migration: Add myself to the copyright list of both files
[qemu/ar7.git] / migration / ram.c
blob9db72a4c525e21e312c0d700e2b63e3aac4fe523
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
28 #include <stdint.h>
29 #include <stdarg.h>
30 #include <stdlib.h>
31 #include <zlib.h>
32 #ifndef _WIN32
33 #include <sys/types.h>
34 #include <sys/mman.h>
35 #endif
36 #include "config.h"
37 #include "monitor/monitor.h"
38 #include "sysemu/sysemu.h"
39 #include "qemu/bitops.h"
40 #include "qemu/bitmap.h"
41 #include "hw/i386/pc.h"
42 #include "hw/pci/pci.h"
43 #include "hw/audio/audio.h"
44 #include "migration/migration.h"
45 #include "exec/address-spaces.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "exec/ram_addr.h"
53 #include "qemu/host-utils.h"
54 #include "qemu/rcu_queue.h"
56 #ifdef DEBUG_MIGRATION_RAM
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
64 static bool mig_throttle_on;
65 static int dirty_rate_high_cnt;
66 static void check_guest_throttling(void);
68 static uint64_t bitmap_sync_count;
70 /***********************************************************/
71 /* ram save/restore */
73 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
74 #define RAM_SAVE_FLAG_COMPRESS 0x02
75 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
76 #define RAM_SAVE_FLAG_PAGE 0x08
77 #define RAM_SAVE_FLAG_EOS 0x10
78 #define RAM_SAVE_FLAG_CONTINUE 0x20
79 #define RAM_SAVE_FLAG_XBZRLE 0x40
80 /* 0x80 is reserved in migration.h start with 0x100 next */
81 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
83 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
85 static inline bool is_zero_range(uint8_t *p, uint64_t size)
87 return buffer_find_nonzero_offset(p, size) == size;
90 /* struct contains XBZRLE cache and a static page
91 used by the compression */
92 static struct {
93 /* buffer used for XBZRLE encoding */
94 uint8_t *encoded_buf;
95 /* buffer for storing page content */
96 uint8_t *current_buf;
97 /* Cache for XBZRLE, Protected by lock. */
98 PageCache *cache;
99 QemuMutex lock;
100 } XBZRLE;
102 /* buffer used for XBZRLE decoding */
103 static uint8_t *xbzrle_decoded_buf;
105 static void XBZRLE_cache_lock(void)
107 if (migrate_use_xbzrle())
108 qemu_mutex_lock(&XBZRLE.lock);
111 static void XBZRLE_cache_unlock(void)
113 if (migrate_use_xbzrle())
114 qemu_mutex_unlock(&XBZRLE.lock);
118 * called from qmp_migrate_set_cache_size in main thread, possibly while
119 * a migration is in progress.
120 * A running migration maybe using the cache and might finish during this
121 * call, hence changes to the cache are protected by XBZRLE.lock().
123 int64_t xbzrle_cache_resize(int64_t new_size)
125 PageCache *new_cache;
126 int64_t ret;
128 if (new_size < TARGET_PAGE_SIZE) {
129 return -1;
132 XBZRLE_cache_lock();
134 if (XBZRLE.cache != NULL) {
135 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
136 goto out_new_size;
138 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
139 TARGET_PAGE_SIZE);
140 if (!new_cache) {
141 error_report("Error creating cache");
142 ret = -1;
143 goto out;
146 cache_fini(XBZRLE.cache);
147 XBZRLE.cache = new_cache;
150 out_new_size:
151 ret = pow2floor(new_size);
152 out:
153 XBZRLE_cache_unlock();
154 return ret;
157 /* accounting for migration statistics */
158 typedef struct AccountingInfo {
159 uint64_t dup_pages;
160 uint64_t skipped_pages;
161 uint64_t norm_pages;
162 uint64_t iterations;
163 uint64_t xbzrle_bytes;
164 uint64_t xbzrle_pages;
165 uint64_t xbzrle_cache_miss;
166 double xbzrle_cache_miss_rate;
167 uint64_t xbzrle_overflows;
168 } AccountingInfo;
170 static AccountingInfo acct_info;
172 static void acct_clear(void)
174 memset(&acct_info, 0, sizeof(acct_info));
177 uint64_t dup_mig_bytes_transferred(void)
179 return acct_info.dup_pages * TARGET_PAGE_SIZE;
182 uint64_t dup_mig_pages_transferred(void)
184 return acct_info.dup_pages;
187 uint64_t skipped_mig_bytes_transferred(void)
189 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
192 uint64_t skipped_mig_pages_transferred(void)
194 return acct_info.skipped_pages;
197 uint64_t norm_mig_bytes_transferred(void)
199 return acct_info.norm_pages * TARGET_PAGE_SIZE;
202 uint64_t norm_mig_pages_transferred(void)
204 return acct_info.norm_pages;
207 uint64_t xbzrle_mig_bytes_transferred(void)
209 return acct_info.xbzrle_bytes;
212 uint64_t xbzrle_mig_pages_transferred(void)
214 return acct_info.xbzrle_pages;
217 uint64_t xbzrle_mig_pages_cache_miss(void)
219 return acct_info.xbzrle_cache_miss;
222 double xbzrle_mig_cache_miss_rate(void)
224 return acct_info.xbzrle_cache_miss_rate;
227 uint64_t xbzrle_mig_pages_overflow(void)
229 return acct_info.xbzrle_overflows;
232 /* This is the last block that we have visited serching for dirty pages
234 static RAMBlock *last_seen_block;
235 /* This is the last block from where we have sent data */
236 static RAMBlock *last_sent_block;
237 static ram_addr_t last_offset;
238 static unsigned long *migration_bitmap;
239 static uint64_t migration_dirty_pages;
240 static uint32_t last_version;
241 static bool ram_bulk_stage;
243 struct CompressParam {
244 bool start;
245 bool done;
246 QEMUFile *file;
247 QemuMutex mutex;
248 QemuCond cond;
249 RAMBlock *block;
250 ram_addr_t offset;
252 typedef struct CompressParam CompressParam;
254 struct DecompressParam {
255 bool start;
256 QemuMutex mutex;
257 QemuCond cond;
258 void *des;
259 uint8 *compbuf;
260 int len;
262 typedef struct DecompressParam DecompressParam;
264 static CompressParam *comp_param;
265 static QemuThread *compress_threads;
266 /* comp_done_cond is used to wake up the migration thread when
267 * one of the compression threads has finished the compression.
