q800: add ESCC alias at 0xc000
[qemu/ar7.git] / tcg / optimize.c
blob3013eb04e6075e7e1f9828426b046f86ca5e4f57
1 /*
2 * Optimizations for Tiny Code Generator for QEMU
4 * Copyright (c) 2010 Samsung Electronics.
5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru>
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #include "qemu/osdep.h"
27 #include "qemu/int128.h"
28 #include "tcg/tcg-op-common.h"
29 #include "tcg-internal.h"
31 #define CASE_OP_32_64(x) \
32 glue(glue(case INDEX_op_, x), _i32): \
33 glue(glue(case INDEX_op_, x), _i64)
35 #define CASE_OP_32_64_VEC(x) \
36 glue(glue(case INDEX_op_, x), _i32): \
37 glue(glue(case INDEX_op_, x), _i64): \
38 glue(glue(case INDEX_op_, x), _vec)
40 typedef struct TempOptInfo {
41 bool is_const;
42 TCGTemp *prev_copy;
43 TCGTemp *next_copy;
44 uint64_t val;
45 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */
46 uint64_t s_mask; /* a left-aligned mask of clrsb(value) bits. */
47 } TempOptInfo;
49 typedef struct OptContext {
50 TCGContext *tcg;
51 TCGOp *prev_mb;
52 TCGTempSet temps_used;
54 /* In flight values from optimization. */
55 uint64_t a_mask; /* mask bit is 0 iff value identical to first input */
56 uint64_t z_mask; /* mask bit is 0 iff value bit is 0 */
57 uint64_t s_mask; /* mask of clrsb(value) bits */
58 TCGType type;
59 } OptContext;
61 /* Calculate the smask for a specific value. */
62 static uint64_t smask_from_value(uint64_t value)
64 int rep = clrsb64(value);
65 return ~(~0ull >> rep);
69 * Calculate the smask for a given set of known-zeros.
70 * If there are lots of zeros on the left, we can consider the remainder
71 * an unsigned field, and thus the corresponding signed field is one bit
72 * larger.
74 static uint64_t smask_from_zmask(uint64_t zmask)
77 * Only the 0 bits are significant for zmask, thus the msb itself
78 * must be zero, else we have no sign information.
80 int rep = clz64(zmask);
81 if (rep == 0) {
82 return 0;
84 rep -= 1;
85 return ~(~0ull >> rep);
89 * Recreate a properly left-aligned smask after manipulation.
90 * Some bit-shuffling, particularly shifts and rotates, may
91 * retain sign bits on the left, but may scatter disconnected
92 * sign bits on the right. Retain only what remains to the left.
94 static uint64_t smask_from_smask(int64_t smask)
96 /* Only the 1 bits are significant for smask */
97 return smask_from_zmask(~smask);
100 static inline TempOptInfo *ts_info(TCGTemp *ts)
102 return ts->state_ptr;
105 static inline TempOptInfo *arg_info(TCGArg arg)
107 return ts_info(arg_temp(arg));
110 static inline bool ts_is_const(TCGTemp *ts)
112 return ts_info(ts)->is_const;
115 static inline bool arg_is_const(TCGArg arg)
117 return ts_is_const(arg_temp(arg));
120 static inline bool ts_is_copy(TCGTemp *ts)
122 return ts_info(ts)->next_copy != ts;
125 /* Reset TEMP's state, possibly removing the temp for the list of copies. */
126 static void reset_ts(TCGTemp *ts)
128 TempOptInfo *ti = ts_info(ts);
129 TempOptInfo *pi = ts_info(ti->prev_copy);
130 TempOptInfo *ni = ts_info(ti->next_copy);
132 ni->prev_copy = ti->prev_copy;
133 pi->next_copy = ti->next_copy;
134 ti->next_copy = ts;
135 ti->prev_copy = ts;
136 ti->is_const = false;
137 ti->z_mask = -1;
138 ti->s_mask = 0;
141 static void reset_temp(TCGArg arg)
143 reset_ts(arg_temp(arg));
146 /* Initialize and activate a temporary. */
147 static void init_ts_info(OptContext *ctx, TCGTemp *ts)
149 size_t idx = temp_idx(ts);
150 TempOptInfo *ti;
152 if (test_bit(idx, ctx->temps_used.l)) {
153 return;
155 set_bit(idx, ctx->temps_used.l);
157 ti = ts->state_ptr;
158 if (ti == NULL) {
159 ti = tcg_malloc(sizeof(TempOptInfo));
160 ts->state_ptr = ti;
163 ti->next_copy = ts;
164 ti->prev_copy = ts;
165 if (ts->kind == TEMP_CONST) {
166 ti->is_const = true;
167 ti->val = ts->val;
168 ti->z_mask = ts->val;
169 ti->s_mask = smask_from_value(ts->val);
170 } else {
171 ti->is_const = false;
172 ti->z_mask = -1;
173 ti->s_mask = 0;
177 static TCGTemp *find_better_copy(TCGContext *s, TCGTemp *ts)
179 TCGTemp *i, *g, *l;
181 /* If this is already readonly, we can't do better. */
182 if (temp_readonly(ts)) {
183 return ts;
186 g = l = NULL;
187 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) {
188 if (temp_readonly(i)) {
189 return i;
190 } else if (i->kind > ts->kind) {
191 if (i->kind == TEMP_GLOBAL) {
192 g = i;
193 } else if (i->kind == TEMP_TB) {
194 l = i;
199 /* If we didn't find a better representation, return the same temp. */
200 return g ? g : l ? l : ts;
203 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2)
205 TCGTemp *i;
207 if (ts1 == ts2) {
208 return true;
211 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) {
212 return false;
215 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) {
216 if (i == ts2) {
217 return true;
221 return false;
224 static bool args_are_copies(TCGArg arg1, TCGArg arg2)
226 return ts_are_copies(arg_temp(arg1), arg_temp(arg2));
229 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src)
231 TCGTemp *dst_ts = arg_temp(dst);
232 TCGTemp *src_ts = arg_temp(src);
233 TempOptInfo *di;
234 TempOptInfo *si;
235 TCGOpcode new_op;
237 if (ts_are_copies(dst_ts, src_ts)) {
238 tcg_op_remove(ctx->tcg, op);
239 return true;
242 reset_ts(dst_ts);
243 di = ts_info(dst_ts);
244 si = ts_info(src_ts);
246 switch (ctx->type) {
247 case TCG_TYPE_I32:
248 new_op = INDEX_op_mov_i32;
249 break;
250 case TCG_TYPE_I64:
251 new_op = INDEX_op_mov_i64;
252 break;
253 case TCG_TYPE_V64:
254 case TCG_TYPE_V128:
255 case TCG_TYPE_V256:
256 /* TCGOP_VECL and TCGOP_VECE remain unchanged. */
257 new_op = INDEX_op_mov_vec;
258 break;
259 default:
260 g_assert_not_reached();
262 op->opc = new_op;
263 op->args[0] = dst;
264 op->args[1] = src;
266 di->z_mask = si->z_mask;
267 di->s_mask = si->s_mask;
269 if (src_ts->type == dst_ts->type) {
270 TempOptInfo *ni = ts_info(si->next_copy);
272 di->next_copy = si->next_copy;
273 di->prev_copy = src_ts;
274 ni->prev_copy = dst_ts;
275 si->next_copy = dst_ts;
276 di->is_const = si->is_const;
277 di->val = si->val;
279 return true;
282 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op,
283 TCGArg dst, uint64_t val)
285 TCGTemp *tv;
287 if (ctx->type == TCG_TYPE_I32) {
288 val = (int32_t)val;
291 /* Convert movi to mov with constant temp. */
292 tv = tcg_constant_internal(ctx->type, val);
293 init_ts_info(ctx, tv);
294 return tcg_opt_gen_mov(ctx, op, dst, temp_arg(tv));
297 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y)
299 uint64_t l64, h64;
301 switch (op) {
302 CASE_OP_32_64(add):
303 return x + y;
305 CASE_OP_32_64(sub):
306 return x - y;
308 CASE_OP_32_64(mul):
309 return x * y;
311 CASE_OP_32_64_VEC(and):
312 return x & y;
314 CASE_OP_32_64_VEC(or):
