4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm_int.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "qemu/error-report.h"
32 #include "hw/i386/pc.h"
33 #include "hw/i386/apic.h"
34 #include "hw/i386/apic_internal.h"
35 #include "hw/i386/apic-msidef.h"
36 #include "exec/ioport.h"
37 #include "standard-headers/asm-x86/hyperv.h"
38 #include "hw/pci/pci.h"
39 #include "migration/migration.h"
40 #include "exec/memattrs.h"
45 #define DPRINTF(fmt, ...) \
46 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
48 #define DPRINTF(fmt, ...) \
52 #define MSR_KVM_WALL_CLOCK 0x11
53 #define MSR_KVM_SYSTEM_TIME 0x12
56 #define BUS_MCEERR_AR 4
59 #define BUS_MCEERR_AO 5
62 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
63 KVM_CAP_INFO(SET_TSS_ADDR
),
64 KVM_CAP_INFO(EXT_CPUID
),
65 KVM_CAP_INFO(MP_STATE
),
69 static bool has_msr_star
;
70 static bool has_msr_hsave_pa
;
71 static bool has_msr_tsc_aux
;
72 static bool has_msr_tsc_adjust
;
73 static bool has_msr_tsc_deadline
;
74 static bool has_msr_feature_control
;
75 static bool has_msr_async_pf_en
;
76 static bool has_msr_pv_eoi_en
;
77 static bool has_msr_misc_enable
;
78 static bool has_msr_smbase
;
79 static bool has_msr_bndcfgs
;
80 static bool has_msr_kvm_steal_time
;
81 static int lm_capable_kernel
;
82 static bool has_msr_hv_hypercall
;
83 static bool has_msr_hv_vapic
;
84 static bool has_msr_hv_tsc
;
85 static bool has_msr_hv_crash
;
86 static bool has_msr_hv_reset
;
87 static bool has_msr_hv_vpindex
;
88 static bool has_msr_hv_runtime
;
89 static bool has_msr_mtrr
;
90 static bool has_msr_xss
;
92 static bool has_msr_architectural_pmu
;
93 static uint32_t num_architectural_pmu_counters
;
97 static int has_pit_state2
;
99 int kvm_has_pit_state2(void)
101 return has_pit_state2
;
104 bool kvm_has_smm(void)
106 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
109 bool kvm_allows_irq0_override(void)
111 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
114 static int kvm_get_tsc(CPUState
*cs
)
116 X86CPU
*cpu
= X86_CPU(cs
);
117 CPUX86State
*env
= &cpu
->env
;
119 struct kvm_msrs info
;
120 struct kvm_msr_entry entries
[1];
124 if (env
->tsc_valid
) {
128 msr_data
.info
.nmsrs
= 1;
129 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
130 env
->tsc_valid
= !runstate_is_running();
132 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
137 env
->tsc
= msr_data
.entries
[0].data
;
141 static inline void do_kvm_synchronize_tsc(void *arg
)
148 void kvm_synchronize_all_tsc(void)
154 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, cpu
);
159 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
161 struct kvm_cpuid2
*cpuid
;
164 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
165 cpuid
= g_malloc0(size
);
167 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
168 if (r
== 0 && cpuid
->nent
>= max
) {
176 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
184 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
187 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
189 struct kvm_cpuid2
*cpuid
;
191 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
197 static const struct kvm_para_features
{
200 } para_features
[] = {
201 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
202 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
203 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
204 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
207 static int get_para_features(KVMState
*s
)
211 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
212 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
213 features
|= (1 << para_features
[i
].feature
);
221 /* Returns the value for a specific register on the cpuid entry
223 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
243 /* Find matching entry for function/index on kvm_cpuid2 struct
245 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
250 for (i
= 0; i
< cpuid
->nent
; ++i
) {
251 if (cpuid
->entries
[i
].function
== function
&&
252 cpuid
->entries
[i
].index
== index
) {
253 return &cpuid
->entries
[i
];
260 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
261 uint32_t index
, int reg
)
263 struct kvm_cpuid2
*cpuid
;
265 uint32_t cpuid_1_edx
;
268 cpuid
= get_supported_cpuid(s
);
270 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
273 ret
= cpuid_entry_get_reg(entry
, reg
);
276 /* Fixups for the data returned by KVM, below */
278 if (function
== 1 && reg
== R_EDX
) {
279 /* KVM before 2.6.30 misreports the following features */
280 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
281 } else if (function
== 1 && reg
== R_ECX
) {
282 /* We can set the hypervisor flag, even if KVM does not return it on
283 * GET_SUPPORTED_CPUID
285 ret
|= CPUID_EXT_HYPERVISOR
;
286 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
287 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
288 * and the irqchip is in the kernel.
290 if (kvm_irqchip_in_kernel() &&
291 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
292 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
295 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
296 * without the in-kernel irqchip
298 if (!kvm_irqchip_in_kernel()) {
299 ret
&= ~CPUID_EXT_X2APIC
;
301 } else if (function
== 6 && reg
== R_EAX
) {
302 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
303 } else if (function
== 0x80000001 && reg
== R_EDX
) {
304 /* On Intel, kvm returns cpuid according to the Intel spec,
305 * so add missing bits according to the AMD spec:
307 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
308 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
313 /* fallback for older kernels */
314 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
315 ret
= get_para_features(s
);
321 typedef struct HWPoisonPage
{
323 QLIST_ENTRY(HWPoisonPage
) list
;
326 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
327 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
329 static void kvm_unpoison_all(void *param
)
331 HWPoisonPage
*page
, *next_page
;
333 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
334 QLIST_REMOVE(page
, list
);
335 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
340 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
344 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
345 if (page
->ram_addr
== ram_addr
) {
349 page
= g_new(HWPoisonPage
, 1);
350 page
->ram_addr
= ram_addr
;
351 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
354 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
359 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
362 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
367 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
369 CPUX86State
*env
= &cpu
->env
;
370 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
371 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
372 uint64_t mcg_status
= MCG_STATUS_MCIP
;
374 if (code
== BUS_MCEERR_AR
) {
375 status
|= MCI_STATUS_AR
| 0x134;
376 mcg_status
|= MCG_STATUS_EIPV
;
379 mcg_status
|= MCG_STATUS_RIPV
;
381 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
382 (MCM_ADDR_PHYS
<< 6) | 0xc,
383 cpu_x86_support_mca_broadcast(env
) ?
