arm: Fix SMC reporting to EL2 when QEMU provides PSCI
[qemu/ar7.git] / hw / ppc / spapr_hcall.c
blob8d72bb7c1c34f762394c3204b5526ff72bcda017
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/error-report.h"
7 #include "cpu.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "mmu-hash64.h"
12 #include "cpu-models.h"
13 #include "trace.h"
14 #include "kvm_ppc.h"
15 #include "hw/ppc/spapr_ovec.h"
16 #include "qemu/error-report.h"
17 #include "mmu-book3s-v3.h"
19 struct SPRSyncState {
20 int spr;
21 target_ulong value;
22 target_ulong mask;
25 static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
27 struct SPRSyncState *s = arg.host_ptr;
28 PowerPCCPU *cpu = POWERPC_CPU(cs);
29 CPUPPCState *env = &cpu->env;
31 cpu_synchronize_state(cs);
32 env->spr[s->spr] &= ~s->mask;
33 env->spr[s->spr] |= s->value;
36 static void set_spr(CPUState *cs, int spr, target_ulong value,
37 target_ulong mask)
39 struct SPRSyncState s = {
40 .spr = spr,
41 .value = value,
42 .mask = mask
44 run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
47 static bool has_spr(PowerPCCPU *cpu, int spr)
49 /* We can test whether the SPR is defined by checking for a valid name */
50 return cpu->env.spr_cb[spr].name != NULL;
53 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
56 * hash value/pteg group index is normalized by HPT mask
58 if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
59 return false;
61 return true;
64 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
66 MachineState *machine = MACHINE(spapr);
67 MemoryHotplugState *hpms = &spapr->hotplug_memory;
69 if (addr < machine->ram_size) {
70 return true;
72 if ((addr >= hpms->base)
73 && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
74 return true;
77 return false;
80 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
81 target_ulong opcode, target_ulong *args)
83 target_ulong flags = args[0];
84 target_ulong ptex = args[1];
85 target_ulong pteh = args[2];
86 target_ulong ptel = args[3];
87 unsigned apshift;
88 target_ulong raddr;
89 target_ulong slot;
90 const ppc_hash_pte64_t *hptes;
92 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
93 if (!apshift) {
94 /* Bad page size encoding */
95 return H_PARAMETER;
98 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
100 if (is_ram_address(spapr, raddr)) {
101 /* Regular RAM - should have WIMG=0010 */
102 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
103 return H_PARAMETER;
105 } else {
106 target_ulong wimg_flags;
107 /* Looks like an IO address */
108 /* FIXME: What WIMG combinations could be sensible for IO?
109 * For now we allow WIMG=010x, but are there others? */
110 /* FIXME: Should we check against registered IO addresses? */
111 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
113 if (wimg_flags != HPTE64_R_I &&
114 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
115 return H_PARAMETER;
119 pteh &= ~0x60ULL;
121 if (!valid_ptex(cpu, ptex)) {
122 return H_PARAMETER;
125 slot = ptex & 7ULL;
126 ptex = ptex & ~7ULL;
128 if (likely((flags & H_EXACT) == 0)) {
129 hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
130 for (slot = 0; slot < 8; slot++) {
131 if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
132 break;
135 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
136 if (slot == 8) {
137 return H_PTEG_FULL;
139 } else {
140 hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
141 if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
142 ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
143 return H_PTEG_FULL;
145 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
148 ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
150 args[0] = ptex + slot;
151 return H_SUCCESS;
154 typedef enum {
155 REMOVE_SUCCESS = 0,
156 REMOVE_NOT_FOUND = 1,
157 REMOVE_PARM = 2,
158 REMOVE_HW = 3,
159 } RemoveResult;
161 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
162 target_ulong avpn,
163 target_ulong flags,
164 target_ulong *vp, target_ulong *rp)
166 const ppc_hash_pte64_t *hptes;
167 target_ulong v, r;
169 if (!valid_ptex(cpu, ptex)) {
170 return REMOVE_PARM;
173 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
174 v = ppc_hash64_hpte0(cpu, hptes, 0);
175 r = ppc_hash64_hpte1(cpu, hptes, 0);
176 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
178 if ((v & HPTE64_V_VALID) == 0 ||
179 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
180 ((flags & H_ANDCOND) && (v & avpn) != 0)) {
181 return REMOVE_NOT_FOUND;
183 *vp = v;
184 *rp = r;
185 ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
186 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
187 return REMOVE_SUCCESS;
190 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
191 target_ulong opcode, target_ulong *args)
193 CPUPPCState *env = &cpu->env;
194 target_ulong flags = args[0];
195 target_ulong ptex = args[1];
196 target_ulong avpn = args[2];
197 RemoveResult ret;
199 ret = remove_hpte(cpu, ptex, avpn, flags,
200 &args[0], &args[1]);
202 switch (ret) {
203 case REMOVE_SUCCESS:
204 check_tlb_flush(env, true);
205 return H_SUCCESS;
207 case REMOVE_NOT_FOUND:
208 return H_NOT_FOUND;
210 case REMOVE_PARM:
211 return H_PARAMETER;
213 case REMOVE_HW:
214 return H_HARDWARE;
217 g_assert_not_reached();
220 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
221 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
222 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
