:
9726 case ARMMMUIdx_MUser:
9727 case ARMMMUIdx_MSPrivNegPri:
9728 case ARMMMUIdx_MSUserNegPri:
9729 case ARMMMUIdx_MSPriv:
9730 case ARMMMUIdx_MSUser:
9731 return 1;
9732 default:
9733 g_assert_not_reached();
9737 uint64_t arm_sctlr(CPUARMState *env, int el)
9739 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9740 if (el == 0) {
9741 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9742 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9744 return env->cp15.sctlr_el[el];
9747 /* Return the SCTLR value which controls this address translation regime */
9748 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9750 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9753 #ifndef CONFIG_USER_ONLY
9755 /* Return true if the specified stage of address translation is disabled */
9756 static inline bool regime_translation_disabled(CPUARMState *env,
9757 ARMMMUIdx mmu_idx)
9759 if (arm_feature(env, ARM_FEATURE_M)) {
9760 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9761 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9762 case R_V7M_MPU_CTRL_ENABLE_MASK:
9763 /* Enabled, but not for HardFault and NMI */
9764 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9765 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9766 /* Enabled for all cases */
9767 return false;
9768 case 0:
9769 default:
9770 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9771 * we warned about that in armv7m_nvic.c when the guest set it.
9773 return true;
9777 if (mmu_idx == ARMMMUIdx_Stage2) {
9778 /* HCR.DC means HCR.VM behaves as 1 */
9779 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9782 if (env->cp15.hcr_el2 & HCR_TGE) {
9783 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9784 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9785 return true;
9789 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
9790 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9791 return true;
9794 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9797 static inline bool regime_translation_big_endian(CPUARMState *env,
9798 ARMMMUIdx mmu_idx)
9800 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9803 /* Return the TTBR associated with this translation regime */
9804 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9805 int ttbrn)
9807 if (mmu_idx == ARMMMUIdx_Stage2) {
9808 return env->cp15.vttbr_el2;
9810 if (ttbrn == 0) {
9811 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9812 } else {
9813 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9817 #endif /* !CONFIG_USER_ONLY */
9819 /* Return the TCR controlling this translation regime */
9820 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9822 if (mmu_idx == ARMMMUIdx_Stage2) {
9823 return &env->cp15.vtcr_el2;
9825 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9828 /* Convert a possible stage1+2 MMU index into the appropriate
9829 * stage 1 MMU index
9831 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9833 switch (mmu_idx) {
9834 case ARMMMUIdx_E10_0:
9835 return ARMMMUIdx_Stage1_E0;
9836 case ARMMMUIdx_E10_1:
9837 return ARMMMUIdx_Stage1_E1;
9838 case ARMMMUIdx_E10_1_PAN:
9839 return ARMMMUIdx_Stage1_E1_PAN;
9840 default:
9841 return mmu_idx;
9845 /* Return true if the translation regime is using LPAE format page tables */
9846 static inline bool regime_using_lpae_format(CPUARMState *env,
9847 ARMMMUIdx mmu_idx)
9849 int el = regime_el(env, mmu_idx);
9850 if (el == 2 || arm_el_is_aa64(env, el)) {
9851 return true;
9853 if (arm_feature(env, ARM_FEATURE_LPAE)
9854 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9855 return true;
9857 return false;
9860 /* Returns true if the stage 1 translation regime is using LPAE format page
9861 * tables. Used when raising alignment exceptions, whose FSR changes depending
9862 * on whether the long or short descriptor format is in use. */
9863 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9865 mmu_idx = stage_1_mmu_idx(mmu_idx);
9867 return regime_using_lpae_format(env, mmu_idx);
9870 #ifndef CONFIG_USER_ONLY
9871 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9873 switch (mmu_idx) {
9874 case ARMMMUIdx_SE10_0:
9875 case ARMMMUIdx_E20_0:
9876 case ARMMMUIdx_Stage1_E0:
9877 case ARMMMUIdx_MUser:
9878 case ARMMMUIdx_MSUser:
9879 case ARMMMUIdx_MUserNegPri:
9880 case ARMMMUIdx_MSUserNegPri:
9881 return true;
9882 default:
9883 return false;
9884 case ARMMMUIdx_E10_0:
9885 case ARMMMUIdx_E10_1:
9886 case ARMMMUIdx_E10_1_PAN:
9887 g_assert_not_reached();
9891 /* Translate section/page access permissions to page
9892 * R/W protection flags
9894 * @env: CPUARMState
9895 * @mmu_idx: MMU index indicating required translation regime
9896 * @ap: The 3-bit access permissions (AP[2:0])
9897 * @domain_prot: The 2-bit domain access permissions
9899 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9900 int ap, int domain_prot)
9902 bool is_user = regime_is_user(env, mmu_idx);
9904 if (domain_prot == 3) {
9905 return PAGE_READ | PAGE_WRITE;
9908 switch (ap) {
9909 case 0:
9910 if (arm_feature(env, ARM_FEATURE_V7)) {
9911 return 0;
9913 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9914 case SCTLR_S:
9915 return is_user ? 0 : PAGE_READ;
9916 case SCTLR_R:
9917 return PAGE_READ;
9918 default:
9919 return 0;
9921 case 1:
9922 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9923 case 2:
9924 if (is_user) {
9925 return PAGE_READ;
9926 } else {
9927 return PAGE_READ | PAGE_WRITE;
9929 case 3:
9930 return PAGE_READ | PAGE_WRITE;
9931 case 4: /* Reserved. */
9932 return 0;
9933 case 5:
9934 return is_user ? 0 : PAGE_READ;
9935 case 6:
9936 return PAGE_READ;
9937 case 7:
9938 if (!arm_feature(env, ARM_FEATURE_V6K)) {
9939 return 0;
9941 return PAGE_READ;
9942 default:
9943 g_assert_not_reached();
9947 /* Translate section/page access permissions to page
9948 * R/W protection flags.
9950 * @ap: The 2-bit simple AP (AP[2:1])
9951 * @is_user: TRUE if accessing from PL0
9953 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9955 switch (ap) {
9956 case 0:
9957 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9958 case 1:
9959 return PAGE_READ | PAGE_WRITE;
9960 case 2:
9961 return is_user ? 0 : PAGE_READ;
9962 case 3:
9963 return PAGE_READ;
9964 default:
9965 g_assert_not_reached();
9969 static inline int
9970 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9972 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9975 /* Translate S2 section/page access permissions to protection flags
9977 * @env: CPUARMState
9978 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9979 * @xn: XN (execute-never) bit
9981 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9983 int prot = 0;
9985 if (s2ap & 1) {
9986 prot |= PAGE_READ;
9988 if (s2ap & 2) {
9989 prot |= PAGE_WRITE;
9991 if (!xn) {
9992 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9993 prot |= PAGE_EXEC;
9996 return prot;
9999 /* Translate section/page access permissions to protection flags
10001 * @env: CPUARMState
10002 * @mmu_idx: MMU index indicating required translation regime
10003 * @is_aa64: TRUE if AArch64
10004 * @ap: The 2-bit simple AP (AP[2:1])
10005 * @ns: NS (non-secure) bit
10006 * @xn: XN (execute-never) bit
10007 * @pxn: PXN (privileged execute-never) bit
10009 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10010 int ap, int ns, int xn, int pxn)
10012 bool is_user = regime_is_user(env, mmu_idx);
10013 int prot_rw, user_rw;
10014 bool have_wxn;
10015 int wxn = 0;
10017 assert(mmu_idx != ARMMMUIdx_Stage2);
10019 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10020 if (is_user) {
10021 prot_rw = user_rw;
10022 } else {
10023 if (user_rw && regime_is_pan(env, mmu_idx)) {
10024 return 0;
10026 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10029 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10030 return prot_rw;
10033 /* TODO have_wxn should be replaced with
10034 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10035 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10036 * compatible processors have EL2, which is required for [U]WXN.
10038 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10040 if (have_wxn) {
10041 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10044 if (is_aa64) {
10045 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10046 xn = pxn || (user_rw & PAGE_WRITE);
10048 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10049 switch (regime_el(env, mmu_idx)) {
10050 case 1:
10051 case 3:
10052 if (is_user) {
10053 xn = xn || !(user_rw & PAGE_READ);
10054 } else {
10055 int uwxn = 0;
10056 if (have_wxn) {
10057 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10059 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10060 (uwxn && (user_rw & PAGE_WRITE));
10062 break;
10063 case 2:
10064 break;
10066 } else {
10067 xn = wxn = 0;
10070 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10071 return prot_rw;
10073 return prot_rw | PAGE_EXEC;
10076 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10077 uint32_t *table, uint32_t address)
10079 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10080 TCR *tcr = regime_tcr(env, mmu_idx);
10082 if (address & tcr->mask) {
10083 if (tcr->raw_tcr & TTBCR_PD1) {
10084 /* Translation table walk disabled for TTBR1 */
10085 return false;
10087 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10088 } else {
10089 if (tcr->raw_tcr & TTBCR_PD0) {
10090 /* Translation table walk disabled for TTBR0 */
10091 return false;
10093 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10095 *table |= (address >> 18) & 0x3ffc;
10096 return true;
10099 /* Translate a S1 pagetable walk through S2 if needed. */
10100 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10101 hwaddr addr, MemTxAttrs txattrs,
10102 ARMMMUFaultInfo *fi)
10104 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10105 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10106 target_ulong s2size;
10107 hwaddr s2pa;
10108 int s2prot;
10109 int ret;
10110 ARMCacheAttrs cacheattrs = {};
10111 ARMCacheAttrs *pcacheattrs = NULL;
10113 if (env->cp15.hcr_el2 & HCR_PTW) {
10115 * PTW means we must fault if this S1 walk touches S2 Device
10116 * memory; otherwise we don't care about the attributes and can
10117 * save the S2 translation the effort of computing them.