384 MCE_INJECT_BROADCAST
: 0);
387 static void hardware_memory_error(void)
389 fprintf(stderr
, "Hardware memory error!\n");
393 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
395 X86CPU
*cpu
= X86_CPU(c
);
396 CPUX86State
*env
= &cpu
->env
;
400 if ((env
->mcg_cap
& MCG_SER_P
) && addr
401 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
402 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
403 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
404 fprintf(stderr
, "Hardware memory error for memory used by "
405 "QEMU itself instead of guest system!\n");
406 /* Hope we are lucky for AO MCE */
407 if (code
== BUS_MCEERR_AO
) {
410 hardware_memory_error();
413 kvm_hwpoison_page_add(ram_addr
);
414 kvm_mce_inject(cpu
, paddr
, code
);
416 if (code
== BUS_MCEERR_AO
) {
418 } else if (code
== BUS_MCEERR_AR
) {
419 hardware_memory_error();
427 int kvm_arch_on_sigbus(int code
, void *addr
)
429 X86CPU
*cpu
= X86_CPU(first_cpu
);
431 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
435 /* Hope we are lucky for AO MCE */
436 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
437 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
439 fprintf(stderr
, "Hardware memory error for memory used by "
440 "QEMU itself instead of guest system!: %p\n", addr
);
443 kvm_hwpoison_page_add(ram_addr
);
444 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
446 if (code
== BUS_MCEERR_AO
) {
448 } else if (code
== BUS_MCEERR_AR
) {
449 hardware_memory_error();
457 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
459 CPUX86State
*env
= &cpu
->env
;
461 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
462 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
463 struct kvm_x86_mce mce
;
465 env
->exception_injected
= -1;
468 * There must be at least one bank in use if an MCE is pending.
469 * Find it and use its values for the event injection.
471 for (bank
= 0; bank
< bank_num
; bank
++) {
472 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
476 assert(bank
< bank_num
);
479 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
480 mce
.mcg_status
= env
->mcg_status
;
481 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
482 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
484 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
489 static void cpu_update_state(void *opaque
, int running
, RunState state
)
491 CPUX86State
*env
= opaque
;
494 env
->tsc_valid
= false;
498 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
500 X86CPU
*cpu
= X86_CPU(cs
);
504 #ifndef KVM_CPUID_SIGNATURE_NEXT
505 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
508 static bool hyperv_hypercall_available(X86CPU
*cpu
)
510 return cpu
->hyperv_vapic
||
511 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
514 static bool hyperv_enabled(X86CPU
*cpu
)
516 CPUState
*cs
= CPU(cpu
);
517 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
518 (hyperv_hypercall_available(cpu
) ||
520 cpu
->hyperv_relaxed_timing
||
523 cpu
->hyperv_vpindex
||
524 cpu
->hyperv_runtime
);
527 static Error
*invtsc_mig_blocker
;
529 #define KVM_MAX_CPUID_ENTRIES 100
531 int kvm_arch_init_vcpu(CPUState
*cs
)
534 struct kvm_cpuid2 cpuid
;
535 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
536 } QEMU_PACKED cpuid_data
;
537 X86CPU
*cpu
= X86_CPU(cs
);
538 CPUX86State
*env
= &cpu
->env
;
539 uint32_t limit
, i
, j
, cpuid_i
;
541 struct kvm_cpuid_entry2
*c
;
542 uint32_t signature
[3];
543 int kvm_base
= KVM_CPUID_SIGNATURE
;
546 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
550 /* Paravirtualization CPUIDs */
551 if (hyperv_enabled(cpu
)) {
552 c
= &cpuid_data
.entries
[cpuid_i
++];
553 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
554 if (!cpu
->hyperv_vendor_id
) {
555 memcpy(signature
, "Microsoft Hv", 12);
557 size_t len
= strlen(cpu
->hyperv_vendor_id
);
560 error_report("hv-vendor-id truncated to 12 characters");
563 memset(signature
, 0, 12);
564 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
566 c
->eax
= HYPERV_CPUID_MIN
;
567 c
->ebx
= signature
[0];
568 c
->ecx
= signature
[1];
569 c
->edx
= signature
[2];
571 c
= &cpuid_data
.entries
[cpuid_i
++];
572 c
->function
= HYPERV_CPUID_INTERFACE
;
573 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
574 c
->eax
= signature
[0];
579 c
= &cpuid_data
.entries
[cpuid_i
++];
580 c
->function
= HYPERV_CPUID_VERSION
;
584 c
= &cpuid_data
.entries
[cpuid_i
++];
585 c
->function
= HYPERV_CPUID_FEATURES
;
586 if (cpu
->hyperv_relaxed_timing
) {
587 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
589 if (cpu
->hyperv_vapic
) {
590 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
591 c
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
592 has_msr_hv_vapic
= true;
594 if (cpu
->hyperv_time
&&
595 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
596 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
597 c
->eax
|= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
599 has_msr_hv_tsc
= true;
601 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
602 c
->edx
|= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
604 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
605 c
->eax
|= HV_X64_MSR_RESET_AVAILABLE
;
607 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
608 c
->eax
|= HV_X64_MSR_VP_INDEX_AVAILABLE
;
610 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
611 c
->eax
|= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
613 c
= &cpuid_data
.entries
[cpuid_i
++];
614 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
615 if (cpu
->hyperv_relaxed_timing
) {
616 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
618 if (has_msr_hv_vapic
) {
619 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
621 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
623 c
= &cpuid_data
.entries
[cpuid_i
++];
624 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
628 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
629 has_msr_hv_hypercall
= true;
632 if (cpu
->expose_kvm
) {
633 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
634 c
= &cpuid_data
.entries
[cpuid_i
++];
635 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
636 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
637 c
->ebx
= signature
[0];
638 c
->ecx
= signature
[1];
639 c
->edx
= signature
[2];
641 c
= &cpuid_data
.entries
[cpuid_i
++];
642 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
643 c
->eax
= env
->features
[FEAT_KVM
];
645 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
647 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
649 has_msr_kvm_steal_time
= c
->eax
& (1 << KVM_FEATURE_STEAL_TIME
);
652 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
654 for (i
= 0; i
<= limit
; i
++) {
655 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
656 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
659 c
= &cpuid_data
.entries
[cpuid_i
++];
663 /* Keep reading function 2 till all the input is received */
667 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
668 KVM_CPUID_FLAG_STATE_READ_NEXT
;
669 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
670 times
= c
->eax
& 0xff;
672 for (j
= 1; j
< times
; ++j
) {
673 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
674 fprintf(stderr
, "cpuid_data is full, no space for "
675 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
678 c
= &cpuid_data
.entries
[cpuid_i
++];
680 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
681 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
689 if (i
== 0xd && j
== 64) {
693 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
695 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
697 if (i
== 4 && c
->eax
== 0) {
700 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
703 if (i
== 0xd && c
->eax
== 0) {
706 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
707 fprintf(stderr
, "cpuid_data is full, no space for "
708 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
711 c
= &cpuid_data
.entries
[cpuid_i
++];
717 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
725 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
726 if ((ver
& 0xff) > 0) {
727 has_msr_architectural_pmu
= true;
728 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
730 /* Shouldn't be more than 32, since that's the number of bits
731 * available in EBX to tell us _which_ counters are available.