223 #define H_BULK_REMOVE_END 0xc000000000000000ULL
224 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL
225 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
226 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
227 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL
228 #define H_BULK_REMOVE_HW 0x3000000000000000ULL
229 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL
230 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
231 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
232 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
233 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
234 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
236 #define H_BULK_REMOVE_MAX_BATCH 4
238 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
239 target_ulong opcode, target_ulong *args)
241 CPUPPCState *env = &cpu->env;
242 int i;
243 target_ulong rc = H_SUCCESS;
245 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
246 target_ulong *tsh = &args[i*2];
247 target_ulong tsl = args[i*2 + 1];
248 target_ulong v, r, ret;
250 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
251 break;
252 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
253 return H_PARAMETER;
256 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
257 *tsh |= H_BULK_REMOVE_RESPONSE;
259 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
260 *tsh |= H_BULK_REMOVE_PARM;
261 return H_PARAMETER;
264 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
265 (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
266 &v, &r);
268 *tsh |= ret << 60;
270 switch (ret) {
271 case REMOVE_SUCCESS:
272 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
273 break;
275 case REMOVE_PARM:
276 rc = H_PARAMETER;
277 goto exit;
279 case REMOVE_HW:
280 rc = H_HARDWARE;
281 goto exit;
284 exit:
285 check_tlb_flush(env, true);
287 return rc;
290 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
291 target_ulong opcode, target_ulong *args)
293 CPUPPCState *env = &cpu->env;
294 target_ulong flags = args[0];
295 target_ulong ptex = args[1];
296 target_ulong avpn = args[2];
297 const ppc_hash_pte64_t *hptes;
298 target_ulong v, r;
300 if (!valid_ptex(cpu, ptex)) {
301 return H_PARAMETER;
304 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
305 v = ppc_hash64_hpte0(cpu, hptes, 0);
306 r = ppc_hash64_hpte1(cpu, hptes, 0);
307 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
309 if ((v & HPTE64_V_VALID) == 0 ||
310 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
311 return H_NOT_FOUND;
314 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
315 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
316 r |= (flags << 55) & HPTE64_R_PP0;
317 r |= (flags << 48) & HPTE64_R_KEY_HI;
318 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
319 ppc_hash64_store_hpte(cpu, ptex,
320 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
321 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
322 /* Flush the tlb */
323 check_tlb_flush(env, true);
324 /* Don't need a memory barrier, due to qemu's global lock */
325 ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
326 return H_SUCCESS;
329 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
330 target_ulong opcode, target_ulong *args)
332 target_ulong flags = args[0];
333 target_ulong ptex = args[1];
334 uint8_t *hpte;
335 int i, ridx, n_entries = 1;
337 if (!valid_ptex(cpu, ptex)) {
338 return H_PARAMETER;
341 if (flags & H_READ_4) {
342 /* Clear the two low order bits */
343 ptex &= ~(3ULL);
344 n_entries = 4;
347 hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
349 for (i = 0, ridx = 0; i < n_entries; i++) {
350 args[ridx++] = ldq_p(hpte);
351 args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
352 hpte += HASH_PTE_SIZE_64;
355 return H_SUCCESS;
358 struct sPAPRPendingHPT {
359 /* These fields are read-only after initialization */
360 int shift;
361 QemuThread thread;
363 /* These fields are protected by the BQL */
364 bool complete;
366 /* These fields are private to the preparation thread if
367 * !complete, otherwise protected by the BQL */
368 int ret;
369 void *hpt;
372 static void free_pending_hpt(sPAPRPendingHPT *pending)
374 if (pending->hpt) {
375 qemu_vfree(pending->hpt);
378 g_free(pending);
381 static void *hpt_prepare_thread(void *opaque)
383 sPAPRPendingHPT *pending = opaque;
384 size_t size = 1ULL << pending->shift;
386 pending->hpt = qemu_memalign(size, size);
387 if (pending->hpt) {
388 memset(pending->hpt, 0, size);
389 pending->ret = H_SUCCESS;
390 } else {
391 pending->ret = H_NO_MEM;
394 qemu_mutex_lock_iothread();
396 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
397 /* Ready to go */
398 pending->complete = true;
399 } else {
400 /* We've been cancelled, clean ourselves up */
401 free_pending_hpt(pending);
404 qemu_mutex_unlock_iothread();
405 return NULL;
408 /* Must be called with BQL held */
409 static void cancel_hpt_prepare(sPAPRMachineState *spapr)
411 sPAPRPendingHPT *pending = spapr->pending_hpt;
413 /* Let the thread know it's cancelled */
414 spapr->pending_hpt = NULL;
416 if (!pending) {
417 /* Nothing to do */
418 return;
421 if (!pending->complete) {
422 /* thread will clean itself up */
423 return;
426 free_pending_hpt(pending);
429 /* Convert a return code from the KVM ioctl()s implementing resize HPT
430 * into a PAPR hypercall return code */