10119 pcacheattrs = &cacheattrs;
10122 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_Stage2, &s2pa,
10123 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10124 if (ret) {
10125 assert(fi->type != ARMFault_None);
10126 fi->s2addr = addr;
10127 fi->stage2 = true;
10128 fi->s1ptw = true;
10129 return ~0;
10131 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10132 /* Access was to Device memory: generate Permission fault */
10133 fi->type = ARMFault_Permission;
10134 fi->s2addr = addr;
10135 fi->stage2 = true;
10136 fi->s1ptw = true;
10137 return ~0;
10139 addr = s2pa;
10141 return addr;
10144 /* All loads done in the course of a page table walk go through here. */
10145 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10146 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10148 ARMCPU *cpu = ARM_CPU(cs);
10149 CPUARMState *env = &cpu->env;
10150 MemTxAttrs attrs = {};
10151 MemTxResult result = MEMTX_OK;
10152 AddressSpace *as;
10153 uint32_t data;
10155 attrs.secure = is_secure;
10156 as = arm_addressspace(cs, attrs);
10157 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10158 if (fi->s1ptw) {
10159 return 0;
10161 if (regime_translation_big_endian(env, mmu_idx)) {
10162 data = address_space_ldl_be(as, addr, attrs, &result);
10163 } else {
10164 data = address_space_ldl_le(as, addr, attrs, &result);
10166 if (result == MEMTX_OK) {
10167 return data;
10169 fi->type = ARMFault_SyncExternalOnWalk;
10170 fi->ea = arm_extabort_type(result);
10171 return 0;
10174 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10175 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10177 ARMCPU *cpu = ARM_CPU(cs);
10178 CPUARMState *env = &cpu->env;
10179 MemTxAttrs attrs = {};
10180 MemTxResult result = MEMTX_OK;
10181 AddressSpace *as;
10182 uint64_t data;
10184 attrs.secure = is_secure;
10185 as = arm_addressspace(cs, attrs);
10186 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10187 if (fi->s1ptw) {
10188 return 0;
10190 if (regime_translation_big_endian(env, mmu_idx)) {
10191 data = address_space_ldq_be(as, addr, attrs, &result);
10192 } else {
10193 data = address_space_ldq_le(as, addr, attrs, &result);
10195 if (result == MEMTX_OK) {
10196 return data;
10198 fi->type = ARMFault_SyncExternalOnWalk;
10199 fi->ea = arm_extabort_type(result);
10200 return 0;
10203 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10204 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10205 hwaddr *phys_ptr, int *prot,
10206 target_ulong *page_size,
10207 ARMMMUFaultInfo *fi)
10209 CPUState *cs = env_cpu(env);
10210 int level = 1;
10211 uint32_t table;
10212 uint32_t desc;
10213 int type;
10214 int ap;
10215 int domain = 0;
10216 int domain_prot;
10217 hwaddr phys_addr;
10218 uint32_t dacr;
10220 /* Pagetable walk. */
10221 /* Lookup l1 descriptor. */
10222 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10223 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10224 fi->type = ARMFault_Translation;
10225 goto do_fault;
10227 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10228 mmu_idx, fi);
10229 if (fi->type != ARMFault_None) {
10230 goto do_fault;
10232 type = (desc & 3);
10233 domain = (desc >> 5) & 0x0f;
10234 if (regime_el(env, mmu_idx) == 1) {
10235 dacr = env->cp15.dacr_ns;
10236 } else {
10237 dacr = env->cp15.dacr_s;
10239 domain_prot = (dacr >> (domain * 2)) & 3;
10240 if (type == 0) {
10241 /* Section translation fault. */
10242 fi->type = ARMFault_Translation;
10243 goto do_fault;
10245 if (type != 2) {
10246 level = 2;
10248 if (domain_prot == 0 || domain_prot == 2) {
10249 fi->type = ARMFault_Domain;
10250 goto do_fault;
10252 if (type == 2) {
10253 /* 1Mb section. */
10254 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10255 ap = (desc >> 10) & 3;
10256 *page_size = 1024 * 1024;
10257 } else {
10258 /* Lookup l2 entry. */
10259 if (type == 1) {
10260 /* Coarse pagetable. */
10261 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10262 } else {
10263 /* Fine pagetable. */
10264 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10266 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10267 mmu_idx, fi);
10268 if (fi->type != ARMFault_None) {
10269 goto do_fault;
10271 switch (desc & 3) {
10272 case 0: /* Page translation fault. */
10273 fi->type = ARMFault_Translation;
10274 goto do_fault;
10275 case 1: /* 64k page. */
10276 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10277 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10278 *page_size = 0x10000;
10279 break;
10280 case 2: /* 4k page. */
10281 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10282 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10283 *page_size = 0x1000;
10284 break;
10285 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10286 if (type == 1) {
10287 /* ARMv6/XScale extended small page format */
10288 if (arm_feature(env, ARM_FEATURE_XSCALE)
10289 || arm_feature(env, ARM_FEATURE_V6)) {
10290 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10291 *page_size = 0x1000;
10292 } else {
10293 /* UNPREDICTABLE in ARMv5; we choose to take a
10294 * page translation fault.
10296 fi->type = ARMFault_Translation;
10297 goto do_fault;
10299 } else {
10300 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10301 *page_size = 0x400;
10303 ap = (desc >> 4) & 3;
10304 break;
10305 default:
10306 /* Never happens, but compiler isn't smart enough to tell. */
10307 abort();
10310 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10311 *prot |= *prot ? PAGE_EXEC : 0;
10312 if (!(*prot & (1 << access_type))) {
10313 /* Access permission fault. */
10314 fi->type = ARMFault_Permission;
10315 goto do_fault;
10317 *phys_ptr = phys_addr;
10318 return false;
10319 do_fault:
10320 fi->domain = domain;
10321 fi->level = level;
10322 return true;
10325 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10326 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10327 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10328 target_ulong *page_size, ARMMMUFaultInfo *fi)
10330 CPUState *cs = env_cpu(env);
10331 int level = 1;
10332 uint32_t table;
10333 uint32_t desc;
10334 uint32_t xn;
10335 uint32_t pxn = 0;
10336 int type;
10337 int ap;
10338 int domain = 0;
10339 int domain_prot;
10340 hwaddr phys_addr;
10341 uint32_t dacr;
10342 bool ns;
10344 /* Pagetable walk. */
10345 /* Lookup l1 descriptor. */
10346 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10347 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10348 fi->type = ARMFault_Translation;
10349 goto do_fault;
10351 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10352 mmu_idx, fi);
10353 if (fi->type != ARMFault_None) {
10354 goto do_fault;
10356 type = (desc & 3);
10357 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10358 /* Section translation fault, or attempt to use the encoding
10359 * which is Reserved on implementations without PXN.
10361 fi->type = ARMFault_Translation;
10362 goto do_fault;
10364 if ((type == 1) || !(desc & (1 << 18))) {
10365 /* Page or Section. */
10366 domain = (desc >> 5) & 0x0f;
10368 if (regime_el(env, mmu_idx) == 1) {
10369 dacr = env->cp15.dacr_ns;
10370 } else {
10371 dacr = env->cp15.dacr_s;
10373 if (type == 1) {
10374 level = 2;
10376 domain_prot = (dacr >> (domain * 2)) & 3;
10377 if (domain_prot == 0 || domain_prot == 2) {
10378 /* Section or Page domain fault */
10379 fi->type = ARMFault_Domain;
10380 goto do_fault;
10382 if (type != 1) {
10383 if (desc & (1 << 18)) {
10384 /* Supersection. */
10385 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10386 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10387 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10388 *page_size = 0x1000000;
10389 } else {
10390 /* Section. */
10391 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10392 *page_size = 0x100000;
10394 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10395 xn = desc & (1 << 4);
10396 pxn = desc & 1;
10397 ns = extract32(desc, 19, 1);
10398 } else {
10399 if (arm_feature(env, ARM_FEATURE_PXN)) {
10400 pxn = (desc >> 2) & 1;
10402 ns = extract32(desc, 3, 1);
10403 /* Lookup l2 entry. */
10404 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10405 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10406 mmu_idx, fi);
10407 if (fi->type != ARMFault_None) {
10408 goto do_fault;
10410 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10411 switch (desc & 3) {
10412 case 0: /* Page translation fault. */
10413 fi->type = ARMFault_Translation;
10414 goto do_fault;
10415 case 1: /* 64k page. */
10416 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10417 xn = desc & (1 << 15);
10418 *page_size = 0x10000;
10419 break;
10420 case 2: case 3: /* 4k page. */
10421 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10422 xn = desc & 1;
10423 *page_size = 0x1000;
10424 break;
10425 default:
10426 /* Never happens, but compiler isn't smart enough to tell. */
10427 abort();
10430 if (domain_prot == 3) {
10431 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10432 } else {
10433 if (pxn && !regime_is_user(env, mmu_idx)) {
10434 xn = 1;
10436 if (xn && access_type == MMU_INST_FETCH) {
10437 fi->type = ARMFault_Permission;
10438 goto do_fault;
10441 if (arm_feature(env, ARM_FEATURE_V6K) &&
10442 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10443 /* The simplified model uses AP[0] as an access control bit. */
10444 if ((ap & 1) == 0) {
10445 /* Access flag fault. */
10446 fi->type = ARMFault_AccessFlag;
10447 goto do_fault;
10449 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10450 } else {
10451 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10453 if (*prot && !xn) {
10454 *prot |= PAGE_EXEC;
10456 if (!(*prot & (1 << access_type))) {
10457 /* Access permission fault. */
10458 fi->type = ARMFault_Permission;
10459 goto do_fault;
10462 if (ns) {
10463 /* The NS bit will (as required by the architecture) have no effect if
10464 * the CPU doesn't support TZ or this is a non-secure translation
10465 * regime, because the attribute will already be non-secure.
10467 attrs->secure = false;
10469 *phys_ptr = phys_addr;
10470 return false;
10471 do_fault:
10472 fi->domain = domain;
10473 fi->level = level;
10474 return true;
10478 * check_s2_mmu_setup
10479 * @cpu: ARMCPU
10480 * @is_aa64: True if the translation regime is in AArch64 state
10481 * @startlevel: Suggested starting level
10482 * @inputsize: Bitsize of IPAs
10483 * @stride: Page-table stride (See the ARM ARM)
10485 * Returns true if the suggested S2 translation parameters are OK and
10486 * false otherwise.