268 * comp_done_lock is used to co-work with comp_done_cond.
270 static QemuMutex *comp_done_lock;
271 static QemuCond *comp_done_cond;
272 /* The empty QEMUFileOps will be used by file in CompressParam */
273 static const QEMUFileOps empty_ops = { };
275 static bool compression_switch;
276 static bool quit_comp_thread;
277 static bool quit_decomp_thread;
278 static DecompressParam *decomp_param;
279 static QemuThread *decompress_threads;
280 static uint8_t *compressed_data_buf;
282 static int do_compress_ram_page(CompressParam *param);
284 static void *do_data_compress(void *opaque)
286 CompressParam *param = opaque;
288 while (!quit_comp_thread) {
289 qemu_mutex_lock(&param->mutex);
290 /* Re-check the quit_comp_thread in case of
291 * terminate_compression_threads is called just before
292 * qemu_mutex_lock(&param->mutex) and after
293 * while(!quit_comp_thread), re-check it here can make
294 * sure the compression thread terminate as expected.
296 while (!param->start && !quit_comp_thread) {
297 qemu_cond_wait(&param->cond, &param->mutex);
299 if (!quit_comp_thread) {
300 do_compress_ram_page(param);
302 param->start = false;
303 qemu_mutex_unlock(&param->mutex);
305 qemu_mutex_lock(comp_done_lock);
306 param->done = true;
307 qemu_cond_signal(comp_done_cond);
308 qemu_mutex_unlock(comp_done_lock);
311 return NULL;
314 static inline void terminate_compression_threads(void)
316 int idx, thread_count;
318 thread_count = migrate_compress_threads();
319 quit_comp_thread = true;
320 for (idx = 0; idx < thread_count; idx++) {
321 qemu_mutex_lock(&comp_param[idx].mutex);
322 qemu_cond_signal(&comp_param[idx].cond);
323 qemu_mutex_unlock(&comp_param[idx].mutex);
327 void migrate_compress_threads_join(void)
329 int i, thread_count;
331 if (!migrate_use_compression()) {
332 return;
334 terminate_compression_threads();
335 thread_count = migrate_compress_threads();
336 for (i = 0; i < thread_count; i++) {
337 qemu_thread_join(compress_threads + i);
338 qemu_fclose(comp_param[i].file);
339 qemu_mutex_destroy(&comp_param[i].mutex);
340 qemu_cond_destroy(&comp_param[i].cond);
342 qemu_mutex_destroy(comp_done_lock);
343 qemu_cond_destroy(comp_done_cond);
344 g_free(compress_threads);
345 g_free(comp_param);
346 g_free(comp_done_cond);
347 g_free(comp_done_lock);
348 compress_threads = NULL;
349 comp_param = NULL;
350 comp_done_cond = NULL;
351 comp_done_lock = NULL;
354 void migrate_compress_threads_create(void)
356 int i, thread_count;
358 if (!migrate_use_compression()) {
359 return;
361 quit_comp_thread = false;
362 compression_switch = true;
363 thread_count = migrate_compress_threads();
364 compress_threads = g_new0(QemuThread, thread_count);
365 comp_param = g_new0(CompressParam, thread_count);
366 comp_done_cond = g_new0(QemuCond, 1);
367 comp_done_lock = g_new0(QemuMutex, 1);
368 qemu_cond_init(comp_done_cond);
369 qemu_mutex_init(comp_done_lock);
370 for (i = 0; i < thread_count; i++) {
371 /* com_param[i].file is just used as a dummy buffer to save data, set
372 * it's ops to empty.
374 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
375 comp_param[i].done = true;
376 qemu_mutex_init(&comp_param[i].mutex);
377 qemu_cond_init(&comp_param[i].cond);
378 qemu_thread_create(compress_threads + i, "compress",
379 do_data_compress, comp_param + i,
380 QEMU_THREAD_JOINABLE);
385 * save_page_header: Write page header to wire
387 * If this is the 1st block, it also writes the block identification
389 * Returns: Number of bytes written
391 * @f: QEMUFile where to send the data
392 * @block: block that contains the page we want to send
393 * @offset: offset inside the block for the page
394 * in the lower bits, it contains flags
396 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
398 size_t size;
400 qemu_put_be64(f, offset);
401 size = 8;
403 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
404 qemu_put_byte(f, strlen(block->idstr));
405 qemu_put_buffer(f, (uint8_t *)block->idstr,
406 strlen(block->idstr));
407 size += 1 + strlen(block->idstr);
409 return size;
412 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
413 * The important thing is that a stale (not-yet-0'd) page be replaced
414 * by the new data.
