target/riscv: Convert RVXI csr insns to decodetree
[qemu/ar7.git] / qtest.c
blob527141785fba7010af3472b32490e7e1d76bc476
1 /*
2 * Test Server
4 * Copyright IBM, Corp. 2011
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qapi/error.h"
16 #include "qemu-common.h"
17 #include "cpu.h"
18 #include "sysemu/qtest.h"
19 #include "hw/qdev.h"
20 #include "chardev/char-fe.h"
21 #include "exec/ioport.h"
22 #include "exec/memory.h"
23 #include "hw/irq.h"
24 #include "sysemu/accel.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/cpus.h"
27 #include "qemu/config-file.h"
28 #include "qemu/option.h"
29 #include "qemu/error-report.h"
30 #include "qemu/cutils.h"
31 #ifdef TARGET_PPC64
32 #include "hw/ppc/spapr_rtas.h"
33 #endif
35 #define MAX_IRQ 256
37 bool qtest_allowed;
39 static DeviceState *irq_intercept_dev;
40 static FILE *qtest_log_fp;
41 static CharBackend qtest_chr;
42 static GString *inbuf;
43 static int irq_levels[MAX_IRQ];
44 static qemu_timeval start_time;
45 static bool qtest_opened;
47 #define FMT_timeval "%ld.%06ld"
49 /**
50 * QTest Protocol
52 * Line based protocol, request/response based. Server can send async messages
53 * so clients should always handle many async messages before the response
54 * comes in.
56 * Valid requests
58 * Clock management:
60 * The qtest client is completely in charge of the QEMU_CLOCK_VIRTUAL. qtest commands
61 * let you adjust the value of the clock (monotonically). All the commands
62 * return the current value of the clock in nanoseconds.
64 * > clock_step
65 * < OK VALUE
67 * Advance the clock to the next deadline. Useful when waiting for
68 * asynchronous events.
70 * > clock_step NS
71 * < OK VALUE
73 * Advance the clock by NS nanoseconds.
75 * > clock_set NS
76 * < OK VALUE
78 * Advance the clock to NS nanoseconds (do nothing if it's already past).
80 * PIO and memory access:
82 * > outb ADDR VALUE
83 * < OK
85 * > outw ADDR VALUE
86 * < OK
88 * > outl ADDR VALUE
89 * < OK
91 * > inb ADDR
92 * < OK VALUE
94 * > inw ADDR
95 * < OK VALUE
97 * > inl ADDR
98 * < OK VALUE
100 * > writeb ADDR VALUE
101 * < OK
103 * > writew ADDR VALUE
104 * < OK
106 * > writel ADDR VALUE
107 * < OK
109 * > writeq ADDR VALUE
110 * < OK
112 * > readb ADDR
113 * < OK VALUE
115 * > readw ADDR
116 * < OK VALUE
118 * > readl ADDR
119 * < OK VALUE
121 * > readq ADDR
122 * < OK VALUE
124 * > read ADDR SIZE
125 * < OK DATA
127 * > write ADDR SIZE DATA
128 * < OK
130 * > b64read ADDR SIZE
131 * < OK B64_DATA
133 * > b64write ADDR SIZE B64_DATA
134 * < OK
136 * > memset ADDR SIZE VALUE
137 * < OK
139 * ADDR, SIZE, VALUE are all integers parsed with strtoul() with a base of 0.
140 * For 'memset' a zero size is permitted and does nothing.
142 * DATA is an arbitrarily long hex number prefixed with '0x'. If it's smaller
143 * than the expected size, the value will be zero filled at the end of the data
144 * sequence.
146 * B64_DATA is an arbitrarily long base64 encoded string.
147 * If the sizes do not match, the data will be truncated.
149 * IRQ management:
151 * > irq_intercept_in QOM-PATH
152 * < OK
154 * > irq_intercept_out QOM-PATH
155 * < OK
157 * Attach to the gpio-in (resp. gpio-out) pins exported by the device at
158 * QOM-PATH. When the pin is triggered, one of the following async messages
159 * will be printed to the qtest stream:
161 * IRQ raise NUM
162 * IRQ lower NUM
164 * where NUM is an IRQ number. For the PC, interrupts can be intercepted
165 * simply with "irq_intercept_in ioapic" (note that IRQ0 comes out with
166 * NUM=0 even though it is remapped to GSI 2).