315 return x | y;
317 CASE_OP_32_64_VEC(xor):
318 return x ^ y;
320 case INDEX_op_shl_i32:
321 return (uint32_t)x << (y & 31);
323 case INDEX_op_shl_i64:
324 return (uint64_t)x << (y & 63);
326 case INDEX_op_shr_i32:
327 return (uint32_t)x >> (y & 31);
329 case INDEX_op_shr_i64:
330 return (uint64_t)x >> (y & 63);
332 case INDEX_op_sar_i32:
333 return (int32_t)x >> (y & 31);
335 case INDEX_op_sar_i64:
336 return (int64_t)x >> (y & 63);
338 case INDEX_op_rotr_i32:
339 return ror32(x, y & 31);
341 case INDEX_op_rotr_i64:
342 return ror64(x, y & 63);
344 case INDEX_op_rotl_i32:
345 return rol32(x, y & 31);
347 case INDEX_op_rotl_i64:
348 return rol64(x, y & 63);
350 CASE_OP_32_64_VEC(not):
351 return ~x;
353 CASE_OP_32_64(neg):
354 return -x;
356 CASE_OP_32_64_VEC(andc):
357 return x & ~y;
359 CASE_OP_32_64_VEC(orc):
360 return x | ~y;
362 CASE_OP_32_64_VEC(eqv):
363 return ~(x ^ y);
365 CASE_OP_32_64_VEC(nand):
366 return ~(x & y);
368 CASE_OP_32_64_VEC(nor):
369 return ~(x | y);
371 case INDEX_op_clz_i32:
372 return (uint32_t)x ? clz32(x) : y;
374 case INDEX_op_clz_i64:
375 return x ? clz64(x) : y;
377 case INDEX_op_ctz_i32:
378 return (uint32_t)x ? ctz32(x) : y;
380 case INDEX_op_ctz_i64:
381 return x ? ctz64(x) : y;
383 case INDEX_op_ctpop_i32:
384 return ctpop32(x);
386 case INDEX_op_ctpop_i64:
387 return ctpop64(x);
389 CASE_OP_32_64(ext8s):
390 return (int8_t)x;
392 CASE_OP_32_64(ext16s):
393 return (int16_t)x;
395 CASE_OP_32_64(ext8u):
396 return (uint8_t)x;
398 CASE_OP_32_64(ext16u):
399 return (uint16_t)x;
401 CASE_OP_32_64(bswap16):
402 x = bswap16(x);
403 return y & TCG_BSWAP_OS ? (int16_t)x : x;
405 CASE_OP_32_64(bswap32):
406 x = bswap32(x);
407 return y & TCG_BSWAP_OS ? (int32_t)x : x;
409 case INDEX_op_bswap64_i64:
410 return bswap64(x);
412 case INDEX_op_ext_i32_i64:
413 case INDEX_op_ext32s_i64:
414 return (int32_t)x;
416 case INDEX_op_extu_i32_i64:
417 case INDEX_op_extrl_i64_i32:
418 case INDEX_op_ext32u_i64:
419 return (uint32_t)x;
421 case INDEX_op_extrh_i64_i32:
422 return (uint64_t)x >> 32;
424 case INDEX_op_muluh_i32:
425 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32;
426 case INDEX_op_mulsh_i32:
427 return ((int64_t)(int32_t)x * (int32_t)y) >> 32;
429 case INDEX_op_muluh_i64:
430 mulu64(&l64, &h64, x, y);
431 return h64;
432 case INDEX_op_mulsh_i64:
433 muls64(&l64, &h64, x, y);
434 return h64;
436 case INDEX_op_div_i32:
437 /* Avoid crashing on divide by zero, otherwise undefined. */
438 return (int32_t)x / ((int32_t)y ? : 1);
439 case INDEX_op_divu_i32:
440 return (uint32_t)x / ((uint32_t)y ? : 1);
441 case INDEX_op_div_i64:
442 return (int64_t)x / ((int64_t)y ? : 1);
443 case INDEX_op_divu_i64:
444 return (uint64_t)x / ((uint64_t)y ? : 1);
446 case INDEX_op_rem_i32:
447 return (int32_t)x % ((int32_t)y ? : 1);
448 case INDEX_op_remu_i32:
449 return (uint32_t)x % ((uint32_t)y ? : 1);
450 case INDEX_op_rem_i64:
451 return (int64_t)x % ((int64_t)y ? : 1);
452 case INDEX_op_remu_i64:
453 return (uint64_t)x % ((uint64_t)y ? : 1);
455 default:
456 g_assert_not_reached();
460 static uint64_t do_constant_folding(TCGOpcode op, TCGType type,
461 uint64_t x, uint64_t y)
463 uint64_t res = do_constant_folding_2(op, x, y);
464 if (type == TCG_TYPE_I32) {
465 res = (int32_t)res;
467 return res;
470 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c)
472 switch (c) {
473 case TCG_COND_EQ:
474 return x == y;
475 case TCG_COND_NE:
476 return x != y;
477 case TCG_COND_LT:
478 return (int32_t)x < (int32_t)y;
479 case TCG_COND_GE:
480 return (int32_t)x >= (int32_t)y;
481 case TCG_COND_LE:
482 return (int32_t)x <= (int32_t)y;
483 case TCG_COND_GT:
484 return (int32_t)x > (int32_t)y;
485 case TCG_COND_LTU:
486 return x < y;
487 case TCG_COND_GEU:
488 return x >= y;
489 case TCG_COND_LEU:
490 return x <= y;
491 case TCG_COND_GTU:
492 return x > y;
493 default:
494 g_assert_not_reached();
498 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c)
500 switch (c) {
501 case TCG_COND_EQ:
502 return x == y;
503 case TCG_COND_NE:
504 return x != y;
505 case TCG_COND_LT:
506 return (int64_t)x < (int64_t)y;
507 case TCG_COND_GE:
508 return (int64_t)x >= (int64_t)y;
509 case TCG_COND_LE:
510 return (int64_t)x <= (int64_t)y;
511 case TCG_COND_GT:
512 return (int64_t)x > (int64_t)y;
513 case TCG_COND_LTU:
514 return x < y;
515 case TCG_COND_GEU:
516 return x >= y;
517 case TCG_COND_LEU:
518 return x <= y;
519 case TCG_COND_GTU:
520 return x > y;
521 default:
522 g_assert_not_reached();
526 static bool do_constant_folding_cond_eq(TCGCond c)
528 switch (c) {
529 case TCG_COND_GT:
530 case TCG_COND_LTU:
531 case TCG_COND_LT:
532 case TCG_COND_GTU:
533 case TCG_COND_NE:
534 return 0;
535 case TCG_COND_GE:
536 case TCG_COND_GEU:
537 case TCG_COND_LE:
538 case TCG_COND_LEU:
539 case TCG_COND_EQ:
540 return 1;
541 default:
542 g_assert_not_reached();
547 * Return -1 if the condition can't be simplified,
548 * and the result of the condition (0 or 1) if it can.
550 static int do_constant_folding_cond(TCGType type, TCGArg x,
551 TCGArg y, TCGCond c)
553 if (arg_is_const(x) && arg_is_const(y)) {
554 uint64_t xv = arg_info(x)->val;
555 uint64_t yv = arg_info(y)->val;
557 switch (type) {
558 case TCG_TYPE_I32:
559 return do_constant_folding_cond_32(xv, yv, c);
560 case TCG_TYPE_I64:
561 return do_constant_folding_cond_64(xv, yv, c);
562 default:
563 /* Only scalar comparisons are optimizable */
564 return -1;
566 } else if (args_are_copies(x, y)) {
567 return do_constant_folding_cond_eq(c);
568 } else if (arg_is_const(y) && arg_info(y)->val == 0) {
569 switch (c) {
570 case TCG_COND_LTU:
571 return 0;
572 case TCG_COND_GEU:
573 return 1;
574 default:
575 return -1;
578 return -1;
582 * Return -1 if the condition can't be simplified,
583 * and the result of the condition (0 or 1) if it can.
585 static int do_constant_folding_cond2(TCGArg *p1, TCGArg *p2, TCGCond c)
587 TCGArg al = p1[0], ah = p1[1];
588 TCGArg bl = p2[0], bh = p2[1];
590 if (arg_is_const(bl) && arg_is_const(bh)) {
591 tcg_target_ulong blv = arg_info(bl)->val;
592 tcg_target_ulong bhv = arg_info(bh)->val;
593 uint64_t b = deposit64(blv, 32, 32, bhv);
595 if (arg_is_const(al) && arg_is_const(ah)) {
596 tcg_target_ulong alv = arg_info(al)->val;
597 tcg_target_ulong ahv = arg_info(ah)->val;
598 uint64_t a = deposit64(alv, 32, 32, ahv);
599 return do_constant_folding_cond_64(a, b, c);
601 if (b == 0) {
602 switch (c) {
603 case TCG_COND_LTU:
604 return 0;
605 case TCG_COND_GEU:
606 return 1;
607 default:
608 break;
612 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) {
613 return do_constant_folding_cond_eq(c);
615 return -1;
619 * swap_commutative:
620 * @dest: TCGArg of the destination argument, or NO_DEST.
