linux-user: introduce functions to detect CPU type
[qemu/ar7.git] / linux-user / elfload.c
blob0208022445f07cd1a5bdada645783317eef88203
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
93 #else
94 #define ELF_DATA ELFDATA2LSB
95 #endif
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t;
99 #define tswapreg(ptr) tswap64(ptr)
100 #else
101 typedef abi_ulong target_elf_greg_t;
102 #define tswapreg(ptr) tswapal(ptr)
103 #endif
105 #ifdef USE_UID16
106 typedef abi_ushort target_uid_t;
107 typedef abi_ushort target_gid_t;
108 #else
109 typedef abi_uint target_uid_t;
110 typedef abi_uint target_gid_t;
111 #endif
112 typedef abi_int target_pid_t;
114 #ifdef TARGET_I386
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform[] = "i386";
121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 X86CPU *cpu = X86_CPU(thread_cpu);
135 return cpu->env.features[FEAT_1_EDX];
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
151 #define ELF_NREG 27
152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
159 * See linux kernel: arch/x86/include/asm/elf.h
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
192 #else
194 #define ELF_START_MMAP 0x80000000
197 * This is used to ensure we don't load something for the wrong architecture.
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
202 * These are used to set parameters in the core dumps.
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
207 static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
223 #define ELF_NREG 17
224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
231 * See linux kernel: arch/x86/include/asm/elf.h
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
253 #endif
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
258 #endif
260 #ifdef TARGET_ARM
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
265 #define ELF_START_MMAP 0x80000000
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
273 abi_long stack = infop->start_stack;
274 memset(regs, 0, sizeof(*regs));
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
286 regs->uregs[0] = 0;
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs->uregs[10] = infop->start_data;
292 #define ELF_NREG 18
293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
321 enum
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
347 enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
355 /* The commpage only exists for 32 bit kernels */
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
366 static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
369 unsigned long real_start, test_page_addr;
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
379 if (test_page_addr >= guest_base
380 && test_page_addr < (guest_base + guest_size)) {
381 return -1;
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
414 return 1; /* All good */
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
420 static uint32_t get_elf_hwcap(void)
422 ARMCPU *cpu = ARM_CPU(thread_cpu);
423 uint32_t hwcaps = 0;
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
430 /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
452 return hwcaps;
455 static uint32_t get_elf_hwcap2(void)
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
468 #undef GET_FEATURE
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
474 #define ELF_ARCH EM_AARCH64
475 #define ELF_CLASS ELFCLASS64
476 #define ELF_PLATFORM "aarch64"
478 static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
488 #define ELF_NREG 34
489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
494 int i;
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE 4096
506 enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
515 ARM_HWCAP_A64_ATOMICS = 1 << 8,
516 ARM_HWCAP_A64_FPHP = 1 << 9,
517 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
518 ARM_HWCAP_A64_CPUID = 1 << 11,
519 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
520 ARM_HWCAP_A64_JSCVT = 1 << 13,
521 ARM_HWCAP_A64_FCMA = 1 << 14,
522 ARM_HWCAP_A64_LRCPC = 1 << 15,
523 ARM_HWCAP_A64_DCPOP = 1 << 16,
524 ARM_HWCAP_A64_SHA3 = 1 << 17,
525 ARM_HWCAP_A64_SM3 = 1 << 18,
526 ARM_HWCAP_A64_SM4 = 1 << 19,
527 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
528 ARM_HWCAP_A64_SHA512 = 1 << 21,
529 ARM_HWCAP_A64_SVE = 1 << 22,
532 #define ELF_HWCAP get_elf_hwcap()
534 static uint32_t get_elf_hwcap(void)
536 ARMCPU *cpu = ARM_CPU(thread_cpu);
537 uint32_t hwcaps = 0;
539 hwcaps |= ARM_HWCAP_A64_FP;
540 hwcaps |= ARM_HWCAP_A64_ASIMD;
542 /* probe for the extra features */
543 #define GET_FEATURE(feat, hwcap) \
544 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
545 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
546 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
547 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
548 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
549 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
550 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
551 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
552 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
553 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
554 #undef GET_FEATURE
556 return hwcaps;
559 #endif /* not TARGET_AARCH64 */
560 #endif /* TARGET_ARM */
562 #ifdef TARGET_UNICORE32
564 #define ELF_START_MMAP 0x80000000
566 #define ELF_CLASS ELFCLASS32
567 #define ELF_DATA ELFDATA2LSB
568 #define ELF_ARCH EM_UNICORE32
570 static inline void init_thread(struct target_pt_regs *regs,
571 struct image_info *infop)
573 abi_long stack = infop->start_stack;
574 memset(regs, 0, sizeof(*regs));
575 regs->UC32_REG_asr = 0x10;
576 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
577 regs->UC32_REG_sp = infop->start_stack;
578 /* FIXME - what to for failure of get_user()? */
579 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
580 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
581 /* XXX: it seems that r0 is zeroed after ! */
582 regs->UC32_REG_00 = 0;
585 #define ELF_NREG 34
586 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
588 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
590 (*regs)[0] = env->regs[0];
591 (*regs)[1] = env->regs[1];
592 (*regs)[2] = env->regs[2];
593 (*regs)[3] = env->regs[3];
594 (*regs)[4] = env->regs[4];
595 (*regs)[5] = env->regs[5];
596 (*regs)[6] = env->regs[6];
597 (*regs)[7] = env->regs[7];
598 (*regs)[8] = env->regs[8];
599 (*regs)[9] = env->regs[9];
600 (*regs)[10] = env->regs[10];
601 (*regs)[11] = env->regs[11];
602 (*regs)[12] = env->regs[12];
603 (*regs)[13] = env->regs[13];
604 (*regs)[14] = env->regs[14];
605 (*regs)[15] = env->regs[15];
606 (*regs)[16] = env->regs[16];
607 (*regs)[17] = env->regs[17];
608 (*regs)[18] = env->regs[18];
609 (*regs)[19] = env->regs[19];
610 (*regs)[20] = env->regs[20];
611 (*regs)[21] = env->regs[21];
612 (*regs)[22] = env->regs[22];
613 (*regs)[23] = env->regs[23];
614 (*regs)[24] = env->regs[24];
615 (*regs)[25] = env->regs[25];
616 (*regs)[26] = env->regs[26];
617 (*regs)[27] = env->regs[27];
618 (*regs)[28] = env->regs[28];
619 (*regs)[29] = env->regs[29];
620 (*regs)[30] = env->regs[30];
621 (*regs)[31] = env->regs[31];
623 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
624 (*regs)[33] = env->regs[0]; /* XXX */
627 #define USE_ELF_CORE_DUMP
628 #define ELF_EXEC_PAGESIZE 4096
630 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
632 #endif
634 #ifdef TARGET_SPARC
635 #ifdef TARGET_SPARC64
637 #define ELF_START_MMAP 0x80000000
638 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
639 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
640 #ifndef TARGET_ABI32
641 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
642 #else
643 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
644 #endif
646 #define ELF_CLASS ELFCLASS64
647 #define ELF_ARCH EM_SPARCV9
649 #define STACK_BIAS 2047
651 static inline void init_thread(struct target_pt_regs *regs,
652 struct image_info *infop)
654 #ifndef TARGET_ABI32
655 regs->tstate = 0;
656 #endif
657 regs->pc = infop->entry;
658 regs->npc = regs->pc + 4;
659 regs->y = 0;
660 #ifdef TARGET_ABI32
661 regs->u_regs[14] = infop->start_stack - 16 * 4;
662 #else
663 if (personality(infop->personality) == PER_LINUX32)
664 regs->u_regs[14] = infop->start_stack - 16 * 4;
665 else
666 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
667 #endif
670 #else
671 #define ELF_START_MMAP 0x80000000
672 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
673 | HWCAP_SPARC_MULDIV)
675 #define ELF_CLASS ELFCLASS32
676 #define ELF_ARCH EM_SPARC
678 static inline void init_thread(struct target_pt_regs *regs,
679 struct image_info *infop)
681 regs->psr = 0;
682 regs->pc = infop->entry;
683 regs->npc = regs->pc + 4;
684 regs->y = 0;
685 regs->u_regs[14] = infop->start_stack - 16 * 4;
688 #endif
689 #endif
691 #ifdef TARGET_PPC
693 #define ELF_MACHINE PPC_ELF_MACHINE
694 #define ELF_START_MMAP 0x80000000
696 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
698 #define elf_check_arch(x) ( (x) == EM_PPC64 )
700 #define ELF_CLASS ELFCLASS64
702 #else
704 #define ELF_CLASS ELFCLASS32
706 #endif
708 #define ELF_ARCH EM_PPC
710 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
711 See arch/powerpc/include/asm/cputable.h. */
712 enum {
713 QEMU_PPC_FEATURE_32 = 0x80000000,
714 QEMU_PPC_FEATURE_64 = 0x40000000,
715 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
716 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
717 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
718 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
719 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
720 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
721 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
722 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
723 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
724 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
725 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
726 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
727 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
728 QEMU_PPC_FEATURE_CELL = 0x00010000,
729 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
730 QEMU_PPC_FEATURE_SMT = 0x00004000,
731 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
732 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
733 QEMU_PPC_FEATURE_PA6T = 0x00000800,
734 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
735 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
736 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
737 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
738 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
740 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
741 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
743 /* Feature definitions in AT_HWCAP2. */
744 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
745 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
746 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
747 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
748 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
749 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
752 #define ELF_HWCAP get_elf_hwcap()
754 static uint32_t get_elf_hwcap(void)
756 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
757 uint32_t features = 0;
759 /* We don't have to be terribly complete here; the high points are
760 Altivec/FP/SPE support. Anything else is just a bonus. */
761 #define GET_FEATURE(flag, feature) \
762 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
763 #define GET_FEATURE2(flags, feature) \
764 do { \
765 if ((cpu->env.insns_flags2 & flags) == flags) { \
766 features |= feature; \
768 } while (0)
769 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
770 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
771 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
772 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
773 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
774 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
775 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
776 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
777 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
778 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
779 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
780 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
781 QEMU_PPC_FEATURE_ARCH_2_06);
782 #undef GET_FEATURE
783 #undef GET_FEATURE2
785 return features;
788 #define ELF_HWCAP2 get_elf_hwcap2()
790 static uint32_t get_elf_hwcap2(void)
792 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
793 uint32_t features = 0;
795 #define GET_FEATURE(flag, feature) \
796 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
797 #define GET_FEATURE2(flag, feature) \
798 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
800 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
801 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
802 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
803 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
805 #undef GET_FEATURE
806 #undef GET_FEATURE2
808 return features;
812 * The requirements here are:
813 * - keep the final alignment of sp (sp & 0xf)
814 * - make sure the 32-bit value at the first 16 byte aligned position of
815 * AUXV is greater than 16 for glibc compatibility.
