s390/ipl: fix off-by-one in update_machine_ipl_properties()
[qemu/ar7.git] / target / arm / cpu64.c
blob62d36f9e8d3638cfe38909a96f61b96508b20c8f
1 /*
2 * QEMU AArch64 CPU
4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "qapi/visitor.h"
32 static inline void set_feature(CPUARMState *env, int feature)
34 env->features |= 1ULL << feature;
37 static inline void unset_feature(CPUARMState *env, int feature)
39 env->features &= ~(1ULL << feature);
42 #ifndef CONFIG_USER_ONLY
43 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
45 ARMCPU *cpu = env_archcpu(env);
47 /* Number of cores is in [25:24]; otherwise we RAZ */
48 return (cpu->core_count - 1) << 24;
50 #endif
52 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
53 #ifndef CONFIG_USER_ONLY
54 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
55 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
56 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
57 .writefn = arm_cp_write_ignore },
58 { .name = "L2CTLR",
59 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
60 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
61 .writefn = arm_cp_write_ignore },
62 #endif
63 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
64 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
65 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
66 { .name = "L2ECTLR",
67 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
68 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
69 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
70 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
71 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
72 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
73 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
74 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
75 { .name = "CPUACTLR",
76 .cp = 15, .opc1 = 0, .crm = 15,
77 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
78 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
79 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
80 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
81 { .name = "CPUECTLR",
82 .cp = 15, .opc1 = 1, .crm = 15,
83 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
84 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
85 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
86 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
87 { .name = "CPUMERRSR",
88 .cp = 15, .opc1 = 2, .crm = 15,
89 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
90 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
91 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
92 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
93 { .name = "L2MERRSR",
94 .cp = 15, .opc1 = 3, .crm = 15,
95 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
96 REGINFO_SENTINEL
99 static void aarch64_a57_initfn(Object *obj)
101 ARMCPU *cpu = ARM_CPU(obj);
103 cpu->dtb_compatible = "arm,cortex-a57";
104 set_feature(&cpu->env, ARM_FEATURE_V8);
105 set_feature(&cpu->env, ARM_FEATURE_NEON);
106 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
107 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
108 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
109 set_feature(&cpu->env, ARM_FEATURE_EL2);
110 set_feature(&cpu->env, ARM_FEATURE_EL3);
111 set_feature(&cpu->env, ARM_FEATURE_PMU);
112 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
113 cpu->midr = 0x411fd070;
114 cpu->revidr = 0x00000000;
115 cpu->reset_fpsid = 0x41034070;
116 cpu->isar.mvfr0 = 0x10110222;
117 cpu->isar.mvfr1 = 0x12111111;
118 cpu->isar.mvfr2 = 0x00000043;
119 cpu->ctr = 0x8444c004;
120 cpu->reset_sctlr = 0x00c50838;
121 cpu->id_pfr0 = 0x00000131;
122 cpu->id_pfr1 = 0x00011011;
123 cpu->isar.id_dfr0 = 0x03010066;
124 cpu->id_afr0 = 0x00000000;
125 cpu->isar.id_mmfr0 = 0x10101105;
126 cpu->isar.id_mmfr1 = 0x40000000;
127 cpu->isar.id_mmfr2 = 0x01260000;
128 cpu->isar.id_mmfr3 = 0x02102211;
129 cpu->isar.id_isar0 = 0x02101110;
130 cpu->isar.id_isar1 = 0x13112111;
131 cpu->isar.id_isar2 = 0x21232042;
132 cpu->isar.id_isar3 = 0x01112131;
133 cpu->isar.id_isar4 = 0x00011142;
134 cpu->isar.id_isar5 = 0x00011121;
135 cpu->isar.id_isar6 = 0;
136 cpu->isar.id_aa64pfr0 = 0x00002222;
137 cpu->isar.id_aa64dfr0 = 0x10305106;
138 cpu->isar.id_aa64isar0 = 0x00011120;
139 cpu->isar.id_aa64mmfr0 = 0x00001124;
140 cpu->isar.dbgdidr = 0x3516d000;
141 cpu->clidr = 0x0a200023;
142 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
143 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
144 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
145 cpu->dcz_blocksize = 4; /* 64 bytes */
146 cpu->gic_num_lrs = 4;
147 cpu->gic_vpribits = 5;
148 cpu->gic_vprebits = 5;