734 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
735 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
740 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
742 for (i
= 0x80000000; i
<= limit
; i
++) {
743 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
744 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
747 c
= &cpuid_data
.entries
[cpuid_i
++];
751 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
754 /* Call Centaur's CPUID instructions they are supported. */
755 if (env
->cpuid_xlevel2
> 0) {
756 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
758 for (i
= 0xC0000000; i
<= limit
; i
++) {
759 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
760 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
763 c
= &cpuid_data
.entries
[cpuid_i
++];
767 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
771 cpuid_data
.cpuid
.nent
= cpuid_i
;
773 if (((env
->cpuid_version
>> 8)&0xF) >= 6
774 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
775 (CPUID_MCE
| CPUID_MCA
)
776 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
781 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
783 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
787 if (banks
> MCE_BANKS_DEF
) {
788 banks
= MCE_BANKS_DEF
;
790 mcg_cap
&= MCE_CAP_DEF
;
792 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &mcg_cap
);
794 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
798 env
->mcg_cap
= mcg_cap
;
801 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
803 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
805 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
806 !!(c
->ecx
& CPUID_EXT_SMX
);
809 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
810 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
812 error_setg(&invtsc_mig_blocker
,
813 "State blocked by non-migratable CPU device"
815 migrate_add_blocker(invtsc_mig_blocker
);
817 vmstate_x86_cpu
.unmigratable
= 1;
820 cpuid_data
.cpuid
.padding
= 0;
821 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
826 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
);
827 if (r
&& env
->tsc_khz
) {
828 r
= kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
);
830 fprintf(stderr
, "KVM_SET_TSC_KHZ failed\n");
836 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
839 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
846 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
848 CPUX86State
*env
= &cpu
->env
;
850 env
->exception_injected
= -1;
851 env
->interrupt_injected
= -1;
853 if (kvm_irqchip_in_kernel()) {
854 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
855 KVM_MP_STATE_UNINITIALIZED
;
857 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
861 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
863 CPUX86State
*env
= &cpu
->env
;
865 /* APs get directly into wait-for-SIPI state. */
866 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
867 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
871 static int kvm_get_supported_msrs(KVMState
*s
)
873 static int kvm_supported_msrs
;
877 if (kvm_supported_msrs
== 0) {
878 struct kvm_msr_list msr_list
, *kvm_msr_list
;
880 kvm_supported_msrs
= -1;
882 /* Obtain MSR list from KVM. These are the MSRs that we must
885 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
886 if (ret
< 0 && ret
!= -E2BIG
) {
889 /* Old kernel modules had a bug and could write beyond the provided
890 memory. Allocate at least a safe amount of 1K. */
891 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
893 sizeof(msr_list
.indices
[0])));
895 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
896 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
900 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
901 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
905 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
906 has_msr_hsave_pa
= true;
909 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
910 has_msr_tsc_aux
= true;
913 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
914 has_msr_tsc_adjust
= true;
917 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
918 has_msr_tsc_deadline
= true;
921 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
922 has_msr_smbase
= true;
925 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
926 has_msr_misc_enable
= true;
929 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
930 has_msr_bndcfgs
= true;
933 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
937 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
938 has_msr_hv_crash
= true;
941 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
942 has_msr_hv_reset
= true;
945 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
946 has_msr_hv_vpindex
= true;
949 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
950 has_msr_hv_runtime
= true;
956 g_free(kvm_msr_list
);
962 static Notifier smram_machine_done
;
963 static KVMMemoryListener smram_listener
;
964 static AddressSpace smram_address_space
;
965 static MemoryRegion smram_as_root
;
966 static MemoryRegion smram_as_mem
;
968 static void register_smram_listener(Notifier
*n
, void *unused
)
970 MemoryRegion
*smram
=
971 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
973 /* Outer container... */
974 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
975 memory_region_set_enabled(&smram_as_root
, true);
977 /* ... with two regions inside: normal system memory with low
980 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
981 get_system_memory(), 0, ~0ull);
982 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
983 memory_region_set_enabled(&smram_as_mem
, true);
986 /* ... SMRAM with higher priority */
987 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
988 memory_region_set_enabled(smram
, true);
991 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
992 kvm_memory_listener_register(kvm_state
, &smram_listener
,
993 &smram_address_space
, 1);
996 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
998 uint64_t identity_base
= 0xfffbc000;
1001 struct utsname utsname
;
1003 #ifdef KVM_CAP_XSAVE
1004 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1008 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1011 #ifdef KVM_CAP_PIT_STATE2
1012 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1015 ret
= kvm_get_supported_msrs(s
);
1021 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1024 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1025 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1026 * Since these must be part of guest physical memory, we need to allocate
1027 * them, both by setting their start addresses in the kernel and by
1028 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1030 * Older KVM versions may not support setting the identity map base. In
1031 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1034 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1035 /* Allows up to 16M BIOSes. */
1036 identity_base
= 0xfeffc000;
1038 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1044 /* Set TSS base one page after EPT identity map. */
1045 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1050 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1051 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1053 fprintf(stderr
, "e820_add_entry() table is full\n");
1056 qemu_register_reset(kvm_unpoison_all
, NULL
);
1058 shadow_mem
= machine_kvm_shadow_mem(ms
);
1059 if (shadow_mem
!= -1) {
1061 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1067 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1068 smram_machine_done
.notify
= register_smram_listener
;
1069 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1074 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1076 lhs
->selector
= rhs
->selector
;
1077 lhs
->base
= rhs
->base
;
1078 lhs
->limit
= rhs
->limit
;
1090 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1092 unsigned flags
= rhs
->flags
;
1093 lhs
->selector
= rhs
->selector
;
1094 lhs
->base
= rhs
->base
;
1095 lhs
->limit
= rhs
->limit
;
1096 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1097 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1098 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1099 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1100 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1101 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1102 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1103 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1108 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1110 lhs