168 * Setting interrupt level:
170 * > set_irq_in QOM-PATH NAME NUM LEVEL
171 * < OK
173 * where NAME is the name of the irq/gpio list, NUM is an IRQ number and
174 * LEVEL is an signed integer IRQ level.
176 * Forcibly set the given interrupt pin to the given level.
180 static int hex2nib(char ch)
182 if (ch >= '0' && ch <= '9') {
183 return ch - '0';
184 } else if (ch >= 'a' && ch <= 'f') {
185 return 10 + (ch - 'a');
186 } else if (ch >= 'A' && ch <= 'F') {
187 return 10 + (ch - 'A');
188 } else {
189 return -1;
193 static void qtest_get_time(qemu_timeval *tv)
195 qemu_gettimeofday(tv);
196 tv->tv_sec -= start_time.tv_sec;
197 tv->tv_usec -= start_time.tv_usec;
198 if (tv->tv_usec < 0) {
199 tv->tv_usec += 1000000;
200 tv->tv_sec -= 1;
204 static void qtest_send_prefix(CharBackend *chr)
206 qemu_timeval tv;
208 if (!qtest_log_fp || !qtest_opened) {
209 return;
212 qtest_get_time(&tv);
213 fprintf(qtest_log_fp, "[S +" FMT_timeval "] ",
214 (long) tv.tv_sec, (long) tv.tv_usec);
217 static void GCC_FMT_ATTR(1, 2) qtest_log_send(const char *fmt, ...)
219 va_list ap;
221 if (!qtest_log_fp || !qtest_opened) {
222 return;
225 qtest_send_prefix(NULL);
227 va_start(ap, fmt);
228 vfprintf(qtest_log_fp, fmt, ap);
229 va_end(ap);
232 static void do_qtest_send(CharBackend *chr, const char *str, size_t len)
234 qemu_chr_fe_write_all(chr, (uint8_t *)str, len);
235 if (qtest_log_fp && qtest_opened) {
236 fprintf(qtest_log_fp, "%s", str);
240 static void qtest_send(CharBackend *chr, const char *str)
242 do_qtest_send(chr, str, strlen(str));
245 static void GCC_FMT_ATTR(2, 3) qtest_sendf(CharBackend *chr,
246 const char *fmt, ...)
248 va_list ap;
249 gchar *buffer;
251 va_start(ap, fmt);
252 buffer = g_strdup_vprintf(fmt, ap);
253 qtest_send(chr, buffer);
254 g_free(buffer);
255 va_end(ap);
258 static void qtest_irq_handler(void *opaque, int n, int level)
260 qemu_irq old_irq = *(qemu_irq *)opaque;
261 qemu_set_irq(old_irq, level);
263 if (irq_levels[n] != level) {
264 CharBackend *chr = &qtest_chr;
265 irq_levels[n] = level;
266 qtest_send_prefix(chr);
267 qtest_sendf(chr, "IRQ %s %d\n",
268 level ? "raise" : "lower", n);
272 static void qtest_process_command(CharBackend *chr, gchar **words)
274 const gchar *command;
276 g_assert(words);
278 command = words[0];
280 if (qtest_log_fp) {
281 qemu_timeval tv;
282 int i;
284 qtest_get_time(&tv);
285 fprintf(qtest_log_fp, "[R +" FMT_timeval "]",
286 (long) tv.tv_sec, (long) tv.tv_usec);
287 for (i = 0; words[i]; i++) {
288 fprintf(qtest_log_fp, " %s", words[i]);
290 fprintf(qtest_log_fp, "\n");
293 g_assert(command);
294 if (strcmp(words[0], "irq_intercept_out") == 0
295 || strcmp(words[0], "irq_intercept_in") == 0) {
296 DeviceState *dev;
297 NamedGPIOList *ngl;
299 g_assert(words[1]);
300 dev = DEVICE(object_resolve_path(words[1], NULL));
301 if (!dev) {
302 qtest_send_prefix(chr);
303 qtest_send(chr, "FAIL Unknown device\n");
304 return;
307 if (irq_intercept_dev) {
308 qtest_send_prefix(chr);
309 if (irq_intercept_dev != dev) {
310 qtest_send(chr, "FAIL IRQ intercept already enabled\n");
311 } else {
312 qtest_send(chr, "OK\n");
314 return;
317 QLIST_FOREACH(ngl, &dev->gpios, node) {
318 /* We don't support intercept of named GPIOs yet */
319 if (ngl->name) {