149 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
152 static void aarch64_a53_initfn(Object *obj)
154 ARMCPU *cpu = ARM_CPU(obj);
156 cpu->dtb_compatible = "arm,cortex-a53";
157 set_feature(&cpu->env, ARM_FEATURE_V8);
158 set_feature(&cpu->env, ARM_FEATURE_NEON);
159 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
160 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
161 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
162 set_feature(&cpu->env, ARM_FEATURE_EL2);
163 set_feature(&cpu->env, ARM_FEATURE_EL3);
164 set_feature(&cpu->env, ARM_FEATURE_PMU);
165 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
166 cpu->midr = 0x410fd034;
167 cpu->revidr = 0x00000000;
168 cpu->reset_fpsid = 0x41034070;
169 cpu->isar.mvfr0 = 0x10110222;
170 cpu->isar.mvfr1 = 0x12111111;
171 cpu->isar.mvfr2 = 0x00000043;
172 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
173 cpu->reset_sctlr = 0x00c50838;
174 cpu->id_pfr0 = 0x00000131;
175 cpu->id_pfr1 = 0x00011011;
176 cpu->isar.id_dfr0 = 0x03010066;
177 cpu->id_afr0 = 0x00000000;
178 cpu->isar.id_mmfr0 = 0x10101105;
179 cpu->isar.id_mmfr1 = 0x40000000;
180 cpu->isar.id_mmfr2 = 0x01260000;
181 cpu->isar.id_mmfr3 = 0x02102211;
182 cpu->isar.id_isar0 = 0x02101110;
183 cpu->isar.id_isar1 = 0x13112111;
184 cpu->isar.id_isar2 = 0x21232042;
185 cpu->isar.id_isar3 = 0x01112131;
186 cpu->isar.id_isar4 = 0x00011142;
187 cpu->isar.id_isar5 = 0x00011121;
188 cpu->isar.id_isar6 = 0;
189 cpu->isar.id_aa64pfr0 = 0x00002222;
190 cpu->isar.id_aa64dfr0 = 0x10305106;
191 cpu->isar.id_aa64isar0 = 0x00011120;
192 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
193 cpu->isar.dbgdidr = 0x3516d000;
194 cpu->clidr = 0x0a200023;
195 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
196 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
197 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
198 cpu->dcz_blocksize = 4; /* 64 bytes */
199 cpu->gic_num_lrs = 4;
200 cpu->gic_vpribits = 5;
201 cpu->gic_vprebits = 5;
202 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
205 static void aarch64_a72_initfn(Object *obj)
207 ARMCPU *cpu = ARM_CPU(obj);
209 cpu->dtb_compatible = "arm,cortex-a72";
210 set_feature(&cpu->env, ARM_FEATURE_V8);
211 set_feature(&cpu->env, ARM_FEATURE_NEON);
212 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
213 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
214 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
215 set_feature(&cpu->env, ARM_FEATURE_EL2);
216 set_feature(&cpu->env, ARM_FEATURE_EL3);
217 set_feature(&cpu->env, ARM_FEATURE_PMU);
218 cpu->midr = 0x410fd083;
219 cpu->revidr = 0x00000000;
220 cpu->reset_fpsid = 0x41034080;
221 cpu->isar.mvfr0 = 0x10110222;
222 cpu->isar.mvfr1 = 0x12111111;
223 cpu->isar.mvfr2 = 0x00000043;
224 cpu->ctr = 0x8444c004;
225 cpu->reset_sctlr = 0x00c50838;
226 cpu->id_pfr0 = 0x00000131;
227 cpu->id_pfr1 = 0x00011011;
228 cpu->isar.id_dfr0 = 0x03010066;
229 cpu->id_afr0 = 0x00000000;
230 cpu->isar.id_mmfr0 = 0x10201105;
231 cpu->isar.id_mmfr1 = 0x40000000;
232 cpu->isar.id_mmfr2 = 0x01260000;
233 cpu->isar.id_mmfr3 = 0x02102211;
234 cpu->isar.id_isar0 = 0x02101110;
235 cpu->isar.id_isar1 = 0x13112111;
236 cpu->isar.id_isar2 = 0x21232042;
237 cpu->isar.id_isar3 = 0x01112131;
238 cpu->isar.id_isar4 = 0x00011142;
239 cpu->isar.id_isar5 = 0x00011121;
240 cpu->isar.id_aa64pfr0 = 0x00002222;
241 cpu->isar.id_aa64dfr0 = 0x10305106;
242 cpu->isar.id_aa64isar0 = 0x00011120;
243 cpu->isar.id_aa64mmfr0 = 0x00001124;
244 cpu->isar.dbgdidr = 0x3516d000;
245 cpu->clidr = 0x0a200023;
246 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
247 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
248 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
249 cpu->dcz_blocksize = 4; /* 64 bytes */
250 cpu->gic_num_lrs = 4;
251 cpu->gic_vpribits = 5;
252 cpu->gic_vprebits = 5;
253 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
256 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
259 * If any vector lengths are explicitly enabled with sve<N> properties,
260 * then all other lengths are implicitly disabled. If sve-max-vq is
261 * specified then it is the same as explicitly enabling all lengths
262 * up to and including the specified maximum, which means all larger
263 * lengths will be implicitly disabled. If no sve<N> properties
264 * are enabled and sve-max-vq is not specified, then all lengths not
265 * explicitly disabled will be enabled. Additionally, all power-of-two
266 * vector lengths less than the maximum enabled length will be
267 * automatically enabled and all vector lengths larger than the largest
268 * disabled power-of-two vector length will be automatically disabled.