10488 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10489 int inputsize, int stride)
10491 const int grainsize = stride + 3;
10492 int startsizecheck;
10494 /* Negative levels are never allowed. */
10495 if (level < 0) {
10496 return false;
10499 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10500 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10501 return false;
10504 if (is_aa64) {
10505 CPUARMState *env = &cpu->env;
10506 unsigned int pamax = arm_pamax(cpu);
10508 switch (stride) {
10509 case 13: /* 64KB Pages. */
10510 if (level == 0 || (level == 1 && pamax <= 42)) {
10511 return false;
10513 break;
10514 case 11: /* 16KB Pages. */
10515 if (level == 0 || (level == 1 && pamax <= 40)) {
10516 return false;
10518 break;
10519 case 9: /* 4KB Pages. */
10520 if (level == 0 && pamax <= 42) {
10521 return false;
10523 break;
10524 default:
10525 g_assert_not_reached();
10528 /* Inputsize checks. */
10529 if (inputsize > pamax &&
10530 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10531 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10532 return false;
10534 } else {
10535 /* AArch32 only supports 4KB pages. Assert on that. */
10536 assert(stride == 9);
10538 if (level == 0) {
10539 return false;
10542 return true;
10545 /* Translate from the 4-bit stage 2 representation of
10546 * memory attributes (without cache-allocation hints) to
10547 * the 8-bit representation of the stage 1 MAIR registers
10548 * (which includes allocation hints).
10550 * ref: shared/translation/attrs/S2AttrDecode()
10551 * .../S2ConvertAttrsHints()
10553 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10555 uint8_t hiattr = extract32(s2attrs, 2, 2);
10556 uint8_t loattr = extract32(s2attrs, 0, 2);
10557 uint8_t hihint = 0, lohint = 0;
10559 if (hiattr != 0) { /* normal memory */
10560 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10561 hiattr = loattr = 1; /* non-cacheable */
10562 } else {
10563 if (hiattr != 1) { /* Write-through or write-back */
10564 hihint = 3; /* RW allocate */
10566 if (loattr != 1) { /* Write-through or write-back */
10567 lohint = 3; /* RW allocate */
10572 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10574 #endif /* !CONFIG_USER_ONLY */
10576 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10578 if (regime_has_2_ranges(mmu_idx)) {
10579 return extract64(tcr, 37, 2);
10580 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10581 return 0; /* VTCR_EL2 */
10582 } else {
10583 /* Replicate the single TBI bit so we always have 2 bits. */
10584 return extract32(tcr, 20, 1) * 3;
10588 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10590 if (regime_has_2_ranges(mmu_idx)) {
10591 return extract64(tcr, 51, 2);
10592 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10593 return 0; /* VTCR_EL2 */
10594 } else {
10595 /* Replicate the single TBID bit so we always have 2 bits. */
10596 return extract32(tcr, 29, 1) * 3;
10600 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10601 ARMMMUIdx mmu_idx, bool data)
10603 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10604 bool epd, hpd, using16k, using64k;
10605 int select, tsz, tbi;
10607 if (!regime_has_2_ranges(mmu_idx)) {
10608 select = 0;
10609 tsz = extract32(tcr, 0, 6);
10610 using64k = extract32(tcr, 14, 1);
10611 using16k = extract32(tcr, 15, 1);
10612 if (mmu_idx == ARMMMUIdx_Stage2) {
10613 /* VTCR_EL2 */
10614 hpd = false;
10615 } else {
10616 hpd = extract32(tcr, 24, 1);
10618 epd = false;
10619 } else {
10621 * Bit 55 is always between the two regions, and is canonical for
10622 * determining if address tagging is enabled.
10624 select = extract64(va, 55, 1);
10625 if (!select) {
10626 tsz = extract32(tcr, 0, 6);
10627 epd = extract32(tcr, 7, 1);
10628 using64k = extract32(tcr, 14, 1);
10629 using16k = extract32(tcr, 15, 1);
10630 hpd = extract64(tcr, 41, 1);
10631 } else {
10632 int tg = extract32(tcr, 30, 2);
10633 using16k = tg == 1;
10634 using64k = tg == 3;
10635 tsz = extract32(tcr, 16, 6);
10636 epd = extract32(tcr, 23, 1);
10637 hpd = extract64(tcr, 42, 1);
10640 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10641 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10643 /* Present TBI as a composite with TBID. */
10644 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10645 if (!data) {
10646 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10648 tbi = (tbi >> select) & 1;
10650 return (ARMVAParameters) {
10651 .tsz = tsz,
10652 .select = select,
10653 .tbi = tbi,
10654 .epd = epd,
10655 .hpd = hpd,
10656 .using16k = using16k,
10657 .using64k = using64k,
10661 #ifndef CONFIG_USER_ONLY
10662 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10663 ARMMMUIdx mmu_idx)
10665 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10666 uint32_t el = regime_el(env, mmu_idx);
10667 int select, tsz;
10668 bool epd, hpd;
10670 if (mmu_idx == ARMMMUIdx_Stage2) {
10671 /* VTCR */
10672 bool sext = extract32(tcr, 4, 1);
10673 bool sign = extract32(tcr, 3, 1);
10676 * If the sign-extend bit is not the same as t0sz[3], the result
10677 * is unpredictable. Flag this as a guest error.
10679 if (sign != sext) {
10680 qemu_log_mask(LOG_GUEST_ERROR,
10681 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10683 tsz = sextract32(tcr, 0, 4) + 8;
10684 select = 0;
10685 hpd = false;
10686 epd = false;
10687 } else if (el == 2) {
10688 /* HTCR */
10689 tsz = extract32(tcr, 0, 3);
10690 select = 0;
10691 hpd = extract64(tcr, 24, 1);
10692 epd = false;
10693 } else {
10694 int t0sz = extract32(tcr, 0, 3);
10695 int t1sz = extract32(tcr, 16, 3);
10697 if (t1sz == 0) {
10698 select = va > (0xffffffffu >> t0sz);
10699 } else {
10700 /* Note that we will detect errors later. */
10701 select = va >= ~(0xffffffffu >> t1sz);
10703 if (!select) {
10704 tsz = t0sz;
10705 epd = extract32(tcr, 7, 1);
10706 hpd = extract64(tcr, 41, 1);
10707 } else {
10708 tsz = t1sz;
10709 epd = extract32(tcr, 23, 1);
10710 hpd = extract64(tcr, 42, 1);
10712 /* For aarch32, hpd0 is not enabled without t2e as well. */
10713 hpd &= extract32(tcr, 6, 1);
10716 return (ARMVAParameters) {
10717 .tsz = tsz,
10718 .select = select,
10719 .epd = epd,
10720 .hpd = hpd,
10724 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10725 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10726 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10727 target_ulong *page_size_ptr,
10728 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10730 ARMCPU *cpu = env_archcpu(env);
10731 CPUState *cs = CPU(cpu);
10732 /* Read an LPAE long-descriptor translation table. */
10733 ARMFaultType fault_type = ARMFault_Translation;
10734 uint32_t level;
10735 ARMVAParameters param;
10736 uint64_t ttbr;
10737 hwaddr descaddr, indexmask, indexmask_grainsize;
10738 uint32_t tableattrs;
10739 target_ulong page_size;
10740 uint32_t attrs;
10741 int32_t stride;
10742 int addrsize, inputsize;
10743 TCR *tcr = regime_tcr(env, mmu_idx);
10744 int ap, ns, xn, pxn;
10745 uint32_t el = regime_el(env, mmu_idx);
10746 uint64_t descaddrmask;
10747 bool aarch64 = arm_el_is_aa64(env, el);
10748 bool guarded = false;
10750 /* TODO:
10751 * This code does not handle the different format TCR for VTCR_EL2.
10752 * This code also does not support shareability levels.
10753 * Attribute and permission bit handling should also be checked when adding
10754 * support for those page table walks.
10756 if (aarch64) {
10757 param = aa64_va_parameters(env, address, mmu_idx,
10758 access_type != MMU_INST_FETCH);
10759 level = 0;
10760 addrsize = 64 - 8 * param.tbi;
10761 inputsize = 64 - param.tsz;
10762 } else {
10763 param = aa32_va_parameters(env, address, mmu_idx);
10764 level = 1;
10765 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
10766 inputsize = addrsize - param.tsz;
10770 * We determined the region when collecting the parameters, but we
10771 * have not yet validated that the address is valid for the region.
10772 * Extract the top bits and verify that they all match select.
10774 * For aa32, if inputsize == addrsize, then we have selected the
10775 * region by exclusion in aa32_va_parameters and there is no more
10776 * validation to do here.
10778 if (inputsize < addrsize) {
10779 target_ulong top_bits = sextract64(address, inputsize,
10780 addrsize - inputsize);
10781 if (-top_bits != param.select) {
10782 /* The gap between the two regions is a Translation fault */
10783 fault_type = ARMFault_Translation;
10784 goto do_fault;
10788 if (param.using64k) {
10789 stride = 13;
10790 } else if (param.using16k) {
10791 stride = 11;
10792 } else {
10793 stride = 9;
10796 /* Note that QEMU ignores shareability and cacheability attributes,
10797 * so we don't need to do anything with the SH, ORGN, IRGN fields
10798 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
10799 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10800 * implement any ASID-like capability so we can ignore it (instead
10801 * we will always flush the TLB any time the ASID is changed).
10803 ttbr = regime_ttbr(env, mmu_idx, param.select);
10805 /* Here we should have set up all the parameters for the translation:
10806 * inputsize, ttbr, epd, stride, tbi
10809 if (param.epd) {
10810 /* Translation table walk disabled => Translation fault on TLB miss
10811 * Note: This is always 0 on 64-bit EL2 and EL3.
10813 goto do_fault;
10816 if (mmu_idx != ARMMMUIdx_Stage2) {
10817 /* The starting level depends on the virtual address size (which can
10818 * be up to 48 bits) and the translation granule size. It indicates
10819 * the number of strides (stride bits at a time) needed to
10820 * consume the bits of the input address. In the pseudocode this is:
10821 * level = 4 - RoundUp((inputsize - grainsize) / stride)
10822 * where their 'inputsize' is our 'inputsize', 'grainsize' is
10823 * our 'stride + 3' and 'stride' is our 'stride'.
10824 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10825 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10826 * = 4 - (inputsize - 4) / stride;
10828 level = 4 - (inputsize - 4) / stride;
10829 } else {
10830 /* For stage 2 translations the starting level is specified by the
10831 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10833 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10834 uint32_t startlevel;
10835 bool ok;
10837 if (!aarch64 || stride == 9) {
10838 /* AArch32 or 4KB pages */
10839 startlevel = 2 - sl0;
10840 } else {
10841 /* 16KB or 64KB pages */
10842 startlevel = 3 - sl0;
10845 /* Check that the starting level is valid. */
10846 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10847 inputsize, stride);
10848 if (!ok) {
10849 fault_type = ARMFault_Translation;
10850 goto do_fault;
10852 level = startlevel;
10855 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10856 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10858 /* Now we can extract the actual base address from the TTBR */
10859 descaddr = extract64(ttbr, 0, 48);
10861 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
10862 * and also to mask out CnP (bit 0) which could validly be non-zero.