816 * AT_IGNOREPPC is used for that.
817 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
818 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
820 #define DLINFO_ARCH_ITEMS 5
821 #define ARCH_DLINFO \
822 do { \
823 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
824 /* \
825 * Handle glibc compatibility: these magic entries must \
826 * be at the lowest addresses in the final auxv. \
827 */ \
828 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
829 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
830 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
831 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
832 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
833 } while (0)
835 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
837 _regs->gpr[1] = infop->start_stack;
838 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
839 if (get_ppc64_abi(infop) < 2) {
840 uint64_t val;
841 get_user_u64(val, infop->entry + 8);
842 _regs->gpr[2] = val + infop->load_bias;
843 get_user_u64(val, infop->entry);
844 infop->entry = val + infop->load_bias;
845 } else {
846 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
848 #endif
849 _regs->nip = infop->entry;
852 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
853 #define ELF_NREG 48
854 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
856 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
858 int i;
859 target_ulong ccr = 0;
861 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
862 (*regs)[i] = tswapreg(env->gpr[i]);
865 (*regs)[32] = tswapreg(env->nip);
866 (*regs)[33] = tswapreg(env->msr);
867 (*regs)[35] = tswapreg(env->ctr);
868 (*regs)[36] = tswapreg(env->lr);
869 (*regs)[37] = tswapreg(env->xer);
871 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
872 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
874 (*regs)[38] = tswapreg(ccr);
877 #define USE_ELF_CORE_DUMP
878 #define ELF_EXEC_PAGESIZE 4096
880 #endif
882 #ifdef TARGET_MIPS
884 #define ELF_START_MMAP 0x80000000
886 #ifdef TARGET_MIPS64
887 #define ELF_CLASS ELFCLASS64
888 #else
889 #define ELF_CLASS ELFCLASS32
890 #endif
891 #define ELF_ARCH EM_MIPS
893 static inline void init_thread(struct target_pt_regs *regs,
894 struct image_info *infop)
896 regs->cp0_status = 2 << CP0St_KSU;
897 regs->cp0_epc = infop->entry;
898 regs->regs[29] = infop->start_stack;
901 /* See linux kernel: arch/mips/include/asm/elf.h. */
902 #define ELF_NREG 45
903 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
905 /* See linux kernel: arch/mips/include/asm/reg.h. */
906 enum {
907 #ifdef TARGET_MIPS64
908 TARGET_EF_R0 = 0,
909 #else
910 TARGET_EF_R0 = 6,
911 #endif
912 TARGET_EF_R26 = TARGET_EF_R0 + 26,
913 TARGET_EF_R27 = TARGET_EF_R0 + 27,
914 TARGET_EF_LO = TARGET_EF_R0 + 32,
915 TARGET_EF_HI = TARGET_EF_R0 + 33,
916 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
917 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
918 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
919 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
922 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
923 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
925 int i;
927 for (i = 0; i < TARGET_EF_R0; i++) {
928 (*regs)[i] = 0;
930 (*regs)[TARGET_EF_R0] = 0;
932 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
933 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
936 (*regs)[TARGET_EF_R26] = 0;
937 (*regs)[TARGET_EF_R27] = 0;
938 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
939 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
940 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
941 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
942 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
943 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
946 #define USE_ELF_CORE_DUMP
947 #define ELF_EXEC_PAGESIZE 4096
949 #endif /* TARGET_MIPS */
951 #ifdef TARGET_MICROBLAZE
953 #define ELF_START_MMAP 0x80000000
955 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
957 #define ELF_CLASS ELFCLASS32
958 #define ELF_ARCH EM_MICROBLAZE
960 static inline void init_thread(struct target_pt_regs *regs,
961 struct image_info *infop)
963 regs->pc = infop->entry;
964 regs->r1 = infop->start_stack;
968 #define ELF_EXEC_PAGESIZE 4096
970 #define USE_ELF_CORE_DUMP
971 #define ELF_NREG 38
972 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
974 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
975 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
977 int i, pos = 0;
979 for (i = 0; i < 32; i++) {
980 (*regs)[pos++] = tswapreg(env->regs[i]);
983 for (i = 0; i < 6; i++) {
984 (*regs)[pos++] = tswapreg(env->sregs[i]);
988 #endif /* TARGET_MICROBLAZE */
990 #ifdef TARGET_NIOS2
992 #define ELF_START_MMAP 0x80000000
994 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
996 #define ELF_CLASS ELFCLASS32
997 #define ELF_ARCH EM_ALTERA_NIOS2
999 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1001 regs->ea = infop->entry;
1002 regs->sp = infop->start_stack;
1003 regs->estatus = 0x3;
1006 #define ELF_EXEC_PAGESIZE 4096
1008 #define USE_ELF_CORE_DUMP
1009 #define ELF_NREG 49
1010 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1012 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1013 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1014 const CPUNios2State *env)
1016 int i;
1018 (*regs)[0] = -1;
1019 for (i = 1; i < 8; i++) /* r0-r7 */
1020 (*regs)[i] = tswapreg(env->regs[i + 7]);
1022 for (i = 8; i < 16; i++) /* r8-r15 */
1023 (*regs)[i] = tswapreg(env->regs[i - 8]);
1025 for (i = 16; i < 24; i++) /* r16-r23 */
1026 (*regs)[i] = tswapreg(env->regs[i + 7]);
1027 (*regs)[24] = -1; /* R_ET */
1028 (*regs)[25] = -1; /* R_BT */
1029 (*regs)[26] = tswapreg(env->regs[R_GP]);
1030 (*regs)[27] = tswapreg(env->regs[R_SP]);
1031 (*regs)[28] = tswapreg(env->regs[R_FP]);
1032 (*regs)[29] = tswapreg(env->regs[R_EA]);
1033 (*regs)[30] = -1; /* R_SSTATUS */
1034 (*regs)[31] = tswapreg(env->regs[R_RA]);
1036 (*regs)[32] = tswapreg(env->regs[R_PC]);
1038 (*regs)[33] = -1; /* R_STATUS */
1039 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1041 for (i = 35; i < 49; i++) /* ... */
1042 (*regs)[i] = -1;
1045 #endif /* TARGET_NIOS2 */
1047 #ifdef TARGET_OPENRISC
1049 #define ELF_START_MMAP 0x08000000
1051 #define ELF_ARCH EM_OPENRISC
1052 #define ELF_CLASS ELFCLASS32
1053 #define ELF_DATA ELFDATA2MSB
1055 static inline void init_thread(struct target_pt_regs *regs,
1056 struct image_info *infop)
1058 regs->pc = infop->entry;
1059 regs->gpr[1] = infop->start_stack;
1062 #define USE_ELF_CORE_DUMP
1063 #define ELF_EXEC_PAGESIZE 8192
1065 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1066 #define ELF_NREG 34 /* gprs and pc, sr */
1067 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1069 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1070 const CPUOpenRISCState *env)
1072 int i;
1074 for (i = 0; i < 32; i++) {
1075 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1077 (*regs)[32] = tswapreg(env->pc);
1078 (*regs)[33] = tswapreg(cpu_get_sr(env));
1080 #define ELF_HWCAP 0
1081 #define ELF_PLATFORM NULL
1083 #endif /* TARGET_OPENRISC */
1085 #ifdef TARGET_SH4
1087 #define ELF_START_MMAP 0x80000000
1089 #define ELF_CLASS ELFCLASS32
1090 #define ELF_ARCH EM_SH
1092 static inline void init_thread(struct target_pt_regs *regs,
1093 struct image_info *infop)
1095 /* Check other registers XXXXX */
1096 regs->pc = infop->entry;
1097 regs->regs[15] = infop->start_stack;
1100 /* See linux kernel: arch/sh/include/asm/elf.h. */
1101 #define ELF_NREG 23
1102 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1104 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1105 enum {
1106 TARGET_REG_PC = 16,
1107 TARGET_REG_PR = 17,
1108 TARGET_REG_SR = 18,
1109 TARGET_REG_GBR = 19,
1110 TARGET_REG_MACH = 20,
1111 TARGET_REG_MACL = 21,
1112 TARGET_REG_SYSCALL = 22
1115 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1116 const CPUSH4State *env)
1118 int i;
1120 for (i = 0; i < 16; i++) {
1121 (*regs)[i] = tswapreg(env->gregs[i]);
1124 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1125 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1126 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1127 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1128 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1129 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1130 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1133 #define USE_ELF_CORE_DUMP
1134 #define ELF_EXEC_PAGESIZE 4096
1136 enum {
1137 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1138 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1139 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1140 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1141 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1142 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1143 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1144 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1145 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1146 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1149 #define ELF_HWCAP get_elf_hwcap()
1151 static uint32_t get_elf_hwcap(void)
1153 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1154 uint32_t hwcap = 0;
1156 hwcap |= SH_CPU_HAS_FPU;
1158 if (cpu->env.features & SH_FEATURE_SH4A) {
1159 hwcap |= SH_CPU_HAS_LLSC;
1162 return hwcap;
1165 #endif
1167 #ifdef TARGET_CRIS
1169 #define ELF_START_MMAP 0x80000000
1171 #define ELF_CLASS ELFCLASS32
1172 #define ELF_ARCH EM_CRIS
1174 static inline void init_thread(struct target_pt_regs *regs,
1175 struct image_info *infop)
1177 regs->erp = infop->entry;
1180 #define ELF_EXEC_PAGESIZE 8192
1182 #endif
1184 #ifdef TARGET_M68K
1186 #define ELF_START_MMAP 0x80000000
1188 #define ELF_CLASS ELFCLASS32
1189 #define ELF_ARCH EM_68K
1191 /* ??? Does this need to do anything?