269 * Errors are generated if the user provided input that interferes with
270 * any of the above. Finally, if SVE is not disabled, then at least one
271 * vector length must be enabled.
273 DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
274 DECLARE_BITMAP(tmp, ARM_MAX_VQ);
275 uint32_t vq, max_vq = 0;
277 /* Collect the set of vector lengths supported by KVM. */
278 bitmap_zero(kvm_supported, ARM_MAX_VQ);
279 if (kvm_enabled() && kvm_arm_sve_supported(CPU(cpu))) {
280 kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
281 } else if (kvm_enabled()) {
282 assert(!cpu_isar_feature(aa64_sve, cpu));
286 * Process explicit sve<N> properties.
287 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
288 * Check first for any sve<N> enabled.
290 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
291 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
293 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
294 error_setg(errp, "cannot enable sve%d", max_vq * 128);
295 error_append_hint(errp, "sve%d is larger than the maximum vector "
296 "length, sve-max-vq=%d (%d bits)\n",
297 max_vq * 128, cpu->sve_max_vq,
298 cpu->sve_max_vq * 128);
299 return;
302 if (kvm_enabled()) {
304 * For KVM we have to automatically enable all supported unitialized
305 * lengths, even when the smaller lengths are not all powers-of-two.
307 bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
308 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
309 } else {
310 /* Propagate enabled bits down through required powers-of-two. */
311 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
312 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
313 set_bit(vq - 1, cpu->sve_vq_map);
317 } else if (cpu->sve_max_vq == 0) {
319 * No explicit bits enabled, and no implicit bits from sve-max-vq.
321 if (!cpu_isar_feature(aa64_sve, cpu)) {
322 /* SVE is disabled and so are all vector lengths. Good. */
323 return;
326 if (kvm_enabled()) {
327 /* Disabling a supported length disables all larger lengths. */
328 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
329 if (test_bit(vq - 1, cpu->sve_vq_init) &&
330 test_bit(vq - 1, kvm_supported)) {
331 break;
334 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
335 bitmap_andnot(cpu->sve_vq_map, kvm_supported,
336 cpu->sve_vq_init, max_vq);
337 if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
338 error_setg(errp, "cannot disable sve%d", vq * 128);
339 error_append_hint(errp, "Disabling sve%d results in all "
340 "vector lengths being disabled.\n",
341 vq * 128);
342 error_append_hint(errp, "With SVE enabled, at least one "
343 "vector length must be enabled.\n");
344 return;
346 } else {
347 /* Disabling a power-of-two disables all larger lengths. */
348 if (test_bit(0, cpu->sve_vq_init)) {
349 error_setg(errp, "cannot disable sve128");
350 error_append_hint(errp, "Disabling sve128 results in all "
351 "vector lengths being disabled.\n");
352 error_append_hint(errp, "With SVE enabled, at least one "
353 "vector length must be enabled.\n");
354 return;
356 for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
357 if (test_bit(vq - 1, cpu->sve_vq_init)) {
358 break;
361 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
362 bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
365 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
369 * Process the sve-max-vq property.
370 * Note that we know from the above that no bit above
371 * sve-max-vq is currently set.