->selector
= rhs
->selector
;
1111 lhs
->base
= rhs
->base
;
1112 lhs
->limit
= rhs
->limit
;
1113 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1114 (rhs
->present
* DESC_P_MASK
) |
1115 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1116 (rhs
->db
<< DESC_B_SHIFT
) |
1117 (rhs
->s
* DESC_S_MASK
) |
1118 (rhs
->l
<< DESC_L_SHIFT
) |
1119 (rhs
->g
* DESC_G_MASK
) |
1120 (rhs
->avl
* DESC_AVL_MASK
);
1123 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1126 *kvm_reg
= *qemu_reg
;
1128 *qemu_reg
= *kvm_reg
;
1132 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1134 CPUX86State
*env
= &cpu
->env
;
1135 struct kvm_regs regs
;
1139 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1145 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1146 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1147 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1148 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1149 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1150 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1151 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1152 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1153 #ifdef TARGET_X86_64
1154 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1155 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1156 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1157 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1158 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1159 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1160 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1161 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1164 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1165 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1168 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1174 static int kvm_put_fpu(X86CPU
*cpu
)
1176 CPUX86State
*env
= &cpu
->env
;
1180 memset(&fpu
, 0, sizeof fpu
);
1181 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1182 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1183 fpu
.fcw
= env
->fpuc
;
1184 fpu
.last_opcode
= env
->fpop
;
1185 fpu
.last_ip
= env
->fpip
;
1186 fpu
.last_dp
= env
->fpdp
;
1187 for (i
= 0; i
< 8; ++i
) {
1188 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1190 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1191 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1192 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].XMM_Q(0));
1193 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].XMM_Q(1));
1195 fpu
.mxcsr
= env
->mxcsr
;
1197 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1200 #define XSAVE_FCW_FSW 0
1201 #define XSAVE_FTW_FOP 1
1202 #define XSAVE_CWD_RIP 2
1203 #define XSAVE_CWD_RDP 4
1204 #define XSAVE_MXCSR 6
1205 #define XSAVE_ST_SPACE 8
1206 #define XSAVE_XMM_SPACE 40
1207 #define XSAVE_XSTATE_BV 128
1208 #define XSAVE_YMMH_SPACE 144
1209 #define XSAVE_BNDREGS 240
1210 #define XSAVE_BNDCSR 256
1211 #define XSAVE_OPMASK 272
1212 #define XSAVE_ZMM_Hi256 288
1213 #define XSAVE_Hi16_ZMM 416
1215 static int kvm_put_xsave(X86CPU
*cpu
)
1217 CPUX86State
*env
= &cpu
->env
;
1218 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1219 uint16_t cwd
, swd
, twd
;
1220 uint8_t *xmm
, *ymmh
, *zmmh
;
1224 return kvm_put_fpu(cpu
);
1227 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1229 swd
= env
->fpus
& ~(7 << 11);
1230 swd
|= (env
->fpstt
& 7) << 11;
1232 for (i
= 0; i
< 8; ++i
) {
1233 twd
|= (!env
->fptags
[i
]) << i
;
1235 xsave
->region
[XSAVE_FCW_FSW
] = (uint32_t)(swd
<< 16) + cwd
;
1236 xsave
->region
[XSAVE_FTW_FOP
] = (uint32_t)(env
->fpop
<< 16) + twd
;
1237 memcpy(&xsave
->region
[XSAVE_CWD_RIP
], &env
->fpip
, sizeof(env
->fpip
));
1238 memcpy(&xsave
->region
[XSAVE_CWD_RDP
], &env
->fpdp
, sizeof(env
->fpdp
));
1239 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
1240 sizeof env
->fpregs
);
1241 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
1242 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
1243 memcpy(&xsave
->region
[XSAVE_BNDREGS
], env
->bnd_regs
,
1244 sizeof env
->bnd_regs
);
1245 memcpy(&xsave
->region
[XSAVE_BNDCSR
], &env
->bndcs_regs
,
1246 sizeof(env
->bndcs_regs
));
1247 memcpy(&xsave
->region
[XSAVE_OPMASK
], env
->opmask_regs
,
1248 sizeof env
->opmask_regs
);
1250 xmm
= (uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1251 ymmh
= (uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1252 zmmh
= (uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1253 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1254 stq_p(xmm
, env
->xmm_regs
[i
].XMM_Q(0));
1255 stq_p(xmm
+8, env
->xmm_regs
[i
].XMM_Q(1));
1256 stq_p(ymmh
, env
->xmm_regs
[i
].XMM_Q(2));
1257 stq_p(ymmh
+8, env
->xmm_regs
[i
].XMM_Q(3));
1258 stq_p(zmmh
, env
->xmm_regs
[i
].XMM_Q(4));
1259 stq_p(zmmh
+8, env
->xmm_regs
[i
].XMM_Q(5));
1260 stq_p(zmmh
+16, env
->xmm_regs
[i
].XMM_Q(6));
1261 stq_p(zmmh
+24, env
->xmm_regs
[i
].XMM_Q(7));
1264 #ifdef TARGET_X86_64
1265 memcpy(&xsave
->region
[XSAVE_Hi16_ZMM
], &env
->xmm_regs
[16],
1266 16 * sizeof env
->xmm_regs
[16]);
1268 r
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1272 static int kvm_put_xcrs(X86CPU
*cpu
)
1274 CPUX86State
*env
= &cpu
->env
;
1275 struct kvm_xcrs xcrs
= {};
1283 xcrs
.xcrs
[0].xcr
= 0;
1284 xcrs
.xcrs
[0].value
= env
->xcr0
;
1285 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1288 static int kvm_put_sregs(X86CPU
*cpu
)
1290 CPUX86State
*env
= &cpu
->env
;
1291 struct kvm_sregs sregs
;
1293 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1294 if (env
->interrupt_injected
>= 0) {
1295 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1296 (uint64_t)1 << (env
->interrupt_injected
% 64);
1299 if ((env
->eflags
& VM_MASK
)) {
1300 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1301 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1302 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1303 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1304 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1305 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1307 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1308 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1309 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1310 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1311 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1312 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1315 set_seg(&sregs
.tr
, &env
->tr
);
1316 set_seg(&sregs
.ldt
, &env
->ldt
);
1318 sregs
.idt
.limit
= env
->idt
.limit
;
1319 sregs
.idt
.base
= env
->idt
.base
;
1320 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1321 sregs
.gdt
.limit
= env
->gdt
.limit
;
1322 sregs
.gdt
.base
= env
->gdt
.base
;
1323 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1325 sregs
.cr0
= env
->cr
[0];
1326 sregs
.cr2
= env
->cr
[2];
1327 sregs
.cr3
= env
->cr
[3];
1328 sregs
.cr4
= env
->cr
[4];
1330 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1331 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1333 sregs
.efer
= env
->efer
;
1335 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1338 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
1339 uint32_t index
, uint64_t value
)
1341 entry
->index
= index
;
1342 entry
->reserved
= 0;
1343 entry
->data
= value
;
1346 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1348 CPUX86State
*env
= &cpu
->env
;
1350 struct kvm_msrs info
;
1351 struct kvm_msr_entry entries
[1];
1353 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1355 if (!has_msr_tsc_deadline
) {
1359 kvm_msr_entry_set(&msrs
[0], MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1361 msr_data
.info
= (struct kvm_msrs
) {
1365 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1369 * Provide a separate write service for the feature control MSR in order to
1370 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1371 * before writing any other state because forcibly leaving nested mode
1372 * invalidates the VCPU state.