320 continue;
322 if (words[0][14] == 'o') {
323 int i;
324 for (i = 0; i < ngl->num_out; ++i) {
325 qemu_irq *disconnected = g_new0(qemu_irq, 1);
326 qemu_irq icpt = qemu_allocate_irq(qtest_irq_handler,
327 disconnected, i);
329 *disconnected = qdev_intercept_gpio_out(dev, icpt,
330 ngl->name, i);
332 } else {
333 qemu_irq_intercept_in(ngl->in, qtest_irq_handler,
334 ngl->num_in);
337 irq_intercept_dev = dev;
338 qtest_send_prefix(chr);
339 qtest_send(chr, "OK\n");
340 } else if (strcmp(words[0], "set_irq_in") == 0) {
341 DeviceState *dev;
342 qemu_irq irq;
343 char *name;
344 int ret;
345 int num;
346 int level;
348 g_assert(words[1] && words[2] && words[3] && words[4]);
350 dev = DEVICE(object_resolve_path(words[1], NULL));
351 if (!dev) {
352 qtest_send_prefix(chr);
353 qtest_send(chr, "FAIL Unknown device\n");
354 return;
357 if (strcmp(words[2], "unnamed-gpio-in") == 0) {
358 name = NULL;
359 } else {
360 name = words[2];
363 ret = qemu_strtoi(words[3], NULL, 0, &num);
364 g_assert(!ret);
365 ret = qemu_strtoi(words[4], NULL, 0, &level);
366 g_assert(!ret);
368 irq = qdev_get_gpio_in_named(dev, name, num);
370 qemu_set_irq(irq, level);
371 qtest_send_prefix(chr);
372 qtest_send(chr, "OK\n");
373 } else if (strcmp(words[0], "outb") == 0 ||
374 strcmp(words[0], "outw") == 0 ||
375 strcmp(words[0], "outl") == 0) {
376 unsigned long addr;
377 unsigned long value;
378 int ret;
380 g_assert(words[1] && words[2]);
381 ret = qemu_strtoul(words[1], NULL, 0, &addr);
382 g_assert(ret == 0);
383 ret = qemu_strtoul(words[2], NULL, 0, &value);
384 g_assert(ret == 0);
385 g_assert(addr <= 0xffff);
387 if (words[0][3] == 'b') {
388 cpu_outb(addr, value);
389 } else if (words[0][3] == 'w') {
390 cpu_outw(addr, value);
391 } else if (words[0][3] == 'l') {
392 cpu_outl(addr, value);
394 qtest_send_prefix(chr);
395 qtest_send(chr, "OK\n");
396 } else if (strcmp(words[0], "inb") == 0 ||
397 strcmp(words[0], "inw") == 0 ||
398 strcmp(words[0], "inl") == 0) {
399 unsigned long addr;
400 uint32_t value = -1U;
401 int ret;
403 g_assert(words[1]);
404 ret = qemu_strtoul(words[1], NULL, 0, &addr);
405 g_assert(ret == 0);
406 g_assert(addr <= 0xffff);
408 if (words[0][2] == 'b') {
409 value = cpu_inb(addr);
410 } else if (words[0][2] == 'w') {
411 value = cpu_inw(addr);
412 } else if (words[0][2] == 'l') {
413 value = cpu_inl(addr);
415 qtest_send_prefix(chr);
416 qtest_sendf(chr, "OK 0x%04x\n", value);
417 } else if (strcmp(words[0], "writeb") == 0 ||
418 strcmp(words[0], "writew") == 0 ||
419 strcmp(words[0], "writel") == 0 ||
420 strcmp(words[0], "writeq") == 0) {
421 uint64_t addr;
422 uint64_t value;
423 int ret;
425 g_assert(words[1] && words[2]);
426 ret = qemu_strtou64(words[1], NULL, 0, &addr);
427 g_assert(ret == 0);
428 ret = qemu_strtou64(words[2], NULL, 0, &value);
429 g_assert(ret == 0);
431 if (words[0][5] == 'b') {
432 uint8_t data = value;
433 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
434 &data, 1, true);
435 } else if (words[0][5] == 'w') {
436 uint16_t data = value;
437 tswap16s(&data);
438 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
439 (uint8_t *) &data, 2, true);
440 } else if (words[0][5] == 'l') {
441 uint32_t data = value;
442 tswap32s(&data);
443 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