431 static target_ulong resize_hpt_convert_rc(int ret)
433 if (ret >= 100000) {
434 return H_LONG_BUSY_ORDER_100_SEC;
435 } else if (ret >= 10000) {
436 return H_LONG_BUSY_ORDER_10_SEC;
437 } else if (ret >= 1000) {
438 return H_LONG_BUSY_ORDER_1_SEC;
439 } else if (ret >= 100) {
440 return H_LONG_BUSY_ORDER_100_MSEC;
441 } else if (ret >= 10) {
442 return H_LONG_BUSY_ORDER_10_MSEC;
443 } else if (ret > 0) {
444 return H_LONG_BUSY_ORDER_1_MSEC;
447 switch (ret) {
448 case 0:
449 return H_SUCCESS;
450 case -EPERM:
451 return H_AUTHORITY;
452 case -EINVAL:
453 return H_PARAMETER;
454 case -ENXIO:
455 return H_CLOSED;
456 case -ENOSPC:
457 return H_PTEG_FULL;
458 case -EBUSY:
459 return H_BUSY;
460 case -ENOMEM:
461 return H_NO_MEM;
462 default:
463 return H_HARDWARE;
467 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
468 sPAPRMachineState *spapr,
469 target_ulong opcode,
470 target_ulong *args)
472 target_ulong flags = args[0];
473 int shift = args[1];
474 sPAPRPendingHPT *pending = spapr->pending_hpt;
475 uint64_t current_ram_size = MACHINE(spapr)->ram_size;
476 int rc;
478 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
479 return H_AUTHORITY;
482 if (!spapr->htab_shift) {
483 /* Radix guest, no HPT */
484 return H_NOT_AVAILABLE;
487 trace_spapr_h_resize_hpt_prepare(flags, shift);
489 if (flags != 0) {
490 return H_PARAMETER;
493 if (shift && ((shift < 18) || (shift > 46))) {
494 return H_PARAMETER;
497 current_ram_size = pc_existing_dimms_capacity(&error_fatal);
499 /* We only allow the guest to allocate an HPT one order above what
500 * we'd normally give them (to stop a small guest claiming a huge
501 * chunk of resources in the HPT */
502 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
503 return H_RESOURCE;
506 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
507 if (rc != -ENOSYS) {
508 return resize_hpt_convert_rc(rc);
511 if (pending) {
512 /* something already in progress */
513 if (pending->shift == shift) {
514 /* and it's suitable */
515 if (pending->complete) {
516 return pending->ret;
517 } else {
518 return H_LONG_BUSY_ORDER_100_MSEC;
522 /* not suitable, cancel and replace */
523 cancel_hpt_prepare(spapr);
526 if (!shift) {
527 /* nothing to do */
528 return H_SUCCESS;
531 /* start new prepare */
533 pending = g_new0(sPAPRPendingHPT, 1);
534 pending->shift = shift;
535 pending->ret = H_HARDWARE;
537 qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
538 hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
540 spapr->pending_hpt = pending;
542 /* In theory we could estimate the time more accurately based on
543 * the new size, but there's not much point */
544 return H_LONG_BUSY_ORDER_100_MSEC;
547 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
549 uint8_t *addr = htab;
551 addr += pteg * HASH_PTEG_SIZE_64;
552 addr += slot * HASH_PTE_SIZE_64;
553 return ldq_p(addr);
556 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
557 uint64_t pte0, uint64_t pte1)
559 uint8_t *addr = htab;
561 addr += pteg * HASH_PTEG_SIZE_64;
562 addr += slot * HASH_PTE_SIZE_64;
564 stq_p(addr, pte0);
565 stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
568 static int rehash_hpte(PowerPCCPU *cpu,
569 const ppc_hash_pte64_t *hptes,
570 void *old_hpt, uint64_t oldsize,
571 void *new_hpt, uint64_t newsize,
572 uint64_t pteg, int slot)
574 uint64_t old_hash_mask = (oldsize >> 7) - 1;
575 uint64_t new_hash_mask = (newsize >> 7) - 1;
576 target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
577 target_ulong pte1;
578 uint64_t avpn;
579 unsigned base_pg_shift;
580 uint64_t hash, new_pteg, replace_pte0;
582 if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
583 return H_SUCCESS;
586 pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
588 base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
589 assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
590 avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
592 if (pte0 & HPTE64_V_SECONDARY) {
593 pteg = ~pteg;
596 if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
597 uint64_t offset, vsid;
599 /* We only have 28 - 23 bits of offset in avpn */
600 offset = (avpn & 0x1f) << 23;
601 vsid = avpn >> 5;
602 /* We can find more bits from the pteg value */
603 if (base_pg_shift < 23) {
604 offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
607 hash = vsid ^ (offset >> base_pg_shift);
608 } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
609 uint64_t offset, vsid;
611 /* We only have 40 - 23 bits of seg_off in avpn */
612 offset = (avpn & 0x1ffff) << 23;
613 vsid = avpn >> 17;
614 if (base_pg_shift < 23) {
615 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
616 << base_pg_shift;
619 hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
620 } else {
621 error_report("rehash_pte: Bad segment size in HPTE");
622 return H_HARDWARE;
625 new_pteg = hash & new_hash_mask;
626 if (pte0 & HPTE64_V_SECONDARY) {
627 assert(~pteg == (hash & old_hash_mask));
628 new_pteg = ~new_pteg;
629 } else {
630 assert(pteg == (hash & old_hash_mask));
632 assert((oldsize != newsize) || (pteg == new_pteg));
633 replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
635 * Strictly speaking, we don't need all these tests, since we only
636 * ever rehash bolted HPTEs. We might in future handle non-bolted
637 * HPTEs, though so make the logic correct for those cases as
638 * well.