373 if (cpu->sve_max_vq != 0) {
374 max_vq = cpu->sve_max_vq;
376 if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
377 test_bit(max_vq - 1, cpu->sve_vq_init)) {
378 error_setg(errp, "cannot disable sve%d", max_vq * 128);
379 error_append_hint(errp, "The maximum vector length must be "
380 "enabled, sve-max-vq=%d (%d bits)\n",
381 max_vq, max_vq * 128);
382 return;
385 /* Set all bits not explicitly set within sve-max-vq. */
386 bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
387 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
391 * We should know what max-vq is now. Also, as we're done
392 * manipulating sve-vq-map, we ensure any bits above max-vq
393 * are clear, just in case anybody looks.
395 assert(max_vq != 0);
396 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
398 if (kvm_enabled()) {
399 /* Ensure the set of lengths matches what KVM supports. */
400 bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
401 if (!bitmap_empty(tmp, max_vq)) {
402 vq = find_last_bit(tmp, max_vq) + 1;
403 if (test_bit(vq - 1, cpu->sve_vq_map)) {
404 if (cpu->sve_max_vq) {
405 error_setg(errp, "cannot set sve-max-vq=%d",
406 cpu->sve_max_vq);
407 error_append_hint(errp, "This KVM host does not support "
408 "the vector length %d-bits.\n",
409 vq * 128);
410 error_append_hint(errp, "It may not be possible to use "
411 "sve-max-vq with this KVM host. Try "
412 "using only sve<N> properties.\n");
413 } else {
414 error_setg(errp, "cannot enable sve%d", vq * 128);
415 error_append_hint(errp, "This KVM host does not support "
416 "the vector length %d-bits.\n",
417 vq * 128);
419 } else {
420 error_setg(errp, "cannot disable sve%d", vq * 128);
421 error_append_hint(errp, "The KVM host requires all "
422 "supported vector lengths smaller "
423 "than %d bits to also be enabled.\n",
424 max_vq * 128);
426 return;
428 } else {
429 /* Ensure all required powers-of-two are enabled. */
430 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
431 if (!test_bit(vq - 1, cpu->sve_vq_map)) {
432 error_setg(errp, "cannot disable sve%d", vq * 128);
433 error_append_hint(errp, "sve%d is required as it "
434 "is a power-of-two length smaller than "
435 "the maximum, sve%d\n",
436 vq * 128, max_vq * 128);
437 return;
443 * Now that we validated all our vector lengths, the only question
444 * left to answer is if we even want SVE at all.
446 if (!cpu_isar_feature(aa64_sve, cpu)) {
447 error_setg(errp, "cannot enable sve%d", max_vq * 128);
448 error_append_hint(errp, "SVE must be enabled to enable vector "
449 "lengths.\n");
450 error_append_hint(errp, "Add sve=on to the CPU property list.\n");
451 return;
454 /* From now on sve_max_vq is the actual maximum supported length. */
455 cpu->sve_max_vq = max_vq;
458 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
459 void *opaque, Error **errp)
461 ARMCPU *cpu = ARM_CPU(obj);
462 uint32_t value;
464 /* All vector lengths are disabled when SVE is off. */
465 if (!cpu_isar_feature(aa64_sve, cpu)) {
466 value = 0;
467 } else {
468 value = cpu->sve_max_vq;
470 visit_type_uint32(v, name, &value, errp);
473 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
474 void *opaque, Error **errp)
476 ARMCPU *cpu = ARM_CPU(obj);
477 Error *err = NULL;
478 uint32_t max_vq;
480 visit_type_uint32(v, name, &max_vq, &err);
481 if (err) {
482 error_propagate(errp, err);
483 return;
486 if (kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
487 error_setg(errp, "cannot set sve-max-vq");
488 error_append_hint(errp, "SVE not supported by KVM on this host\n");
489 return;
492 if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
493 error_setg(errp, "unsupported SVE vector length");
494 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
495 ARM_MAX_VQ);
496 return;
499 cpu->sve_max_vq = max_vq;
502 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
503 void *opaque, Error **errp)
505 ARMCPU *cpu = ARM_CPU(obj);
506 uint32_t vq = atoi(&name[3]) / 128;
507 bool value;
509 /* All vector lengths are disabled when SVE is off. */
510 if (!cpu_isar_feature(aa64_sve, cpu)) {
511 value = false;
512 } else {
513 value = test_bit(vq - 1, cpu->sve_vq_map);
515 visit_type_bool(v, name, &value, errp);
518 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
519 void *opaque, Error **errp)
521 ARMCPU *cpu = ARM_CPU(obj);
522 uint32_t vq = atoi(&name[3]) / 128;
523 Error *err = NULL;
524 bool value;
526 visit_type_bool(v, name, &value, &err);
527 if (err) {
528 error_propagate(errp, err);
529 return;
532 if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
533 error_setg(errp, "cannot enable %s", name);
534 error_append_hint(errp, "SVE not supported by KVM on this host\n");
535 return;
538 if (value) {
539 set_bit(vq - 1, cpu->sve_vq_map);
540 } else {
541 clear_bit(vq - 1, cpu->sve_vq_map);
543 set_bit(vq - 1, cpu->sve_vq_init);
546 static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name,
547 void *opaque, Error **errp)
549 ARMCPU *cpu = ARM_CPU(obj);
550 bool value = cpu_isar_feature(aa64_sve, cpu);
552 visit_type_bool(v, name, &value, errp);
555 static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name,
556 void *opaque, Error **errp)
558 ARMCPU *cpu = ARM_CPU(obj);
559 Error *err = NULL;
560 bool value;
561 uint64_t t;
563 visit_type_bool(v, name, &value, &err);
564 if (err) {
565 error_propagate(errp, err);
566 return;
569 if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
570 error_setg(errp, "'sve' feature not supported by KVM on this host");
571 return;
574 t = cpu->isar.id_aa64pfr0;
575 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
576 cpu->isar.id_aa64pfr0 = t;
579 void aarch64_add_sve_properties(Object *obj)
581 uint32_t vq;
583 object_property_add(obj, "sve", "bool", cpu_arm_get_sve,