1192 #define ELF_PLAT_INIT(_r) */
1194 static inline void init_thread(struct target_pt_regs *regs,
1195 struct image_info *infop)
1197 regs->usp = infop->start_stack;
1198 regs->sr = 0;
1199 regs->pc = infop->entry;
1202 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1203 #define ELF_NREG 20
1204 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1206 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1208 (*regs)[0] = tswapreg(env->dregs[1]);
1209 (*regs)[1] = tswapreg(env->dregs[2]);
1210 (*regs)[2] = tswapreg(env->dregs[3]);
1211 (*regs)[3] = tswapreg(env->dregs[4]);
1212 (*regs)[4] = tswapreg(env->dregs[5]);
1213 (*regs)[5] = tswapreg(env->dregs[6]);
1214 (*regs)[6] = tswapreg(env->dregs[7]);
1215 (*regs)[7] = tswapreg(env->aregs[0]);
1216 (*regs)[8] = tswapreg(env->aregs[1]);
1217 (*regs)[9] = tswapreg(env->aregs[2]);
1218 (*regs)[10] = tswapreg(env->aregs[3]);
1219 (*regs)[11] = tswapreg(env->aregs[4]);
1220 (*regs)[12] = tswapreg(env->aregs[5]);
1221 (*regs)[13] = tswapreg(env->aregs[6]);
1222 (*regs)[14] = tswapreg(env->dregs[0]);
1223 (*regs)[15] = tswapreg(env->aregs[7]);
1224 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1225 (*regs)[17] = tswapreg(env->sr);
1226 (*regs)[18] = tswapreg(env->pc);
1227 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1230 #define USE_ELF_CORE_DUMP
1231 #define ELF_EXEC_PAGESIZE 8192
1233 #endif
1235 #ifdef TARGET_ALPHA
1237 #define ELF_START_MMAP (0x30000000000ULL)
1239 #define ELF_CLASS ELFCLASS64
1240 #define ELF_ARCH EM_ALPHA
1242 static inline void init_thread(struct target_pt_regs *regs,
1243 struct image_info *infop)
1245 regs->pc = infop->entry;
1246 regs->ps = 8;
1247 regs->usp = infop->start_stack;
1250 #define ELF_EXEC_PAGESIZE 8192
1252 #endif /* TARGET_ALPHA */
1254 #ifdef TARGET_S390X
1256 #define ELF_START_MMAP (0x20000000000ULL)
1258 #define ELF_CLASS ELFCLASS64
1259 #define ELF_DATA ELFDATA2MSB
1260 #define ELF_ARCH EM_S390
1262 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1264 regs->psw.addr = infop->entry;
1265 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1266 regs->gprs[15] = infop->start_stack;
1269 #endif /* TARGET_S390X */
1271 #ifdef TARGET_TILEGX
1273 /* 42 bits real used address, a half for user mode */
1274 #define ELF_START_MMAP (0x00000020000000000ULL)
1276 #define elf_check_arch(x) ((x) == EM_TILEGX)
1278 #define ELF_CLASS ELFCLASS64
1279 #define ELF_DATA ELFDATA2LSB
1280 #define ELF_ARCH EM_TILEGX
1282 static inline void init_thread(struct target_pt_regs *regs,
1283 struct image_info *infop)
1285 regs->pc = infop->entry;
1286 regs->sp = infop->start_stack;
1290 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1292 #endif /* TARGET_TILEGX */
1294 #ifdef TARGET_HPPA
1296 #define ELF_START_MMAP 0x80000000
1297 #define ELF_CLASS ELFCLASS32
1298 #define ELF_ARCH EM_PARISC
1299 #define ELF_PLATFORM "PARISC"
1300 #define STACK_GROWS_DOWN 0
1301 #define STACK_ALIGNMENT 64
1303 static inline void init_thread(struct target_pt_regs *regs,
1304 struct image_info *infop)
1306 regs->iaoq[0] = infop->entry;
1307 regs->iaoq[1] = infop->entry + 4;
1308 regs->gr[23] = 0;
1309 regs->gr[24] = infop->arg_start;
1310 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1311 /* The top-of-stack contains a linkage buffer. */
1312 regs->gr[30] = infop->start_stack + 64;
1313 regs->gr[31] = infop->entry;
1316 #endif /* TARGET_HPPA */
1318 #ifndef ELF_PLATFORM
1319 #define ELF_PLATFORM (NULL)
1320 #endif
1322 #ifndef ELF_MACHINE
1323 #define ELF_MACHINE ELF_ARCH
1324 #endif
1326 #ifndef elf_check_arch
1327 #define elf_check_arch(x) ((x) == ELF_ARCH)
1328 #endif
1330 #ifndef ELF_HWCAP
1331 #define ELF_HWCAP 0
1332 #endif
1334 #ifndef STACK_GROWS_DOWN
1335 #define STACK_GROWS_DOWN 1
1336 #endif
1338 #ifndef STACK_ALIGNMENT
1339 #define STACK_ALIGNMENT 16
1340 #endif
1342 #ifdef TARGET_ABI32
1343 #undef ELF_CLASS
1344 #define ELF_CLASS ELFCLASS32
1345 #undef bswaptls
1346 #define bswaptls(ptr) bswap32s(ptr)
1347 #endif
1349 #include "elf.h"
1351 struct exec
1353 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1354 unsigned int a_text; /* length of text, in bytes */
1355 unsigned int a_data; /* length of data, in bytes */
1356 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1357 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1358 unsigned int a_entry; /* start address */
1359 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1360 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1364 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1365 #define OMAGIC 0407
1366 #define NMAGIC 0410
1367 #define ZMAGIC 0413
1368 #define QMAGIC 0314
1370 /* Necessary parameters */
1371 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1372 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1373 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1374 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1376 #define DLINFO_ITEMS 15
1378 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1380 memcpy(to, from, n);
1383 #ifdef BSWAP_NEEDED
1384 static void bswap_ehdr(struct elfhdr *ehdr)
1386 bswap16s(&ehdr->e_type); /* Object file type */
1387 bswap16s(&ehdr->e_machine); /* Architecture */
1388 bswap32s(&ehdr->e_version); /* Object file version */
1389 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1390 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1391 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1392 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1393 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1394 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1395 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1396 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1397 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1398 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1401 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1403 int i;
1404 for (i = 0; i < phnum; ++i, ++phdr) {
1405 bswap32s(&phdr->p_type); /* Segment type */
1406 bswap32s(&phdr->p_flags); /* Segment flags */
1407 bswaptls(&phdr->p_offset); /* Segment file offset */
1408 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1409 bswaptls(&phdr->p_paddr); /* Segment physical address */
1410 bswaptls(&phdr->p_filesz); /* Segment size in file */
1411 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1412 bswaptls(&phdr->p_align); /* Segment alignment */
1416 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1418 int i;
1419 for (i = 0; i < shnum; ++i, ++shdr) {
1420 bswap32s(&shdr->sh_name);
1421 bswap32s(&shdr->sh_type);
1422 bswaptls(&shdr->sh_flags);
1423 bswaptls(&shdr->sh_addr);
1424 bswaptls(&shdr->sh_offset);
1425 bswaptls(&shdr->sh_size);
1426 bswap32s(&shdr->sh_link);
1427 bswap32s(&shdr->sh_info);
1428 bswaptls(&shdr->sh_addralign);
1429 bswaptls(&shdr->sh_entsize);
1433 static void bswap_sym(struct elf_sym *sym)
1435 bswap32s(&sym->st_name);
1436 bswaptls(&sym->st_value);
1437 bswaptls(&sym->st_size);
1438 bswap16s(&sym->st_shndx);
1440 #else
1441 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1442 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1443 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1444 static inline void bswap_sym(struct elf_sym *sym) { }
1445 #endif
1447 #ifdef USE_ELF_CORE_DUMP
1448 static int elf_core_dump(int, const CPUArchState *);
1449 #endif /* USE_ELF_CORE_DUMP */
1450 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1452 /* Verify the portions of EHDR within E_IDENT for the target.
1453 This can be performed before bswapping the entire header. */
1454 static bool elf_check_ident(struct elfhdr *ehdr)
1456 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1457 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1458 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1459 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1460 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1461 && ehdr->e_ident[EI_DATA] == ELF_DATA
1462 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1465 /* Verify the portions of EHDR outside of E_IDENT for the target.
1466 This has to wait until after bswapping the header. */
1467 static bool elf_check_ehdr(struct elfhdr *ehdr)
1469 return (elf_check_arch(ehdr->e_machine)
1470 && ehdr->e_ehsize == sizeof(struct elfhdr)
1471 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1472 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1476 * 'copy_elf_strings()' copies argument/envelope strings from user
1477 * memory to free pages in kernel mem. These are in a format ready
1478 * to be put directly into the top of new user memory.
1481 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1482 abi_ulong p, abi_ulong stack_limit)
1484 char *tmp;
1485 int len, i;
1486 abi_ulong top = p;
1488 if (!p) {
1489 return 0; /* bullet-proofing */
1492 if (STACK_GROWS_DOWN) {
1493 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1494 for (i = argc - 1; i >= 0; --i) {
1495 tmp = argv[i];
1496 if (!tmp) {
1497 fprintf(stderr, "VFS: argc is wrong");
1498 exit(-1);
1500 len = strlen(tmp) + 1;
1501 tmp += len;
1503 if (len > (p - stack_limit)) {
1504 return 0;
1506 while (len) {
1507 int bytes_to_copy = (len > offset) ? offset : len;
1508 tmp -= bytes_to_copy;
1509 p -= bytes_to_copy;
1510 offset -= bytes_to_copy;
1511 len -= bytes_to_copy;
1513 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1515 if (offset == 0) {
1516 memcpy_to_target(p, scratch, top - p);
1517 top = p;
1518 offset = TARGET_PAGE_SIZE;
1522 if (p != top) {
1523 memcpy_to_target(p, scratch + offset, top - p);
1525 } else {
1526 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1527 for (i = 0; i < argc; ++i) {
1528 tmp = argv[i];
1529 if (!tmp) {
1530 fprintf(stderr, "VFS: argc is wrong");
1531 exit(-1);
1533 len = strlen(tmp) + 1;
1534 if (len > (stack_limit - p)) {
1535 return 0;
1537 while (len) {
1538 int bytes_to_copy = (len > remaining) ? remaining : len;
1540 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1542 tmp += bytes_to_copy;
1543 remaining -= bytes_to_copy;
1544 p += bytes_to_copy;
1545 len -= bytes_to_copy;
1547 if (remaining == 0) {
1548 memcpy_to_target(top, scratch, p - top);
1549 top = p;
1550 remaining = TARGET_PAGE_SIZE;
1554 if (p != top) {
1555 memcpy_to_target(top, scratch, p - top);
1559 return p;
1562 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1563 * argument/environment space. Newer kernels (>2.6.33) allow more,
1564 * dependent on stack size, but guarantee at least 32 pages for
1565 * backwards compatibility.