640 if (replace_pte0 & HPTE64_V_VALID) {
641 assert(newsize < oldsize);
642 if (replace_pte0 & HPTE64_V_BOLTED) {
643 if (pte0 & HPTE64_V_BOLTED) {
644 /* Bolted collision, nothing we can do */
645 return H_PTEG_FULL;
646 } else {
647 /* Discard this hpte */
648 return H_SUCCESS;
653 new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
654 return H_SUCCESS;
657 static int rehash_hpt(PowerPCCPU *cpu,
658 void *old_hpt, uint64_t oldsize,
659 void *new_hpt, uint64_t newsize)
661 uint64_t n_ptegs = oldsize >> 7;
662 uint64_t pteg;
663 int slot;
664 int rc;
666 for (pteg = 0; pteg < n_ptegs; pteg++) {
667 hwaddr ptex = pteg * HPTES_PER_GROUP;
668 const ppc_hash_pte64_t *hptes
669 = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
671 if (!hptes) {
672 return H_HARDWARE;
675 for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
676 rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
677 pteg, slot);
678 if (rc != H_SUCCESS) {
679 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
680 return rc;
683 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
686 return H_SUCCESS;
689 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
691 int ret;
693 cpu_synchronize_state(cs);
695 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
696 if (ret < 0) {
697 error_report("failed to push sregs to KVM: %s", strerror(-ret));
698 exit(1);
702 static void push_sregs_to_kvm_pr(sPAPRMachineState *spapr)
704 CPUState *cs;
707 * This is a hack for the benefit of KVM PR - it abuses the SDR1
708 * slot in kvm_sregs to communicate the userspace address of the
709 * HPT
711 if (!kvm_enabled() || !spapr->htab) {
712 return;
715 CPU_FOREACH(cs) {
716 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
720 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
721 sPAPRMachineState *spapr,
722 target_ulong opcode,
723 target_ulong *args)
725 target_ulong flags = args[0];
726 target_ulong shift = args[1];
727 sPAPRPendingHPT *pending = spapr->pending_hpt;
728 int rc;
729 size_t newsize;
731 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
732 return H_AUTHORITY;
735 trace_spapr_h_resize_hpt_commit(flags, shift);
737 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
738 if (rc != -ENOSYS) {
739 return resize_hpt_convert_rc(rc);
742 if (flags != 0) {
743 return H_PARAMETER;
746 if (!pending || (pending->shift != shift)) {
747 /* no matching prepare */
748 return H_CLOSED;
751 if (!pending->complete) {
752 /* prepare has not completed */
753 return H_BUSY;
756 /* Shouldn't have got past PREPARE without an HPT */
757 g_assert(spapr->htab_shift);
759 newsize = 1ULL << pending->shift;
760 rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
761 pending->hpt, newsize);
762 if (rc == H_SUCCESS) {
763 qemu_vfree(spapr->htab);
764 spapr->htab = pending->hpt;
765 spapr->htab_shift = pending->shift;
767 push_sregs_to_kvm_pr(spapr);
769 pending->hpt = NULL; /* so it's not free()d */
772 /* Clean up */
773 spapr->pending_hpt = NULL;
774 free_pending_hpt(pending);
776 return rc;
779 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
780 target_ulong opcode, target_ulong *args)
782 cpu_synchronize_state(CPU(cpu));
783 cpu->env.spr[SPR_SPRG0] = args[0];
785 return H_SUCCESS;
788 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
789 target_ulong opcode, target_ulong *args)
791 if (!has_spr(cpu, SPR_DABR)) {
792 return H_HARDWARE; /* DABR register not available */
794 cpu_synchronize_state(CPU(cpu));
796 if (has_spr(cpu, SPR_DABRX)) {
797 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
798 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
799 return H_RESERVED_DABR;
802 cpu->env.spr[SPR_DABR] = args[0];
803 return H_SUCCESS;
806 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
807 target_ulong opcode, target_ulong *args)
809 target_ulong dabrx = args[1];
811 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
812 return H_HARDWARE;
815 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
816 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
817 return H_PARAMETER;
820 cpu_synchronize_state(CPU(cpu));
821 cpu->env.spr[SPR_DABRX] = dabrx;
822 cpu->env.spr[SPR_DABR] = args[0];
824 return H_SUCCESS;
827 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
828 target_ulong opcode, target_ulong *args)
830 target_ulong flags = args[0];
831 hwaddr dst = args[1];
832 hwaddr src = args[2];
833 hwaddr len = TARGET_PAGE_SIZE;
834 uint8_t *pdst, *psrc;
835 target_long ret = H_SUCCESS;
837 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
838 | H_COPY_PAGE | H_ZERO_PAGE)) {
839 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
840 flags);
841 return H_PARAMETER;
844 /* Map-in destination */
845 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
846 return H_PARAMETER;
848 pdst = cpu_physical_memory_map(dst, &len, 1);
849 if (!pdst || len != TARGET_PAGE_SIZE) {
850 return H_PARAMETER;
853 if (flags & H_COPY_PAGE) {
854 /* Map-in source, copy to destination, and unmap source again */
855 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
856 ret = H_PARAMETER;
857 goto unmap_out;
859 psrc = cpu_physical_memory_map(src, &len, 0);
860 if (!psrc || len != TARGET_PAGE_SIZE) {
861 ret = H_PARAMETER;
862 goto unmap_out;
864 memcpy(pdst, psrc, len);
865 cpu_physical_memory_unmap(psrc, len, 0, len);
866 } else if (flags & H_ZERO_PAGE) {
867 memset(pdst, 0, len); /* Just clear the destination page */