415 * As a bonus, if the page wasn't in the cache it gets added so that
416 * when a small write is made into the 0'd page it gets XBZRLE sent
418 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
420 if (ram_bulk_stage || !migrate_use_xbzrle()) {
421 return;
424 /* We don't care if this fails to allocate a new cache page
425 * as long as it updated an old one */
426 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
427 bitmap_sync_count);
430 #define ENCODING_FLAG_XBZRLE 0x1
433 * save_xbzrle_page: compress and send current page
435 * Returns: 1 means that we wrote the page
436 * 0 means that page is identical to the one already sent
437 * -1 means that xbzrle would be longer than normal
439 * @f: QEMUFile where to send the data
440 * @current_data:
441 * @current_addr:
442 * @block: block that contains the page we want to send
443 * @offset: offset inside the block for the page
444 * @last_stage: if we are at the completion stage
445 * @bytes_transferred: increase it with the number of transferred bytes
447 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
448 ram_addr_t current_addr, RAMBlock *block,
449 ram_addr_t offset, bool last_stage,
450 uint64_t *bytes_transferred)
452 int encoded_len = 0, bytes_xbzrle;
453 uint8_t *prev_cached_page;
455 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
456 acct_info.xbzrle_cache_miss++;
457 if (!last_stage) {
458 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
459 bitmap_sync_count) == -1) {
460 return -1;
461 } else {
462 /* update *current_data when the page has been
463 inserted into cache */
464 *current_data = get_cached_data(XBZRLE.cache, current_addr);
467 return -1;
470 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
472 /* save current buffer into memory */
473 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
475 /* XBZRLE encoding (if there is no overflow) */
476 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
477 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
478 TARGET_PAGE_SIZE);
479 if (encoded_len == 0) {
480 DPRINTF("Skipping unmodified page\n");
481 return 0;
482 } else if (encoded_len == -1) {
483 DPRINTF("Overflow\n");
484 acct_info.xbzrle_overflows++;
485 /* update data in the cache */
486 if (!last_stage) {
487 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
488 *current_data = prev_cached_page;
490 return -1;
493 /* we need to update the data in the cache, in order to get the same data */
494 if (!last_stage) {
495 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
498 /* Send XBZRLE based compressed page */
499 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
500 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
501 qemu_put_be16(f, encoded_len);
502 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
503 bytes_xbzrle += encoded_len + 1 + 2;
504 acct_info.xbzrle_pages++;
505 acct_info.xbzrle_bytes += bytes_xbzrle;
506 *bytes_transferred += bytes_xbzrle;
508 return 1;
511 static inline
512 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
513 ram_addr_t start)
515 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
516 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
517 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
518 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
520 unsigned long next;
522 if (ram_bulk_stage && nr > base) {
523 next = nr + 1;
524 } else {
525 next = find_next_bit(migration_bitmap, size, nr);
528 if (next < size) {
529 clear_bit(next, migration_bitmap);
530 migration_dirty_pages--;
532 return (next - base) << TARGET_PAGE_BITS;
535 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
537 migration_dirty_pages +=
538 cpu_physical_memory_sync_dirty_bitmap(migration_bitmap, start, length);
542 /* Fix me: there are too many global variables used in migration process. */
543 static int64_t start_time;
544 static int64_t bytes_xfer_prev;
545 static int64_t num_dirty_pages_period;
546 static uint64_t xbzrle_cache_miss_prev;
547 static uint64_t iterations_prev;
549 static void migration_bitmap_sync_init(void)
551 start_time = 0;
552 bytes_xfer_prev = 0;
553 num_dirty_pages_period = 0;
554 xbzrle_cache_miss_prev = 0;
555 iterations_prev = 0;
558 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */
559 static void migration_bitmap_sync(void)
561 RAMBlock *block;
562 uint64_t num_dirty_pages_init = migration_dirty_pages;
563 MigrationState *s = migrate_get_current();
564 int64_t end_time;
565 int64_t bytes_xfer_now;
567 bitmap_sync_count++;
569 if (!bytes_xfer_prev) {
570 bytes_xfer_prev = ram_bytes_transferred();
573 if (!start_time) {
574 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
577 trace_migration_bitmap_sync_start();
578 address_space_sync_dirty_bitmap(&address_space_memory);
580 rcu_read_lock();
581 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
582 migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
584 rcu_read_unlock();
586 trace_migration_bitmap_sync_end(migration_dirty_pages
587 - num_dirty_pages_init);
588 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
589 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
591 /* more than 1 second = 1000 millisecons */
592 if (end_time > start_time + 1000) {
593 if (migrate_auto_converge()) {
594 /* The following detection logic can be refined later. For now:
595 Check to see if the dirtied bytes is 50% more than the approx.
596 amount of bytes that just got transferred since the last time we
597 were in this routine. If that happens >N times (for now N==4)
598 we turn on the throttle down logic */
599 bytes_xfer_now = ram_bytes_transferred();
600 if (s->dirty_pages_rate &&
601 (num_dirty_pages_period * TARGET_PAGE_SIZE >
602 (bytes_xfer_now - bytes_xfer_prev)/2) &&
603 (dirty_rate_high_cnt++ > 4)) {
604 trace_migration_throttle();
605 mig_throttle_on = true;
606 dirty_rate_high_cnt = 0;
608 bytes_xfer_prev = bytes_xfer_now;
609 } else {
610 mig_throttle_on = false;
612 if (migrate_use_xbzrle()) {
613 if (iterations_prev != acct_info.iterations) {
614 acct_info.xbzrle_cache_miss_rate =
615 (double)(acct_info.xbzrle_cache_miss -
616 xbzrle_cache_miss_prev) /
617 (acct_info.iterations - iterations_prev);
619 iterations_prev = acct_info.iterations;
620 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
622 s->dirty_pages_rate = num_dirty_pages_period * 1000
623 / (end_time - start_time);
624 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
625 start_time = end_time;
626 num_dirty_pages_period = 0;
628 s->dirty_sync_count = bitmap_sync_count;
632 * save_zero_page: Send the zero page to the stream
634 * Returns: Number of pages written.