10864 descaddr &= ~indexmask;
10866 /* The address field in the descriptor goes up to bit 39 for ARMv7
10867 * but up to bit 47 for ARMv8, but we use the descaddrmask
10868 * up to bit 39 for AArch32, because we don't need other bits in that case
10869 * to construct next descriptor address (anyway they should be all zeroes).
10871 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10872 ~indexmask_grainsize;
10874 /* Secure accesses start with the page table in secure memory and
10875 * can be downgraded to non-secure at any step. Non-secure accesses
10876 * remain non-secure. We implement this by just ORing in the NSTable/NS
10877 * bits at each step.
10879 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10880 for (;;) {
10881 uint64_t descriptor;
10882 bool nstable;
10884 descaddr |= (address >> (stride * (4 - level))) & indexmask;
10885 descaddr &= ~7ULL;
10886 nstable = extract32(tableattrs, 4, 1);
10887 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10888 if (fi->type != ARMFault_None) {
10889 goto do_fault;
10892 if (!(descriptor & 1) ||
10893 (!(descriptor & 2) && (level == 3))) {
10894 /* Invalid, or the Reserved level 3 encoding */
10895 goto do_fault;
10897 descaddr = descriptor & descaddrmask;
10899 if ((descriptor & 2) && (level < 3)) {
10900 /* Table entry. The top five bits are attributes which may
10901 * propagate down through lower levels of the table (and
10902 * which are all arranged so that 0 means "no effect", so
10903 * we can gather them up by ORing in the bits at each level).
10905 tableattrs |= extract64(descriptor, 59, 5);
10906 level++;
10907 indexmask = indexmask_grainsize;
10908 continue;
10910 /* Block entry at level 1 or 2, or page entry at level 3.
10911 * These are basically the same thing, although the number
10912 * of bits we pull in from the vaddr varies.
10914 page_size = (1ULL << ((stride * (4 - level)) + 3));
10915 descaddr |= (address & (page_size - 1));
10916 /* Extract attributes from the descriptor */
10917 attrs = extract64(descriptor, 2, 10)
10918 | (extract64(descriptor, 52, 12) << 10);
10920 if (mmu_idx == ARMMMUIdx_Stage2) {
10921 /* Stage 2 table descriptors do not include any attribute fields */
10922 break;
10924 /* Merge in attributes from table descriptors */
10925 attrs |= nstable << 3; /* NS */
10926 guarded = extract64(descriptor, 50, 1); /* GP */
10927 if (param.hpd) {
10928 /* HPD disables all the table attributes except NSTable. */
10929 break;
10931 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
10932 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10933 * means "force PL1 access only", which means forcing AP[1] to 0.
10935 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
10936 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
10937 break;
10939 /* Here descaddr is the final physical address, and attributes
10940 * are all in attrs.
10942 fault_type = ARMFault_AccessFlag;
10943 if ((attrs & (1 << 8)) == 0) {
10944 /* Access flag */
10945 goto do_fault;
10948 ap = extract32(attrs, 4, 2);
10949 xn = extract32(attrs, 12, 1);
10951 if (mmu_idx == ARMMMUIdx_Stage2) {
10952 ns = true;
10953 *prot = get_S2prot(env, ap, xn);
10954 } else {
10955 ns = extract32(attrs, 3, 1);
10956 pxn = extract32(attrs, 11, 1);
10957 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10960 fault_type = ARMFault_Permission;
10961 if (!(*prot & (1 << access_type))) {
10962 goto do_fault;
10965 if (ns) {
10966 /* The NS bit will (as required by the architecture) have no effect if
10967 * the CPU doesn't support TZ or this is a non-secure translation
10968 * regime, because the attribute will already be non-secure.
10970 txattrs->secure = false;
10972 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
10973 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10974 txattrs->target_tlb_bit0 = true;
10977 if (cacheattrs != NULL) {
10978 if (mmu_idx == ARMMMUIdx_Stage2) {
10979 cacheattrs->attrs = convert_stage2_attrs(env,
10980 extract32(attrs, 0, 4));
10981 } else {
10982 /* Index into MAIR registers for cache attributes */
10983 uint8_t attrindx = extract32(attrs, 0, 3);
10984 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10985 assert(attrindx <= 7);
10986 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10988 cacheattrs->shareability = extract32(attrs, 6, 2);
10991 *phys_ptr = descaddr;
10992 *page_size_ptr = page_size;
10993 return false;
10995 do_fault:
10996 fi->type = fault_type;
10997 fi->level = level;
10998 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10999 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
11000 return true;
11003 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11004 ARMMMUIdx mmu_idx,
11005 int32_t address, int *prot)
11007 if (!arm_feature(env, ARM_FEATURE_M)) {
11008 *prot = PAGE_READ | PAGE_WRITE;
11009 switch (address) {
11010 case 0xF0000000 ... 0xFFFFFFFF:
11011 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11012 /* hivecs execing is ok */
11013 *prot |= PAGE_EXEC;
11015 break;
11016 case 0x00000000 ... 0x7FFFFFFF:
11017 *prot |= PAGE_EXEC;
11018 break;
11020 } else {
11021 /* Default system address map for M profile cores.
11022 * The architecture specifies which regions are execute-never;
11023 * at the MPU level no other checks are defined.
11025 switch (address) {
11026 case 0x00000000 ... 0x1fffffff: /* ROM */
11027 case 0x20000000 ... 0x3fffffff: /* SRAM */
11028 case 0x60000000 ... 0x7fffffff: /* RAM */
11029 case 0x80000000 ... 0x9fffffff: /* RAM */
11030 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11031 break;
11032 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11033 case 0xa0000000 ... 0xbfffffff: /* Device */
11034 case 0xc0000000 ... 0xdfffffff: /* Device */
11035 case 0xe0000000 ... 0xffffffff: /* System */
11036 *prot = PAGE_READ | PAGE_WRITE;
11037 break;
11038 default:
11039 g_assert_not_reached();
11044 static bool pmsav7_use_background_region(ARMCPU *cpu,
11045 ARMMMUIdx mmu_idx, bool is_user)
11047 /* Return true if we should use the default memory map as a
11048 * "background" region if there are no hits against any MPU regions.
11050 CPUARMState *env = &cpu->env;
11052 if (is_user) {
11053 return false;
11056 if (arm_feature(env, ARM_FEATURE_M)) {
11057 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11058 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11059 } else {
11060 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11064 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11066 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11067 return arm_feature(env, ARM_FEATURE_M) &&
11068 extract32(address, 20, 12) == 0xe00;
11071 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11073 /* True if address is in the M profile system region
11074 * 0xe0000000 - 0xffffffff
11076 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11079 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11080 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11081 hwaddr *phys_ptr, int *prot,
11082 target_ulong *page_size,
11083 ARMMMUFaultInfo *fi)
11085 ARMCPU *cpu = env_archcpu(env);
11086 int n;
11087 bool is_user = regime_is_user(env, mmu_idx);
11089 *phys_ptr = address;
11090 *page_size = TARGET_PAGE_SIZE;
11091 *prot = 0;
11093 if (regime_translation_disabled(env, mmu_idx) ||
11094 m_is_ppb_region(env, address)) {
11095 /* MPU disabled or M profile PPB access: use default memory map.
11096 * The other case which uses the default memory map in the
11097 * v7M ARM ARM pseudocode is exception vector reads from the vector
11098 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11099 * which always does a direct read using address_space_ldl(), rather
11100 * than going via this function, so we don't need to check that here.
11102 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11103 } else { /* MPU enabled */
11104 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11105 /* region search */
11106 uint32_t base = env->pmsav7.drbar[n];
11107 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11108 uint32_t rmask;
11109 bool srdis = false;
11111 if (!(env->pmsav7.drsr[n] & 0x1)) {
11112 continue;
11115 if (!rsize) {
11116 qemu_log_mask(LOG_GUEST_ERROR,
11117 "DRSR[%d]: Rsize field cannot be 0\n", n);
11118 continue;
11120 rsize++;
11121 rmask = (1ull << rsize) - 1;
11123 if (base & rmask) {
11124 qemu_log_mask(LOG_GUEST_ERROR,
11125 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11126 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11127 n, base, rmask);
11128 continue;
11131 if (address < base || address > base + rmask) {
11133 * Address not in this region. We must check whether the
11134 * region covers addresses in the same page as our address.
11135 * In that case we must not report a size that covers the
11136 * whole page for a subsequent hit against a different MPU
11137 * region or the background region, because it would result in
11138 * incorrect TLB hits for subsequent accesses to addresses that
11139 * are in this MPU region.
11141 if (ranges_overlap(base, rmask,
11142 address & TARGET_PAGE_MASK,
11143 TARGET_PAGE_SIZE)) {
11144 *page_size = 1;
11146 continue;
11149 /* Region matched */
11151 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11152 int i, snd;
11153 uint32_t srdis_mask;
11155 rsize -= 3; /* sub region size (power of 2) */
11156 snd = ((address - base) >> rsize) & 0x7;
11157 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11159 srdis_mask = srdis ? 0x3 : 0x0;
11160 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11161 /* This will check in groups of 2, 4 and then 8, whether
11162 * the subregion bits are consistent. rsize is incremented
11163 * back up to give the region size, considering consistent
11164 * adjacent subregions as one region. Stop testing if rsize
11165 * is already big enough for an entire QEMU page.