1567 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1569 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1570 struct image_info *info)
1572 abi_ulong size, error, guard;
1574 size = guest_stack_size;
1575 if (size < STACK_LOWER_LIMIT) {
1576 size = STACK_LOWER_LIMIT;
1578 guard = TARGET_PAGE_SIZE;
1579 if (guard < qemu_real_host_page_size) {
1580 guard = qemu_real_host_page_size;
1583 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1584 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1585 if (error == -1) {
1586 perror("mmap stack");
1587 exit(-1);
1590 /* We reserve one extra page at the top of the stack as guard. */
1591 if (STACK_GROWS_DOWN) {
1592 target_mprotect(error, guard, PROT_NONE);
1593 info->stack_limit = error + guard;
1594 return info->stack_limit + size - sizeof(void *);
1595 } else {
1596 target_mprotect(error + size, guard, PROT_NONE);
1597 info->stack_limit = error + size;
1598 return error;
1602 /* Map and zero the bss. We need to explicitly zero any fractional pages
1603 after the data section (i.e. bss). */
1604 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1606 uintptr_t host_start, host_map_start, host_end;
1608 last_bss = TARGET_PAGE_ALIGN(last_bss);
1610 /* ??? There is confusion between qemu_real_host_page_size and
1611 qemu_host_page_size here and elsewhere in target_mmap, which
1612 may lead to the end of the data section mapping from the file
1613 not being mapped. At least there was an explicit test and
1614 comment for that here, suggesting that "the file size must
1615 be known". The comment probably pre-dates the introduction
1616 of the fstat system call in target_mmap which does in fact
1617 find out the size. What isn't clear is if the workaround
1618 here is still actually needed. For now, continue with it,
1619 but merge it with the "normal" mmap that would allocate the bss. */
1621 host_start = (uintptr_t) g2h(elf_bss);
1622 host_end = (uintptr_t) g2h(last_bss);
1623 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1625 if (host_map_start < host_end) {
1626 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1627 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1628 if (p == MAP_FAILED) {
1629 perror("cannot mmap brk");
1630 exit(-1);
1634 /* Ensure that the bss page(s) are valid */
1635 if ((page_get_flags(last_bss-1) & prot) != prot) {
1636 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1639 if (host_start < host_map_start) {
1640 memset((void *)host_start, 0, host_map_start - host_start);
1644 #ifdef CONFIG_USE_FDPIC
1645 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1647 uint16_t n;
1648 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1650 /* elf32_fdpic_loadseg */
1651 n = info->nsegs;
1652 while (n--) {
1653 sp -= 12;
1654 put_user_u32(loadsegs[n].addr, sp+0);
1655 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1656 put_user_u32(loadsegs[n].p_memsz, sp+8);
1659 /* elf32_fdpic_loadmap */
1660 sp -= 4;
1661 put_user_u16(0, sp+0); /* version */
1662 put_user_u16(info->nsegs, sp+2); /* nsegs */
1664 info->personality = PER_LINUX_FDPIC;
1665 info->loadmap_addr = sp;
1667 return sp;
1669 #endif
1671 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1672 struct elfhdr *exec,
1673 struct image_info *info,
1674 struct image_info *interp_info)
1676 abi_ulong sp;
1677 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1678 int size;
1679 int i;
1680 abi_ulong u_rand_bytes;
1681 uint8_t k_rand_bytes[16];
1682 abi_ulong u_platform;
1683 const char *k_platform;
1684 const int n = sizeof(elf_addr_t);
1686 sp = p;
1688 #ifdef CONFIG_USE_FDPIC
1689 /* Needs to be before we load the env/argc/... */
1690 if (elf_is_fdpic(exec)) {
1691 /* Need 4 byte alignment for these structs */
1692 sp &= ~3;
1693 sp = loader_build_fdpic_loadmap(info, sp);
1694 info->other_info = interp_info;
1695 if (interp_info) {
1696 interp_info->other_info = info;
1697 sp = loader_build_fdpic_loadmap(interp_info, sp);
1700 #endif
1702 u_platform = 0;
1703 k_platform = ELF_PLATFORM;
1704 if (k_platform) {
1705 size_t len = strlen(k_platform) + 1;
1706 if (STACK_GROWS_DOWN) {
1707 sp -= (len + n - 1) & ~(n - 1);
1708 u_platform = sp;
1709 /* FIXME - check return value of memcpy_to_target() for failure */
1710 memcpy_to_target(sp, k_platform, len);
1711 } else {
1712 memcpy_to_target(sp, k_platform, len);
1713 u_platform = sp;
1714 sp += len + 1;
1718 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1719 * the argv and envp pointers.
1721 if (STACK_GROWS_DOWN) {
1722 sp = QEMU_ALIGN_DOWN(sp, 16);
1723 } else {
1724 sp = QEMU_ALIGN_UP(sp, 16);
1728 * Generate 16 random bytes for userspace PRNG seeding (not
1729 * cryptically secure but it's not the aim of QEMU).
1731 for (i = 0; i < 16; i++) {
1732 k_rand_bytes[i] = rand();
1734 if (STACK_GROWS_DOWN) {
1735 sp -= 16;
1736 u_rand_bytes = sp;
1737 /* FIXME - check return value of memcpy_to_target() for failure */
1738 memcpy_to_target(sp, k_rand_bytes, 16);
1739 } else {
1740 memcpy_to_target(sp, k_rand_bytes, 16);
1741 u_rand_bytes = sp;
1742 sp += 16;
1745 size = (DLINFO_ITEMS + 1) * 2;
1746 if (k_platform)
1747 size += 2;
1748 #ifdef DLINFO_ARCH_ITEMS
1749 size += DLINFO_ARCH_ITEMS * 2;
1750 #endif
1751 #ifdef ELF_HWCAP2
1752 size += 2;
1753 #endif
1754 info->auxv_len = size * n;
1756 size += envc + argc + 2;
1757 size += 1; /* argc itself */
1758 size *= n;
1760 /* Allocate space and finalize stack alignment for entry now. */
1761 if (STACK_GROWS_DOWN) {
1762 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1763 sp = u_argc;
1764 } else {
1765 u_argc = sp;
1766 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1769 u_argv = u_argc + n;
1770 u_envp = u_argv + (argc + 1) * n;
1771 u_auxv = u_envp + (envc + 1) * n;
1772 info->saved_auxv = u_auxv;
1773 info->arg_start = u_argv;
1774 info->arg_end = u_argv + argc * n;
1776 /* This is correct because Linux defines
1777 * elf_addr_t as Elf32_Off / Elf64_Off
1779 #define NEW_AUX_ENT(id, val) do { \
1780 put_user_ual(id, u_auxv); u_auxv += n; \
1781 put_user_ual(val, u_auxv); u_auxv += n; \
1782 } while(0)
1784 #ifdef ARCH_DLINFO
1786 * ARCH_DLINFO must come first so platform specific code can enforce
1787 * special alignment requirements on the AUXV if necessary (eg. PPC).
1789 ARCH_DLINFO;
1790 #endif
1791 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1792 * on info->auxv_len will trigger.
1794 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1795 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1796 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1797 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1798 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1799 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1800 NEW_AUX_ENT(AT_ENTRY, info->entry);
1801 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1802 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1803 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1804 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1805 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1806 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1807 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1808 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1810 #ifdef ELF_HWCAP2
1811 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1812 #endif
1814 if (u_platform) {
1815 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1817 NEW_AUX_ENT (AT_NULL, 0);
1818 #undef NEW_AUX_ENT
1820 /* Check that our initial calculation of the auxv length matches how much
1821 * we actually put into it.
1823 assert(info->auxv_len == u_auxv - info->saved_auxv);
1825 put_user_ual(argc, u_argc);
1827 p = info->arg_strings;
1828 for (i = 0; i < argc; ++i) {
1829 put_user_ual(p, u_argv);
1830 u_argv += n;
1831 p += target_strlen(p) + 1;
1833 put_user_ual(0, u_argv);
1835 p = info->env_strings;
1836 for (i = 0; i < envc; ++i) {
1837 put_user_ual(p, u_envp);
1838 u_envp += n;
1839 p += target_strlen(p) + 1;
1841 put_user_ual(0, u_envp);
1843 return sp;
1846 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1847 /* If the guest doesn't have a validation function just agree */
1848 static int validate_guest_space(unsigned long guest_base,
1849 unsigned long guest_size)
1851 return 1;
1853 #endif
1855 unsigned long init_guest_space(unsigned long host_start,
1856 unsigned long host_size,
1857 unsigned long guest_start,
1858 bool fixed)
1860 unsigned long current_start, real_start;
1861 int flags;
1863 assert(host_start || host_size);
1865 /* If just a starting address is given, then just verify that
1866 * address. */
1867 if (host_start && !host_size) {
1868 if (validate_guest_space(host_start, host_size) == 1) {
1869 return host_start;
1870 } else {
1871 return (unsigned long)-1;
1875 /* Setup the initial flags and start address. */
1876 current_start = host_start & qemu_host_page_mask;
1877 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1878 if (fixed) {
1879 flags |= MAP_FIXED;
1882 /* Otherwise, a non-zero size region of memory needs to be mapped
1883 * and validated. */
1884 while (1) {
1885 unsigned long real_size = host_size;
1887 /* Do not use mmap_find_vma here because that is limited to the
1888 * guest address space. We are going to make the
1889 * guest address space fit whatever we're given.