636 * @f: QEMUFile where to send the data
637 * @block: block that contains the page we want to send
638 * @offset: offset inside the block for the page
639 * @p: pointer to the page
640 * @bytes_transferred: increase it with the number of transferred bytes
642 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
643 uint8_t *p, uint64_t *bytes_transferred)
645 int pages = -1;
647 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
648 acct_info.dup_pages++;
649 *bytes_transferred += save_page_header(f, block,
650 offset | RAM_SAVE_FLAG_COMPRESS);
651 qemu_put_byte(f, 0);
652 *bytes_transferred += 1;
653 pages = 1;
656 return pages;
660 * ram_save_page: Send the given page to the stream
662 * Returns: Number of pages written.
664 * @f: QEMUFile where to send the data
665 * @block: block that contains the page we want to send
666 * @offset: offset inside the block for the page
667 * @last_stage: if we are at the completion stage
668 * @bytes_transferred: increase it with the number of transferred bytes
670 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
671 bool last_stage, uint64_t *bytes_transferred)
673 int pages = -1;
674 uint64_t bytes_xmit;
675 ram_addr_t current_addr;
676 MemoryRegion *mr = block->mr;
677 uint8_t *p;
678 int ret;
679 bool send_async = true;
681 p = memory_region_get_ram_ptr(mr) + offset;
683 /* In doubt sent page as normal */
684 bytes_xmit = 0;
685 ret = ram_control_save_page(f, block->offset,
686 offset, TARGET_PAGE_SIZE, &bytes_xmit);
687 if (bytes_xmit) {
688 *bytes_transferred += bytes_xmit;
689 pages = 1;
692 XBZRLE_cache_lock();
694 current_addr = block->offset + offset;
696 if (block == last_sent_block) {
697 offset |= RAM_SAVE_FLAG_CONTINUE;
699 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
700 if (ret != RAM_SAVE_CONTROL_DELAYED) {
701 if (bytes_xmit > 0) {
702 acct_info.norm_pages++;
703 } else if (bytes_xmit == 0) {
704 acct_info.dup_pages++;
707 } else {
708 pages = save_zero_page(f, block, offset, p, bytes_transferred);
709 if (pages > 0) {
710 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
711 * page would be stale
713 xbzrle_cache_zero_page(current_addr);
714 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
715 pages = save_xbzrle_page(f, &p, current_addr, block,
716 offset, last_stage, bytes_transferred);
717 if (!last_stage) {
718 /* Can't send this cached data async, since the cache page
719 * might get updated before it gets to the wire
721 send_async = false;
726 /* XBZRLE overflow or normal page */
727 if (pages == -1) {
728 *bytes_transferred += save_page_header(f, block,
729 offset | RAM_SAVE_FLAG_PAGE);
730 if (send_async) {
731 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
732 } else {
733 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
735 *bytes_transferred += TARGET_PAGE_SIZE;
736 pages = 1;
737 acct_info.norm_pages++;
740 XBZRLE_cache_unlock();
742 return pages;
745 static int do_compress_ram_page(CompressParam *param)
747 int bytes_sent, blen;
748 uint8_t *p;
749 RAMBlock *block = param->block;
750 ram_addr_t offset = param->offset;
752 p = memory_region_get_ram_ptr(block->mr) + (offset & TARGET_PAGE_MASK);
754 bytes_sent = save_page_header(param->file, block, offset |
755 RAM_SAVE_FLAG_COMPRESS_PAGE);
756 blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE,
757 migrate_compress_level());
758 bytes_sent += blen;
760 return bytes_sent;
763 static inline void start_compression(CompressParam *param)
765 param->done = false;
766 qemu_mutex_lock(&param->mutex);
767 param->start = true;
768 qemu_cond_signal(&param->cond);
769 qemu_mutex_unlock(&param->mutex);
772 static inline void start_decompression(DecompressParam *param)
774 qemu_mutex_lock(&param->mutex);
775 param->start = true;
776 qemu_cond_signal(&param->cond);
777 qemu_mutex_unlock(&param->mutex);
780 static uint64_t bytes_transferred;
782 static void flush_compressed_data(QEMUFile *f)
784 int idx, len, thread_count;
786 if (!migrate_use_compression()) {
787 return;
789 thread_count = migrate_compress_threads();
790 for (idx = 0; idx < thread_count; idx++) {
791 if (!comp_param[idx].done) {
792 qemu_mutex_lock(comp_done_lock);
793 while (!comp_param[idx].done && !quit_comp_thread) {
794 qemu_cond_wait(comp_done_cond, comp_done_lock);
796 qemu_mutex_unlock(comp_done_lock);
798 if (!quit_comp_thread) {
799 len = qemu_put_qemu_file(f, comp_param[idx].file);
800 bytes_transferred += len;
805 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
806 ram_addr_t offset)
808 param->block = block;
809 param->offset = offset;
812 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
813 ram_addr_t offset,
814 uint64_t *bytes_transferred)
816 int idx, thread_count, bytes_xmit = -1, pages = -1;
818 thread_count = migrate_compress_threads();
819 qemu_mutex_lock(comp_done_lock);
820 while (true) {
821 for (idx = 0; idx < thread_count; idx++) {
822 if (comp_param[idx].done) {
823 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
824 set_compress_params(&comp_param[idx], block, offset);
825 start_compression(&comp_param[idx]);
826 pages = 1;
827 acct_info.norm_pages++;
828 *bytes_transferred += bytes_xmit;
829 break;
832 if (pages > 0) {
833 break;
834 } else {
835 qemu_cond_wait(comp_done_cond, comp_done_lock);
838 qemu_mutex_unlock(comp_done_lock);
840 return pages;
844 * ram_save_compressed_page: compress the given page and send it to the stream
846 * Returns: Number of pages written.