11167 int snd_rounded = snd & ~(i - 1);
11168 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11169 snd_rounded + 8, i);
11170 if (srdis_mask ^ srdis_multi) {
11171 break;
11173 srdis_mask = (srdis_mask << i) | srdis_mask;
11174 rsize++;
11177 if (srdis) {
11178 continue;
11180 if (rsize < TARGET_PAGE_BITS) {
11181 *page_size = 1 << rsize;
11183 break;
11186 if (n == -1) { /* no hits */
11187 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11188 /* background fault */
11189 fi->type = ARMFault_Background;
11190 return true;
11192 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11193 } else { /* a MPU hit! */
11194 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11195 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11197 if (m_is_system_region(env, address)) {
11198 /* System space is always execute never */
11199 xn = 1;
11202 if (is_user) { /* User mode AP bit decoding */
11203 switch (ap) {
11204 case 0:
11205 case 1:
11206 case 5:
11207 break; /* no access */
11208 case 3:
11209 *prot |= PAGE_WRITE;
11210 /* fall through */
11211 case 2:
11212 case 6:
11213 *prot |= PAGE_READ | PAGE_EXEC;
11214 break;
11215 case 7:
11216 /* for v7M, same as 6; for R profile a reserved value */
11217 if (arm_feature(env, ARM_FEATURE_M)) {
11218 *prot |= PAGE_READ | PAGE_EXEC;
11219 break;
11221 /* fall through */
11222 default:
11223 qemu_log_mask(LOG_GUEST_ERROR,
11224 "DRACR[%d]: Bad value for AP bits: 0x%"
11225 PRIx32 "\n", n, ap);
11227 } else { /* Priv. mode AP bits decoding */
11228 switch (ap) {
11229 case 0:
11230 break; /* no access */
11231 case 1:
11232 case 2:
11233 case 3:
11234 *prot |= PAGE_WRITE;
11235 /* fall through */
11236 case 5:
11237 case 6:
11238 *prot |= PAGE_READ | PAGE_EXEC;
11239 break;
11240 case 7:
11241 /* for v7M, same as 6; for R profile a reserved value */
11242 if (arm_feature(env, ARM_FEATURE_M)) {
11243 *prot |= PAGE_READ | PAGE_EXEC;
11244 break;
11246 /* fall through */
11247 default:
11248 qemu_log_mask(LOG_GUEST_ERROR,
11249 "DRACR[%d]: Bad value for AP bits: 0x%"
11250 PRIx32 "\n", n, ap);
11254 /* execute never */
11255 if (xn) {
11256 *prot &= ~PAGE_EXEC;
11261 fi->type = ARMFault_Permission;
11262 fi->level = 1;
11263 return !(*prot & (1 << access_type));
11266 static bool v8m_is_sau_exempt(CPUARMState *env,
11267 uint32_t address, MMUAccessType access_type)
11269 /* The architecture specifies that certain address ranges are
11270 * exempt from v8M SAU/IDAU checks.
11272 return
11273 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11274 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11275 (address >= 0xe000e000 && address <= 0xe000efff) ||
11276 (address >= 0xe002e000 && address <= 0xe002efff) ||
11277 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11278 (address >= 0xe00ff000 && address <= 0xe00fffff);
11281 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11282 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11283 V8M_SAttributes *sattrs)
11285 /* Look up the security attributes for this address. Compare the
11286 * pseudocode SecurityCheck() function.
11287 * We assume the caller has zero-initialized *sattrs.
11289 ARMCPU *cpu = env_archcpu(env);
11290 int r;
11291 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11292 int idau_region = IREGION_NOTVALID;
11293 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11294 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11296 if (cpu->idau) {
11297 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11298 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11300 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11301 &idau_nsc);
11304 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11305 /* 0xf0000000..0xffffffff is always S for insn fetches */
11306 return;
11309 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11310 sattrs->ns = !regime_is_secure(env, mmu_idx);
11311 return;
11314 if (idau_region != IREGION_NOTVALID) {
11315 sattrs->irvalid = true;
11316 sattrs->iregion = idau_region;
11319 switch (env->sau.ctrl & 3) {
11320 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11321 break;
11322 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11323 sattrs->ns = true;
11324 break;
11325 default: /* SAU.ENABLE == 1 */
11326 for (r = 0; r < cpu->sau_sregion; r++) {
11327 if (env->sau.rlar[r] & 1) {
11328 uint32_t base = env->sau.rbar[r] & ~0x1f;
11329 uint32_t limit = env->sau.rlar[r] | 0x1f;
11331 if (base <= address && limit >= address) {
11332 if (base > addr_page_base || limit < addr_page_limit) {
11333 sattrs->subpage = true;
11335 if (sattrs->srvalid) {
11336 /* If we hit in more than one region then we must report
11337 * as Secure, not NS-Callable, with no valid region
11338 * number info.
11340 sattrs->ns = false;
11341 sattrs->nsc = false;
11342 sattrs->sregion = 0;
11343 sattrs->srvalid = false;
11344 break;
11345 } else {
11346 if (env->sau.rlar[r] & 2) {
11347 sattrs->nsc = true;
11348 } else {
11349 sattrs->ns = true;
11351 sattrs->srvalid = true;
11352 sattrs->sregion = r;
11354 } else {
11356 * Address not in this region. We must check whether the
11357 * region covers addresses in the same page as our address.
11358 * In that case we must not report a size that covers the
11359 * whole page for a subsequent hit against a different MPU
11360 * region or the background region, because it would result
11361 * in incorrect TLB hits for subsequent accesses to
11362 * addresses that are in this MPU region.
11364 if (limit >= base &&
11365 ranges_overlap(base, limit - base + 1,
11366 addr_page_base,
11367 TARGET_PAGE_SIZE)) {
11368 sattrs->subpage = true;
11373 break;
11377 * The IDAU will override the SAU lookup results if it specifies
11378 * higher security than the SAU does.
11380 if (!idau_ns) {
11381 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11382 sattrs->ns = false;
11383 sattrs->nsc = idau_nsc;
11388 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11389 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11390 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11391 int *prot, bool *is_subpage,
11392 ARMMMUFaultInfo *fi, uint32_t *mregion)
11394 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11395 * that a full phys-to-virt translation does).
11396 * mregion is (if not NULL) set to the region number which matched,
11397 * or -1 if no region number is returned (MPU off, address did not
11398 * hit a region, address hit in multiple regions).
11399 * We set is_subpage to true if the region hit doesn't cover the
11400 * entire TARGET_PAGE the address is within.
11402 ARMCPU *cpu = env_archcpu(env);
11403 bool is_user = regime_is_user(env, mmu_idx);
11404 uint32_t secure = regime_is_secure(env, mmu_idx);
11405 int n;
11406 int matchregion = -1;
11407 bool hit = false;
11408 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11409 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11411 *is_subpage = false;
11412 *phys_ptr = address;
11413 *prot = 0;
11414 if (mregion) {
11415 *mregion = -1;
11418 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11419 * was an exception vector read from the vector table (which is always
11420 * done using the default system address map), because those accesses
11421 * are done in arm_v7m_load_vector(), which always does a direct
11422 * read using address_space_ldl(), rather than going via this function.
11424 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11425 hit = true;
11426 } else if (m_is_ppb_region(env, address)) {
11427 hit = true;
11428 } else {
11429 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11430 hit = true;
11433 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11434 /* region search */
11435 /* Note that the base address is bits [31:5] from the register
11436 * with bits [4:0] all zeroes, but the limit address is bits
11437 * [31:5] from the register with bits [4:0] all ones.
11439 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11440 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11442 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11443 /* Region disabled */
11444 continue;
11447 if (address < base || address > limit) {
11449 * Address not in this region. We must check whether the
11450 * region covers addresses in the same page as our address.
11451 * In that case we must not report a size that covers the
11452 * whole page for a subsequent hit against a different MPU
11453 * region or the background region, because it would result in
11454 * incorrect TLB hits for subsequent accesses to addresses that
11455 * are in this MPU region.
11457 if (limit >= base &&
11458 ranges_overlap(base, limit - base + 1,
11459 addr_page_base,
11460 TARGET_PAGE_SIZE)) {
11461 *is_subpage = true;
11463 continue;
11466 if (base > addr_page_base || limit < addr_page_limit) {
11467 *is_subpage = true;
11470 if (matchregion != -1) {
11471 /* Multiple regions match -- always a failure (unlike
11472 * PMSAv7 where highest-numbered-region wins)
11474 fi->type = ARMFault_Permission;
11475 fi->level = 1;
11476 return true;
11479 matchregion = n;
11480 hit = true;
11484 if (!hit) {
11485 /* background fault */
11486 fi->type = ARMFault_Background;
11487 return true;
11490 if (matchregion == -1) {
11491 /* hit using the background region */
11492 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11493 } else {
11494 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11495 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11497 if (m_is_system_region(env, address)) {
11498 /* System space is always execute never */
11499 xn = 1;
11502 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11503 if (*prot && !xn) {
11504 *prot |= PAGE_EXEC;
11506 /* We don't need to look the attribute up in the MAIR0/MAIR1
11507 * registers because that only tells us about cacheability.
11509 if (mregion) {
11510 *mregion = matchregion;
11514 fi->type = ARMFault_Permission;
11515 fi->level = 1;
11516 return !(*prot & (1 << access_type));
11520 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11521 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11522 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11523 int *prot, target_ulong *page_size,
11524 ARMMMUFaultInfo *fi)
11526 uint32_t secure = regime_is_secure(env, mmu_idx);
11527 V8M_SAttributes sattrs = {};
11528 bool ret;
11529 bool mpu_is_subpage;
11531 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11532 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11533 if (access_type == MMU_INST_FETCH) {
11534 /* Instruction fetches always use the MMU bank and the
11535 * transaction attribute determined by the fetch address,
11536 * regardless of CPU state. This is painful for QEMU
11537 * to handle, because it would mean we need to encode
11538 * into the mmu_idx not just the (user, negpri) information
11539 * for the current security state but also that for the
11540 * other security state, which would balloon the number
11541 * of mmu_idx values needed alarmingly.
11542 * Fortunately we can avoid this because it's not actually
11543 * possible to arbitrarily execute code from memory with
11544 * the wrong security attribute: it will always generate
11545 * an exception of some kind or another, apart from the
11546 * special case of an NS CPU executing an SG instruction
11547 * in S&NSC memory. So we always just fail the translation
11548 * here and sort things out in the exception handler
11549 * (including possibly emulating an SG instruction).
11551 if (sattrs.ns != !secure) {
11552 if (sattrs.nsc) {
11553 fi->type = ARMFault_QEMU_NSCExec;
11554 } else {
11555 fi->type = ARMFault_QEMU_SFault;
11557 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11558 *phys_ptr = address;
11559 *prot = 0;
11560 return true;
11562 } else {
11563 /* For data accesses we always use the MMU bank indicated
11564 * by the current CPU state, but the security attributes
11565 * might downgrade a secure access to nonsecure.
11567 if (sattrs.ns) {
11568 txattrs->secure = false;
11569 } else if (!secure) {
11570 /* NS access to S memory must fault.
11571 * Architecturally we should first check whether the
11572 * MPU information for this address indicates that we
11573 * are doing an unaligned access to Device memory, which
11574 * should generate a UsageFault instead. QEMU does not
11575 * currently check for that kind of unaligned access though.