584 cpu_arm_set_sve, NULL, NULL, &error_fatal);
586 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
587 char name[8];
588 sprintf(name, "sve%d", vq * 128);
589 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
590 cpu_arm_set_sve_vq, NULL, NULL, &error_fatal);
594 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
595 * otherwise, a CPU with as many features enabled as our emulation supports.
596 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
597 * this only needs to handle 64 bits.
599 static void aarch64_max_initfn(Object *obj)
601 ARMCPU *cpu = ARM_CPU(obj);
603 if (kvm_enabled()) {
604 kvm_arm_set_cpu_features_from_host(cpu);
605 kvm_arm_add_vcpu_properties(obj);
606 } else {
607 uint64_t t;
608 uint32_t u;
609 aarch64_a57_initfn(obj);
612 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
613 * one and try to apply errata workarounds or use impdef features we
614 * don't provide.
615 * An IMPLEMENTER field of 0 means "reserved for software use";
616 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
617 * to see which features are present";
618 * the VARIANT, PARTNUM and REVISION fields are all implementation
619 * defined and we choose to define PARTNUM just in case guest
620 * code needs to distinguish this QEMU CPU from other software
621 * implementations, though this shouldn't be needed.
623 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
624 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
625 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
626 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
627 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
628 cpu->midr = t;
630 t = cpu->isar.id_aa64isar0;
631 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
632 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
633 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
634 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
635 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
636 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
637 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
638 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
639 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
640 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
641 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
642 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
643 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
644 cpu->isar.id_aa64isar0 = t;
646 t = cpu->isar.id_aa64isar1;
647 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
648 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
649 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
650 t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */
651 t = FIELD_DP64(t, ID_AA64ISAR1, API, 0);
652 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1);
653 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0);
654 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
655 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
656 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
657 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
658 cpu->isar.id_aa64isar1 = t;
660 t = cpu->isar.id_aa64pfr0;
661 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
662 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
663 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
664 cpu->isar.id_aa64pfr0 = t;
666 t = cpu->isar.id_aa64pfr1;
667 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
668 cpu->isar.id_aa64pfr1 = t;
670 t = cpu->isar.id_aa64mmfr1;
671 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
672 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
673 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
674 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
675 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
676 cpu->isar.id_aa64mmfr1 = t;
678 t = cpu->isar.id_aa64mmfr2;
679 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
680 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
681 cpu->isar.id_aa64mmfr2 = t;
683 /* Replicate the same data to the 32-bit id registers. */
684 u = cpu->isar.id_isar5;
685 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
686 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
687 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
688 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
689 u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
690 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
691 cpu->isar.id_isar5 = u;
693 u = cpu->isar.id_isar6;
694 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
695 u = FIELD_DP32(u, ID_ISAR6, DP, 1);
696 u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
697 u = FIELD_DP32(u, ID_ISAR6, SB, 1);
698 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
699 cpu->isar.id_isar6 = u;
701 u = cpu->isar.id_mmfr3;
702 u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
703 cpu->isar.id_mmfr3 = u;
705 u = cpu->isar.id_mmfr4;
706 u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
707 u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
708 u = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
709 cpu->isar.id_mmfr4 = u;
711 u = cpu->isar.id_aa64dfr0;
712 u = FIELD_DP64(u, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
713 cpu->isar.id_aa64dfr0 = u;
715 u = cpu->isar.id_dfr0;
716 u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
717 cpu->isar.id_dfr0 = u;
720 * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet,
721 * so do not set MVFR1.FPHP. Strictly speaking this is not legal,
722 * but it is also not legal to enable SVE without support for FP16,
723 * and enabling SVE in system mode is more useful in the short term.