1891 real_start = (unsigned long)
1892 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1893 if (real_start == (unsigned long)-1) {
1894 return (unsigned long)-1;
1897 /* Ensure the address is properly aligned. */
1898 if (real_start & ~qemu_host_page_mask) {
1899 munmap((void *)real_start, host_size);
1900 real_size = host_size + qemu_host_page_size;
1901 real_start = (unsigned long)
1902 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1903 if (real_start == (unsigned long)-1) {
1904 return (unsigned long)-1;
1906 real_start = HOST_PAGE_ALIGN(real_start);
1909 /* Check to see if the address is valid. */
1910 if (!host_start || real_start == current_start) {
1911 int valid = validate_guest_space(real_start - guest_start,
1912 real_size);
1913 if (valid == 1) {
1914 break;
1915 } else if (valid == -1) {
1916 return (unsigned long)-1;
1918 /* valid == 0, so try again. */
1921 /* That address didn't work. Unmap and try a different one.
1922 * The address the host picked because is typically right at
1923 * the top of the host address space and leaves the guest with
1924 * no usable address space. Resort to a linear search. We
1925 * already compensated for mmap_min_addr, so this should not
1926 * happen often. Probably means we got unlucky and host
1927 * address space randomization put a shared library somewhere
1928 * inconvenient.
1930 munmap((void *)real_start, host_size);
1931 current_start += qemu_host_page_size;
1932 if (host_start == current_start) {
1933 /* Theoretically possible if host doesn't have any suitably
1934 * aligned areas. Normally the first mmap will fail.
1936 return (unsigned long)-1;
1940 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1942 return real_start;
1945 static void probe_guest_base(const char *image_name,
1946 abi_ulong loaddr, abi_ulong hiaddr)
1948 /* Probe for a suitable guest base address, if the user has not set
1949 * it explicitly, and set guest_base appropriately.
1950 * In case of error we will print a suitable message and exit.
1952 const char *errmsg;
1953 if (!have_guest_base && !reserved_va) {
1954 unsigned long host_start, real_start, host_size;
1956 /* Round addresses to page boundaries. */
1957 loaddr &= qemu_host_page_mask;
1958 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1960 if (loaddr < mmap_min_addr) {
1961 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1962 } else {
1963 host_start = loaddr;
1964 if (host_start != loaddr) {
1965 errmsg = "Address overflow loading ELF binary";
1966 goto exit_errmsg;
1969 host_size = hiaddr - loaddr;
1971 /* Setup the initial guest memory space with ranges gleaned from
1972 * the ELF image that is being loaded.
1974 real_start = init_guest_space(host_start, host_size, loaddr, false);
1975 if (real_start == (unsigned long)-1) {
1976 errmsg = "Unable to find space for application";
1977 goto exit_errmsg;
1979 guest_base = real_start - loaddr;
1981 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1982 TARGET_ABI_FMT_lx " to 0x%lx\n",
1983 loaddr, real_start);
1985 return;
1987 exit_errmsg:
1988 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1989 exit(-1);
1993 /* Load an ELF image into the address space.
1995 IMAGE_NAME is the filename of the image, to use in error messages.
1996 IMAGE_FD is the open file descriptor for the image.
1998 BPRM_BUF is a copy of the beginning of the file; this of course
1999 contains the elf file header at offset 0. It is assumed that this
2000 buffer is sufficiently aligned to present no problems to the host
2001 in accessing data at aligned offsets within the buffer.
2003 On return: INFO values will be filled in, as necessary or available. */
2005 static void load_elf_image(const char *image_name, int image_fd,
2006 struct image_info *info, char **pinterp_name,
2007 char bprm_buf[BPRM_BUF_SIZE])
2009 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2010 struct elf_phdr *phdr;
2011 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2012 int i, retval;
2013 const char *errmsg;
2015 /* First of all, some simple consistency checks */
2016 errmsg = "Invalid ELF image for this architecture";
2017 if (!elf_check_ident(ehdr)) {
2018 goto exit_errmsg;
2020 bswap_ehdr(ehdr);
2021 if (!elf_check_ehdr(ehdr)) {
2022 goto exit_errmsg;
2025 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2026 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2027 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2028 } else {
2029 phdr = (struct elf_phdr *) alloca(i);
2030 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2031 if (retval != i) {
2032 goto exit_read;
2035 bswap_phdr(phdr, ehdr->e_phnum);
2037 #ifdef CONFIG_USE_FDPIC
2038 info->nsegs = 0;
2039 info->pt_dynamic_addr = 0;
2040 #endif
2042 mmap_lock();
2044 /* Find the maximum size of the image and allocate an appropriate
2045 amount of memory to handle that. */
2046 loaddr = -1, hiaddr = 0;
2047 for (i = 0; i < ehdr->e_phnum; ++i) {
2048 if (phdr[i].p_type == PT_LOAD) {
2049 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2050 if (a < loaddr) {
2051 loaddr = a;
2053 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2054 if (a > hiaddr) {
2055 hiaddr = a;
2057 #ifdef CONFIG_USE_FDPIC
2058 ++info->nsegs;
2059 #endif
2063 load_addr = loaddr;
2064 if (ehdr->e_type == ET_DYN) {
2065 /* The image indicates that it can be loaded anywhere. Find a
2066 location that can hold the memory space required. If the
2067 image is pre-linked, LOADDR will be non-zero. Since we do
2068 not supply MAP_FIXED here we'll use that address if and
2069 only if it remains available. */
2070 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2071 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2072 -1, 0);
2073 if (load_addr == -1) {
2074 goto exit_perror;
2076 } else if (pinterp_name != NULL) {
2077 /* This is the main executable. Make sure that the low
2078 address does not conflict with MMAP_MIN_ADDR or the
2079 QEMU application itself. */
2080 probe_guest_base(image_name, loaddr, hiaddr);
2082 load_bias = load_addr - loaddr;
2084 #ifdef CONFIG_USE_FDPIC
2086 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2087 g_malloc(sizeof(*loadsegs) * info->nsegs);
2089 for (i = 0; i < ehdr->e_phnum; ++i) {
2090 switch (phdr[i].p_type) {
2091 case PT_DYNAMIC:
2092 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2093 break;
2094 case PT_LOAD:
2095 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2096 loadsegs->p_vaddr = phdr[i].p_vaddr;
2097 loadsegs->p_memsz = phdr[i].p_memsz;
2098 ++loadsegs;
2099 break;
2103 #endif
2105 info->load_bias = load_bias;
2106 info->load_addr = load_addr;
2107 info->entry = ehdr->e_entry + load_bias;
2108 info->start_code = -1;
2109 info->end_code = 0;
2110 info->start_data = -1;
2111 info->end_data = 0;
2112 info->brk = 0;
2113 info->elf_flags = ehdr->e_flags;
2115 for (i = 0; i < ehdr->e_phnum; i++) {
2116 struct elf_phdr *eppnt = phdr + i;
2117 if (eppnt->p_type == PT_LOAD) {
2118 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2119 int elf_prot = 0;
2121 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2122 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2123 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2125 vaddr = load_bias + eppnt->p_vaddr;
2126 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2127 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2129 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2130 elf_prot, MAP_PRIVATE | MAP_FIXED,
2131 image_fd, eppnt->p_offset - vaddr_po);
2132 if (error == -1) {
2133 goto exit_perror;
2136 vaddr_ef = vaddr + eppnt->p_filesz;
2137 vaddr_em = vaddr + eppnt->p_memsz;
2139 /* If the load segment requests extra zeros (e.g. bss), map it. */
2140 if (vaddr_ef < vaddr_em) {
2141 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2144 /* Find the full program boundaries. */
2145 if (elf_prot & PROT_EXEC) {
2146 if (vaddr < info->start_code) {
2147 info->start_code = vaddr;
2149 if (vaddr_ef > info->end_code) {
2150 info->end_code = vaddr_ef;
2153 if (elf_prot & PROT_WRITE) {
2154 if (vaddr < info->start_data) {
2155 info->start_data = vaddr;
2157 if (vaddr_ef > info->end_data) {
2158 info->end_data = vaddr_ef;
2160 if (vaddr_em > info->brk) {
2161 info->brk = vaddr_em;
2164 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2165 char *interp_name;
2167 if (*pinterp_name) {
2168 errmsg = "Multiple PT_INTERP entries";
2169 goto exit_errmsg;
2171 interp_name = malloc(eppnt->p_filesz);
2172 if (!interp_name) {
2173 goto exit_perror;
2176 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2177 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2178 eppnt->p_filesz);
2179 } else {
2180 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2181 eppnt->p_offset);
2182 if (retval != eppnt->p_filesz) {
2183 goto exit_perror;
2186 if (interp_name[eppnt->p_filesz - 1] != 0) {
2187 errmsg = "Invalid PT_INTERP entry";
2188 goto exit_errmsg;
2190 *pinterp_name = interp_name;
2194 if (info->end_data == 0) {
2195 info->start_data = info->end_code;
2196 info->end_data = info->end_code;
2197 info->brk = info->end_code;
2200 if (qemu_log_enabled()) {
2201 load_symbols(ehdr, image_fd, load_bias);
2204 mmap_unlock();
2206 close(image_fd);
2207 return;
2209 exit_read:
2210 if (retval >= 0) {
2211 errmsg = "Incomplete read of file header";
2212 goto exit_errmsg;
2214 exit_perror:
2215 errmsg = strerror(errno);
2216 exit_errmsg:
2217 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2218 exit(-1);
2221 static void load_elf_interp(const char *filename, struct image_info *info,
2222 char bprm_buf[BPRM_BUF_SIZE])
2224 int fd, retval;
2226 fd = open(path(filename), O_RDONLY);
2227 if (fd < 0) {
2228 goto exit_perror;
2231 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2232 if (retval < 0) {
2233 goto exit_perror;
2235 if (retval < BPRM_BUF_SIZE) {
2236 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2239 load_elf_image(filename, fd, info, NULL, bprm_buf);
2240 return;
2242 exit_perror:
2243 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2244 exit(-1);
2247 static int symfind(const void *s0, const void *s1)
2249 target_ulong addr = *(target_ulong *)s0;
2250 struct elf_sym *sym = (struct elf_sym *)s1;
2251 int result = 0;
2252 if (addr < sym->st_value) {
2253 result = -1;
2254 } else if (addr >= sym->st_value + sym->st_size) {
2255 result = 1;
2257 return result;
2260 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2262 #if ELF_CLASS == ELFCLASS32
2263 struct elf_sym *syms = s->disas_symtab.elf32;
2264 #else
2265 struct elf_sym *syms = s->disas_symtab.elf64;
2266 #endif
2268 // binary search
2269 struct elf_sym *sym;
2271 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2272 if (sym != NULL) {