870 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
871 kvmppc_dcbst_range(cpu, pdst, len);
873 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
874 if (kvm_enabled()) {
875 kvmppc_icbi_range(cpu, pdst, len);
876 } else {
877 tb_flush(CPU(cpu));
881 unmap_out:
882 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
883 return ret;
886 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
887 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
888 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
889 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
890 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
891 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
893 #define VPA_MIN_SIZE 640
894 #define VPA_SIZE_OFFSET 0x4
895 #define VPA_SHARED_PROC_OFFSET 0x9
896 #define VPA_SHARED_PROC_VAL 0x2
898 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
900 CPUState *cs = CPU(ppc_env_get_cpu(env));
901 uint16_t size;
902 uint8_t tmp;
904 if (vpa == 0) {
905 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
906 return H_HARDWARE;
909 if (vpa % env->dcache_line_size) {
910 return H_PARAMETER;
912 /* FIXME: bounds check the address */
914 size = lduw_be_phys(cs->as, vpa + 0x4);
916 if (size < VPA_MIN_SIZE) {
917 return H_PARAMETER;
920 /* VPA is not allowed to cross a page boundary */
921 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
922 return H_PARAMETER;
925 env->vpa_addr = vpa;
927 tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
928 tmp |= VPA_SHARED_PROC_VAL;
929 stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
931 return H_SUCCESS;
934 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
936 if (env->slb_shadow_addr) {
937 return H_RESOURCE;
940 if (env->dtl_addr) {
941 return H_RESOURCE;
944 env->vpa_addr = 0;
945 return H_SUCCESS;
948 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
950 CPUState *cs = CPU(ppc_env_get_cpu(env));
951 uint32_t size;
953 if (addr == 0) {
954 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
955 return H_HARDWARE;
958 size = ldl_be_phys(cs->as, addr + 0x4);
959 if (size < 0x8) {
960 return H_PARAMETER;
963 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
964 return H_PARAMETER;
967 if (!env->vpa_addr) {
968 return H_RESOURCE;
971 env->slb_shadow_addr = addr;
972 env->slb_shadow_size = size;
974 return H_SUCCESS;
977 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
979 env->slb_shadow_addr = 0;
980 env->slb_shadow_size = 0;
981 return H_SUCCESS;
984 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
986 CPUState *cs = CPU(ppc_env_get_cpu(env));
987 uint32_t size;
989 if (addr == 0) {
990 hcall_dprintf("Can't cope with DTL at logical 0\n");
991 return H_HARDWARE;
994 size = ldl_be_phys(cs->as, addr + 0x4);
996 if (size < 48) {
997 return H_PARAMETER;
1000 if (!env->vpa_addr) {
1001 return H_RESOURCE;
1004 env->dtl_addr = addr;
1005 env->dtl_size = size;
1007 return H_SUCCESS;
1010 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
1012 env->dtl_addr = 0;
1013 env->dtl_size = 0;
1015 return H_SUCCESS;
1018 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1019 target_ulong opcode, target_ulong *args)
1021 target_ulong flags = args[0];
1022 target_ulong procno = args[1];
1023 target_ulong vpa = args[2];
1024 target_ulong ret = H_PARAMETER;
1025 CPUPPCState *tenv;
1026 PowerPCCPU *tcpu;
1028 tcpu = spapr_find_cpu(procno);
1029 if (!tcpu) {
1030 return H_PARAMETER;
1032 tenv = &tcpu->env;
1034 switch (flags) {
1035 case FLAGS_REGISTER_VPA:
1036 ret = register_vpa(tenv, vpa);
1037 break;
1039 case FLAGS_DEREGISTER_VPA:
1040 ret = deregister_vpa(tenv, vpa);
1041 break;
1043 case FLAGS_REGISTER_SLBSHADOW:
1044 ret = register_slb_shadow(tenv, vpa);
1045 break;
1047 case FLAGS_DEREGISTER_SLBSHADOW:
1048 ret = deregister_slb_shadow(tenv, vpa);
1049 break;
1051 case FLAGS_REGISTER_DTL:
1052 ret = register_dtl(tenv, vpa);
1053 break;
1055 case FLAGS_DEREGISTER_DTL:
1056 ret = deregister_dtl(tenv, vpa);
1057 break;
1060 return ret;
1063 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1064 target_ulong opcode, target_ulong *args)
1066 CPUPPCState *env = &cpu->env;
1067 CPUState *cs = CPU(cpu);
1069 env->msr |= (1ULL << MSR_EE);
1070 hreg_compute_hflags(env);
1071 if (!cpu_has_work(cs)) {
1072 cs->halted = 1;
1073 cs->exception_index = EXCP_HLT;
1074 cs->exit_request = 1;
1076 return H_SUCCESS;
1079 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1080 target_ulong opcode, target_ulong *args)
1082 target_ulong rtas_r3 = args[0];
1083 uint32_t token = rtas_ld(rtas_r3, 0);
1084 uint32_t nargs = rtas_ld(rtas_r3, 1);
1085 uint32_t nret = rtas_ld(rtas_r3, 2);
1087 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1088 nret, rtas_r3 + 12 + 4*nargs);
1091 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1092 target_ulong opcode, target_ulong *args)
1094 CPUState *cs = CPU(cpu);
1095 target_ulong size = args[0];
1096 target_ulong addr = args[1];
1098 switch (size) {
1099 case 1:
1100 args[0] = ldub_phys(cs->as, addr);
1101 return H_SUCCESS;
1102 case 2:
1103 args[0] = lduw_phys(cs->as, addr);
1104 return H_SUCCESS;
1105 case 4:
1106 args[0] = ldl_phys(cs->as, addr);
1107 return H_SUCCESS;
1108 case 8:
1109 args[0] = ldq_phys(cs->as, addr);
1110 return H_SUCCESS;
1112 return H_PARAMETER;
1115 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1116 target_ulong opcode, target_ulong *args)
1118 CPUState *cs = CPU(cpu);
1120 target_ulong size = args[0];