621 * @p1: first paired argument
622 * @p2: second paired argument
624 * If *@p1 is a constant and *@p2 is not, swap.
625 * If *@p2 matches @dest, swap.
626 * Return true if a swap was performed.
629 #define NO_DEST temp_arg(NULL)
631 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2)
633 TCGArg a1 = *p1, a2 = *p2;
634 int sum = 0;
635 sum += arg_is_const(a1);
636 sum -= arg_is_const(a2);
638 /* Prefer the constant in second argument, and then the form
639 op a, a, b, which is better handled on non-RISC hosts. */
640 if (sum > 0 || (sum == 0 && dest == a2)) {
641 *p1 = a2;
642 *p2 = a1;
643 return true;
645 return false;
648 static bool swap_commutative2(TCGArg *p1, TCGArg *p2)
650 int sum = 0;
651 sum += arg_is_const(p1[0]);
652 sum += arg_is_const(p1[1]);
653 sum -= arg_is_const(p2[0]);
654 sum -= arg_is_const(p2[1]);
655 if (sum > 0) {
656 TCGArg t;
657 t = p1[0], p1[0] = p2[0], p2[0] = t;
658 t = p1[1], p1[1] = p2[1], p2[1] = t;
659 return true;
661 return false;
664 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args)
666 for (int i = 0; i < nb_args; i++) {
667 TCGTemp *ts = arg_temp(op->args[i]);
668 init_ts_info(ctx, ts);
672 static void copy_propagate(OptContext *ctx, TCGOp *op,
673 int nb_oargs, int nb_iargs)
675 TCGContext *s = ctx->tcg;
677 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
678 TCGTemp *ts = arg_temp(op->args[i]);
679 if (ts_is_copy(ts)) {
680 op->args[i] = temp_arg(find_better_copy(s, ts));
685 static void finish_folding(OptContext *ctx, TCGOp *op)
687 const TCGOpDef *def = &tcg_op_defs[op->opc];
688 int i, nb_oargs;
691 * For an opcode that ends a BB, reset all temp data.
692 * We do no cross-BB optimization.
694 if (def->flags & TCG_OPF_BB_END) {
695 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used));
696 ctx->prev_mb = NULL;
697 return;
700 nb_oargs = def->nb_oargs;
701 for (i = 0; i < nb_oargs; i++) {
702 TCGTemp *ts = arg_temp(op->args[i]);
703 reset_ts(ts);
705 * Save the corresponding known-zero/sign bits mask for the
706 * first output argument (only one supported so far).
708 if (i == 0) {
709 ts_info(ts)->z_mask = ctx->z_mask;
710 ts_info(ts)->s_mask = ctx->s_mask;
716 * The fold_* functions return true when processing is complete,
717 * usually by folding the operation to a constant or to a copy,
718 * and calling tcg_opt_gen_{mov,movi}. They may do other things,
719 * like collect information about the value produced, for use in
720 * optimizing a subsequent operation.
722 * These first fold_* functions are all helpers, used by other
723 * folders for more specific operations.
726 static bool fold_const1(OptContext *ctx, TCGOp *op)
728 if (arg_is_const(op->args[1])) {
729 uint64_t t;
731 t = arg_info(op->args[1])->val;
732 t = do_constant_folding(op->opc, ctx->type, t, 0);
733 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
735 return false;
738 static bool fold_const2(OptContext *ctx, TCGOp *op)
740 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
741 uint64_t t1 = arg_info(op->args[1])->val;
742 uint64_t t2 = arg_info(op->args[2])->val;
744 t1 = do_constant_folding(op->opc, ctx->type, t1, t2);
745 return tcg_opt_gen_movi(ctx, op, op->args[0], t1);
747 return false;
750 static bool fold_commutative(OptContext *ctx, TCGOp *op)
752 swap_commutative(op->args[0], &op->args[1], &op->args[2]);
753 return false;
756 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op)
758 swap_commutative(op->args[0], &op->args[1], &op->args[2]);
759 return fold_const2(ctx, op);
762 static bool fold_masks(OptContext *ctx, TCGOp *op)
764 uint64_t a_mask = ctx->a_mask;
765 uint64_t z_mask = ctx->z_mask;
766 uint64_t s_mask = ctx->s_mask;
769 * 32-bit ops generate 32-bit results, which for the purpose of
770 * simplifying tcg are sign-extended. Certainly that's how we
771 * represent our constants elsewhere. Note that the bits will
772 * be reset properly for a 64-bit value when encountering the
773 * type changing opcodes.
775 if (ctx->type == TCG_TYPE_I32) {
776 a_mask = (int32_t)a_mask;
777 z_mask = (int32_t)z_mask;
778 s_mask |= MAKE_64BIT_MASK(32, 32);
779 ctx->z_mask = z_mask;
780 ctx->s_mask = s_mask;
783 if (z_mask == 0) {
784 return tcg_opt_gen_movi(ctx, op, op->args[0], 0);
786 if (a_mask == 0) {
787 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
789 return false;
793 * Convert @op to NOT, if NOT is supported by the host.
794 * Return true f the conversion is successful, which will still
795 * indicate that the processing is complete.
797 static bool fold_not(OptContext *ctx, TCGOp *op);
798 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx)
800 TCGOpcode not_op;
801 bool have_not;
803 switch (ctx->type) {
804 case TCG_TYPE_I32:
805 not_op = INDEX_op_not_i32;
806 have_not = TCG_TARGET_HAS_not_i32;
807 break;
808 case TCG_TYPE_I64:
809 not_op = INDEX_op_not_i64;
810 have_not = TCG_TARGET_HAS_not_i64;
811 break;
812 case TCG_TYPE_V64:
813 case TCG_TYPE_V128:
814 case TCG_TYPE_V256:
815 not_op = INDEX_op_not_vec;
816 have_not = TCG_TARGET_HAS_not_vec;
817 break;
818 default:
819 g_assert_not_reached();
821 if (have_not) {
822 op->opc = not_op;
823 op->args[1] = op->args[idx];
824 return fold_not(ctx, op);
826 return false;
829 /* If the binary operation has first argument @i, fold to @i. */
830 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
832 if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) {
833 return tcg_opt_gen_movi(ctx, op, op->args[0], i);
835 return false;
838 /* If the binary operation has first argument @i, fold to NOT. */
839 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i)
841 if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) {
842 return fold_to_not(ctx, op, 2);
844 return false;
847 /* If the binary operation has second argument @i, fold to @i. */
848 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
850 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) {
851 return tcg_opt_gen_movi(ctx, op, op->args[0], i);
853 return false;
856 /* If the binary operation has second argument @i, fold to identity. */
857 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i)
859 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) {
860 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
862 return false;
865 /* If the binary operation has second argument @i, fold to NOT. */
866 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i)
868 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) {
869 return fold_to_not(ctx, op, 1);
871 return false;
874 /* If the binary operation has both arguments equal, fold to @i. */
875 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
877 if (args_are_copies(op->args[1], op->args[2])) {
878 return tcg_opt_gen_movi(ctx, op, op->args[0], i);
880 return false;
883 /* If the binary operation has both arguments equal, fold to identity. */
884 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op)
886 if (args_are_copies(op->args[1], op->args[2])) {
887 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
889 return false;
893 * These outermost fold_<op> functions are sorted alphabetically.
895 * The ordering of the transformations should be:
896 * 1) those that produce a constant
897 * 2) those that produce a copy
898 * 3) those that produce information about the result value.