848 * @f: QEMUFile where to send the data
849 * @block: block that contains the page we want to send
850 * @offset: offset inside the block for the page
851 * @last_stage: if we are at the completion stage
852 * @bytes_transferred: increase it with the number of transferred bytes
854 static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block,
855 ram_addr_t offset, bool last_stage,
856 uint64_t *bytes_transferred)
858 int pages = -1;
859 uint64_t bytes_xmit;
860 MemoryRegion *mr = block->mr;
861 uint8_t *p;
862 int ret;
864 p = memory_region_get_ram_ptr(mr) + offset;
866 bytes_xmit = 0;
867 ret = ram_control_save_page(f, block->offset,
868 offset, TARGET_PAGE_SIZE, &bytes_xmit);
869 if (bytes_xmit) {
870 *bytes_transferred += bytes_xmit;
871 pages = 1;
873 if (block == last_sent_block) {
874 offset |= RAM_SAVE_FLAG_CONTINUE;
876 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
877 if (ret != RAM_SAVE_CONTROL_DELAYED) {
878 if (bytes_xmit > 0) {
879 acct_info.norm_pages++;
880 } else if (bytes_xmit == 0) {
881 acct_info.dup_pages++;
884 } else {
885 /* When starting the process of a new block, the first page of
886 * the block should be sent out before other pages in the same
887 * block, and all the pages in last block should have been sent
888 * out, keeping this order is important, because the 'cont' flag
889 * is used to avoid resending the block name.
891 if (block != last_sent_block) {
892 flush_compressed_data(f);
893 pages = save_zero_page(f, block, offset, p, bytes_transferred);
894 if (pages == -1) {
895 set_compress_params(&comp_param[0], block, offset);
896 /* Use the qemu thread to compress the data to make sure the
897 * first page is sent out before other pages
899 bytes_xmit = do_compress_ram_page(&comp_param[0]);
900 acct_info.norm_pages++;
901 qemu_put_qemu_file(f, comp_param[0].file);
902 *bytes_transferred += bytes_xmit;
903 pages = 1;
905 } else {
906 pages = save_zero_page(f, block, offset, p, bytes_transferred);
907 if (pages == -1) {
908 pages = compress_page_with_multi_thread(f, block, offset,
909 bytes_transferred);
914 return pages;
918 * ram_find_and_save_block: Finds a dirty page and sends it to f
920 * Called within an RCU critical section.
922 * Returns: The number of pages written
923 * 0 means no dirty pages
925 * @f: QEMUFile where to send the data
926 * @last_stage: if we are at the completion stage
927 * @bytes_transferred: increase it with the number of transferred bytes
930 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
931 uint64_t *bytes_transferred)
933 RAMBlock *block = last_seen_block;
934 ram_addr_t offset = last_offset;
935 bool complete_round = false;
936 int pages = 0;
937 MemoryRegion *mr;
939 if (!block)
940 block = QLIST_FIRST_RCU(&ram_list.blocks);
942 while (true) {
943 mr = block->mr;
944 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
945 if (complete_round && block == last_seen_block &&
946 offset >= last_offset) {
947 break;
949 if (offset >= block->used_length) {
950 offset = 0;
951 block = QLIST_NEXT_RCU(block, next);
952 if (!block) {
953 block = QLIST_FIRST_RCU(&ram_list.blocks);
954 complete_round = true;
955 ram_bulk_stage = false;
956 if (migrate_use_xbzrle()) {
957 /* If xbzrle is on, stop using the data compression at this
958 * point. In theory, xbzrle can do better than compression.