2273 return s->disas_strtab + sym->st_name;
2276 return "";
2279 /* FIXME: This should use elf_ops.h */
2280 static int symcmp(const void *s0, const void *s1)
2282 struct elf_sym *sym0 = (struct elf_sym *)s0;
2283 struct elf_sym *sym1 = (struct elf_sym *)s1;
2284 return (sym0->st_value < sym1->st_value)
2285 ? -1
2286 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2289 /* Best attempt to load symbols from this ELF object. */
2290 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2292 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2293 uint64_t segsz;
2294 struct elf_shdr *shdr;
2295 char *strings = NULL;
2296 struct syminfo *s = NULL;
2297 struct elf_sym *new_syms, *syms = NULL;
2299 shnum = hdr->e_shnum;
2300 i = shnum * sizeof(struct elf_shdr);
2301 shdr = (struct elf_shdr *)alloca(i);
2302 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2303 return;
2306 bswap_shdr(shdr, shnum);
2307 for (i = 0; i < shnum; ++i) {
2308 if (shdr[i].sh_type == SHT_SYMTAB) {
2309 sym_idx = i;
2310 str_idx = shdr[i].sh_link;
2311 goto found;
2315 /* There will be no symbol table if the file was stripped. */
2316 return;
2318 found:
2319 /* Now know where the strtab and symtab are. Snarf them. */
2320 s = g_try_new(struct syminfo, 1);
2321 if (!s) {
2322 goto give_up;
2325 segsz = shdr[str_idx].sh_size;
2326 s->disas_strtab = strings = g_try_malloc(segsz);
2327 if (!strings ||
2328 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2329 goto give_up;
2332 segsz = shdr[sym_idx].sh_size;
2333 syms = g_try_malloc(segsz);
2334 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2335 goto give_up;
2338 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2339 /* Implausibly large symbol table: give up rather than ploughing
2340 * on with the number of symbols calculation overflowing
2342 goto give_up;
2344 nsyms = segsz / sizeof(struct elf_sym);
2345 for (i = 0; i < nsyms; ) {
2346 bswap_sym(syms + i);
2347 /* Throw away entries which we do not need. */
2348 if (syms[i].st_shndx == SHN_UNDEF
2349 || syms[i].st_shndx >= SHN_LORESERVE
2350 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2351 if (i < --nsyms) {
2352 syms[i] = syms[nsyms];
2354 } else {
2355 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2356 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2357 syms[i].st_value &= ~(target_ulong)1;
2358 #endif
2359 syms[i].st_value += load_bias;
2360 i++;
2364 /* No "useful" symbol. */
2365 if (nsyms == 0) {
2366 goto give_up;
2369 /* Attempt to free the storage associated with the local symbols
2370 that we threw away. Whether or not this has any effect on the
2371 memory allocation depends on the malloc implementation and how
2372 many symbols we managed to discard. */
2373 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2374 if (new_syms == NULL) {
2375 goto give_up;
2377 syms = new_syms;
2379 qsort(syms, nsyms, sizeof(*syms), symcmp);
2381 s->disas_num_syms = nsyms;
2382 #if ELF_CLASS == ELFCLASS32
2383 s->disas_symtab.elf32 = syms;
2384 #else
2385 s->disas_symtab.elf64 = syms;
2386 #endif
2387 s->lookup_symbol = lookup_symbolxx;
2388 s->next = syminfos;
2389 syminfos = s;
2391 return;
2393 give_up:
2394 g_free(s);
2395 g_free(strings);
2396 g_free(syms);
2399 uint32_t get_elf_eflags(int fd)
2401 struct elfhdr ehdr;
2402 off_t offset;
2403 int ret;
2405 /* Read ELF header */
2406 offset = lseek(fd, 0, SEEK_SET);
2407 if (offset == (off_t) -1) {
2408 return 0;
2410 ret = read(fd, &ehdr, sizeof(ehdr));
2411 if (ret < sizeof(ehdr)) {
2412 return 0;
2414 offset = lseek(fd, offset, SEEK_SET);
2415 if (offset == (off_t) -1) {
2416 return 0;
2419 /* Check ELF signature */
2420 if (!elf_check_ident(&ehdr)) {
2421 return 0;
2424 /* check header */
2425 bswap_ehdr(&ehdr);
2426 if (!elf_check_ehdr(&ehdr)) {
2427 return 0;
2430 /* return architecture id */
2431 return ehdr.e_flags;
2434 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2436 struct image_info interp_info;
2437 struct elfhdr elf_ex;
2438 char *elf_interpreter = NULL;
2439 char *scratch;
2441 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2443 load_elf_image(bprm->filename, bprm->fd, info,
2444 &elf_interpreter, bprm->buf);
2446 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2447 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2448 when we load the interpreter. */
2449 elf_ex = *(struct elfhdr *)bprm->buf;
2451 /* Do this so that we can load the interpreter, if need be. We will
2452 change some of these later */
2453 bprm->p = setup_arg_pages(bprm, info);
2455 scratch = g_new0(char, TARGET_PAGE_SIZE);
2456 if (STACK_GROWS_DOWN) {
2457 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2458 bprm->p, info->stack_limit);
2459 info->file_string = bprm->p;
2460 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2461 bprm->p, info->stack_limit);
2462 info->env_strings = bprm->p;
2463 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2464 bprm->p, info->stack_limit);
2465 info->arg_strings = bprm->p;
2466 } else {
2467 info->arg_strings = bprm->p;
2468 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2469 bprm->p, info->stack_limit);
2470 info->env_strings = bprm->p;
2471 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2472 bprm->p, info->stack_limit);
2473 info->file_string = bprm->p;
2474 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2475 bprm->p, info->stack_limit);
2478 g_free(scratch);
2480 if (!bprm->p) {
2481 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2482 exit(-1);
2485 if (elf_interpreter) {
2486 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2488 /* If the program interpreter is one of these two, then assume
2489 an iBCS2 image. Otherwise assume a native linux image. */
2491 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2492 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2493 info->personality = PER_SVR4;
2495 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2496 and some applications "depend" upon this behavior. Since
2497 we do not have the power to recompile these, we emulate
2498 the SVr4 behavior. Sigh. */
2499 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2500 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2504 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2505 info, (elf_interpreter ? &interp_info : NULL));
2506 info->start_stack = bprm->p;
2508 /* If we have an interpreter, set that as the program's entry point.
2509 Copy the load_bias as well, to help PPC64 interpret the entry
2510 point as a function descriptor. Do this after creating elf tables
2511 so that we copy the original program entry point into the AUXV. */
2512 if (elf_interpreter) {
2513 info->load_bias = interp_info.load_bias;
2514 info->entry = interp_info.entry;
2515 free(elf_interpreter);
2518 #ifdef USE_ELF_CORE_DUMP
2519 bprm->core_dump = &elf_core_dump;
2520 #endif
2522 return 0;
2525 #ifdef USE_ELF_CORE_DUMP
2527 * Definitions to generate Intel SVR4-like core files.
2528 * These mostly have the same names as the SVR4 types with "target_elf_"
2529 * tacked on the front to prevent clashes with linux definitions,
2530 * and the typedef forms have been avoided. This is mostly like
2531 * the SVR4 structure, but more Linuxy, with things that Linux does
2532 * not support and which gdb doesn't really use excluded.
2534 * Fields we don't dump (their contents is zero) in linux-user qemu
2535 * are marked with XXX.
2537 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2539 * Porting ELF coredump for target is (quite) simple process. First you
2540 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2541 * the target resides):
2543 * #define USE_ELF_CORE_DUMP
2545 * Next you define type of register set used for dumping. ELF specification
2546 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2548 * typedef <target_regtype> target_elf_greg_t;
2549 * #define ELF_NREG <number of registers>
2550 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2552 * Last step is to implement target specific function that copies registers
2553 * from given cpu into just specified register set. Prototype is:
2555 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2556 * const CPUArchState *env);
2558 * Parameters:
2559 * regs - copy register values into here (allocated and zeroed by caller)
2560 * env - copy registers from here
2562 * Example for ARM target is provided in this file.
2565 /* An ELF note in memory */
2566 struct memelfnote {
2567 const char *name;
2568 size_t namesz;
2569 size_t namesz_rounded;
2570 int type;
2571 size_t datasz;
2572 size_t datasz_rounded;
2573 void *data;
2574 size_t notesz;
2577 struct target_elf_siginfo {
2578 abi_int si_signo; /* signal number */
2579 abi_int si_code; /* extra code */
2580 abi_int si_errno; /* errno */
2583 struct target_elf_prstatus {
2584 struct target_elf_siginfo pr_info; /* Info associated with signal */
2585 abi_short pr_cursig; /* Current signal */
2586 abi_ulong pr_sigpend; /* XXX */
2587 abi_ulong pr_sighold; /* XXX */
2588 target_pid_t pr_pid;
2589 target_pid_t pr_ppid;
2590 target_pid_t pr_pgrp;
2591 target_pid_t pr_sid;
2592 struct target_timeval pr_utime; /* XXX User time */
2593 struct target_timeval pr_stime; /* XXX System time */
2594 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2595 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2596 target_elf_gregset_t pr_reg; /* GP registers */
2597 abi_int pr_fpvalid; /* XXX */
2600 #define ELF_PRARGSZ (80) /* Number of chars for args */
2602 struct target_elf_prpsinfo {
2603 char pr_state; /* numeric process state */
2604 char pr_sname; /* char for pr_state */
2605 char pr_zomb; /* zombie */
2606 char pr_nice; /* nice val */
2607 abi_ulong pr_flag; /* flags */
2608 target_uid_t pr_uid;
2609 target_gid_t pr_gid;
2610 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2611 /* Lots missing */
2612 char pr_fname[16]; /* filename of executable */
2613 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2616 /* Here is the structure in which status of each thread is captured. */
2617 struct elf_thread_status {
2618 QTAILQ_ENTRY(elf_thread_status) ets_link;
2619 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2620 #if 0
2621 elf_fpregset_t fpu; /* NT_PRFPREG */
2622 struct task_struct *thread;
2623 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2624 #endif
2625 struct memelfnote notes[1];
2626 int num_notes;
2629 struct elf_note_info {
2630 struct memelfnote *notes;
2631 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2632 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2634 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2635 #if 0
2637 * Current version of ELF coredump doesn't support
2638 * dumping fp regs etc.