901 static bool fold_add(OptContext *ctx, TCGOp *op)
903 if (fold_const2_commutative(ctx, op) ||
904 fold_xi_to_x(ctx, op, 0)) {
905 return true;
907 return false;
910 /* We cannot as yet do_constant_folding with vectors. */
911 static bool fold_add_vec(OptContext *ctx, TCGOp *op)
913 if (fold_commutative(ctx, op) ||
914 fold_xi_to_x(ctx, op, 0)) {
915 return true;
917 return false;
920 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add)
922 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3]) &&
923 arg_is_const(op->args[4]) && arg_is_const(op->args[5])) {
924 uint64_t al = arg_info(op->args[2])->val;
925 uint64_t ah = arg_info(op->args[3])->val;
926 uint64_t bl = arg_info(op->args[4])->val;
927 uint64_t bh = arg_info(op->args[5])->val;
928 TCGArg rl, rh;
929 TCGOp *op2;
931 if (ctx->type == TCG_TYPE_I32) {
932 uint64_t a = deposit64(al, 32, 32, ah);
933 uint64_t b = deposit64(bl, 32, 32, bh);
935 if (add) {
936 a += b;
937 } else {
938 a -= b;
941 al = sextract64(a, 0, 32);
942 ah = sextract64(a, 32, 32);
943 } else {
944 Int128 a = int128_make128(al, ah);
945 Int128 b = int128_make128(bl, bh);
947 if (add) {
948 a = int128_add(a, b);
949 } else {
950 a = int128_sub(a, b);
953 al = int128_getlo(a);
954 ah = int128_gethi(a);
957 rl = op->args[0];
958 rh = op->args[1];
960 /* The proper opcode is supplied by tcg_opt_gen_mov. */
961 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2);
963 tcg_opt_gen_movi(ctx, op, rl, al);
964 tcg_opt_gen_movi(ctx, op2, rh, ah);
965 return true;
967 return false;
970 static bool fold_add2(OptContext *ctx, TCGOp *op)
972 /* Note that the high and low parts may be independently swapped. */
973 swap_commutative(op->args[0], &op->args[2], &op->args[4]);
974 swap_commutative(op->args[1], &op->args[3], &op->args[5]);
976 return fold_addsub2(ctx, op, true);
979 static bool fold_and(OptContext *ctx, TCGOp *op)
981 uint64_t z1, z2;
983 if (fold_const2_commutative(ctx, op) ||
984 fold_xi_to_i(ctx, op, 0) ||
985 fold_xi_to_x(ctx, op, -1) ||
986 fold_xx_to_x(ctx, op)) {
987 return true;
990 z1 = arg_info(op->args[1])->z_mask;
991 z2 = arg_info(op->args[2])->z_mask;
992 ctx->z_mask = z1 & z2;
995 * Sign repetitions are perforce all identical, whether they are 1 or 0.
996 * Bitwise operations preserve the relative quantity of the repetitions.
998 ctx->s_mask = arg_info(op->args[1])->s_mask
999 & arg_info(op->args[2])->s_mask;
1002 * Known-zeros does not imply known-ones. Therefore unless
1003 * arg2 is constant, we can't infer affected bits from it.
1005 if (arg_is_const(op->args[2])) {
1006 ctx->a_mask = z1 & ~z2;
1009 return fold_masks(ctx, op);
1012 static bool fold_andc(OptContext *ctx, TCGOp *op)
1014 uint64_t z1;
1016 if (fold_const2(ctx, op) ||
1017 fold_xx_to_i(ctx, op, 0) ||
1018 fold_xi_to_x(ctx, op, 0) ||
1019 fold_ix_to_not(ctx, op, -1)) {
1020 return true;
1023 z1 = arg_info(op->args[1])->z_mask;
1026 * Known-zeros does not imply known-ones. Therefore unless
1027 * arg2 is constant, we can't infer anything from it.
1029 if (arg_is_const(op->args[2])) {
1030 uint64_t z2 = ~arg_info(op->args[2])->z_mask;
1031 ctx->a_mask = z1 & ~z2;
1032 z1 &= z2;
1034 ctx->z_mask = z1;
1036 ctx->s_mask = arg_info(op->args[1])->s_mask
1037 & arg_info(op->args[2])->s_mask;
1038 return fold_masks(ctx, op);
1041 static bool fold_brcond(OptContext *ctx, TCGOp *op)
1043 TCGCond cond = op->args[2];
1044 int i;
1046 if (swap_commutative(NO_DEST, &op->args[0], &op->args[1])) {
1047 op->args[2] = cond = tcg_swap_cond(cond);
1050 i = do_constant_folding_cond(ctx->type, op->args[0], op->args[1], cond);
1051 if (i == 0) {
1052 tcg_op_remove(ctx->tcg, op);
1053 return true;
1055 if (i > 0) {
1056 op->opc = INDEX_op_br;
1057 op->args[0] = op->args[3];
1059 return false;
1062 static bool fold_brcond2(OptContext *ctx, TCGOp *op)
1064 TCGCond cond = op->args[4];
1065 TCGArg label = op->args[5];
1066 int i, inv = 0;
1068 if (swap_commutative2(&op->args[0], &op->args[2])) {
1069 op->args[4] = cond = tcg_swap_cond(cond);
1072 i = do_constant_folding_cond2(&op->args[0], &op->args[2], cond);
1073 if (i >= 0) {
1074 goto do_brcond_const;
1077 switch (cond) {
1078 case TCG_COND_LT:
1079 case TCG_COND_GE:
1081 * Simplify LT/GE comparisons vs zero to a single compare
1082 * vs the high word of the input.
1084 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0 &&
1085 arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0) {
1086 goto do_brcond_high;
1088 break;
1090 case TCG_COND_NE:
1091 inv = 1;
1092 QEMU_FALLTHROUGH;
1093 case TCG_COND_EQ:
1095 * Simplify EQ/NE comparisons where one of the pairs
1096 * can be simplified.
1098 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0],
1099 op->args[2], cond);
1100 switch (i ^ inv) {
1101 case 0:
1102 goto do_brcond_const;
1103 case 1:
1104 goto do_brcond_high;
1107 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1],
1108 op->args[3], cond);
1109 switch (i ^ inv) {
1110 case 0:
1111 goto do_brcond_const;
1112 case 1:
1113 op->opc = INDEX_op_brcond_i32;
1114 op->args[1] = op->args[2];
1115 op->args[2] = cond;
1116 op->args[3] = label;
1117 break;
1119 break;
1121 default:
1122 break;
1124 do_brcond_high:
1125 op->opc = INDEX_op_brcond_i32;
1126 op->args[0] = op->args[1];
1127 op->args[1] = op->args[3];
1128 op->args[2] = cond;
1129 op->args[3] = label;
1130 break;
1132 do_brcond_const:
1133 if (i == 0) {
1134 tcg_op_remove(ctx->tcg, op);
1135 return true;
1137 op->opc = INDEX_op_br;
1138 op->args[0] = label;
1139 break;
1141 return false;
1144 static bool fold_bswap(OptContext *ctx, TCGOp *op)
1146 uint64_t z_mask, s_mask, sign;
1148 if (arg_is_const(op->args[1])) {
1149 uint64_t t = arg_info(op->args[1])->val;
1151 t = do_constant_folding(op->opc, ctx->type, t, op->args[2]);
1152 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1155 z_mask = arg_info(op->args[1])->z_mask;
1157 switch (op->opc) {
1158 case INDEX_op_bswap16_i32:
1159 case INDEX_op_bswap16_i64:
1160 z_mask = bswap16(z_mask);
1161 sign = INT16_MIN;
1162 break;
1163 case INDEX_op_bswap32_i32:
1164 case INDEX_op_bswap32_i64:
1165 z_mask = bswap32(z_mask);
1166 sign = INT32_MIN;
1167 break;
1168 case INDEX_op_bswap64_i64:
1169 z_mask = bswap64(z_mask);
1170 sign = INT64_MIN;
1171 break;
1172 default:
1173 g_assert_not_reached();
1175 s_mask = smask_from_zmask(z_mask);
1177 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) {
1178 case TCG_BSWAP_OZ:
1179 break;
1180 case TCG_BSWAP_OS:
1181 /* If the sign bit may be 1, force all the bits above to 1. */
1182 if (z_mask & sign) {
1183 z_mask |= sign;
1184 s_mask = sign << 1;
1186 break;
1187 default:
1188 /* The high bits are undefined: force all bits above the sign to 1. */
1189 z_mask |= sign << 1;
1190 s_mask = 0;
1191 break;
1193 ctx->z_mask = z_mask;
1194 ctx->s_mask = s_mask;
1196 return fold_masks(ctx, op);
1199 static bool fold_call(OptContext *ctx, TCGOp *op)
1201 TCGContext *s = ctx->tcg;
1202 int nb_oargs = TCGOP_CALLO(op);
1203 int nb_iargs = TCGOP_CALLI(op);
1204 int flags, i;
1206 init_arguments(ctx, op, nb_oargs + nb_iargs);
1207 copy_propagate(ctx, op, nb_oargs, nb_iargs);
1209 /* If the function reads or writes globals, reset temp data. */
1210 flags = tcg_call_flags(op);