444 (uint8_t *) &data, 4, true);
445 } else if (words[0][5] == 'q') {
446 uint64_t data = value;
447 tswap64s(&data);
448 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
449 (uint8_t *) &data, 8, true);
451 qtest_send_prefix(chr);
452 qtest_send(chr, "OK\n");
453 } else if (strcmp(words[0], "readb") == 0 ||
454 strcmp(words[0], "readw") == 0 ||
455 strcmp(words[0], "readl") == 0 ||
456 strcmp(words[0], "readq") == 0) {
457 uint64_t addr;
458 uint64_t value = UINT64_C(-1);
459 int ret;
461 g_assert(words[1]);
462 ret = qemu_strtou64(words[1], NULL, 0, &addr);
463 g_assert(ret == 0);
465 if (words[0][4] == 'b') {
466 uint8_t data;
467 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
468 &data, 1, false);
469 value = data;
470 } else if (words[0][4] == 'w') {
471 uint16_t data;
472 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
473 (uint8_t *) &data, 2, false);
474 value = tswap16(data);
475 } else if (words[0][4] == 'l') {
476 uint32_t data;
477 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
478 (uint8_t *) &data, 4, false);
479 value = tswap32(data);
480 } else if (words[0][4] == 'q') {
481 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
482 (uint8_t *) &value, 8, false);
483 tswap64s(&value);
485 qtest_send_prefix(chr);
486 qtest_sendf(chr, "OK 0x%016" PRIx64 "\n", value);
487 } else if (strcmp(words[0], "read") == 0) {
488 uint64_t addr, len, i;
489 uint8_t *data;
490 char *enc;
491 int ret;
493 g_assert(words[1] && words[2]);
494 ret = qemu_strtou64(words[1], NULL, 0, &addr);
495 g_assert(ret == 0);
496 ret = qemu_strtou64(words[2], NULL, 0, &len);
497 g_assert(ret == 0);
498 /* We'd send garbage to libqtest if len is 0 */
499 g_assert(len);
501 data = g_malloc(len);
502 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
503 data, len, false);
505 enc = g_malloc(2 * len + 1);
506 for (i = 0; i < len; i++) {
507 sprintf(&enc[i * 2], "%02x", data[i]);
510 qtest_send_prefix(chr);
511 qtest_sendf(chr, "OK 0x%s\n", enc);
513 g_free(data);
514 g_free(enc);
515 } else if (strcmp(words[0], "b64read") == 0) {
516 uint64_t addr, len;
517 uint8_t *data;
518 gchar *b64_data;
519 int ret;
521 g_assert(words[1] && words[2]);
522 ret = qemu_strtou64(words[1], NULL, 0, &addr);
523 g_assert(ret == 0);
524 ret = qemu_strtou64(words[2], NULL, 0, &len);
525 g_assert(ret == 0);
527 data = g_malloc(len);
528 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
529 data, len, false);
530 b64_data = g_base64_encode(data, len);
531 qtest_send_prefix(chr);
532 qtest_sendf(chr, "OK %s\n", b64_data);
534 g_free(data);
535 g_free(b64_data);
536 } else if (strcmp(words[0], "write") == 0) {
537 uint64_t addr, len, i;
538 uint8_t *data;
539 size_t data_len;
540 int ret;
542 g_assert(words[1] && words[2] && words[3]);
543 ret = qemu_strtou64(words[1], NULL, 0, &addr);
544 g_assert(ret == 0);
545 ret = qemu_strtou64(words[2], NULL, 0, &len);
546 g_assert(ret == 0);
548 data_len = strlen(words[3]);
549 if (data_len < 3) {
550 qtest_send(chr, "ERR invalid argument size\n");
551 return;
554 data = g_malloc(len);
555 for (i = 0; i < len; i++) {
556 if ((i * 2 + 4) <= data_len) {
557 data[i] = hex2nib(words[3][i * 2 + 2]) << 4;
558 data[i] |= hex2nib(words[3][i * 2 + 3]);
559 } else {