2640 elf_fpregset_t *fpu;
2641 elf_fpxregset_t *xfpu;
2642 int thread_status_size;
2643 #endif
2644 int notes_size;
2645 int numnote;
2648 struct vm_area_struct {
2649 target_ulong vma_start; /* start vaddr of memory region */
2650 target_ulong vma_end; /* end vaddr of memory region */
2651 abi_ulong vma_flags; /* protection etc. flags for the region */
2652 QTAILQ_ENTRY(vm_area_struct) vma_link;
2655 struct mm_struct {
2656 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2657 int mm_count; /* number of mappings */
2660 static struct mm_struct *vma_init(void);
2661 static void vma_delete(struct mm_struct *);
2662 static int vma_add_mapping(struct mm_struct *, target_ulong,
2663 target_ulong, abi_ulong);
2664 static int vma_get_mapping_count(const struct mm_struct *);
2665 static struct vm_area_struct *vma_first(const struct mm_struct *);
2666 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2667 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2668 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2669 unsigned long flags);
2671 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2672 static void fill_note(struct memelfnote *, const char *, int,
2673 unsigned int, void *);
2674 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2675 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2676 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2677 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2678 static size_t note_size(const struct memelfnote *);
2679 static void free_note_info(struct elf_note_info *);
2680 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2681 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2682 static int core_dump_filename(const TaskState *, char *, size_t);
2684 static int dump_write(int, const void *, size_t);
2685 static int write_note(struct memelfnote *, int);
2686 static int write_note_info(struct elf_note_info *, int);
2688 #ifdef BSWAP_NEEDED
2689 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2691 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2692 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2693 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2694 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2695 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2696 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2697 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2698 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2699 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2700 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2701 /* cpu times are not filled, so we skip them */
2702 /* regs should be in correct format already */
2703 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2706 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2708 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2709 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2710 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2711 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2712 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2713 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2714 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2717 static void bswap_note(struct elf_note *en)
2719 bswap32s(&en->n_namesz);
2720 bswap32s(&en->n_descsz);
2721 bswap32s(&en->n_type);
2723 #else
2724 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2725 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2726 static inline void bswap_note(struct elf_note *en) { }
2727 #endif /* BSWAP_NEEDED */
2730 * Minimal support for linux memory regions. These are needed
2731 * when we are finding out what memory exactly belongs to
2732 * emulated process. No locks needed here, as long as
2733 * thread that received the signal is stopped.
2736 static struct mm_struct *vma_init(void)
2738 struct mm_struct *mm;
2740 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2741 return (NULL);
2743 mm->mm_count = 0;
2744 QTAILQ_INIT(&mm->mm_mmap);
2746 return (mm);
2749 static void vma_delete(struct mm_struct *mm)
2751 struct vm_area_struct *vma;
2753 while ((vma = vma_first(mm)) != NULL) {
2754 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2755 g_free(vma);
2757 g_free(mm);
2760 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2761 target_ulong end, abi_ulong flags)
2763 struct vm_area_struct *vma;
2765 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2766 return (-1);
2768 vma->vma_start = start;
2769 vma->vma_end = end;
2770 vma->vma_flags = flags;
2772 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2773 mm->mm_count++;
2775 return (0);
2778 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2780 return (QTAILQ_FIRST(&mm->mm_mmap));
2783 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2785 return (QTAILQ_NEXT(vma, vma_link));
2788 static int vma_get_mapping_count(const struct mm_struct *mm)
2790 return (mm->mm_count);
2794 * Calculate file (dump) size of given memory region.
2796 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2798 /* if we cannot even read the first page, skip it */
2799 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2800 return (0);
2803 * Usually we don't dump executable pages as they contain
2804 * non-writable code that debugger can read directly from
2805 * target library etc. However, thread stacks are marked
2806 * also executable so we read in first page of given region
2807 * and check whether it contains elf header. If there is
2808 * no elf header, we dump it.
2810 if (vma->vma_flags & PROT_EXEC) {
2811 char page[TARGET_PAGE_SIZE];
2813 copy_from_user(page, vma->vma_start, sizeof (page));
2814 if ((page[EI_MAG0] == ELFMAG0) &&
2815 (page[EI_MAG1] == ELFMAG1) &&
2816 (page[EI_MAG2] == ELFMAG2) &&
2817 (page[EI_MAG3] == ELFMAG3)) {
2819 * Mappings are possibly from ELF binary. Don't dump
2820 * them.
2822 return (0);
2826 return (vma->vma_end - vma->vma_start);
2829 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2830 unsigned long flags)
2832 struct mm_struct *mm = (struct mm_struct *)priv;
2834 vma_add_mapping(mm, start, end, flags);
2835 return (0);
2838 static void fill_note(struct memelfnote *note, const char *name, int type,
2839 unsigned int sz, void *data)
2841 unsigned int namesz;
2843 namesz = strlen(name) + 1;
2844 note->name = name;
2845 note->namesz = namesz;
2846 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2847 note->type = type;
2848 note->datasz = sz;
2849 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2851 note->data = data;
2854 * We calculate rounded up note size here as specified by
2855 * ELF document.
2857 note->notesz = sizeof (struct elf_note) +
2858 note->namesz_rounded + note->datasz_rounded;
2861 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2862 uint32_t flags)
2864 (void) memset(elf, 0, sizeof(*elf));
2866 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2867 elf->e_ident[EI_CLASS] = ELF_CLASS;
2868 elf->e_ident[EI_DATA] = ELF_DATA;
2869 elf->e_ident[EI_VERSION] = EV_CURRENT;
2870 elf->e_ident[EI_OSABI] = ELF_OSABI;
2872 elf->e_type = ET_CORE;
2873 elf->e_machine = machine;
2874 elf->e_version = EV_CURRENT;
2875 elf->e_phoff = sizeof(struct elfhdr);
2876 elf->e_flags = flags;
2877 elf->e_ehsize = sizeof(struct elfhdr);
2878 elf->e_phentsize = sizeof(struct elf_phdr);
2879 elf->e_phnum = segs;
2881 bswap_ehdr(elf);
2884 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2886 phdr->p_type = PT_NOTE;
2887 phdr->p_offset = offset;
2888 phdr->p_vaddr = 0;
2889 phdr->p_paddr = 0;
2890 phdr->p_filesz = sz;
2891 phdr->p_memsz = 0;
2892 phdr->p_flags = 0;
2893 phdr->p_align = 0;
2895 bswap_phdr(phdr, 1);
2898 static size_t note_size(const struct memelfnote *note)
2900 return (note->notesz);
2903 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2904 const TaskState *ts, int signr)
2906 (void) memset(prstatus, 0, sizeof (*prstatus));
2907 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2908 prstatus->pr_pid = ts->ts_tid;
2909 prstatus->pr_ppid = getppid();
2910 prstatus->pr_pgrp = getpgrp();
2911 prstatus->pr_sid = getsid(0);
2913 bswap_prstatus(prstatus);
2916 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2918 char *base_filename;
2919 unsigned int i, len;
2921 (void) memset(psinfo, 0, sizeof (*psinfo));
2923 len = ts->info->arg_end - ts->info->arg_start;
2924 if (len >= ELF_PRARGSZ)
2925 len = ELF_PRARGSZ - 1;
2926 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2927 return -EFAULT;
2928 for (i = 0; i < len; i++)
2929 if (psinfo->pr_psargs[i] == 0)
2930 psinfo->pr_psargs[i] = ' ';
2931 psinfo->pr_psargs[len] = 0;
2933 psinfo->pr_pid = getpid();
2934 psinfo->pr_ppid = getppid();
2935 psinfo->pr_pgrp = getpgrp();
2936 psinfo->pr_sid = getsid(0);
2937 psinfo->pr_uid = getuid();
2938 psinfo->pr_gid = getgid();
2940 base_filename = g_path_get_basename(ts->bprm->filename);
2942 * Using strncpy here is fine: at max-length,
2943 * this field is not NUL-terminated.
2945 (void) strncpy(psinfo->pr_fname, base_filename,
2946 sizeof(psinfo->pr_fname));
2948 g_free(base_filename);
2949 bswap_psinfo(psinfo);
2950 return (0);
2953 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2955 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2956 elf_addr_t orig_auxv = auxv;
2957 void *ptr;
2958 int len = ts->info->auxv_len;
2961 * Auxiliary vector is stored in target process stack. It contains
2962 * {type, value} pairs that we need to dump into note. This is not
2963 * strictly necessary but we do it here for sake of completeness.
2966 /* read in whole auxv vector and copy it to memelfnote */
2967 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2968 if (ptr != NULL) {
2969 fill_note(note, "CORE", NT_AUXV, len, ptr);
2970 unlock_user(ptr, auxv, len);
2975 * Constructs name of coredump file. We have following convention
2976 * for the name:
2977 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2979 * Returns 0 in case of success, -1 otherwise (errno is set).