726 #ifdef CONFIG_USER_ONLY
727 /* For usermode -cpu max we can use a larger and more efficient DCZ
728 * blocksize since we don't have to follow what the hardware does.
730 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
731 cpu->dcz_blocksize = 7; /* 512 bytes */
732 #endif
735 aarch64_add_sve_properties(obj);
736 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
737 cpu_max_set_sve_max_vq, NULL, NULL, &error_fatal);
740 struct ARMCPUInfo {
741 const char *name;
742 void (*initfn)(Object *obj);
743 void (*class_init)(ObjectClass *oc, void *data);
746 static const ARMCPUInfo aarch64_cpus[] = {
747 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
748 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
749 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
750 { .name = "max", .initfn = aarch64_max_initfn },
751 { .name = NULL }
754 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
756 ARMCPU *cpu = ARM_CPU(obj);
758 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
761 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
763 ARMCPU *cpu = ARM_CPU(obj);
765 /* At this time, this property is only allowed if KVM is enabled. This
766 * restriction allows us to avoid fixing up functionality that assumes a
767 * uniform execution state like do_interrupt.
769 if (value == false) {
770 if (!kvm_enabled() || !kvm_arm_aarch32_supported(CPU(cpu))) {
771 error_setg(errp, "'aarch64' feature cannot be disabled "
772 "unless KVM is enabled and 32-bit EL1 "
773 "is supported");
774 return;
776 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
777 } else {
778 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
782 static void aarch64_cpu_initfn(Object *obj)
784 object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
785 aarch64_cpu_set_aarch64, NULL);
786 object_property_set_description(obj, "aarch64",
787 "Set on/off to enable/disable aarch64 "
788 "execution state ",
789 NULL);
792 static void aarch64_cpu_finalizefn(Object *obj)
796 static gchar *aarch64_gdb_arch_name(CPUState *cs)
798 return g_strdup("aarch64");
801 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
803 CPUClass *cc = CPU_CLASS(oc);
805 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
806 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
807 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
808 cc->gdb_num_core_regs = 34;
809 cc->gdb_core_xml_file = "aarch64-core.xml";
810 cc->gdb_arch_name = aarch64_gdb_arch_name;
813 static void aarch64_cpu_instance_init(Object *obj)
815 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
817 acc->info->initfn(obj);
818 arm_cpu_post_init(obj);
821 static void cpu_register_class_init(ObjectClass *oc, void *data)
823 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
825 acc->info = data;
828 static void aarch64_cpu_register(const ARMCPUInfo *info)
830 TypeInfo type_info = {
831 .parent = TYPE_AARCH64_CPU,
832 .instance_size = sizeof(ARMCPU),
833 .instance_init = aarch64_cpu_instance_init,
834 .class_size = sizeof(ARMCPUClass),
835 .class_init = info->class_init ?: cpu_register_class_init,
836 .class_data = (void *)info,
839 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
840 type_register(&type_info);
841 g_free((void *)type_info.name);
844 static const TypeInfo aarch64_cpu_type_info = {
845 .name = TYPE_AARCH64_CPU,
846 .parent = TYPE_ARM_CPU,
847 .instance_size = sizeof(ARMCPU),
848 .instance_init = aarch64_cpu_initfn,
849 .instance_finalize = aarch64_cpu_finalizefn,
850 .abstract = true,
851 .class_size = sizeof(AArch64CPUClass),
852 .class_init = aarch64_cpu_class_init,
855 static void aarch64_cpu_register_types(void)
857 const ARMCPUInfo *info = aarch64_cpus;
859 type_register_static(&aarch64_cpu_type_info);
861 while (info->name) {
862 aarch64_cpu_register(info);
863 info++;
867 type_init(aarch64_cpu_register_types)