11576 * If we added it we would need to do so as a special case
11577 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11579 fi->type = ARMFault_QEMU_SFault;
11580 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11581 *phys_ptr = address;
11582 *prot = 0;
11583 return true;
11588 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11589 txattrs, prot, &mpu_is_subpage, fi, NULL);
11590 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11591 return ret;
11594 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11595 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11596 hwaddr *phys_ptr, int *prot,
11597 ARMMMUFaultInfo *fi)
11599 int n;
11600 uint32_t mask;
11601 uint32_t base;
11602 bool is_user = regime_is_user(env, mmu_idx);
11604 if (regime_translation_disabled(env, mmu_idx)) {
11605 /* MPU disabled. */
11606 *phys_ptr = address;
11607 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11608 return false;
11611 *phys_ptr = address;
11612 for (n = 7; n >= 0; n--) {
11613 base = env->cp15.c6_region[n];
11614 if ((base & 1) == 0) {
11615 continue;
11617 mask = 1 << ((base >> 1) & 0x1f);
11618 /* Keep this shift separate from the above to avoid an
11619 (undefined) << 32. */
11620 mask = (mask << 1) - 1;
11621 if (((base ^ address) & ~mask) == 0) {
11622 break;
11625 if (n < 0) {
11626 fi->type = ARMFault_Background;
11627 return true;
11630 if (access_type == MMU_INST_FETCH) {
11631 mask = env->cp15.pmsav5_insn_ap;
11632 } else {
11633 mask = env->cp15.pmsav5_data_ap;
11635 mask = (mask >> (n * 4)) & 0xf;
11636 switch (mask) {
11637 case 0:
11638 fi->type = ARMFault_Permission;
11639 fi->level = 1;
11640 return true;
11641 case 1:
11642 if (is_user) {
11643 fi->type = ARMFault_Permission;
11644 fi->level = 1;
11645 return true;
11647 *prot = PAGE_READ | PAGE_WRITE;
11648 break;
11649 case 2:
11650 *prot = PAGE_READ;
11651 if (!is_user) {
11652 *prot |= PAGE_WRITE;
11654 break;
11655 case 3:
11656 *prot = PAGE_READ | PAGE_WRITE;
11657 break;
11658 case 5:
11659 if (is_user) {
11660 fi->type = ARMFault_Permission;
11661 fi->level = 1;
11662 return true;
11664 *prot = PAGE_READ;
11665 break;
11666 case 6:
11667 *prot = PAGE_READ;
11668 break;
11669 default:
11670 /* Bad permission. */
11671 fi->type = ARMFault_Permission;
11672 fi->level = 1;
11673 return true;
11675 *prot |= PAGE_EXEC;
11676 return false;
11679 /* Combine either inner or outer cacheability attributes for normal
11680 * memory, according to table D4-42 and pseudocode procedure
11681 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11683 * NB: only stage 1 includes allocation hints (RW bits), leading to
11684 * some asymmetry.
11686 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11688 if (s1 == 4 || s2 == 4) {
11689 /* non-cacheable has precedence */
11690 return 4;
11691 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11692 /* stage 1 write-through takes precedence */
11693 return s1;
11694 } else if (extract32(s2, 2, 2) == 2) {
11695 /* stage 2 write-through takes precedence, but the allocation hint
11696 * is still taken from stage 1
11698 return (2 << 2) | extract32(s1, 0, 2);
11699 } else { /* write-back */
11700 return s1;
11704 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11705 * and CombineS1S2Desc()
11707 * @s1: Attributes from stage 1 walk
11708 * @s2: Attributes from stage 2 walk
11710 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11712 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11713 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11714 ARMCacheAttrs ret;
11716 /* Combine shareability attributes (table D4-43) */
11717 if (s1.shareability == 2 || s2.shareability == 2) {
11718 /* if either are outer-shareable, the result is outer-shareable */
11719 ret.shareability = 2;
11720 } else if (s1.shareability == 3 || s2.shareability == 3) {
11721 /* if either are inner-shareable, the result is inner-shareable */
11722 ret.shareability = 3;
11723 } else {
11724 /* both non-shareable */
11725 ret.shareability = 0;
11728 /* Combine memory type and cacheability attributes */
11729 if (s1hi == 0 || s2hi == 0) {
11730 /* Device has precedence over normal */
11731 if (s1lo == 0 || s2lo == 0) {
11732 /* nGnRnE has precedence over anything */
11733 ret.attrs = 0;
11734 } else if (s1lo == 4 || s2lo == 4) {
11735 /* non-Reordering has precedence over Reordering */
11736 ret.attrs = 4; /* nGnRE */
11737 } else if (s1lo == 8 || s2lo == 8) {
11738 /* non-Gathering has precedence over Gathering */
11739 ret.attrs = 8; /* nGRE */
11740 } else {
11741 ret.attrs = 0xc; /* GRE */
11744 /* Any location for which the resultant memory type is any
11745 * type of Device memory is always treated as Outer Shareable.
11747 ret.shareability = 2;
11748 } else { /* Normal memory */
11749 /* Outer/inner cacheability combine independently */
11750 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11751 | combine_cacheattr_nibble(s1lo, s2lo);
11753 if (ret.attrs == 0x44) {
11754 /* Any location for which the resultant memory type is Normal
11755 * Inner Non-cacheable, Outer Non-cacheable is always treated
11756 * as Outer Shareable.
11758 ret.shareability = 2;
11762 return ret;
11766 /* get_phys_addr - get the physical address for this virtual address
11768 * Find the physical address corresponding to the given virtual address,
11769 * by doing a translation table walk on MMU based systems or using the
11770 * MPU state on MPU based systems.
11772 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11773 * prot and page_size may not be filled in, and the populated fsr value provides
11774 * information on why the translation aborted, in the format of a
11775 * DFSR/IFSR fault register, with the following caveats:
11776 * * we honour the short vs long DFSR format differences.
11777 * * the WnR bit is never set (the caller must do this).
11778 * * for PSMAv5 based systems we don't bother to return a full FSR format
11779 * value.
11781 * @env: CPUARMState
11782 * @address: virtual address to get physical address for
11783 * @access_type: 0 for read, 1 for write, 2 for execute
11784 * @mmu_idx: MMU index indicating required translation regime
11785 * @phys_ptr: set to the physical address corresponding to the virtual address
11786 * @attrs: set to the memory transaction attributes to use
11787 * @prot: set to the permissions for the page containing phys_ptr
11788 * @page_size: set to the size of the page containing phys_ptr
11789 * @fi: set to fault info if the translation fails
11790 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11792 bool get_phys_addr(CPUARMState *env, target_ulong address,
11793 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11794 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11795 target_ulong *page_size,
11796 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11798 if (mmu_idx == ARMMMUIdx_E10_0 ||
11799 mmu_idx == ARMMMUIdx_E10_1 ||
11800 mmu_idx == ARMMMUIdx_E10_1_PAN) {
11801 /* Call ourselves recursively to do the stage 1 and then stage 2
11802 * translations.
11804 if (arm_feature(env, ARM_FEATURE_EL2)) {
11805 hwaddr ipa;
11806 int s2_prot;
11807 int ret;
11808 ARMCacheAttrs cacheattrs2 = {};
11810 ret = get_phys_addr(env, address, access_type,
11811 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11812 prot, page_size, fi, cacheattrs);
11814 /* If S1 fails or S2 is disabled, return early. */
11815 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
11816 *phys_ptr = ipa;
11817 return ret;
11820 /* S1 is done. Now do S2 translation. */
11821 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
11822 phys_ptr, attrs, &s2_prot,
11823 page_size, fi,
11824 cacheattrs != NULL ? &cacheattrs2 : NULL);
11825 fi->s2addr = ipa;
11826 /* Combine the S1 and S2 perms. */
11827 *prot &= s2_prot;
11829 /* Combine the S1 and S2 cache attributes, if needed */
11830 if (!ret && cacheattrs != NULL) {
11831 if (env->cp15.hcr_el2 & HCR_DC) {
11833 * HCR.DC forces the first stage attributes to
11834 * Normal Non-Shareable,
11835 * Inner Write-Back Read-Allocate Write-Allocate,
11836 * Outer Write-Back Read-Allocate Write-Allocate.
11838 cacheattrs->attrs = 0xff;
11839 cacheattrs->shareability = 0;
11841 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11844 return ret;
11845 } else {
11847 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11849 mmu_idx = stage_1_mmu_idx(mmu_idx);
11853 /* The page table entries may downgrade secure to non-secure, but
11854 * cannot upgrade an non-secure translation regime's attributes
11855 * to secure.
11857 attrs->secure = regime_is_secure(env, mmu_idx);
11858 attrs->user = regime_is_user(env, mmu_idx);
11860 /* Fast Context Switch Extension. This doesn't exist at all in v8.
11861 * In v7 and earlier it affects all stage 1 translations.
11863 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
11864 && !arm_feature(env, ARM_FEATURE_V8)) {
11865 if (regime_el(env, mmu_idx) == 3) {
11866 address += env->cp15.fcseidr_s;
11867 } else {
11868 address += env->cp15.fcseidr_ns;
11872 if (arm_feature(env, ARM_FEATURE_PMSA)) {
11873 bool ret;
11874 *page_size = TARGET_PAGE_SIZE;
11876 if (arm_feature(env, ARM_FEATURE_V8)) {
11877 /* PMSAv8 */
11878 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11879 phys_ptr, attrs, prot, page_size, fi);
11880 } else if (arm_feature(env, ARM_FEATURE_V7)) {
11881 /* PMSAv7 */
11882 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11883 phys_ptr, prot, page_size, fi);
11884 } else {
11885 /* Pre-v7 MPU */
11886 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11887 phys_ptr, prot, fi);
11889 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11890 " mmu_idx %u -> %s (prot %c%c%c)\n",
11891 access_type == MMU_DATA_LOAD ? "reading" :
11892 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11893 (uint32_t)address, mmu_idx,
11894 ret ? "Miss" : "Hit",
11895 *prot & PAGE_READ ? 'r' : '-',
11896 *prot & PAGE_WRITE ? 'w' : '-',
11897 *prot & PAGE_EXEC ? 'x' : '-');
11899 return ret;
11902 /* Definitely a real MMU, not an MPU */
11904 if (regime_translation_disabled(env, mmu_idx)) {
11906 * MMU disabled. S1 addresses within aa64 translation regimes are
11907 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
11909 if (mmu_idx != ARMMMUIdx_Stage2) {
11910 int r_el = regime_el(env, mmu_idx);
11911 if (arm_el_is_aa64(env, r_el)) {
11912 int pamax = arm_pamax(env_archcpu(env));
11913 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
11914 int addrtop, tbi;
11916 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11917 if (access_type == MMU_INST_FETCH) {
11918 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11920 tbi = (tbi >> extract64(address, 55, 1)) & 1;
11921 addrtop = (tbi ? 55 : 63);
11923 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
11924 fi->type = ARMFault_AddressSize;
11925 fi->level = 0;
11926 fi->stage2 = false;
11927 return 1;
11931 * When TBI is disabled, we've just validated that all of the
11932 * bits above PAMax are zero, so logically we only need to
11933 * clear the top byte for TBI. But it's clearer to follow
11934 * the pseudocode set of addrdesc.paddress.