1121 target_ulong addr = args[1];
1122 target_ulong val = args[2];
1124 switch (size) {
1125 case 1:
1126 stb_phys(cs->as, addr, val);
1127 return H_SUCCESS;
1128 case 2:
1129 stw_phys(cs->as, addr, val);
1130 return H_SUCCESS;
1131 case 4:
1132 stl_phys(cs->as, addr, val);
1133 return H_SUCCESS;
1134 case 8:
1135 stq_phys(cs->as, addr, val);
1136 return H_SUCCESS;
1138 return H_PARAMETER;
1141 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1142 target_ulong opcode, target_ulong *args)
1144 CPUState *cs = CPU(cpu);
1146 target_ulong dst = args[0]; /* Destination address */
1147 target_ulong src = args[1]; /* Source address */
1148 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1149 target_ulong count = args[3]; /* Element count */
1150 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
1151 uint64_t tmp;
1152 unsigned int mask = (1 << esize) - 1;
1153 int step = 1 << esize;
1155 if (count > 0x80000000) {
1156 return H_PARAMETER;
1159 if ((dst & mask) || (src & mask) || (op > 1)) {
1160 return H_PARAMETER;
1163 if (dst >= src && dst < (src + (count << esize))) {
1164 dst = dst + ((count - 1) << esize);
1165 src = src + ((count - 1) << esize);
1166 step = -step;
1169 while (count--) {
1170 switch (esize) {
1171 case 0:
1172 tmp = ldub_phys(cs->as, src);
1173 break;
1174 case 1:
1175 tmp = lduw_phys(cs->as, src);
1176 break;
1177 case 2:
1178 tmp = ldl_phys(cs->as, src);
1179 break;
1180 case 3:
1181 tmp = ldq_phys(cs->as, src);
1182 break;
1183 default:
1184 return H_PARAMETER;
1186 if (op == 1) {
1187 tmp = ~tmp;
1189 switch (esize) {
1190 case 0:
1191 stb_phys(cs->as, dst, tmp);
1192 break;
1193 case 1:
1194 stw_phys(cs->as, dst, tmp);
1195 break;
1196 case 2:
1197 stl_phys(cs->as, dst, tmp);
1198 break;
1199 case 3:
1200 stq_phys(cs->as, dst, tmp);
1201 break;
1203 dst = dst + step;
1204 src = src + step;
1207 return H_SUCCESS;
1210 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1211 target_ulong opcode, target_ulong *args)
1213 /* Nothing to do on emulation, KVM will trap this in the kernel */
1214 return H_SUCCESS;
1217 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1218 target_ulong opcode, target_ulong *args)
1220 /* Nothing to do on emulation, KVM will trap this in the kernel */
1221 return H_SUCCESS;
1224 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1225 target_ulong mflags,
1226 target_ulong value1,
1227 target_ulong value2)
1229 CPUState *cs;
1231 if (value1) {
1232 return H_P3;
1234 if (value2) {
1235 return H_P4;
1238 switch (mflags) {
1239 case H_SET_MODE_ENDIAN_BIG:
1240 CPU_FOREACH(cs) {
1241 set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
1243 spapr_pci_switch_vga(true);
1244 return H_SUCCESS;
1246 case H_SET_MODE_ENDIAN_LITTLE:
1247 CPU_FOREACH(cs) {
1248 set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
1250 spapr_pci_switch_vga(false);
1251 return H_SUCCESS;
1254 return H_UNSUPPORTED_FLAG;
1257 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1258 target_ulong mflags,
1259 target_ulong value1,
1260 target_ulong value2)
1262 CPUState *cs;
1263 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1265 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1266 return H_P2;
1268 if (value1) {
1269 return H_P3;
1271 if (value2) {
1272 return H_P4;
1275 if (mflags == AIL_RESERVED) {
1276 return H_UNSUPPORTED_FLAG;
1279 CPU_FOREACH(cs) {
1280 set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1283 return H_SUCCESS;
1286 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1287 target_ulong opcode, target_ulong *args)
1289 target_ulong resource = args[1];
1290 target_ulong ret = H_P2;
1292 switch (resource) {
1293 case H_SET_MODE_RESOURCE_LE:
1294 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1295 break;
1296 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1297 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1298 args[2], args[3]);
1299 break;
1302 return ret;
1305 static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1306 target_ulong opcode, target_ulong *args)
1308 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1309 opcode, " (H_CLEAN_SLB)");
1310 return H_FUNCTION;
1313 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1314 target_ulong opcode, target_ulong *args)
1316 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1317 opcode, " (H_INVALIDATE_PID)");
1318 return H_FUNCTION;
1321 static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr,
1322 uint64_t patbe_old, uint64_t patbe_new)
1325 * We have 4 Options:
1326 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1327 * HASH->RADIX : Free HPT
1328 * RADIX->HASH : Allocate HPT
1329 * NOTHING->HASH : Allocate HPT
1330 * Note: NOTHING implies the case where we said the guest could choose
1331 * later and so assumed radix and now it's called H_REG_PROC_TBL
1334 if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) {
1335 /* We assume RADIX, so this catches all the "Do Nothing" cases */
1336 } else if (!(patbe_old & PATBE1_GR)) {
1337 /* HASH->RADIX : Free HPT */
1338 spapr_free_hpt(spapr);
1339 } else if (!(patbe_new & PATBE1_GR)) {
1340 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1341 spapr_setup_hpt_and_vrma(spapr);
1343 return;
1346 #define FLAGS_MASK 0x01FULL
1347 #define FLAG_MODIFY 0x10
1348 #define FLAG_REGISTER 0x08
1349 #define FLAG_RADIX 0x04
1350 #define FLAG_HASH_PROC_TBL 0x02
1351 #define FLAG_GTSE 0x01