560 data[i] = 0;
563 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
564 data, len, true);
565 g_free(data);
567 qtest_send_prefix(chr);
568 qtest_send(chr, "OK\n");
569 } else if (strcmp(words[0], "memset") == 0) {
570 uint64_t addr, len;
571 uint8_t *data;
572 unsigned long pattern;
573 int ret;
575 g_assert(words[1] && words[2] && words[3]);
576 ret = qemu_strtou64(words[1], NULL, 0, &addr);
577 g_assert(ret == 0);
578 ret = qemu_strtou64(words[2], NULL, 0, &len);
579 g_assert(ret == 0);
580 ret = qemu_strtoul(words[3], NULL, 0, &pattern);
581 g_assert(ret == 0);
583 if (len) {
584 data = g_malloc(len);
585 memset(data, pattern, len);
586 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
587 data, len, true);
588 g_free(data);
591 qtest_send_prefix(chr);
592 qtest_send(chr, "OK\n");
593 } else if (strcmp(words[0], "b64write") == 0) {
594 uint64_t addr, len;
595 uint8_t *data;
596 size_t data_len;
597 gsize out_len;
598 int ret;
600 g_assert(words[1] && words[2] && words[3]);
601 ret = qemu_strtou64(words[1], NULL, 0, &addr);
602 g_assert(ret == 0);
603 ret = qemu_strtou64(words[2], NULL, 0, &len);
604 g_assert(ret == 0);
606 data_len = strlen(words[3]);
607 if (data_len < 3) {
608 qtest_send(chr, "ERR invalid argument size\n");
609 return;
612 data = g_base64_decode_inplace(words[3], &out_len);
613 if (out_len != len) {
614 qtest_log_send("b64write: data length mismatch (told %"PRIu64", "
615 "found %zu)\n",
616 len, out_len);
617 out_len = MIN(out_len, len);
620 address_space_rw(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
621 data, len, true);
623 qtest_send_prefix(chr);
624 qtest_send(chr, "OK\n");
625 } else if (strcmp(words[0], "endianness") == 0) {
626 qtest_send_prefix(chr);
627 #if defined(TARGET_WORDS_BIGENDIAN)
628 qtest_sendf(chr, "OK big\n");
629 #else
630 qtest_sendf(chr, "OK little\n");
631 #endif
632 #ifdef TARGET_PPC64
633 } else if (strcmp(words[0], "rtas") == 0) {
634 uint64_t res, args, ret;
635 unsigned long nargs, nret;
636 int rc;
638 rc = qemu_strtoul(words[2], NULL, 0, &nargs);
639 g_assert(rc == 0);
640 rc = qemu_strtou64(words[3], NULL, 0, &args);
641 g_assert(rc == 0);
642 rc = qemu_strtoul(words[4], NULL, 0, &nret);
643 g_assert(rc == 0);
644 rc = qemu_strtou64(words[5], NULL, 0, &ret);
645 g_assert(rc == 0);
646 res = qtest_rtas_call(words[1], nargs, args, nret, ret);
648 qtest_send_prefix(chr);
649 qtest_sendf(chr, "OK %"PRIu64"\n", res);
650 #endif
651 } else if (qtest_enabled() && strcmp(words[0], "clock_step") == 0) {
652 int64_t ns;
654 if (words[1]) {
655 int ret = qemu_strtoi64(words[1], NULL, 0, &ns);
656 g_assert(ret == 0);
657 } else {
658 ns = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
660 qtest_clock_warp(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns);
661 qtest_send_prefix(chr);
662 qtest_sendf(chr, "OK %"PRIi64"\n",
663 (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
664 } else if (qtest_enabled() && strcmp(words[0], "clock_set") == 0) {
665 int64_t ns;
666 int ret;
668 g_assert(words[1]);
669 ret = qemu_strtoi64(words[1], NULL, 0, &ns);
670 g_assert(ret == 0);
671 qtest_clock_warp(ns);
672 qtest_send_prefix(chr);
673 qtest_sendf(chr, "OK %"PRIi64"\n",
674 (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