1211 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) {
1212 int nb_globals = s->nb_globals;
1214 for (i = 0; i < nb_globals; i++) {
1215 if (test_bit(i, ctx->temps_used.l)) {
1216 reset_ts(&ctx->tcg->temps[i]);
1221 /* Reset temp data for outputs. */
1222 for (i = 0; i < nb_oargs; i++) {
1223 reset_temp(op->args[i]);
1226 /* Stop optimizing MB across calls. */
1227 ctx->prev_mb = NULL;
1228 return true;
1231 static bool fold_count_zeros(OptContext *ctx, TCGOp *op)
1233 uint64_t z_mask;
1235 if (arg_is_const(op->args[1])) {
1236 uint64_t t = arg_info(op->args[1])->val;
1238 if (t != 0) {
1239 t = do_constant_folding(op->opc, ctx->type, t, 0);
1240 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1242 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]);
1245 switch (ctx->type) {
1246 case TCG_TYPE_I32:
1247 z_mask = 31;
1248 break;
1249 case TCG_TYPE_I64:
1250 z_mask = 63;
1251 break;
1252 default:
1253 g_assert_not_reached();
1255 ctx->z_mask = arg_info(op->args[2])->z_mask | z_mask;
1256 ctx->s_mask = smask_from_zmask(ctx->z_mask);
1257 return false;
1260 static bool fold_ctpop(OptContext *ctx, TCGOp *op)
1262 if (fold_const1(ctx, op)) {
1263 return true;
1266 switch (ctx->type) {
1267 case TCG_TYPE_I32:
1268 ctx->z_mask = 32 | 31;
1269 break;
1270 case TCG_TYPE_I64:
1271 ctx->z_mask = 64 | 63;
1272 break;
1273 default:
1274 g_assert_not_reached();
1276 ctx->s_mask = smask_from_zmask(ctx->z_mask);
1277 return false;
1280 static bool fold_deposit(OptContext *ctx, TCGOp *op)
1282 TCGOpcode and_opc;
1284 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1285 uint64_t t1 = arg_info(op->args[1])->val;
1286 uint64_t t2 = arg_info(op->args[2])->val;
1288 t1 = deposit64(t1, op->args[3], op->args[4], t2);
1289 return tcg_opt_gen_movi(ctx, op, op->args[0], t1);
1292 switch (ctx->type) {
1293 case TCG_TYPE_I32:
1294 and_opc = INDEX_op_and_i32;
1295 break;
1296 case TCG_TYPE_I64:
1297 and_opc = INDEX_op_and_i64;
1298 break;
1299 default:
1300 g_assert_not_reached();
1303 /* Inserting a value into zero at offset 0. */
1304 if (arg_is_const(op->args[1])
1305 && arg_info(op->args[1])->val == 0
1306 && op->args[3] == 0) {
1307 uint64_t mask = MAKE_64BIT_MASK(0, op->args[4]);
1309 op->opc = and_opc;
1310 op->args[1] = op->args[2];
1311 op->args[2] = temp_arg(tcg_constant_internal(ctx->type, mask));
1312 ctx->z_mask = mask & arg_info(op->args[1])->z_mask;
1313 return false;
1316 /* Inserting zero into a value. */
1317 if (arg_is_const(op->args[2])
1318 && arg_info(op->args[2])->val == 0) {
1319 uint64_t mask = deposit64(-1, op->args[3], op->args[4], 0);
1321 op->opc = and_opc;
1322 op->args[2] = temp_arg(tcg_constant_internal(ctx->type, mask));
1323 ctx->z_mask = mask & arg_info(op->args[1])->z_mask;
1324 return false;
1327 ctx->z_mask = deposit64(arg_info(op->args[1])->z_mask,
1328 op->args[3], op->args[4],
1329 arg_info(op->args[2])->z_mask);
1330 return false;
1333 static bool fold_divide(OptContext *ctx, TCGOp *op)
1335 if (fold_const2(ctx, op) ||
1336 fold_xi_to_x(ctx, op, 1)) {
1337 return true;
1339 return false;
1342 static bool fold_dup(OptContext *ctx, TCGOp *op)
1344 if (arg_is_const(op->args[1])) {
1345 uint64_t t = arg_info(op->args[1])->val;
1346 t = dup_const(TCGOP_VECE(op), t);
1347 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1349 return false;
1352 static bool fold_dup2(OptContext *ctx, TCGOp *op)
1354 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1355 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32,
1356 arg_info(op->args[2])->val);
1357 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1360 if (args_are_copies(op->args[1], op->args[2])) {
1361 op->opc = INDEX_op_dup_vec;
1362 TCGOP_VECE(op) = MO_32;
1364 return false;
1367 static bool fold_eqv(OptContext *ctx, TCGOp *op)
1369 if (fold_const2_commutative(ctx, op) ||
1370 fold_xi_to_x(ctx, op, -1) ||
1371 fold_xi_to_not(ctx, op, 0)) {
1372 return true;
1375 ctx->s_mask = arg_info(op->args[1])->s_mask
1376 & arg_info(op->args[2])->s_mask;
1377 return false;
1380 static bool fold_extract(OptContext *ctx, TCGOp *op)
1382 uint64_t z_mask_old, z_mask;
1383 int pos = op->args[2];
1384 int len = op->args[3];
1386 if (arg_is_const(op->args[1])) {
1387 uint64_t t;
1389 t = arg_info(op->args[1])->val;
1390 t = extract64(t, pos, len);
1391 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1394 z_mask_old = arg_info(op->args[1])->z_mask;
1395 z_mask = extract64(z_mask_old, pos, len);
1396 if (pos == 0) {
1397 ctx->a_mask = z_mask_old ^ z_mask;
1399 ctx->z_mask = z_mask;
1400 ctx->s_mask = smask_from_zmask(z_mask);
1402 return fold_masks(ctx, op);
1405 static bool fold_extract2(OptContext *ctx, TCGOp *op)
1407 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1408 uint64_t v1 = arg_info(op->args[1])->val;
1409 uint64_t v2 = arg_info(op->args[2])->val;
1410 int shr = op->args[3];
1412 if (op->opc == INDEX_op_extract2_i64) {
1413 v1 >>= shr;
1414 v2 <<= 64 - shr;
1415 } else {
1416 v1 = (uint32_t)v1 >> shr;
1417 v2 = (uint64_t)((int32_t)v2 << (32 - shr));
1419 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2);
1421 return false;
1424 static bool fold_exts(OptContext *ctx, TCGOp *op)
1426 uint64_t s_mask_old, s_mask, z_mask, sign;
1427 bool type_change = false;
1429 if (fold_const1(ctx, op)) {
1430 return true;
1433 z_mask = arg_info(op->args[1])->z_mask;
1434 s_mask = arg_info(op->args[1])->s_mask;
1435 s_mask_old = s_mask;
1437 switch (op->opc) {
1438 CASE_OP_32_64(ext8s):
1439 sign = INT8_MIN;
1440 z_mask = (uint8_t)z_mask;
1441 break;
1442 CASE_OP_32_64(ext16s):
1443 sign = INT16_MIN;
1444 z_mask = (uint16_t)z_mask;
1445 break;
1446 case INDEX_op_ext_i32_i64:
1447 type_change = true;
1448 QEMU_FALLTHROUGH;
1449 case INDEX_op_ext32s_i64:
1450 sign = INT32_MIN;
1451 z_mask = (uint32_t)z_mask;
1452 break;
1453 default:
1454 g_assert_not_reached();
1457 if (z_mask & sign) {
1458 z_mask |= sign;
1460 s_mask |= sign << 1;
1462 ctx->z_mask = z_mask;
1463 ctx->s_mask = s_mask;
1464 if (!type_change) {
1465 ctx->a_mask = s_mask & ~s_mask_old;
1468 return fold_masks(ctx, op);
1471 static bool fold_extu(OptContext *ctx, TCGOp *op)
1473 uint64_t z_mask_old, z_mask;
1474 bool type_change = false;
1476 if (fold_const1(ctx, op)) {
1477 return true;
1480 z_mask_old = z_mask = arg_info(op->args[1])->z_mask;
1482 switch (op->opc) {
1483 CASE_OP_32_64(ext8u):
1484 z_mask = (uint8_t)z_mask;
1485 break;
1486 CASE_OP_32_64(ext16u):
1487 z_mask = (uint16_t)z_mask;
1488 break;
1489 case INDEX_op_extrl_i64_i32:
1490 case INDEX_op_extu_i32_i64:
1491 type_change = true;
1492 QEMU_FALLTHROUGH;
1493 case INDEX_op_ext32u_i64:
1494 z_mask = (uint32_t)z_mask;
1495 break;
1496 case INDEX_op_extrh_i64_i32:
1497 type_change = true;
1498 z_mask >>= 32;
1499 break;
1500 default:
1501 g_assert_not_reached();
1504 ctx->z_mask = z_mask;
1505 ctx->s_mask = smask_from_zmask(z_mask);
1506 if (!type_change) {
1507 ctx->a_mask = z_mask_old ^ z_mask;
1509 return fold_masks(ctx, op);
1512 static bool fold_mb(OptContext *ctx, TCGOp *op)
1514 /* Eliminate duplicate and redundant fence instructions. */
1515 if (ctx->prev_mb) {
1517 * Merge two barriers of the same type into one,
1518 * or a weaker barrier into a stronger one,
1519 * or two weaker barriers into a stronger one.