1353 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1354 sPAPRMachineState *spapr,
1355 target_ulong opcode,
1356 target_ulong *args)
1358 CPUState *cs;
1359 target_ulong flags = args[0];
1360 target_ulong proc_tbl = args[1];
1361 target_ulong page_size = args[2];
1362 target_ulong table_size = args[3];
1363 uint64_t cproc;
1365 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1366 return H_PARAMETER;
1368 if (flags & FLAG_MODIFY) {
1369 if (flags & FLAG_REGISTER) {
1370 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1371 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1372 return H_P2;
1373 } else if (page_size) {
1374 return H_P3;
1375 } else if (table_size > 24) {
1376 return H_P4;
1378 cproc = PATBE1_GR | proc_tbl | table_size;
1379 } else { /* Register new HPT process table */
1380 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1381 /* TODO - Not Supported */
1382 /* Technically caused by flag bits => H_PARAMETER */
1383 return H_PARAMETER;
1384 } else { /* Hash with SLB */
1385 if (proc_tbl >> 38) {
1386 return H_P2;
1387 } else if (page_size & ~0x7) {
1388 return H_P3;
1389 } else if (table_size > 24) {
1390 return H_P4;
1393 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1396 } else { /* Deregister current process table */
1397 /* Set to benign value: (current GR) | 0. This allows
1398 * deregistration in KVM to succeed even if the radix bit in flags
1399 * doesn't match the radix bit in the old PATB. */
1400 cproc = spapr->patb_entry & PATBE1_GR;
1402 } else { /* Maintain current registration */
1403 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) {
1404 /* Technically caused by flag bits => H_PARAMETER */
1405 return H_PARAMETER; /* Existing Process Table Mismatch */
1407 cproc = spapr->patb_entry;
1410 /* Check if we need to setup OR free the hpt */
1411 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1413 spapr->patb_entry = cproc; /* Save new process table */
1415 /* Update the UPRT and GTSE bits in the LPCR for all cpus */
1416 CPU_FOREACH(cs) {
1417 set_spr(cs, SPR_LPCR,
1418 ((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) |
1419 ((flags & FLAG_GTSE) ? LPCR_GTSE : 0),
1420 LPCR_UPRT | LPCR_GTSE);
1423 if (kvm_enabled()) {
1424 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1425 flags & FLAG_GTSE, cproc);
1427 return H_SUCCESS;
1430 #define H_SIGNAL_SYS_RESET_ALL -1
1431 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1433 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1434 sPAPRMachineState *spapr,
1435 target_ulong opcode, target_ulong *args)
1437 target_long target = args[0];
1438 CPUState *cs;
1440 if (target < 0) {
1441 /* Broadcast */
1442 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1443 return H_PARAMETER;
1446 CPU_FOREACH(cs) {
1447 PowerPCCPU *c = POWERPC_CPU(cs);
1449 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1450 if (c == cpu) {
1451 continue;
1454 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1456 return H_SUCCESS;
1458 } else {
1459 /* Unicast */
1460 cs = CPU(spapr_find_cpu(target));
1461 if (cs) {
1462 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1463 return H_SUCCESS;
1465 return H_PARAMETER;
1469 static uint32_t cas_check_pvr(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1470 target_ulong *addr, bool *raw_mode_supported,
1471 Error **errp)
1473 bool explicit_match = false; /* Matched the CPU's real PVR */
1474 uint32_t max_compat = spapr->max_compat_pvr;
1475 uint32_t best_compat = 0;
1476 int i;
1479 * We scan the supplied table of PVRs looking for two things
1480 * 1. Is our real CPU PVR in the list?
1481 * 2. What's the "best" listed logical PVR
1483 for (i = 0; i < 512; ++i) {
1484 uint32_t pvr, pvr_mask;
1486 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1487 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1488 *addr += 8;
1490 if (~pvr_mask & pvr) {
1491 break; /* Terminator record */
1494 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1495 explicit_match = true;
1496 } else {
1497 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1498 best_compat = pvr;
1503 if ((best_compat == 0) && (!explicit_match || max_compat)) {
1504 /* We couldn't find a suitable compatibility mode, and either
1505 * the guest doesn't support "raw" mode for this CPU, or raw
1506 * mode is disabled because a maximum compat mode is set */
1507 error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1508 return 0;
1511 *raw_mode_supported = explicit_match;
1513 /* Parsing finished */
1514 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1516 return best_compat;
1519 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1520 sPAPRMachineState *spapr,
1521 target_ulong opcode,
1522 target_ulong *args)
1524 /* Working address in data buffer */
1525 target_ulong addr = ppc64_phys_to_real(args[0]);
1526 target_ulong ov_table;
1527 uint32_t cas_pvr;
1528 sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1529 bool guest_radix;
1530 Error *local_err = NULL;
1531 bool raw_mode_supported = false;
1533 cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1534 if (local_err) {
1535 error_report_err(local_err);
1536 return H_HARDWARE;
1539 /* Update CPUs */
1540 if (cpu->compat_pvr != cas_pvr) {
1541 ppc_set_compat_all(cas_pvr, &local_err);
1542 if (local_err) {
1543 /* We fail to set compat mode (likely because running with KVM PR),
1544 * but maybe we can fallback to raw mode if the guest supports it.