960 flush_compressed_data(f);
961 compression_switch = false;
964 } else {
965 if (compression_switch && migrate_use_compression()) {
966 pages = ram_save_compressed_page(f, block, offset, last_stage,
967 bytes_transferred);
968 } else {
969 pages = ram_save_page(f, block, offset, last_stage,
970 bytes_transferred);
973 /* if page is unmodified, continue to the next */
974 if (pages > 0) {
975 last_sent_block = block;
976 break;
981 last_seen_block = block;
982 last_offset = offset;
984 return pages;
987 void acct_update_position(QEMUFile *f, size_t size, bool zero)
989 uint64_t pages = size / TARGET_PAGE_SIZE;
990 if (zero) {
991 acct_info.dup_pages += pages;
992 } else {
993 acct_info.norm_pages += pages;
994 bytes_transferred += size;
995 qemu_update_position(f, size);
999 static ram_addr_t ram_save_remaining(void)
1001 return migration_dirty_pages;
1004 uint64_t ram_bytes_remaining(void)
1006 return ram_save_remaining() * TARGET_PAGE_SIZE;
1009 uint64_t ram_bytes_transferred(void)
1011 return bytes_transferred;
1014 uint64_t ram_bytes_total(void)
1016 RAMBlock *block;
1017 uint64_t total = 0;
1019 rcu_read_lock();
1020 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1021 total += block->used_length;
1022 rcu_read_unlock();
1023 return total;
1026 void free_xbzrle_decoded_buf(void)
1028 g_free(xbzrle_decoded_buf);
1029 xbzrle_decoded_buf = NULL;
1032 static void migration_end(void)
1034 if (migration_bitmap) {
1035 memory_global_dirty_log_stop();
1036 g_free(migration_bitmap);
1037 migration_bitmap = NULL;
1040 XBZRLE_cache_lock();
1041 if (XBZRLE.cache) {
1042 cache_fini(XBZRLE.cache);
1043 g_free(XBZRLE.encoded_buf);
1044 g_free(XBZRLE.current_buf);
1045 XBZRLE.cache = NULL;
1046 XBZRLE.encoded_buf = NULL;
1047 XBZRLE.current_buf = NULL;
1049 XBZRLE_cache_unlock();
1052 static void ram_migration_cancel(void *opaque)
1054 migration_end();
1057 static void reset_ram_globals(void)
1059 last_seen_block = NULL;
1060 last_sent_block = NULL;
1061 last_offset = 0;
1062 last_version = ram_list.version;
1063 ram_bulk_stage = true;
1066 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1069 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1070 * long-running RCU critical section. When rcu-reclaims in the code
1071 * start to become numerous it will be necessary to reduce the
1072 * granularity of these critical sections.
1075 static int ram_save_setup(QEMUFile *f, void *opaque)
1077 RAMBlock *block;
1078 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1080 mig_throttle_on = false;
1081 dirty_rate_high_cnt = 0;
1082 bitmap_sync_count = 0;
1083 migration_bitmap_sync_init();
1085 if (migrate_use_xbzrle()) {
1086 XBZRLE_cache_lock();
1087 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1088 TARGET_PAGE_SIZE,
1089 TARGET_PAGE_SIZE);
1090 if (!XBZRLE.cache) {
1091 XBZRLE_cache_unlock();
1092 error_report("Error creating cache");
1093 return -1;
1095 XBZRLE_cache_unlock();
1097 /* We prefer not to abort if there is no memory */
1098 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1099 if (!XBZRLE.encoded_buf) {
1100 error_report("Error allocating encoded_buf");
1101 return -1;
1104 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1105 if (!XBZRLE.current_buf) {
1106 error_report("Error allocating current_buf");
1107 g_free(XBZRLE.encoded_buf);
1108 XBZRLE.encoded_buf = NULL;
1109 return -1;
1112 acct_clear();
1115 /* iothread lock needed for ram_list.dirty_memory[] */
1116 qemu_mutex_lock_iothread();
1117 qemu_mutex_lock_ramlist();
1118 rcu_read_lock();
1119 bytes_transferred = 0;
1120 reset_ram_globals();
1122 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1123 migration_bitmap = bitmap_new(ram_bitmap_pages);
1124 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
1127 * Count the total number of pages used by ram blocks not including any
1128 * gaps due to alignment or unplugs.
1130 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1132 memory_global_dirty_log_start();
1133 migration_bitmap_sync();
1134 qemu_mutex_unlock_ramlist();
1135 qemu_mutex_unlock_iothread();
1137 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1139 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1140 qemu_put_byte(f, strlen(block->idstr));
1141 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1142 qemu_put_be64(f, block->used_length);
1145 rcu_read_unlock();
1147 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1148 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1150 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1152 return 0;
1155 static int ram_save_iterate(QEMUFile *f, void *opaque)
1157 int ret;
1158 int i;
1159 int64_t t0;
1160 int pages_sent = 0;
1162 rcu_read_lock();
1163 if (ram_list.version != last_version) {
1164 reset_ram_globals();
1167 /* Read version before ram_list.blocks */
1168 smp_rmb();
1170 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1172 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1173 i = 0;
1174 while ((ret = qemu_file_rate_limit(f)) == 0) {
1175 int pages;
1177 pages = ram_find_and_save_block(f, false, &bytes_transferred);
1178 /* no more pages to sent */
1179 if (pages == 0) {
1180 break;
1182 pages_sent += pages;
1183 acct_info.iterations++;
1184 check_guest_throttling();
1185 /* we want to check in the 1st loop, just in case it was the 1st time
1186 and we had to sync the dirty bitmap.
1187 qemu_get_clock_ns() is a bit expensive, so we only check each some
1188 iterations
1190 if ((i & 63) == 0) {
1191 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
1192 if (t1 > MAX_WAIT) {
1193 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
1194 t1, i);
1195 break;
1198 i++;
1200 flush_compressed_data(f);
1201 rcu_read_unlock();
1204 * Must occur before EOS (or any QEMUFile operation)
1205 * because of RDMA protocol.