1374 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1377 struct kvm_msrs info
;
1378 struct kvm_msr_entry entry
;
1381 kvm_msr_entry_set(&msr_data
.entry
, MSR_IA32_FEATURE_CONTROL
,
1382 cpu
->env
.msr_ia32_feature_control
);
1384 msr_data
.info
= (struct kvm_msrs
) {
1388 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1391 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1393 CPUX86State
*env
= &cpu
->env
;
1395 struct kvm_msrs info
;
1396 struct kvm_msr_entry entries
[150];
1398 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1401 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1402 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1403 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1404 kvm_msr_entry_set(&msrs
[n
++], MSR_PAT
, env
->pat
);
1406 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
1408 if (has_msr_hsave_pa
) {
1409 kvm_msr_entry_set(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1411 if (has_msr_tsc_aux
) {
1412 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_AUX
, env
->tsc_aux
);
1414 if (has_msr_tsc_adjust
) {
1415 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_ADJUST
, env
->tsc_adjust
);
1417 if (has_msr_misc_enable
) {
1418 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_MISC_ENABLE
,
1419 env
->msr_ia32_misc_enable
);
1421 if (has_msr_smbase
) {
1422 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SMBASE
, env
->smbase
);
1424 if (has_msr_bndcfgs
) {
1425 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1428 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_XSS
, env
->xss
);
1430 #ifdef TARGET_X86_64
1431 if (lm_capable_kernel
) {
1432 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
1433 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
1434 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
1435 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
1439 * The following MSRs have side effects on the guest or are too heavy
1440 * for normal writeback. Limit them to reset or full state updates.
1442 if (level
>= KVM_PUT_RESET_STATE
) {
1443 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
1444 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
1445 env
->system_time_msr
);
1446 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1447 if (has_msr_async_pf_en
) {
1448 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_ASYNC_PF_EN
,
1449 env
->async_pf_en_msr
);
1451 if (has_msr_pv_eoi_en
) {
1452 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_PV_EOI_EN
,
1453 env
->pv_eoi_en_msr
);
1455 if (has_msr_kvm_steal_time
) {
1456 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_STEAL_TIME
,
1457 env
->steal_time_msr
);
1459 if (has_msr_architectural_pmu
) {
1460 /* Stop the counter. */
1461 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1462 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1464 /* Set the counter values. */
1465 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1466 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR0
+ i
,
1467 env
->msr_fixed_counters
[i
]);
1469 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1470 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_PERFCTR0
+ i
,
1471 env
->msr_gp_counters
[i
]);
1472 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_EVNTSEL0
+ i
,
1473 env
->msr_gp_evtsel
[i
]);
1475 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_STATUS
,
1476 env
->msr_global_status
);
1477 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1478 env
->msr_global_ovf_ctrl
);
1480 /* Now start the PMU. */
1481 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
,
1482 env
->msr_fixed_ctr_ctrl
);
1483 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
,
1484 env
->msr_global_ctrl
);
1486 if (has_msr_hv_hypercall
) {
1487 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_GUEST_OS_ID
,
1488 env
->msr_hv_guest_os_id
);
1489 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_HYPERCALL
,
1490 env
->msr_hv_hypercall
);
1492 if (has_msr_hv_vapic
) {
1493 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_APIC_ASSIST_PAGE
,
1496 if (has_msr_hv_tsc
) {
1497 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_REFERENCE_TSC
,
1500 if (has_msr_hv_crash
) {
1503 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1504 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_P0
+ j
,
1505 env
->msr_hv_crash_params
[j
]);
1507 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_CTL
,
1508 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1510 if (has_msr_hv_runtime
) {
1511 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_VP_RUNTIME
,
1512 env
->msr_hv_runtime
);
1515 kvm_msr_entry_set(&msrs
[n
++], MSR_MTRRdefType
, env
->mtrr_deftype
);
1516 kvm_msr_entry_set(&msrs
[n
++],
1517 MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1518 kvm_msr_entry_set(&msrs
[n
++],
1519 MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1520 kvm_msr_entry_set(&msrs
[n
++],
1521 MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1522 kvm_msr_entry_set(&msrs
[n
++],
1523 MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1524 kvm_msr_entry_set(&msrs
[n
++],
1525 MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1526 kvm_msr_entry_set(&msrs
[n
++],
1527 MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1528 kvm_msr_entry_set(&msrs
[n
++],
1529 MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1530 kvm_msr_entry_set(&msrs
[n
++],
1531 MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1532 kvm_msr_entry_set(&msrs
[n
++],
1533 MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1534 kvm_msr_entry_set(&msrs
[n
++],
1535 MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1536 kvm_msr_entry_set(&msrs
[n
++],
1537 MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1538 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1539 kvm_msr_entry_set(&msrs
[n
++],
1540 MSR_MTRRphysBase(i
), env
->mtrr_var
[i
].base
);
1541 kvm_msr_entry_set(&msrs
[n
++],
1542 MSR_MTRRphysMask(i
), env
->mtrr_var
[i
].mask
);
1546 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1547 * kvm_put_msr_feature_control. */
1552 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
1553 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_CTL
, env
->mcg_ctl
);
1554 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1555 kvm_msr_entry_set(&msrs
[n
++], MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1559 msr_data
.info
= (struct kvm_msrs
) {
1563 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1568 static int kvm_get_fpu(X86CPU
*cpu
)
1570 CPUX86State
*env