11936 address = extract64(address, 0, 52);
11939 *phys_ptr = address;
11940 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11941 *page_size = TARGET_PAGE_SIZE;
11942 return 0;
11945 if (regime_using_lpae_format(env, mmu_idx)) {
11946 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11947 phys_ptr, attrs, prot, page_size,
11948 fi, cacheattrs);
11949 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11950 return get_phys_addr_v6(env, address, access_type, mmu_idx,
11951 phys_ptr, attrs, prot, page_size, fi);
11952 } else {
11953 return get_phys_addr_v5(env, address, access_type, mmu_idx,
11954 phys_ptr, prot, page_size, fi);
11958 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11959 MemTxAttrs *attrs)
11961 ARMCPU *cpu = ARM_CPU(cs);
11962 CPUARMState *env = &cpu->env;
11963 hwaddr phys_addr;
11964 target_ulong page_size;
11965 int prot;
11966 bool ret;
11967 ARMMMUFaultInfo fi = {};
11968 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11970 *attrs = (MemTxAttrs) {};
11972 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11973 attrs, &prot, &page_size, &fi, NULL);
11975 if (ret) {
11976 return -1;
11978 return phys_addr;
11981 #endif
11983 /* Note that signed overflow is undefined in C. The following routines are
11984 careful to use unsigned types where modulo arithmetic is required.
11985 Failure to do so _will_ break on newer gcc. */
11987 /* Signed saturating arithmetic. */
11989 /* Perform 16-bit signed saturating addition. */
11990 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11992 uint16_t res;
11994 res = a + b;
11995 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11996 if (a & 0x8000)
11997 res = 0x8000;
11998 else
11999 res = 0x7fff;
12001 return res;
12004 /* Perform 8-bit signed saturating addition. */
12005 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12007 uint8_t res;
12009 res = a + b;
12010 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12011 if (a & 0x80)
12012 res = 0x80;
12013 else
12014 res = 0x7f;
12016 return res;
12019 /* Perform 16-bit signed saturating subtraction. */
12020 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12022 uint16_t res;
12024 res = a - b;
12025 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12026 if (a & 0x8000)
12027 res = 0x8000;
12028 else
12029 res = 0x7fff;
12031 return res;
12034 /* Perform 8-bit signed saturating subtraction. */
12035 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12037 uint8_t res;
12039 res = a - b;
12040 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12041 if (a & 0x80)
12042 res = 0x80;
12043 else
12044 res = 0x7f;
12046 return res;
12049 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12050 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12051 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12052 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12053 #define PFX q
12055 #include "op_addsub.h"
12057 /* Unsigned saturating arithmetic. */
12058 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12060 uint16_t res;
12061 res = a + b;
12062 if (res < a)
12063 res = 0xffff;
12064 return res;
12067 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12069 if (a > b)
12070 return a - b;
12071 else
12072 return 0;
12075 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12077 uint8_t res;
12078 res = a + b;
12079 if (res < a)
12080 res = 0xff;
12081 return res;
12084 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12086 if (a > b)
12087 return a - b;
12088 else
12089 return 0;
12092 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12093 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12094 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12095 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12096 #define PFX uq
12098 #include "op_addsub.h"
12100 /* Signed modulo arithmetic. */
12101 #define SARITH16(a, b, n, op) do { \
12102 int32_t sum; \
12103 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12104 RESULT(sum, n, 16); \
12105 if (sum >= 0) \
12106 ge |= 3 << (n * 2); \
12107 } while(0)
12109 #define SARITH8(a, b, n, op) do { \
12110 int32_t sum; \
12111 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12112 RESULT(sum, n, 8); \
12113 if (sum >= 0) \
12114 ge |= 1 << n; \
12115 } while(0)
12118 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12119 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12120 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12121 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12122 #define PFX s
12123 #define ARITH_GE
12125 #include "op_addsub.h"
12127 /* Unsigned modulo arithmetic. */
12128 #define ADD16(a, b, n) do { \
12129 uint32_t sum; \
12130 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12131 RESULT(sum, n, 16); \
12132 if ((sum >> 16) == 1) \
12133 ge |= 3 << (n * 2); \
12134 } while(0)
12136 #define ADD8(a, b, n) do { \
12137 uint32_t sum; \
12138 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12139 RESULT(sum, n, 8); \
12140 if ((sum >> 8) == 1) \
12141 ge |= 1 << n; \
12142 } while(0)
12144 #define SUB16(a, b, n) do { \
12145 uint32_t sum; \
12146 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12147 RESULT(sum, n, 16); \
12148 if ((sum >> 16) == 0) \
12149 ge |= 3 << (n * 2); \
12150 } while(0)
12152 #define SUB8(a, b, n) do { \
12153 uint32_t sum; \
12154 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12155 RESULT(sum, n, 8); \
12156 if ((sum >> 8) == 0) \
12157 ge |= 1 << n; \
12158 } while(0)
12160 #define PFX u
12161 #define ARITH_GE
12163 #include "op_addsub.h"
12165 /* Halved signed arithmetic. */
12166 #define ADD16(a, b, n) \
12167 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12168 #define SUB16(a, b, n) \
12169 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12170 #define ADD8(a, b, n) \
12171 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12172 #define SUB8(a, b, n) \
12173 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12174 #define PFX sh
12176 #include "op_addsub.h"
12178 /* Halved unsigned arithmetic. */
12179 #define ADD16(a, b, n) \
12180 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12181 #define SUB16(a, b, n) \
12182 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12183 #define ADD8(a, b, n) \
12184 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12185 #define SUB8(a, b, n) \
12186 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12187 #define PFX uh
12189 #include "op_addsub.h"
12191 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12193 if (a > b)
12194 return a - b;
12195 else
12196 return b - a;
12199 /* Unsigned sum of absolute byte differences. */
12200 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12202 uint32_t sum;
12203 sum = do_usad(a, b);
12204 sum += do_usad(a >> 8, b >> 8);
12205 sum += do_usad(a >> 16, b >>16);
12206 sum += do_usad(a >> 24, b >> 24);
12207 return sum;
12210 /* For ARMv6 SEL instruction. */
12211 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12213 uint32_t mask;
12215 mask = 0;
12216 if (flags & 1)
12217 mask |= 0xff;
12218 if (flags & 2)
12219 mask |= 0xff00;
12220 if (flags & 4)
12221 mask |= 0xff0000;
12222 if (flags & 8)
12223 mask |= 0xff000000;
12224 return (a & mask) | (b & ~mask);
12227 /* CRC helpers.
12228 * The upper bytes of val (above the number specified by 'bytes') must have
12229 * been zeroed out by the caller.
12231 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12233 uint8_t buf[4];
12235 stl_le_p(buf, val);
12237 /* zlib crc32 converts the accumulator and output to one's complement. */
12238 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12241 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12243 uint8_t buf[4];
12245 stl_le_p(buf, val);
12247 /* Linux crc32c converts the output to one's complement. */
12248 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12251 /* Return the exception level to which FP-disabled exceptions should
12252 * be taken, or 0 if FP is enabled.
12254 int fp_exception_el(CPUARMState *env, int cur_el)
12256 #ifndef CONFIG_USER_ONLY
12257 /* CPACR and the CPTR registers don't exist before v6, so FP is
12258 * always accessible
12260 if (!arm_feature(env, ARM_FEATURE_V6)) {
12261 return 0;
12264 if (arm_feature(env, ARM_FEATURE_M)) {
12265 /* CPACR can cause a NOCP UsageFault taken to current security state */
12266 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12267 return 1;
12270 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12271 if (!extract32(env->v7m.nsacr, 10, 1)) {
12272 /* FP insns cause a NOCP UsageFault taken to Secure */
12273 return 3;
12277 return 0;
12280 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12281 * 0, 2 : trap EL0 and EL1/PL1 accesses
12282 * 1 : trap only EL0 accesses
12283 * 3 : trap no accesses
12284 * This register is ignored if E2H+TGE are both set.
12286 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12287 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12289 switch (fpen) {
12290 case 0:
12291 case 2:
12292 if (cur_el == 0 || cur_el == 1) {
12293 /* Trap to PL1, which might be EL1 or EL3 */
12294 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12295 return 3;
12297 return 1;
12299 if (cur_el == 3 && !is_a64(env)) {
12300 /* Secure PL1 running at EL3 */
12301 return 3;
12303 break;
12304 case 1:
12305 if (cur_el == 0) {
12306 return 1;
12308 break;
12309 case 3:
12310 break;
12315 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12316 * to control non-secure access to the FPU. It doesn't have any
12317 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12319 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12320 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12321 if (!extract32(env->cp15.nsacr, 10, 1)) {
12322 /* FP insns act as UNDEF */
12323 return cur_el == 2 ? 2 : 1;
12327 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12328 * check because zero bits in the registers mean "don't trap".