1520 * mb X; mb Y => mb X|Y
1521 * mb; strl => mb; st
1522 * ldaq; mb => ld; mb
1523 * ldaq; strl => ld; mb; st
1524 * Other combinations are also merged into a strong
1525 * barrier. This is stricter than specified but for
1526 * the purposes of TCG is better than not optimizing.
1528 ctx->prev_mb->args[0] |= op->args[0];
1529 tcg_op_remove(ctx->tcg, op);
1530 } else {
1531 ctx->prev_mb = op;
1533 return true;
1536 static bool fold_mov(OptContext *ctx, TCGOp *op)
1538 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1541 static bool fold_movcond(OptContext *ctx, TCGOp *op)
1543 TCGCond cond = op->args[5];
1544 int i;
1546 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) {
1547 op->args[5] = cond = tcg_swap_cond(cond);
1550 * Canonicalize the "false" input reg to match the destination reg so
1551 * that the tcg backend can implement a "move if true" operation.
1553 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) {
1554 op->args[5] = cond = tcg_invert_cond(cond);
1557 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond);
1558 if (i >= 0) {
1559 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]);
1562 ctx->z_mask = arg_info(op->args[3])->z_mask
1563 | arg_info(op->args[4])->z_mask;
1564 ctx->s_mask = arg_info(op->args[3])->s_mask
1565 & arg_info(op->args[4])->s_mask;
1567 if (arg_is_const(op->args[3]) && arg_is_const(op->args[4])) {
1568 uint64_t tv = arg_info(op->args[3])->val;
1569 uint64_t fv = arg_info(op->args[4])->val;
1570 TCGOpcode opc, negopc = 0;
1572 switch (ctx->type) {
1573 case TCG_TYPE_I32:
1574 opc = INDEX_op_setcond_i32;
1575 if (TCG_TARGET_HAS_negsetcond_i32) {
1576 negopc = INDEX_op_negsetcond_i32;
1578 tv = (int32_t)tv;
1579 fv = (int32_t)fv;
1580 break;
1581 case TCG_TYPE_I64:
1582 opc = INDEX_op_setcond_i64;
1583 if (TCG_TARGET_HAS_negsetcond_i64) {
1584 negopc = INDEX_op_negsetcond_i64;
1586 break;
1587 default:
1588 g_assert_not_reached();
1591 if (tv == 1 && fv == 0) {
1592 op->opc = opc;
1593 op->args[3] = cond;
1594 } else if (fv == 1 && tv == 0) {
1595 op->opc = opc;
1596 op->args[3] = tcg_invert_cond(cond);
1597 } else if (negopc) {
1598 if (tv == -1 && fv == 0) {
1599 op->opc = negopc;
1600 op->args[3] = cond;
1601 } else if (fv == -1 && tv == 0) {
1602 op->opc = negopc;
1603 op->args[3] = tcg_invert_cond(cond);
1607 return false;
1610 static bool fold_mul(OptContext *ctx, TCGOp *op)
1612 if (fold_const2(ctx, op) ||
1613 fold_xi_to_i(ctx, op, 0) ||
1614 fold_xi_to_x(ctx, op, 1)) {
1615 return true;
1617 return false;
1620 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op)
1622 if (fold_const2_commutative(ctx, op) ||
1623 fold_xi_to_i(ctx, op, 0)) {
1624 return true;
1626 return false;
1629 static bool fold_multiply2(OptContext *ctx, TCGOp *op)
1631 swap_commutative(op->args[0], &op->args[2], &op->args[3]);
1633 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) {
1634 uint64_t a = arg_info(op->args[2])->val;
1635 uint64_t b = arg_info(op->args[3])->val;
1636 uint64_t h, l;
1637 TCGArg rl, rh;
1638 TCGOp *op2;
1640 switch (op->opc) {
1641 case INDEX_op_mulu2_i32:
1642 l = (uint64_t)(uint32_t)a * (uint32_t)b;
1643 h = (int32_t)(l >> 32);
1644 l = (int32_t)l;
1645 break;
1646 case INDEX_op_muls2_i32:
1647 l = (int64_t)(int32_t)a * (int32_t)b;
1648 h = l >> 32;
1649 l = (int32_t)l;
1650 break;
1651 case INDEX_op_mulu2_i64:
1652 mulu64(&l, &h, a, b);
1653 break;
1654 case INDEX_op_muls2_i64:
1655 muls64(&l, &h, a, b);
1656 break;
1657 default:
1658 g_assert_not_reached();
1661 rl = op->args[0];
1662 rh = op->args[1];
1664 /* The proper opcode is supplied by tcg_opt_gen_mov. */
1665 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2);
1667 tcg_opt_gen_movi(ctx, op, rl, l);
1668 tcg_opt_gen_movi(ctx, op2, rh, h);
1669 return true;
1671 return false;
1674 static bool fold_nand(OptContext *ctx, TCGOp *op)
1676 if (fold_const2_commutative(ctx, op) ||
1677 fold_xi_to_not(ctx, op, -1)) {
1678 return true;
1681 ctx->s_mask = arg_info(op->args[1])->s_mask
1682 & arg_info(op->args[2])->s_mask;
1683 return false;
1686 static bool fold_neg(OptContext *ctx, TCGOp *op)
1688 uint64_t z_mask;
1690 if (fold_const1(ctx, op)) {
1691 return true;
1694 /* Set to 1 all bits to the left of the rightmost. */
1695 z_mask = arg_info(op->args[1])->z_mask;
1696 ctx->z_mask = -(z_mask & -z_mask);
1699 * Because of fold_sub_to_neg, we want to always return true,
1700 * via finish_folding.
1702 finish_folding(ctx, op);
1703 return true;
1706 static bool fold_nor(OptContext *ctx, TCGOp *op)
1708 if (fold_const2_commutative(ctx, op) ||
1709 fold_xi_to_not(ctx, op, 0)) {
1710 return true;
1713 ctx->s_mask = arg_info(op->args[1])->s_mask
1714 & arg_info(op->args[2])->s_mask;
1715 return false;
1718 static bool fold_not(OptContext *ctx, TCGOp *op)
1720 if (fold_const1(ctx, op)) {
1721 return true;
1724 ctx->s_mask = arg_info(op->args[1])->s_mask;
1726 /* Because of fold_to_not, we want to always return true, via finish. */
1727 finish_folding(ctx, op);
1728 return true;
1731 static bool fold_or(OptContext *ctx, TCGOp *op)
1733 if (fold_const2_commutative(ctx, op) ||
1734 fold_xi_to_x(ctx, op, 0) ||
1735 fold_xx_to_x(ctx, op)) {
1736 return true;
1739 ctx->z_mask = arg_info(op->args[1])->z_mask
1740 | arg_info(op->args[2])->z_mask;
1741 ctx->s_mask = arg_info(op->args[1])->s_mask
1742 & arg_info(op->args[2])->s_mask;
1743 return fold_masks(ctx, op);
1746 static bool fold_orc(OptContext *ctx, TCGOp *op)
1748 if (fold_const2(ctx, op) ||
1749 fold_xx_to_i(ctx, op, -1) ||
1750 fold_xi_to_x(ctx, op, -1) ||
1751 fold_ix_to_not(ctx, op, 0)) {
1752 return true;
1755 ctx->s_mask = arg_info(op->args[1])->s_mask
1756 & arg_info(op->args[2])->s_mask;
1757 return false;
1760 static bool fold_qemu_ld(OptContext *ctx, TCGOp *op)
1762 const TCGOpDef *def = &tcg_op_defs[op->opc];
1763 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs];
1764 MemOp mop = get_memop(oi);
1765 int width = 8 * memop_size(mop);
1767 if (width < 64) {
1768 ctx->s_mask = MAKE_64BIT_MASK(width, 64 - width);
1769 if (!(mop & MO_SIGN)) {
1770 ctx->z_mask = MAKE_64BIT_MASK(0, width);
1771 ctx->s_mask <<= 1;
1775 /* Opcodes that touch guest memory stop the mb optimization. */
1776 ctx->prev_mb = NULL;
1777 return false;
1780 static bool fold_qemu_st(OptContext *ctx, TCGOp *op)
1782 /* Opcodes that touch guest memory stop the mb optimization. */
1783 ctx->prev_mb = NULL;
1784 return false;
1787 static bool fold_remainder(OptContext *ctx, TCGOp *op)
1789 if (fold_const2(ctx, op) ||
1790 fold_xx_to_i(ctx, op, 0)) {
1791 return true;
1793 return false;
1796 static bool fold_setcond(OptContext *ctx, TCGOp *op)
1798 TCGCond cond = op->args[3];
1799 int i;
1801 if (swap_commutative(op->args[0], &op->args[1], &op->args[2])) {
1802 op->args[3] = cond = tcg_swap_cond(cond);
1805 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond);
1806 if (i >= 0) {
1807 return tcg_opt_gen_movi(ctx, op, op->args[0], i);
1810 ctx->z_mask = 1;
1811 ctx->s_mask = smask_from_zmask(1);
1812 return false;
1815 static bool fold_negsetcond(OptContext *ctx, TCGOp *op)
1817 TCGCond cond = op->args[3];
1818 int i;
1820 if (swap_commutative(op->args[0], &op->args[1], &op->args[2])) {
1821 op->args[3] = cond = tcg_swap_cond(cond);
1824 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond);
1825 if (i >= 0) {
1826 return tcg_opt_gen_movi(ctx, op, op->args[0], -i);
1829 /* Value is {0,-1} so all bits are repetitions of the sign. */
1830 ctx->s_mask = -1;
1831 return false;
1835 static bool fold_setcond2(OptContext *ctx, TCGOp *op)
1837 TCGCond cond = op->args[5];
1838 int i, inv = 0;
1840 if (swap_commutative2(&op->args[1], &op->args[3])) {
1841 op->args[5] = cond = tcg_swap_cond(cond);
1844 i = do_constant_folding_cond2(&op->args[1], &op->args[3], cond);
1845 if (i >= 0) {
1846 goto do_setcond_const;
1849 switch (cond) {
1850 case TCG_COND_LT:
1851 case TCG_COND_GE:
1853 * Simplify LT/GE comparisons vs zero to a single compare
1854 * vs the high word of the input.