2981 static int core_dump_filename(const TaskState *ts, char *buf,
2982 size_t bufsize)
2984 char timestamp[64];
2985 char *base_filename = NULL;
2986 struct timeval tv;
2987 struct tm tm;
2989 assert(bufsize >= PATH_MAX);
2991 if (gettimeofday(&tv, NULL) < 0) {
2992 (void) fprintf(stderr, "unable to get current timestamp: %s",
2993 strerror(errno));
2994 return (-1);
2997 base_filename = g_path_get_basename(ts->bprm->filename);
2998 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2999 localtime_r(&tv.tv_sec, &tm));
3000 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3001 base_filename, timestamp, (int)getpid());
3002 g_free(base_filename);
3004 return (0);
3007 static int dump_write(int fd, const void *ptr, size_t size)
3009 const char *bufp = (const char *)ptr;
3010 ssize_t bytes_written, bytes_left;
3011 struct rlimit dumpsize;
3012 off_t pos;
3014 bytes_written = 0;
3015 getrlimit(RLIMIT_CORE, &dumpsize);
3016 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3017 if (errno == ESPIPE) { /* not a seekable stream */
3018 bytes_left = size;
3019 } else {
3020 return pos;
3022 } else {
3023 if (dumpsize.rlim_cur <= pos) {
3024 return -1;
3025 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3026 bytes_left = size;
3027 } else {
3028 size_t limit_left=dumpsize.rlim_cur - pos;
3029 bytes_left = limit_left >= size ? size : limit_left ;
3034 * In normal conditions, single write(2) should do but
3035 * in case of socket etc. this mechanism is more portable.
3037 do {
3038 bytes_written = write(fd, bufp, bytes_left);
3039 if (bytes_written < 0) {
3040 if (errno == EINTR)
3041 continue;
3042 return (-1);
3043 } else if (bytes_written == 0) { /* eof */
3044 return (-1);
3046 bufp += bytes_written;
3047 bytes_left -= bytes_written;
3048 } while (bytes_left > 0);
3050 return (0);
3053 static int write_note(struct memelfnote *men, int fd)
3055 struct elf_note en;
3057 en.n_namesz = men->namesz;
3058 en.n_type = men->type;
3059 en.n_descsz = men->datasz;
3061 bswap_note(&en);
3063 if (dump_write(fd, &en, sizeof(en)) != 0)
3064 return (-1);
3065 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3066 return (-1);
3067 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3068 return (-1);
3070 return (0);
3073 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3075 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3076 TaskState *ts = (TaskState *)cpu->opaque;
3077 struct elf_thread_status *ets;
3079 ets = g_malloc0(sizeof (*ets));
3080 ets->num_notes = 1; /* only prstatus is dumped */
3081 fill_prstatus(&ets->prstatus, ts, 0);
3082 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3083 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3084 &ets->prstatus);
3086 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3088 info->notes_size += note_size(&ets->notes[0]);
3091 static void init_note_info(struct elf_note_info *info)
3093 /* Initialize the elf_note_info structure so that it is at
3094 * least safe to call free_note_info() on it. Must be
3095 * called before calling fill_note_info().
3097 memset(info, 0, sizeof (*info));
3098 QTAILQ_INIT(&info->thread_list);
3101 static int fill_note_info(struct elf_note_info *info,
3102 long signr, const CPUArchState *env)
3104 #define NUMNOTES 3
3105 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3106 TaskState *ts = (TaskState *)cpu->opaque;
3107 int i;
3109 info->notes = g_new0(struct memelfnote, NUMNOTES);
3110 if (info->notes == NULL)
3111 return (-ENOMEM);
3112 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3113 if (info->prstatus == NULL)
3114 return (-ENOMEM);
3115 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3116 if (info->prstatus == NULL)
3117 return (-ENOMEM);
3120 * First fill in status (and registers) of current thread
3121 * including process info & aux vector.
3123 fill_prstatus(info->prstatus, ts, signr);
3124 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3125 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3126 sizeof (*info->prstatus), info->prstatus);
3127 fill_psinfo(info->psinfo, ts);
3128 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3129 sizeof (*info->psinfo), info->psinfo);
3130 fill_auxv_note(&info->notes[2], ts);
3131 info->numnote = 3;
3133 info->notes_size = 0;
3134 for (i = 0; i < info->numnote; i++)
3135 info->notes_size += note_size(&info->notes[i]);
3137 /* read and fill status of all threads */
3138 cpu_list_lock();
3139 CPU_FOREACH(cpu) {
3140 if (cpu == thread_cpu) {
3141 continue;
3143 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3145 cpu_list_unlock();
3147 return (0);
3150 static void free_note_info(struct elf_note_info *info)
3152 struct elf_thread_status *ets;
3154 while (!QTAILQ_EMPTY(&info->thread_list)) {
3155 ets = QTAILQ_FIRST(&info->thread_list);
3156 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3157 g_free(ets);
3160 g_free(info->prstatus);
3161 g_free(info->psinfo);
3162 g_free(info->notes);
3165 static int write_note_info(struct elf_note_info *info, int fd)
3167 struct elf_thread_status *ets;
3168 int i, error = 0;
3170 /* write prstatus, psinfo and auxv for current thread */
3171 for (i = 0; i < info->numnote; i++)
3172 if ((error = write_note(&info->notes[i], fd)) != 0)
3173 return (error);
3175 /* write prstatus for each thread */
3176 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3177 if ((error = write_note(&ets->notes[0], fd)) != 0)
3178 return (error);
3181 return (0);
3185 * Write out ELF coredump.
3187 * See documentation of ELF object file format in:
3188 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3190 * Coredump format in linux is following:
3192 * 0 +----------------------+ \
3193 * | ELF header | ET_CORE |
3194 * +----------------------+ |
3195 * | ELF program headers | |--- headers
3196 * | - NOTE section | |
3197 * | - PT_LOAD sections | |
3198 * +----------------------+ /
3199 * | NOTEs: |
3200 * | - NT_PRSTATUS |
3201 * | - NT_PRSINFO |
3202 * | - NT_AUXV |
3203 * +----------------------+ <-- aligned to target page
3204 * | Process memory dump |
3205 * : :
3206 * . .
3207 * : :
3208 * | |
3209 * +----------------------+
3211 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3212 * NT_PRSINFO -> struct elf_prpsinfo
3213 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3215 * Format follows System V format as close as possible. Current
3216 * version limitations are as follows:
3217 * - no floating point registers are dumped
3219 * Function returns 0 in case of success, negative errno otherwise.
3221 * TODO: make this work also during runtime: it should be
3222 * possible to force coredump from running process and then
3223 * continue processing. For example qemu could set up SIGUSR2
3224 * handler (provided that target process haven't registered
3225 * handler for that) that does the dump when signal is received.
3227 static int elf_core_dump(int signr, const CPUArchState *env)
3229 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3230 const TaskState *ts = (const TaskState *)cpu->opaque;
3231 struct vm_area_struct *vma = NULL;
3232 char corefile[PATH_MAX];
3233 struct elf_note_info info;
3234 struct elfhdr elf;
3235 struct elf_phdr phdr;
3236 struct rlimit dumpsize;
3237 struct mm_struct *mm = NULL;
3238 off_t offset = 0, data_offset = 0;
3239 int segs = 0;
3240 int fd = -1;
3242 init_note_info(&info);
3244 errno = 0;
3245 getrlimit(RLIMIT_CORE, &dumpsize);
3246 if (dumpsize.rlim_cur == 0)
3247 return 0;
3249 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3250 return (-errno);
3252 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3253 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3254 return (-errno);
3257 * Walk through target process memory mappings and
3258 * set up structure containing this information. After
3259 * this point vma_xxx functions can be used.
3261 if ((mm = vma_init()) == NULL)
3262 goto out;
3264 walk_memory_regions(mm, vma_walker);
3265 segs = vma_get_mapping_count(mm);
3268 * Construct valid coredump ELF header. We also
3269 * add one more segment for notes.
3271 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3272 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3273 goto out;
3275 /* fill in the in-memory version of notes */
3276 if (fill_note_info(&info, signr, env) < 0)
3277 goto out;
3279 offset += sizeof (elf); /* elf header */
3280 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3282 /* write out notes program header */
3283 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3285 offset += info.notes_size;
3286 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3287 goto out;
3290 * ELF specification wants data to start at page boundary so
3291 * we align it here.
3293 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3296 * Write program headers for memory regions mapped in
3297 * the target process.
3299 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3300 (void) memset(&phdr, 0, sizeof (phdr));
3302 phdr.p_type = PT_LOAD;
3303 phdr.p_offset = offset;
3304 phdr.p_vaddr = vma->vma_start;
3305 phdr.p_paddr = 0;
3306 phdr.p_filesz = vma_dump_size(vma);
3307 offset += phdr.p_filesz;
3308 phdr.p_memsz = vma->vma_end - vma->vma_start;
3309 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3310 if (vma->vma_flags & PROT_WRITE)
3311 phdr.p_flags |= PF_W;
3312 if (vma->vma_flags & PROT_EXEC)
3313 phdr.p_flags |= PF_X;
3314 phdr.p_align = ELF_EXEC_PAGESIZE;
3316 bswap_phdr(&phdr, 1);
3317 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3318 goto out;
3323 * Next we write notes just after program headers. No
3324 * alignment needed here.
3326 if (write_note_info(&info, fd) < 0)
3327 goto out;
3329 /* align data to page boundary */
3330 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3331 goto out;
3334 * Finally we can dump process memory into corefile as well.
3336 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3337 abi_ulong addr;
3338 abi_ulong end;
3340 end = vma->vma_start + vma_dump_size(vma);
3342 for (addr = vma->vma_start; addr < end;
3343 addr += TARGET_PAGE_SIZE) {
3344 char page[TARGET_PAGE_SIZE];
3345 int error;
3348 * Read in page from target process memory and
3349 * write it to coredump file.
3351 error = copy_from_user(page, addr, sizeof (page));
3352 if (error != 0) {
3353 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3354 addr);
3355 errno = -error;
3356 goto out;
3358 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3359 goto out;
3363 out:
3364 free_note_info(&info);
3365 if (mm != NULL)
3366 vma_delete(mm);
3367 (void) close(fd);
3369 if (errno != 0)
3370 return (-errno);
3371 return (0);
3373 #endif /* USE_ELF_CORE_DUMP */
3375 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3377 init_thread(regs, infop);