12331 /* CPTR_EL2 : present in v7VE or v8 */
12332 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12333 && !arm_is_secure_below_el3(env)) {
12334 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12335 return 2;
12338 /* CPTR_EL3 : present in v8 */
12339 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12340 /* Trap all FP ops to EL3 */
12341 return 3;
12343 #endif
12344 return 0;
12347 /* Return the exception level we're running at if this is our mmu_idx */
12348 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12350 if (mmu_idx & ARM_MMU_IDX_M) {
12351 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12354 switch (mmu_idx) {
12355 case ARMMMUIdx_E10_0:
12356 case ARMMMUIdx_E20_0:
12357 case ARMMMUIdx_SE10_0:
12358 return 0;
12359 case ARMMMUIdx_E10_1:
12360 case ARMMMUIdx_E10_1_PAN:
12361 case ARMMMUIdx_SE10_1:
12362 case ARMMMUIdx_SE10_1_PAN:
12363 return 1;
12364 case ARMMMUIdx_E2:
12365 case ARMMMUIdx_E20_2:
12366 case ARMMMUIdx_E20_2_PAN:
12367 return 2;
12368 case ARMMMUIdx_SE3:
12369 return 3;
12370 default:
12371 g_assert_not_reached();
12375 #ifndef CONFIG_TCG
12376 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12378 g_assert_not_reached();
12380 #endif
12382 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12384 if (arm_feature(env, ARM_FEATURE_M)) {
12385 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12388 /* See ARM pseudo-function ELIsInHost. */
12389 switch (el) {
12390 case 0:
12391 if (arm_is_secure_below_el3(env)) {
12392 return ARMMMUIdx_SE10_0;
12394 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12395 && arm_el_is_aa64(env, 2)) {
12396 return ARMMMUIdx_E20_0;
12398 return ARMMMUIdx_E10_0;
12399 case 1:
12400 if (arm_is_secure_below_el3(env)) {
12401 if (env->pstate & PSTATE_PAN) {
12402 return ARMMMUIdx_SE10_1_PAN;
12404 return ARMMMUIdx_SE10_1;
12406 if (env->pstate & PSTATE_PAN) {
12407 return ARMMMUIdx_E10_1_PAN;
12409 return ARMMMUIdx_E10_1;
12410 case 2:
12411 /* TODO: ARMv8.4-SecEL2 */
12412 /* Note that TGE does not apply at EL2. */
12413 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12414 if (env->pstate & PSTATE_PAN) {
12415 return ARMMMUIdx_E20_2_PAN;
12417 return ARMMMUIdx_E20_2;
12419 return ARMMMUIdx_E2;
12420 case 3:
12421 return ARMMMUIdx_SE3;
12422 default:
12423 g_assert_not_reached();
12427 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12429 return arm_mmu_idx_el(env, arm_current_el(env));
12432 #ifndef CONFIG_USER_ONLY
12433 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12435 return stage_1_mmu_idx(arm_mmu_idx(env));
12437 #endif
12439 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12440 ARMMMUIdx mmu_idx, uint32_t flags)
12442 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12443 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12444 arm_to_core_mmu_idx(mmu_idx));
12446 if (arm_singlestep_active(env)) {
12447 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12449 return flags;
12452 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12453 ARMMMUIdx mmu_idx, uint32_t flags)
12455 bool sctlr_b = arm_sctlr_b(env);
12457 if (sctlr_b) {
12458 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12460 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12461 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12463 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12465 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12468 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12469 ARMMMUIdx mmu_idx)
12471 uint32_t flags = 0;
12473 if (arm_v7m_is_handler_mode(env)) {
12474 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12478 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12479 * is suppressing them because the requested execution priority
12480 * is less than 0.
12482 if (arm_feature(env, ARM_FEATURE_V8) &&
12483 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12484 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12485 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12488 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12491 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12493 int flags = 0;
12495 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12496 arm_debug_target_el(env));
12497 return flags;
12500 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12501 ARMMMUIdx mmu_idx)
12503 uint32_t flags = rebuild_hflags_aprofile(env);
12505 if (arm_el_is_aa64(env, 1)) {
12506 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12509 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12510 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12511 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12514 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12517 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12518 ARMMMUIdx mmu_idx)
12520 uint32_t flags = rebuild_hflags_aprofile(env);
12521 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12522 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12523 uint64_t sctlr;
12524 int tbii, tbid;
12526 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12528 /* Get control bits for tagged addresses. */
12529 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12530 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12532 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12533 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12535 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12536 int sve_el = sve_exception_el(env, el);
12537 uint32_t zcr_len;
12540 * If SVE is disabled, but FP is enabled,
12541 * then the effective len is 0.
12543 if (sve_el != 0 && fp_el == 0) {
12544 zcr_len = 0;
12545 } else {
12546 zcr_len = sve_zcr_len_for_el(env, el);
12548 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12549 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12552 sctlr = regime_sctlr(env, stage1);
12554 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12555 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12558 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12560 * In order to save space in flags, we record only whether
12561 * pauth is "inactive", meaning all insns are implemented as
12562 * a nop, or "active" when some action must be performed.
12563 * The decision of which action to take is left to a helper.
12565 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12566 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12570 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12571 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
12572 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12573 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12577 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12578 if (!(env->pstate & PSTATE_UAO)) {
12579 switch (mmu_idx) {
12580 case ARMMMUIdx_E10_1:
12581 case ARMMMUIdx_E10_1_PAN:
12582 case ARMMMUIdx_SE10_1:
12583 case ARMMMUIdx_SE10_1_PAN:
12584 /* TODO: ARMv8.3-NV */
12585 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12586 break;
12587 case ARMMMUIdx_E20_2:
12588 case ARMMMUIdx_E20_2_PAN:
12589 /* TODO: ARMv8.4-SecEL2 */
12591 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12592 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12594 if (env->cp15.hcr_el2 & HCR_TGE) {
12595 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12597 break;
12598 default:
12599 break;
12603 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12606 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12608 int el = arm_current_el(env);
12609 int fp_el = fp_exception_el(env, el);
12610 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12612 if (is_a64(env)) {
12613 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12614 } else if (arm_feature(env, ARM_FEATURE_M)) {
12615 return rebuild_hflags_m32(env, fp_el, mmu_idx);
12616 } else {
12617 return rebuild_hflags_a32(env, fp_el, mmu_idx);
12621 void arm_rebuild_hflags(CPUARMState *env)
12623 env->hflags = rebuild_hflags_internal(env);
12627 * If we have triggered a EL state change we can't rely on the
12628 * translator having passed it to us, we need to recompute.
12630 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12632 int el = arm_current_el(env);
12633 int fp_el = fp_exception_el(env, el);
12634 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12635 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12638 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12640 int fp_el = fp_exception_el(env, el);
12641 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12643 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12647 * If we have triggered a EL state change we can't rely on the
12648 * translator having passed it to us, we need to recompute.
12650 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12652 int el = arm_current_el(env);
12653 int fp_el = fp_exception_el(env, el);
12654 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12655 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12658 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12660 int fp_el = fp_exception_el(env, el);
12661 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12663 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12666 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12668 int fp_el = fp_exception_el(env, el);
12669 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12671 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12674 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12676 #ifdef CONFIG_DEBUG_TCG
12677 uint32_t env_flags_current = env->hflags;
12678 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
12680 if (unlikely(env_flags_current != env_flags_rebuilt)) {
12681 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
12682 env_flags_current, env_flags_rebuilt);
12683 abort();
12685 #endif
12688 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12689 target_ulong *cs_base, uint32_t *pflags)
12691 uint32_t flags = env->hflags;
12692 uint32_t pstate_for_ss;
12694 *cs_base = 0;
12695 assert_hflags_rebuild_correctly(env);
12697 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
12698 *pc = env->pc;
12699 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12700 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
12702 pstate_for_ss = env->pstate;
12703 } else {
12704 *pc = env->regs[15];
12706 if (arm_feature(env, ARM_FEATURE_M)) {
12707 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12708 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12709 != env->v7m.secure) {
12710 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
12713 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12714 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12715 (env->v7m.secure &&
12716 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12718 * ASPEN is set, but FPCA/SFPA indicate that there is no
12719 * active FP context; we must create a new FP context before
12720 * executing any FP insn.
12722 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
12725 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12726 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12727 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
12729 } else {
12731 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12732 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12734 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12735 flags = FIELD_DP32(flags, TBFLAG_A32,
12736 XSCALE_CPAR, env->cp15.c15_cpar);
12737 } else {
12738 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
12739 env->vfp.vec_len);
12740 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
12741 env->vfp.vec_stride);
12743 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12744 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12748 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
12749 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
12750 pstate_for_ss = env->uncached_cpsr;
12754 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12755 * states defined in the ARM ARM for software singlestep:
12756 * SS_ACTIVE PSTATE.SS State
12757 * 0 x Inactive (the TB flag for SS is always 0)
12758 * 1 0 Active-pending
12759 * 1 1 Active-not-pending
12760 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
12762 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
12763 (pstate_for_ss & PSTATE_SS)) {
12764 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12767 *pflags = flags;
12770 #ifdef TARGET_AARCH64
12772 * The manual says that when SVE is enabled and VQ is widened the
12773 * implementation is allowed to zero the previously inaccessible
12774 * portion of the registers. The corollary to that is that when
12775 * SVE is enabled and VQ is narrowed we are also allowed to zero
12776 * the now inaccessible portion of the registers.
12778 * The intent of this is that no predicate bit beyond VQ is ever set.
12779 * Which means that some operations on predicate registers themselves
12780 * may operate on full uint64_t or even unrolled across the maximum
12781 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12782 * may well be cheaper than conditionals to restrict the operation
12783 * to the relevant portion of a uint16_t[16].
12785 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12787 int i, j;
12788 uint64_t pmask;
12790 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12791 assert(vq <= env_archcpu(env)->sve_max_vq);
12793 /* Zap the high bits of the zregs. */
12794 for (i = 0; i < 32; i++) {
12795 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12798 /* Zap the high bits of the pregs and ffr. */
12799 pmask = 0;
12800 if (vq & 3) {
12801 pmask = ~(-1ULL << (16 * (vq & 3)));
12803 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12804 for (i = 0; i < 17; ++i) {
12805 env->vfp.pregs[i].p[j] &= pmask;
12807 pmask = 0;
12812 * Notice a change in SVE vector size when changing EL.
12814 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12815 int new_el, bool el0_a64)
12817 ARMCPU *cpu = env_archcpu(env);
12818 int old_len, new_len;
12819 bool old_a64, new_a64;
12821 /* Nothing to do if no SVE. */
12822 if (!cpu_isar_feature(aa64_sve, cpu)) {
12823 return;
12826 /* Nothing to do if FP is disabled in either EL. */
12827 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12828 return;
12832 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12833 * at ELx, or not available because the EL is in AArch32 state, then
12834 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12835 * has an effective value of 0".
12837 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12838 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12839 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12840 * we already have the correct register contents when encountering the
12841 * vq0->vq0 transition between EL0->EL1.
12843 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12844 old_len = (old_a64 && !sve_exception_el(env, old_el)
12845 ? sve_zcr_len_for_el(env, old_el) : 0);
12846 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12847 new_len = (new_a64 && !sve_exception_el(env, new_el)
12848 ? sve_zcr_len_for_el(env, new_el) : 0);
12850 /* When changing vector length, clear inaccessible state. */
12851 if (new_len < old_len) {
12852 aarch64_sve_narrow_vq(env, new_len + 1);
12855 #endif