1856 if (arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0 &&
1857 arg_is_const(op->args[4]) && arg_info(op->args[4])->val == 0) {
1858 goto do_setcond_high;
1860 break;
1862 case TCG_COND_NE:
1863 inv = 1;
1864 QEMU_FALLTHROUGH;
1865 case TCG_COND_EQ:
1867 * Simplify EQ/NE comparisons where one of the pairs
1868 * can be simplified.
1870 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1],
1871 op->args[3], cond);
1872 switch (i ^ inv) {
1873 case 0:
1874 goto do_setcond_const;
1875 case 1:
1876 goto do_setcond_high;
1879 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2],
1880 op->args[4], cond);
1881 switch (i ^ inv) {
1882 case 0:
1883 goto do_setcond_const;
1884 case 1:
1885 op->args[2] = op->args[3];
1886 op->args[3] = cond;
1887 op->opc = INDEX_op_setcond_i32;
1888 break;
1890 break;
1892 default:
1893 break;
1895 do_setcond_high:
1896 op->args[1] = op->args[2];
1897 op->args[2] = op->args[4];
1898 op->args[3] = cond;
1899 op->opc = INDEX_op_setcond_i32;
1900 break;
1903 ctx->z_mask = 1;
1904 ctx->s_mask = smask_from_zmask(1);
1905 return false;
1907 do_setcond_const:
1908 return tcg_opt_gen_movi(ctx, op, op->args[0], i);
1911 static bool fold_sextract(OptContext *ctx, TCGOp *op)
1913 uint64_t z_mask, s_mask, s_mask_old;
1914 int pos = op->args[2];
1915 int len = op->args[3];
1917 if (arg_is_const(op->args[1])) {
1918 uint64_t t;
1920 t = arg_info(op->args[1])->val;
1921 t = sextract64(t, pos, len);
1922 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1925 z_mask = arg_info(op->args[1])->z_mask;
1926 z_mask = sextract64(z_mask, pos, len);
1927 ctx->z_mask = z_mask;
1929 s_mask_old = arg_info(op->args[1])->s_mask;
1930 s_mask = sextract64(s_mask_old, pos, len);
1931 s_mask |= MAKE_64BIT_MASK(len, 64 - len);
1932 ctx->s_mask = s_mask;
1934 if (pos == 0) {
1935 ctx->a_mask = s_mask & ~s_mask_old;
1938 return fold_masks(ctx, op);
1941 static bool fold_shift(OptContext *ctx, TCGOp *op)
1943 uint64_t s_mask, z_mask, sign;
1945 if (fold_const2(ctx, op) ||
1946 fold_ix_to_i(ctx, op, 0) ||
1947 fold_xi_to_x(ctx, op, 0)) {
1948 return true;
1951 s_mask = arg_info(op->args[1])->s_mask;
1952 z_mask = arg_info(op->args[1])->z_mask;
1954 if (arg_is_const(op->args[2])) {
1955 int sh = arg_info(op->args[2])->val;
1957 ctx->z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh);
1959 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh);
1960 ctx->s_mask = smask_from_smask(s_mask);
1962 return fold_masks(ctx, op);
1965 switch (op->opc) {
1966 CASE_OP_32_64(sar):
1968 * Arithmetic right shift will not reduce the number of
1969 * input sign repetitions.
1971 ctx->s_mask = s_mask;
1972 break;
1973 CASE_OP_32_64(shr):
1975 * If the sign bit is known zero, then logical right shift
1976 * will not reduced the number of input sign repetitions.
1978 sign = (s_mask & -s_mask) >> 1;
1979 if (!(z_mask & sign)) {
1980 ctx->s_mask = s_mask;
1982 break;
1983 default:
1984 break;
1987 return false;
1990 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op)
1992 TCGOpcode neg_op;
1993 bool have_neg;
1995 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) {
1996 return false;
1999 switch (ctx->type) {
2000 case TCG_TYPE_I32:
2001 neg_op = INDEX_op_neg_i32;
2002 have_neg = TCG_TARGET_HAS_neg_i32;
2003 break;
2004 case TCG_TYPE_I64:
2005 neg_op = INDEX_op_neg_i64;
2006 have_neg = TCG_TARGET_HAS_neg_i64;
2007 break;
2008 case TCG_TYPE_V64:
2009 case TCG_TYPE_V128:
2010 case TCG_TYPE_V256:
2011 neg_op = INDEX_op_neg_vec;
2012 have_neg = (TCG_TARGET_HAS_neg_vec &&
2013 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0);
2014 break;
2015 default:
2016 g_assert_not_reached();
2018 if (have_neg) {
2019 op->opc = neg_op;
2020 op->args[1] = op->args[2];
2021 return fold_neg(ctx, op);
2023 return false;
2026 /* We cannot as yet do_constant_folding with vectors. */
2027 static bool fold_sub_vec(OptContext *ctx, TCGOp *op)
2029 if (fold_xx_to_i(ctx, op, 0) ||
2030 fold_xi_to_x(ctx, op, 0) ||
2031 fold_sub_to_neg(ctx, op)) {
2032 return true;
2034 return false;
2037 static bool fold_sub(OptContext *ctx, TCGOp *op)
2039 return fold_const2(ctx, op) || fold_sub_vec(ctx, op);
2042 static bool fold_sub2(OptContext *ctx, TCGOp *op)
2044 return fold_addsub2(ctx, op, false);
2047 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op)
2049 /* We can't do any folding with a load, but we can record bits. */
2050 switch (op->opc) {
2051 CASE_OP_32_64(ld8s):
2052 ctx->s_mask = MAKE_64BIT_MASK(8, 56);
2053 break;
2054 CASE_OP_32_64(ld8u):
2055 ctx->z_mask = MAKE_64BIT_MASK(0, 8);
2056 ctx->s_mask = MAKE_64BIT_MASK(9, 55);
2057 break;
2058 CASE_OP_32_64(ld16s):
2059 ctx->s_mask = MAKE_64BIT_MASK(16, 48);
2060 break;
2061 CASE_OP_32_64(ld16u):
2062 ctx->z_mask = MAKE_64BIT_MASK(0, 16);
2063 ctx->s_mask = MAKE_64BIT_MASK(17, 47);
2064 break;
2065 case INDEX_op_ld32s_i64:
2066 ctx->s_mask = MAKE_64BIT_MASK(32, 32);
2067 break;
2068 case INDEX_op_ld32u_i64:
2069 ctx->z_mask = MAKE_64BIT_MASK(0, 32);
2070 ctx->s_mask = MAKE_64BIT_MASK(33, 31);
2071 break;
2072 default:
2073 g_assert_not_reached();
2075 return false;
2078 static bool fold_xor(OptContext *ctx, TCGOp *op)
2080 if (fold_const2_commutative(ctx, op) ||
2081 fold_xx_to_i(ctx, op, 0) ||
2082 fold_xi_to_x(ctx, op, 0) ||
2083 fold_xi_to_not(ctx, op, -1)) {
2084 return true;
2087 ctx->z_mask = arg_info(op->args[1])->z_mask
2088 | arg_info(op->args[2])->z_mask;
2089 ctx->s_mask = arg_info(op->args[1])->s_mask
2090 & arg_info(op->args[2])->s_mask;
2091 return fold_masks(ctx, op);
2094 /* Propagate constants and copies, fold constant expressions. */
2095 void tcg_optimize(TCGContext *s)
2097 int nb_temps, i;
2098 TCGOp *op, *op_next;
2099 OptContext ctx = { .tcg = s };
2101 /* Array VALS has an element for each temp.