= &cpu
->env
;
1574 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1579 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1580 env
->fpus
= fpu
.fsw
;
1581 env
->fpuc
= fpu
.fcw
;
1582 env
->fpop
= fpu
.last_opcode
;
1583 env
->fpip
= fpu
.last_ip
;
1584 env
->fpdp
= fpu
.last_dp
;
1585 for (i
= 0; i
< 8; ++i
) {
1586 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1588 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1589 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1590 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1591 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1593 env
->mxcsr
= fpu
.mxcsr
;
1598 static int kvm_get_xsave(X86CPU
*cpu
)
1600 CPUX86State
*env
= &cpu
->env
;
1601 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1603 const uint8_t *xmm
, *ymmh
, *zmmh
;
1604 uint16_t cwd
, swd
, twd
;
1607 return kvm_get_fpu(cpu
);
1610 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1615 cwd
= (uint16_t)xsave
->region
[XSAVE_FCW_FSW
];
1616 swd
= (uint16_t)(xsave
->region
[XSAVE_FCW_FSW
] >> 16);
1617 twd
= (uint16_t)xsave
->region
[XSAVE_FTW_FOP
];
1618 env
->fpop
= (uint16_t)(xsave
->region
[XSAVE_FTW_FOP
] >> 16);
1619 env
->fpstt
= (swd
>> 11) & 7;
1622 for (i
= 0; i
< 8; ++i
) {
1623 env
->fptags
[i
] = !((twd
>> i
) & 1);
1625 memcpy(&env
->fpip
, &xsave
->region
[XSAVE_CWD_RIP
], sizeof(env
->fpip
));
1626 memcpy(&env
->fpdp
, &xsave
->region
[XSAVE_CWD_RDP
], sizeof(env
->fpdp
));
1627 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
1628 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
1629 sizeof env
->fpregs
);
1630 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
1631 memcpy(env
->bnd_regs
, &xsave
->region
[XSAVE_BNDREGS
],
1632 sizeof env
->bnd_regs
);
1633 memcpy(&env
->bndcs_regs
, &xsave
->region
[XSAVE_BNDCSR
],
1634 sizeof(env
->bndcs_regs
));
1635 memcpy(env
->opmask_regs
, &xsave
->region
[XSAVE_OPMASK
],
1636 sizeof env
->opmask_regs
);
1638 xmm
= (const uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1639 ymmh
= (const uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1640 zmmh
= (const uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1641 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1642 env
->xmm_regs
[i
].XMM_Q(0) = ldq_p(xmm
);
1643 env
->xmm_regs
[i
].XMM_Q(1) = ldq_p(xmm
+8);
1644 env
->xmm_regs
[i
].XMM_Q(2) = ldq_p(ymmh
);
1645 env
->xmm_regs
[i
].XMM_Q(3) = ldq_p(ymmh
+8);
1646 env
->xmm_regs
[i
].XMM_Q(4) = ldq_p(zmmh
);
1647 env
->xmm_regs
[i
].XMM_Q(5) = ldq_p(zmmh
+8);
1648 env
->xmm_regs
[i
].XMM_Q(6) = ldq_p(zmmh
+16);
1649 env
->xmm_regs
[i
].XMM_Q(7) = ldq_p(zmmh
+24);
1652 #ifdef TARGET_X86_64
1653 memcpy(&env
->xmm_regs
[16], &xsave
->region
[XSAVE_Hi16_ZMM
],
1654 16 * sizeof env
->xmm_regs
[16]);
1659 static int kvm_get_xcrs(X86CPU
*cpu
)
1661 CPUX86State
*env
= &cpu
->env
;
1663 struct kvm_xcrs xcrs
;
1669 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1674 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1675 /* Only support xcr0 now */
1676 if (xcrs
.xcrs
[i
].xcr
== 0) {
1677 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1684 static int kvm_get_sregs(X86CPU
*cpu
)
1686 CPUX86State
*env
= &cpu
->env
;
1687 struct kvm_sregs sregs
;
1691 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1696 /* There can only be one pending IRQ set in the bitmap at a time, so try
1697 to find it and save its number instead (-1 for none). */
1698 env
->interrupt_injected
= -1;
1699 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1700 if (sregs
.interrupt_bitmap
[i
]) {
1701 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1702 env
->interrupt_injected
= i
* 64 + bit
;
1707 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1708 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1709 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1710 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1711 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1712 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1714 get_seg(&env
->tr
, &sregs
.tr
);
1715 get_seg(&env
->ldt
, &sregs
.ldt
);
1717 env
->idt
.limit
= sregs
.idt
.limit
;
1718 env
->idt
.base
= sregs
.idt
.base
;
1719 env
->gdt
.limit
= sregs
.gdt
.limit
;
1720 env
->gdt
.base
= sregs
.gdt
.base
;
1722 env
->cr
[0] = sregs
.cr0
;
1723 env
->cr
[2] = sregs
.cr2
;
1724 env
->cr
[3] = sregs
.cr3
;
1725 env
->cr
[4] = sregs
.cr4
;
1727 env
->efer
= sregs
.efer
;
1729 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1731 #define HFLAG_COPY_MASK \
1732 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1733 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1734 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1735 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1737 hflags
= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1738 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1739 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1740 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1741 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1742 hflags
|= (env
->cr
[4] & CR4_OSFXSR_MASK
) <<
1743 (HF_OSFXSR_SHIFT
- CR4_OSFXSR_SHIFT
);
1745 if (env
->efer
& MSR_EFER_LMA
) {
1746 hflags
|= HF_LMA_MASK
;
1749 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1750 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1752 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1753 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1754 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1755 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1756 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1757 !(hflags
& HF_CS32_MASK
)) {
1758 hflags
|= HF_ADDSEG_MASK
;
1760 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1761 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1764 env
->hflags
= (env
->hflags
& HFLAG_COPY_MASK
) | hflags
;
1769 static int kvm_get_msrs(X86CPU
*cpu
)
1771 CPUX86State
*env
= &cpu
->env
;
1773 struct kvm_msrs info
;
1774 struct kvm_msr_entry entries
[150];
1776 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1780 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
1781 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
1782 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
1783 msrs
[n
++].index
= MSR_PAT
;
1785 msrs
[n
++].index
= MSR_STAR
;
1787 if (has_msr_hsave_pa
) {
1788 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
1790 if (has_msr_tsc_aux
) {
1791 msrs
[n
++].index
= MSR_TSC_AUX
;
1793 if (has_msr_tsc_adjust
) {
1794 msrs
[n
++].index
= MSR_TSC_ADJUST
;
1796 if (has_msr_tsc_deadline