1207 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
1209 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1210 bytes_transferred += 8;
1212 ret = qemu_file_get_error(f);
1213 if (ret < 0) {
1214 return ret;
1217 return pages_sent;
1220 /* Called with iothread lock */
1221 static int ram_save_complete(QEMUFile *f, void *opaque)
1223 rcu_read_lock();
1225 migration_bitmap_sync();
1227 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
1229 /* try transferring iterative blocks of memory */
1231 /* flush all remaining blocks regardless of rate limiting */
1232 while (true) {
1233 int pages;
1235 pages = ram_find_and_save_block(f, true, &bytes_transferred);
1236 /* no more blocks to sent */
1237 if (pages == 0) {
1238 break;
1242 flush_compressed_data(f);
1243 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
1244 migration_end();
1246 rcu_read_unlock();
1247 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1249 return 0;
1252 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
1254 uint64_t remaining_size;
1256 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1258 if (remaining_size < max_size) {
1259 qemu_mutex_lock_iothread();
1260 rcu_read_lock();
1261 migration_bitmap_sync();
1262 rcu_read_unlock();
1263 qemu_mutex_unlock_iothread();
1264 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1266 return remaining_size;
1269 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
1271 unsigned int xh_len;
1272 int xh_flags;
1274 if (!xbzrle_decoded_buf) {
1275 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1278 /* extract RLE header */
1279 xh_flags = qemu_get_byte(f);
1280 xh_len = qemu_get_be16(f);
1282 if (xh_flags != ENCODING_FLAG_XBZRLE) {
1283 error_report("Failed to load XBZRLE page - wrong compression!");
1284 return -1;
1287 if (xh_len > TARGET_PAGE_SIZE) {
1288 error_report("Failed to load XBZRLE page - len overflow!");
1289 return -1;
1291 /* load data and decode */
1292 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1294 /* decode RLE */
1295 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1296 TARGET_PAGE_SIZE) == -1) {
1297 error_report("Failed to load XBZRLE page - decode error!");
1298 return -1;
1301 return 0;
1304 /* Must be called from within a rcu critical section.
1305 * Returns a pointer from within the RCU-protected ram_list.
1307 static inline void *host_from_stream_offset(QEMUFile *f,
1308 ram_addr_t offset,
1309 int flags)
1311 static RAMBlock *block = NULL;
1312 char id[256];
1313 uint8_t len;
1315 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1316 if (!block || block->max_length <= offset) {
1317 error_report("Ack, bad migration stream!");
1318 return NULL;
1321 return memory_region_get_ram_ptr(block->mr) + offset;
1324 len = qemu_get_byte(f);
1325 qemu_get_buffer(f, (uint8_t *)id, len);
1326 id[len] = 0;
1328 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1329 if (!strncmp(id, block->idstr, sizeof(id)) &&
1330 block->max_length > offset) {
1331 return memory_region_get_ram_ptr(block->mr) + offset;
1335 error_report("Can't find block %s!", id);
1336 return NULL;
1340 * If a page (or a whole RDMA chunk) has been
1341 * determined to be zero, then zap it.
1343 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1345 if (ch != 0 || !is_zero_range(host, size)) {
1346 memset(host, ch, size);
1350 static void *do_data_decompress(void *opaque)
1352 DecompressParam *param = opaque;
1353 unsigned long pagesize;
1355 while (!quit_decomp_thread) {
1356 qemu_mutex_lock(&param->mutex);
1357 while (!param->start && !quit_decomp_thread) {
1358 qemu_cond_wait(&param->cond, &param->mutex);
1359 pagesize = TARGET_PAGE_SIZE;
1360 if (!quit_decomp_thread) {
1361 /* uncompress() will return failed in some case, especially
1362 * when the page is dirted when doing the compression, it's
1363 * not a problem because the dirty page will be retransferred
1364 * and uncompress() won't break the data in other pages.
1366 uncompress((Bytef *)param->des, &pagesize,
1367 (const Bytef *)param->compbuf, param->len);
1369 param->start = false;
1371 qemu_mutex_unlock(&param->mutex);
1374 return NULL;
1377 void migrate_decompress_threads_create(void)
1379 int i, thread_count;
1381 thread_count = migrate_decompress_threads();
1382 decompress_threads = g_new0(QemuThread, thread_count);
1383 decomp_param = g_new0(DecompressParam, thread_count);
1384 compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1385 quit_decomp_thread = false;
1386 for (i = 0; i < thread_count; i++) {
1387 qemu_mutex_init(&decomp_param[i].mutex);
1388 qemu_cond_init(&decomp_param[i].cond);
1389 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1390 qemu_thread_create(decompress_threads + i, "decompress",
1391 do_data_decompress, decomp_param + i,
1392 QEMU_THREAD_JOINABLE);
1396 void migrate_decompress_threads_join(void)
1398 int i, thread_count;
1400 quit_decomp_thread = true;
1401 thread_count = migrate_decompress_threads();
1402 for (i = 0; i < thread_count; i++) {
1403 qemu_mutex_lock(&decomp_param[i].mutex);
1404 qemu_cond_signal(&decomp_param[i].cond);
1405 qemu_mutex_unlock(&decomp_param[i].mutex);
1407 for (i = 0; i < thread_count; i++) {
1408 qemu_thread_join(decompress_threads + i);
1409 qemu_mutex_destroy(&decomp_param[i].mutex);
1410 qemu_cond_destroy(&decomp_param[i].cond);
1411 g_free(decomp_param[i].compbuf);
1413 g_free(decompress_threads);
1414 g_free(decomp_param);
1415 g_free(compressed_data_buf);
1416 decompress_threads = NULL;
1417 decomp_param = NULL;
1418 compressed_data_buf = NULL;
1421 static void decompress_data_with_multi_threads(uint8_t *compbuf,
1422 void *host, int len)
1424 int idx, thread_count;
1426 thread_count = migrate_decompress_threads();
1427 while (true) {
1428 for (idx = 0; idx < thread_count; idx++) {
1429 if (!decomp_param[idx].start) {
1430 memcpy(decomp_param[idx].compbuf, compbuf, len);
1431 decomp_param[idx].des = host;
1432 decomp_param[idx].len = len;
1433 start_decompression(&decomp_param[idx]);
1434 break;
1437 if (idx < thread_count) {
1438 break;
1443 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1445 int flags = 0, ret = 0;
1446 static uint64_t seq_iter;
1447 int len = 0;
1449 seq_iter++;
1451 if (version_id != 4) {
1452 ret = -EINVAL;
1455 /* This RCU critical section can be very long running.