2102 If this temp holds a constant then its value is kept in VALS' element.
2103 If this temp is a copy of other ones then the other copies are
2104 available through the doubly linked circular list. */
2106 nb_temps = s->nb_temps;
2107 for (i = 0; i < nb_temps; ++i) {
2108 s->temps[i].state_ptr = NULL;
2111 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2112 TCGOpcode opc = op->opc;
2113 const TCGOpDef *def;
2114 bool done = false;
2116 /* Calls are special. */
2117 if (opc == INDEX_op_call) {
2118 fold_call(&ctx, op);
2119 continue;
2122 def = &tcg_op_defs[opc];
2123 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs);
2124 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs);
2126 /* Pre-compute the type of the operation. */
2127 if (def->flags & TCG_OPF_VECTOR) {
2128 ctx.type = TCG_TYPE_V64 + TCGOP_VECL(op);
2129 } else if (def->flags & TCG_OPF_64BIT) {
2130 ctx.type = TCG_TYPE_I64;
2131 } else {
2132 ctx.type = TCG_TYPE_I32;
2135 /* Assume all bits affected, no bits known zero, no sign reps. */
2136 ctx.a_mask = -1;
2137 ctx.z_mask = -1;
2138 ctx.s_mask = 0;
2141 * Process each opcode.
2142 * Sorted alphabetically by opcode as much as possible.
2144 switch (opc) {
2145 CASE_OP_32_64(add):
2146 done = fold_add(&ctx, op);
2147 break;
2148 case INDEX_op_add_vec:
2149 done = fold_add_vec(&ctx, op);
2150 break;
2151 CASE_OP_32_64(add2):
2152 done = fold_add2(&ctx, op);
2153 break;
2154 CASE_OP_32_64_VEC(and):
2155 done = fold_and(&ctx, op);
2156 break;
2157 CASE_OP_32_64_VEC(andc):
2158 done = fold_andc(&ctx, op);
2159 break;
2160 CASE_OP_32_64(brcond):
2161 done = fold_brcond(&ctx, op);
2162 break;
2163 case INDEX_op_brcond2_i32:
2164 done = fold_brcond2(&ctx, op);
2165 break;
2166 CASE_OP_32_64(bswap16):
2167 CASE_OP_32_64(bswap32):
2168 case INDEX_op_bswap64_i64:
2169 done = fold_bswap(&ctx, op);
2170 break;
2171 CASE_OP_32_64(clz):
2172 CASE_OP_32_64(ctz):
2173 done = fold_count_zeros(&ctx, op);
2174 break;
2175 CASE_OP_32_64(ctpop):
2176 done = fold_ctpop(&ctx, op);
2177 break;
2178 CASE_OP_32_64(deposit):
2179 done = fold_deposit(&ctx, op);
2180 break;
2181 CASE_OP_32_64(div):
2182 CASE_OP_32_64(divu):
2183 done = fold_divide(&ctx, op);
2184 break;
2185 case INDEX_op_dup_vec:
2186 done = fold_dup(&ctx, op);
2187 break;
2188 case INDEX_op_dup2_vec:
2189 done = fold_dup2(&ctx, op);
2190 break;
2191 CASE_OP_32_64_VEC(eqv):
2192 done = fold_eqv(&ctx, op);
2193 break;
2194 CASE_OP_32_64(extract):
2195 done = fold_extract(&ctx, op);
2196 break;
2197 CASE_OP_32_64(extract2):
2198 done = fold_extract2(&ctx, op);
2199 break;
2200 CASE_OP_32_64(ext8s):
2201 CASE_OP_32_64(ext16s):
2202 case INDEX_op_ext32s_i64:
2203 case INDEX_op_ext_i32_i64:
2204 done = fold_exts(&ctx, op);
2205 break;
2206 CASE_OP_32_64(ext8u):
2207 CASE_OP_32_64(ext16u):
2208 case INDEX_op_ext32u_i64:
2209 case INDEX_op_extu_i32_i64:
2210 case INDEX_op_extrl_i64_i32:
2211 case INDEX_op_extrh_i64_i32:
2212 done = fold_extu(&ctx, op);
2213 break;
2214 CASE_OP_32_64(ld8s):
2215 CASE_OP_32_64(ld8u):
2216 CASE_OP_32_64(ld16s):
2217 CASE_OP_32_64(ld16u):
2218 case INDEX_op_ld32s_i64:
2219 case INDEX_op_ld32u_i64:
2220 done = fold_tcg_ld(&ctx, op);
2221 break;
2222 case INDEX_op_mb:
2223 done = fold_mb(&ctx, op);
2224 break;
2225 CASE_OP_32_64_VEC(mov):
2226 done = fold_mov(&ctx, op);
2227 break;
2228 CASE_OP_32_64(movcond):
2229 done = fold_movcond(&ctx, op);
2230 break;
2231 CASE_OP_32_64(mul):
2232 done = fold_mul(&ctx, op);
2233 break;
2234 CASE_OP_32_64(mulsh):
2235 CASE_OP_32_64(muluh):
2236 done = fold_mul_highpart(&ctx, op);
2237 break;
2238 CASE_OP_32_64(muls2):
2239 CASE_OP_32_64(mulu2):
2240 done = fold_multiply2(&ctx, op);
2241 break;
2242 CASE_OP_32_64_VEC(nand):
2243 done = fold_nand(&ctx, op);
2244 break;
2245 CASE_OP_32_64(neg):
2246 done = fold_neg(&ctx, op);
2247 break;
2248 CASE_OP_32_64_VEC(nor):
2249 done = fold_nor(&ctx, op);
2250 break;
2251 CASE_OP_32_64_VEC(not):
2252 done = fold_not(&ctx, op);
2253 break;
2254 CASE_OP_32_64_VEC(or):
2255 done = fold_or(&ctx, op);
2256 break;
2257 CASE_OP_32_64_VEC(orc):
2258 done = fold_orc(&ctx, op);
2259 break;
2260 case INDEX_op_qemu_ld_a32_i32:
2261 case INDEX_op_qemu_ld_a64_i32:
2262 case INDEX_op_qemu_ld_a32_i64:
2263 case INDEX_op_qemu_ld_a64_i64:
2264 case INDEX_op_qemu_ld_a32_i128:
2265 case INDEX_op_qemu_ld_a64_i128:
2266 done = fold_qemu_ld(&ctx, op);
2267 break;
2268 case INDEX_op_qemu_st8_a32_i32:
2269 case INDEX_op_qemu_st8_a64_i32:
2270 case INDEX_op_qemu_st_a32_i32:
2271 case INDEX_op_qemu_st_a64_i32:
2272 case INDEX_op_qemu_st_a32_i64:
2273 case INDEX_op_qemu_st_a64_i64:
2274 case INDEX_op_qemu_st_a32_i128:
2275 case INDEX_op_qemu_st_a64_i128:
2276 done = fold_qemu_st(&ctx, op);
2277 break;
2278 CASE_OP_32_64(rem):
2279 CASE_OP_32_64(remu):
2280 done = fold_remainder(&ctx, op);
2281 break;
2282 CASE_OP_32_64(rotl):
2283 CASE_OP_32_64(rotr):
2284 CASE_OP_32_64(sar):
2285 CASE_OP_32_64(shl):
2286 CASE_OP_32_64(shr):
2287 done = fold_shift(&ctx, op);
2288 break;
2289 CASE_OP_32_64(setcond):
2290 done = fold_setcond(&ctx, op);
2291 break;
2292 CASE_OP_32_64(negsetcond):
2293 done = fold_negsetcond(&ctx, op);
2294 break;
2295 case INDEX_op_setcond2_i32:
2296 done = fold_setcond2(&ctx, op);
2297 break;
2298 CASE_OP_32_64(sextract):
2299 done = fold_sextract(&ctx, op);
2300 break;
2301 CASE_OP_32_64(sub):
2302 done = fold_sub(&ctx, op);
2303 break;
2304 case INDEX_op_sub_vec:
2305 done = fold_sub_vec(&ctx, op);
2306 break;
2307 CASE_OP_32_64(sub2):
2308 done = fold_sub2(&ctx, op);
2309 break;
2310 CASE_OP_32_64_VEC(xor):
2311 done = fold_xor(&ctx, op);
2312 break;
2313 default:
2314 break;
2317 if (!done) {
2318 finish_folding(&ctx, op);