1546 if (!raw_mode_supported) {
1547 error_report_err(local_err);
1548 return H_HARDWARE;
1550 local_err = NULL;
1554 /* For the future use: here @ov_table points to the first option vector */
1555 ov_table = addr;
1557 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1558 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1559 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1560 error_report("guest requested hash and radix MMU, which is invalid.");
1561 exit(EXIT_FAILURE);
1563 /* The radix/hash bit in byte 24 requires special handling: */
1564 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1565 spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1568 * HPT resizing is a bit of a special case, because when enabled
1569 * we assume an HPT guest will support it until it says it
1570 * doesn't, instead of assuming it won't support it until it says
1571 * it does. Strictly speaking that approach could break for
1572 * guests which don't make a CAS call, but those are so old we
1573 * don't care about them. Without that assumption we'd have to
1574 * make at least a temporary allocation of an HPT sized for max
1575 * memory, which could be impossibly difficult under KVM HV if
1576 * maxram is large.
1578 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1579 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1581 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1582 error_report(
1583 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1584 exit(1);
1587 if (spapr->htab_shift < maxshift) {
1588 /* Guest doesn't know about HPT resizing, so we
1589 * pre-emptively resize for the maximum permitted RAM. At
1590 * the point this is called, nothing should have been
1591 * entered into the existing HPT */
1592 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1593 push_sregs_to_kvm_pr(spapr);
1597 /* NOTE: there are actually a number of ov5 bits where input from the
1598 * guest is always zero, and the platform/QEMU enables them independently
1599 * of guest input. To model these properly we'd want some sort of mask,
1600 * but since they only currently apply to memory migration as defined
1601 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1602 * to worry about this for now.
1604 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1606 /* also clear the radix/hash bit from the current ov5_cas bits to
1607 * be in sync with the newly ov5 bits. Else the radix bit will be
1608 * seen as being removed and this will generate a reset loop
1610 spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1612 /* full range of negotiated ov5 capabilities */
1613 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1614 spapr_ovec_cleanup(ov5_guest);
1615 /* capabilities that have been added since CAS-generated guest reset.
1616 * if capabilities have since been removed, generate another reset
1618 ov5_updates = spapr_ovec_new();
1619 spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1620 ov5_cas_old, spapr->ov5_cas);
1621 /* Now that processing is finished, set the radix/hash bit for the
1622 * guest if it requested a valid mode; otherwise terminate the boot. */
1623 if (guest_radix) {
1624 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1625 error_report("Guest requested unavailable MMU mode (radix).");
1626 exit(EXIT_FAILURE);
1628 spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1629 } else {
1630 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1631 && !kvmppc_has_cap_mmu_hash_v3()) {
1632 error_report("Guest requested unavailable MMU mode (hash).");
1633 exit(EXIT_FAILURE);
1636 spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1637 OV1_PPC_3_00);
1638 if (!spapr->cas_reboot) {
1639 spapr->cas_reboot =
1640 (spapr_h_cas_compose_response(spapr, args[1], args[2],
1641 ov5_updates) != 0);
1643 spapr_ovec_cleanup(ov5_updates);
1645 if (spapr->cas_reboot) {
1646 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1647 } else {
1648 /* If ppc_spapr_reset() did not set up a HPT but one is necessary
1649 * (because the guest isn't going to use radix) then set it up here. */
1650 if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) {
1651 /* legacy hash or new hash: */
1652 spapr_setup_hpt_and_vrma(spapr);
1656 return H_SUCCESS;
1659 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1660 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1662 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1664 spapr_hcall_fn *slot;
1666 if (opcode <= MAX_HCALL_OPCODE) {
1667 assert((opcode & 0x3) == 0);
1669 slot = &papr_hypercall_table[opcode / 4];
1670 } else {
1671 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1673 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1676 assert(!(*slot));
1677 *slot = fn;
1680 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1681 target_ulong *args)
1683 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1685 if ((opcode <= MAX_HCALL_OPCODE)
1686 && ((opcode & 0x3) == 0)) {
1687 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1689 if (fn) {
1690 return fn(cpu, spapr, opcode, args);
1692 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1693 (opcode <= KVMPPC_HCALL_MAX)) {
1694 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1696 if (fn) {
1697 return fn(cpu, spapr, opcode, args);
1701 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1702 opcode);
1703 return H_FUNCTION;
1706 static void hypercall_register_types(void)
1708 /* hcall-pft */
1709 spapr_register_hypercall(H_ENTER, h_enter);
1710 spapr_register_hypercall(H_REMOVE, h_remove);
1711 spapr_register_hypercall(H_PROTECT, h_protect);
1712 spapr_register_hypercall(H_READ, h_read);
1714 /* hcall-bulk */
1715 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1717 /* hcall-hpt-resize */
1718 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1719 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1721 /* hcall-splpar */
1722 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1723 spapr_register_hypercall(H_CEDE, h_cede);
1724 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1726 /* processor register resource access h-calls */
1727 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1728 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1729 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1730 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1731 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1733 /* In Memory Table MMU h-calls */
1734 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1735 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1736 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1738 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1739 * here between the "CI" and the "CACHE" variants, they will use whatever
1740 * mapping attributes qemu is using. When using KVM, the kernel will
1741 * enforce the attributes more strongly
1743 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1744 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1745 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1746 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1747 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1748 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1749 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1751 /* qemu/KVM-PPC specific hcalls */
1752 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1754 /* ibm,client-architecture-support support */
1755 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1758 type_init(hypercall_register_types)