675 } else {
676 qtest_send_prefix(chr);
677 qtest_sendf(chr, "FAIL Unknown command '%s'\n", words[0]);
681 static void qtest_process_inbuf(CharBackend *chr, GString *inbuf)
683 char *end;
685 while ((end = strchr(inbuf->str, '\n')) != NULL) {
686 size_t offset;
687 GString *cmd;
688 gchar **words;
690 offset = end - inbuf->str;
692 cmd = g_string_new_len(inbuf->str, offset);
693 g_string_erase(inbuf, 0, offset + 1);
695 words = g_strsplit(cmd->str, " ", 0);
696 qtest_process_command(chr, words);
697 g_strfreev(words);
699 g_string_free(cmd, TRUE);
703 static void qtest_read(void *opaque, const uint8_t *buf, int size)
705 CharBackend *chr = opaque;
707 g_string_append_len(inbuf, (const gchar *)buf, size);
708 qtest_process_inbuf(chr, inbuf);
711 static int qtest_can_read(void *opaque)
713 return 1024;
716 static void qtest_event(void *opaque, int event)
718 int i;
720 switch (event) {
721 case CHR_EVENT_OPENED:
723 * We used to call qemu_system_reset() here, hoping we could
724 * use the same process for multiple tests that way. Never
725 * used. Injects an extra reset even when it's not used, and
726 * that can mess up tests, e.g. -boot once.
728 for (i = 0; i < ARRAY_SIZE(irq_levels); i++) {
729 irq_levels[i] = 0;
731 qemu_gettimeofday(&start_time);
732 qtest_opened = true;
733 if (qtest_log_fp) {
734 fprintf(qtest_log_fp, "[I " FMT_timeval "] OPENED\n",
735 (long) start_time.tv_sec, (long) start_time.tv_usec);
737 break;
738 case CHR_EVENT_CLOSED:
739 qtest_opened = false;
740 if (qtest_log_fp) {
741 qemu_timeval tv;
742 qtest_get_time(&tv);
743 fprintf(qtest_log_fp, "[I +" FMT_timeval "] CLOSED\n",
744 (long) tv.tv_sec, (long) tv.tv_usec);
746 break;
747 default:
748 break;
752 static int qtest_init_accel(MachineState *ms)
754 QemuOpts *opts = qemu_opts_create(qemu_find_opts("icount"), NULL, 0,
755 &error_abort);
756 qemu_opt_set(opts, "shift", "0", &error_abort);
757 configure_icount(opts, &error_abort);
758 qemu_opts_del(opts);
759 return 0;
762 void qtest_init(const char *qtest_chrdev, const char *qtest_log, Error **errp)
764 Chardev *chr;
766 chr = qemu_chr_new("qtest", qtest_chrdev, NULL);
768 if (chr == NULL) {
769 error_setg(errp, "Failed to initialize device for qtest: \"%s\"",
770 qtest_chrdev);
771 return;
774 if (qtest_log) {
775 if (strcmp(qtest_log, "none") != 0) {
776 qtest_log_fp = fopen(qtest_log, "w+");
778 } else {
779 qtest_log_fp = stderr;
782 qemu_chr_fe_init(&qtest_chr, chr, errp);
783 qemu_chr_fe_set_handlers(&qtest_chr, qtest_can_read, qtest_read,
784 qtest_event, NULL, &qtest_chr, NULL, true);
785 qemu_chr_fe_set_echo(&qtest_chr, true);
787 inbuf = g_string_new("");
790 bool qtest_driver(void)
792 return qtest_chr.chr != NULL;
795 static void qtest_accel_class_init(ObjectClass *oc, void *data)
797 AccelClass *ac = ACCEL_CLASS(oc);
798 ac->name = "QTest";
799 ac->available = qtest_available;
800 ac->init_machine = qtest_init_accel;
801 ac->allowed = &qtest_allowed;
804 #define TYPE_QTEST_ACCEL ACCEL_CLASS_NAME("qtest")
806 static const TypeInfo qtest_accel_type = {
807 .name = TYPE_QTEST_ACCEL,
808 .parent = TYPE_ACCEL,
809 .class_init = qtest_accel_class_init,
812 static void qtest_type_init(void)
814 type_register_static(&qtest_accel_type);
817 type_init(qtest_type_init);