1456 * When RCU reclaims in the code start to become numerous,
1457 * it will be necessary to reduce the granularity of this
1458 * critical section.
1460 rcu_read_lock();
1461 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1462 ram_addr_t addr, total_ram_bytes;
1463 void *host;
1464 uint8_t ch;
1466 addr = qemu_get_be64(f);
1467 flags = addr & ~TARGET_PAGE_MASK;
1468 addr &= TARGET_PAGE_MASK;
1470 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1471 case RAM_SAVE_FLAG_MEM_SIZE:
1472 /* Synchronize RAM block list */
1473 total_ram_bytes = addr;
1474 while (!ret && total_ram_bytes) {
1475 RAMBlock *block;
1476 uint8_t len;
1477 char id[256];
1478 ram_addr_t length;
1480 len = qemu_get_byte(f);
1481 qemu_get_buffer(f, (uint8_t *)id, len);
1482 id[len] = 0;
1483 length = qemu_get_be64(f);
1485 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1486 if (!strncmp(id, block->idstr, sizeof(id))) {
1487 if (length != block->used_length) {
1488 Error *local_err = NULL;
1490 ret = qemu_ram_resize(block->offset, length, &local_err);
1491 if (local_err) {
1492 error_report_err(local_err);
1495 break;
1499 if (!block) {
1500 error_report("Unknown ramblock \"%s\", cannot "
1501 "accept migration", id);
1502 ret = -EINVAL;
1505 total_ram_bytes -= length;
1507 break;
1508 case RAM_SAVE_FLAG_COMPRESS:
1509 host = host_from_stream_offset(f, addr, flags);
1510 if (!host) {
1511 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1512 ret = -EINVAL;
1513 break;
1515 ch = qemu_get_byte(f);
1516 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1517 break;
1518 case RAM_SAVE_FLAG_PAGE:
1519 host = host_from_stream_offset(f, addr, flags);
1520 if (!host) {
1521 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1522 ret = -EINVAL;
1523 break;
1525 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1526 break;
1527 case RAM_SAVE_FLAG_COMPRESS_PAGE:
1528 host = host_from_stream_offset(f, addr, flags);
1529 if (!host) {
1530 error_report("Invalid RAM offset " RAM_ADDR_FMT, addr);
1531 ret = -EINVAL;
1532 break;
1535 len = qemu_get_be32(f);
1536 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
1537 error_report("Invalid compressed data length: %d", len);
1538 ret = -EINVAL;
1539 break;
1541 qemu_get_buffer(f, compressed_data_buf, len);
1542 decompress_data_with_multi_threads(compressed_data_buf, host, len);
1543 break;
1544 case RAM_SAVE_FLAG_XBZRLE:
1545 host = host_from_stream_offset(f, addr, flags);
1546 if (!host) {
1547 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1548 ret = -EINVAL;
1549 break;
1551 if (load_xbzrle(f, addr, host) < 0) {
1552 error_report("Failed to decompress XBZRLE page at "
1553 RAM_ADDR_FMT, addr);
1554 ret = -EINVAL;
1555 break;
1557 break;
1558 case RAM_SAVE_FLAG_EOS:
1559 /* normal exit */
1560 break;
1561 default:
1562 if (flags & RAM_SAVE_FLAG_HOOK) {
1563 ram_control_load_hook(f, flags);
1564 } else {
1565 error_report("Unknown combination of migration flags: %#x",
1566 flags);
1567 ret = -EINVAL;
1570 if (!ret) {
1571 ret = qemu_file_get_error(f);
1575 rcu_read_unlock();
1576 DPRINTF("Completed load of VM with exit code %d seq iteration "
1577 "%" PRIu64 "\n", ret, seq_iter);
1578 return ret;
1581 static SaveVMHandlers savevm_ram_handlers = {
1582 .save_live_setup = ram_save_setup,
1583 .save_live_iterate = ram_save_iterate,
1584 .save_live_complete = ram_save_complete,
1585 .save_live_pending = ram_save_pending,
1586 .load_state = ram_load,
1587 .cancel = ram_migration_cancel,
1590 void ram_mig_init(void)
1592 qemu_mutex_init(&XBZRLE.lock);
1593 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1595 /* Stub function that's gets run on the vcpu when its brought out of the
1596 VM to run inside qemu via async_run_on_cpu()*/
1598 static void mig_sleep_cpu(void *opq)
1600 qemu_mutex_unlock_iothread();
1601 g_usleep(30*1000);
1602 qemu_mutex_lock_iothread();
1605 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1606 much time in the VM. The migration thread will try to catchup.
1607 Workload will experience a performance drop.
1609 static void mig_throttle_guest_down(void)
1611 CPUState *cpu;
1613 qemu_mutex_lock_iothread();
1614 CPU_FOREACH(cpu) {
1615 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1617 qemu_mutex_unlock_iothread();
1620 static void check_guest_throttling(void)
1622 static int64_t t0;
1623 int64_t t1;
1625 if (!mig_throttle_on) {
1626 return;
1629 if (!t0) {
1630 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1631 return;
1634 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1636 /* If it has been more than 40 ms since the last time the guest
1637 * was throttled then do it again.
1639 if (40 < (t1-t0)/1000000) {
1640 mig_throttle_guest_down();
1641 t0 = t1;