) {
1797 msrs
[n
++].index
= MSR_IA32_TSCDEADLINE
;
1799 if (has_msr_misc_enable
) {
1800 msrs
[n
++].index
= MSR_IA32_MISC_ENABLE
;
1802 if (has_msr_smbase
) {
1803 msrs
[n
++].index
= MSR_IA32_SMBASE
;
1805 if (has_msr_feature_control
) {
1806 msrs
[n
++].index
= MSR_IA32_FEATURE_CONTROL
;
1808 if (has_msr_bndcfgs
) {
1809 msrs
[n
++].index
= MSR_IA32_BNDCFGS
;
1812 msrs
[n
++].index
= MSR_IA32_XSS
;
1816 if (!env
->tsc_valid
) {
1817 msrs
[n
++].index
= MSR_IA32_TSC
;
1818 env
->tsc_valid
= !runstate_is_running();
1821 #ifdef TARGET_X86_64
1822 if (lm_capable_kernel
) {
1823 msrs
[n
++].index
= MSR_CSTAR
;
1824 msrs
[n
++].index
= MSR_KERNELGSBASE
;
1825 msrs
[n
++].index
= MSR_FMASK
;
1826 msrs
[n
++].index
= MSR_LSTAR
;
1829 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
1830 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
1831 if (has_msr_async_pf_en
) {
1832 msrs
[n
++].index
= MSR_KVM_ASYNC_PF_EN
;
1834 if (has_msr_pv_eoi_en
) {
1835 msrs
[n
++].index
= MSR_KVM_PV_EOI_EN
;
1837 if (has_msr_kvm_steal_time
) {
1838 msrs
[n
++].index
= MSR_KVM_STEAL_TIME
;
1840 if (has_msr_architectural_pmu
) {
1841 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR_CTRL
;
1842 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_CTRL
;
1843 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_STATUS
;
1844 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_OVF_CTRL
;
1845 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1846 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR0
+ i
;
1848 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1849 msrs
[n
++].index
= MSR_P6_PERFCTR0
+ i
;
1850 msrs
[n
++].index
= MSR_P6_EVNTSEL0
+ i
;
1855 msrs
[n
++].index
= MSR_MCG_STATUS
;
1856 msrs
[n
++].index
= MSR_MCG_CTL
;
1857 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1858 msrs
[n
++].index
= MSR_MC0_CTL
+ i
;
1862 if (has_msr_hv_hypercall
) {
1863 msrs
[n
++].index
= HV_X64_MSR_HYPERCALL
;
1864 msrs
[n
++].index
= HV_X64_MSR_GUEST_OS_ID
;
1866 if (has_msr_hv_vapic
) {
1867 msrs
[n
++].index
= HV_X64_MSR_APIC_ASSIST_PAGE
;
1869 if (has_msr_hv_tsc
) {
1870 msrs
[n
++].index
= HV_X64_MSR_REFERENCE_TSC
;
1872 if (has_msr_hv_crash
) {
1875 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
1876 msrs
[n
++].index
= HV_X64_MSR_CRASH_P0
+ j
;
1879 if (has_msr_hv_runtime
) {
1880 msrs
[n
++].index
= HV_X64_MSR_VP_RUNTIME
;
1883 msrs
[n
++].index
= MSR_MTRRdefType
;
1884 msrs
[n
++].index
= MSR_MTRRfix64K_00000
;
1885 msrs
[n
++].index
= MSR_MTRRfix16K_80000
;
1886 msrs
[n
++].index
= MSR_MTRRfix16K_A0000
;
1887 msrs
[n
++].index
= MSR_MTRRfix4K_C0000
;
1888 msrs
[n
++].index
= MSR_MTRRfix4K_C8000
;
1889 msrs
[n
++].index
= MSR_MTRRfix4K_D0000
;
1890 msrs
[n
++].index
= MSR_MTRRfix4K_D8000
;
1891 msrs
[n
++].index
= MSR_MTRRfix4K_E0000
;
1892 msrs
[n
++].index
= MSR_MTRRfix4K_E8000
;
1893 msrs
[n
++].index
= MSR_MTRRfix4K_F0000
;
1894 msrs
[n
++].index
= MSR_MTRRfix4K_F8000
;
1895 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1896 msrs
[n
++].index
= MSR_MTRRphysBase(i
);
1897 msrs
[n
++].index
= MSR_MTRRphysMask(i
);
1901 msr_data
.info
= (struct kvm_msrs
) {
1905 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
1910 for (i
= 0; i
< ret
; i
++) {
1911 uint32_t index
= msrs
[i
].index
;
1913 case MSR_IA32_SYSENTER_CS
:
1914 env
->sysenter_cs
= msrs
[i
].data
;
1916 case MSR_IA32_SYSENTER_ESP
:
1917 env
->sysenter_esp
= msrs
[i
].data
;
1919 case MSR_IA32_SYSENTER_EIP
:
1920 env
->sysenter_eip
= msrs
[i
].data
;
1923 env
->pat
= msrs
[i
].data
;
1926 env
->star
= msrs
[i
].data
;
1928 #ifdef TARGET_X86_64
1930 env
->cstar
= msrs
[i
].data
;
1932 case MSR_KERNELGSBASE
:
1933 env
->kernelgsbase
= msrs
[i
].data
;
1936 env
->fmask
= msrs
[i
].data
;
1939 env
->lstar
= msrs
[i
].data
;
1943 env
->tsc
= msrs
[i
].data
;
1946 env
->tsc_aux
= msrs
[i
].data
;
1948 case MSR_TSC_ADJUST
:
1949 env
->tsc_adjust
= msrs
[i
].data
;
1951 case MSR_IA32_TSCDEADLINE
:
1952 env
->tsc_deadline
= msrs
[i
].data
;
1954 case MSR_VM_HSAVE_PA
:
1955 env
->vm_hsave
= msrs
[i
].data
;
1957 case MSR_KVM_SYSTEM_TIME
:
1958 env
->system_time_msr
= msrs
[i
].data
;
1960 case MSR_KVM_WALL_CLOCK
:
1961 env
->wall_clock_msr
= msrs
[i
].data
;
1963 case MSR_MCG_STATUS
:
1964 env
->mcg_status
= msrs
[i
].data
;
1967 env
->mcg_ctl
= msrs
[i
].data
;
1969 case MSR_IA32_MISC_ENABLE
:
1970 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
1972 case MSR_IA32_SMBASE
:
1973 env
->smbase
= msrs
[i
].data
;
1975 case MSR_IA32_FEATURE_CONTROL
:
1976 env
->msr_ia32_feature_control
= msrs
[i
].data
;
1978 case MSR_IA32_BNDCFGS
:
1979 env
->msr_bndcfgs
= msrs
[i
].data
;
1982 env
->xss
= msrs
[i
].data
;
1985 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
1986 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
1987 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
1990 case MSR_KVM_ASYNC_PF_EN
:
1991 env
->async_pf_en_msr
= msrs
[i
].data
;
1993 case MSR_KVM_PV_EOI_EN
:
1994 env
->pv_eoi_en_msr
= msrs
[i
].data
;
1996 case MSR_KVM_STEAL_TIME
:
1997 env
->steal_time_msr
= msrs
[i
].data
;
1999 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2000 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2002 case MSR_CORE_PERF_GLOBAL_CTRL
:
2003 env
->msr_global_ctrl
= msrs
[i
].data
;
2005 case MSR_CORE_PERF_GLOBAL_STATUS
:
2006 env
->msr_global_status
= msrs
[i
].data
;
2008 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2009 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2011 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2012 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2014 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2015 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2017 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2018 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2020 case HV_X64_MSR_HYPERCALL
:
2021 env
->msr_hv_hypercall
= msrs
[i
].data
;
2023 case HV_X64_MSR_GUEST_OS_ID
:
2024 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2026 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2027 env
->msr_hv_vapic
= msrs
[i
].data
;
2029 case HV_X64_MSR_REFERENCE_TSC
:
2030 env
->msr_hv_tsc
= msrs
[i
].data
;
2032 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2033 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2035 case HV_X64_MSR_VP_RUNTIME
:
2036 env
->msr_hv_runtime
= msrs
[i
].data
;
2038 case MSR_MTRRdefType
:
2039 env
->mtrr_deftype
= msrs
[i
].data
;
2041 case MSR_MTRRfix64K_00000
:
2042 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2044 case MSR_MTRRfix16K_80000
:
2045 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2047 case MSR_MTRRfix16K_A0000
:
2048 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2050 case MSR_MTRRfix4K_C0000
:
2051 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2053 case MSR_MTRRfix4K_C8000
:
2054 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2056 case MSR_MTRRfix4K_D0000
:
2057 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2059 case MSR_MTRRfix4K_D8000
:
2060 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2062 case MSR_MTRRfix4K_E0000
:
2063 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2065 case MSR_MTRRfix4K_E8000
:
2066 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2068 case MSR_MTRRfix4K_F0000
:
2069 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2071 case MSR_MTRRfix4K_F8000
:
2072 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2074 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2076 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
;
2078 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2087 static int kvm_put_mp_state(X86CPU
*cpu
)
2089 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2091 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2094 static int kvm_get_mp_state(X86CPU
*cpu
)
2096 CPUState
*cs
= CPU(cpu
);
2097 CPUX86State
*env
= &cpu
->env
;
2098 struct kvm_mp_state mp_state
;
2101 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2105 env
->mp_state
= mp_state
.mp_state
;
2106 if (kvm_irqchip_in_kernel()) {
2107 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2112 static int kvm_get_apic(X86CPU
*cpu
)
2114 DeviceState
*apic
= cpu
->apic_state
;
2115 struct kvm_lapic_state kapic
;
2118 if (apic
&& kvm_irqchip_in_kernel()) {
2119 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2124 kvm_get_apic_state(apic
, &kapic
);
2129 static int kvm_put_apic(X86CPU
*cpu
)
2131 DeviceState
*apic
= cpu
->apic_state
;
2132 struct kvm_lapic_state kapic
;
2134 if (apic
&& kvm_irqchip_in_kernel()) {
2135 kvm_put_apic_state(apic
, &kapic
);
2137 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_LAPIC
, &kapic
);
2142 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2144 CPUState
*cs
= CPU(cpu
);
2145 CPUX86State
*env
= &cpu
->env
;
2146 struct kvm_vcpu_events events
= {};
2148 if (!kvm_has_vcpu_events()) {
2152 events
.exception
.injected
= (env
->exception_injected
>= 0);
2153 events
.exception
.nr
= env
->exception_injected
;
2154 events
.exception
.has_error_code
= env
->has_error_code
;
2155 events
.exception
.error_code
= env
->error_code
;
2156 events
.exception
.pad
= 0;
2158 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2159 events
.interrupt
.nr
= env
->interrupt_injected
;
2160 events
.interrupt
.soft
= env
->soft_interrupt
;
2162 events
.nmi
.injected
= env
->nmi_injected
;
2163 events
.nmi
.pending
= env
->nmi_pending
;
2164 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2167 events
.sipi_vector
= env
->sipi_vector
;
2169 if (has_msr_smbase
) {
2170 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2171 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2172 if (kvm_irqchip_in_kernel()) {
2173 /* As soon as these are moved to the kernel, remove them
2174 * from cs->interrupt_request.
2176 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2177 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2178 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2180 /* Keep these in cs->interrupt_request. */
2181 events
.smi
.pending
= 0;
2182 events
.smi
.latched_init
= 0;
2184 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2188 if (level
>= KVM_PUT_RESET_STATE
) {
2190 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2193 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2196 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2198 CPUX86State
*env
= &cpu
->env
;
2199 struct kvm_vcpu_events events
;
2202 if (!kvm_has_vcpu_events()) {
2206 memset(&events
, 0, sizeof(events
));
2207 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2211 env
->exception_injected
=
2212 events
.exception
.injected
? events
.exception
.nr
: -1;
2213 env
->has_error_code
= events
.exception
.has_error_code
;
2214 env
->error_code
= events
.exception
.error_code
;
2216 env
->interrupt_injected
=
2217 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2218 env
->soft_interrupt
= events
.interrupt
.soft
;
2220 env
->nmi_injected
= events
.nmi
.injected
;
2221 env
->nmi_pending
= events
.nmi
.pending
;
2222 if (events
.nmi
.masked
) {
2223 env
->hflags2
|= HF2_NMI_MASK
;
2225 env
->hflags2
&= ~HF2_NMI_MASK
;
2228 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2229 if (events
.smi
.smm
) {
2230 env
->hflags
|= HF_SMM_MASK
;
2232 env
->hflags
&= ~HF_SMM_MASK
;
2234 if (events
.smi
.pending
) {
2235 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2237 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2239 if (events
.smi
.smm_inside_nmi
) {
2240 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2242 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2244 if (events
.smi
.latched_init
) {
2245 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2247 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2251 env
->sipi_vector
= events
.sipi_vector
;
2256 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2258 CPUState
*cs
= CPU(cpu
);
2259 CPUX86State
*env
= &cpu
->env
;
2261 unsigned long reinject_trap
= 0;
2263 if (!kvm_has_vcpu_events()) {
2264 if (env
->exception_injected
== 1) {
2265 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2266 } else if (env
->exception_injected
== 3) {
2267 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2269 env
->exception_injected
= -1;
2273 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2274 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2275 * by updating the debug state once again if single-stepping is on.
2276 * Another reason to call kvm_update_guest_debug here is a pending debug
2277 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2278 * reinject them via SET_GUEST_DEBUG.
2280 if (reinject_trap
||
2281 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2282 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2287 static int kvm_put_debugregs(X86CPU
*cpu
)
2289 CPUX86State
*env
= &cpu
->env
;
2290 struct kvm_debugregs dbgregs
;
2293 if (!kvm_has_debugregs()) {
2297 for (i
= 0; i
< 4; i
++) {
2298 dbgregs
.db
[i
] = env
->dr
[i
];
2300 dbgregs
.dr6
= env
->dr
[6];
2301 dbgregs
.dr7
= env
->dr
[7];
2304 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2307 static int kvm_get_debugregs(X86CPU
*cpu
)
2309 CPUX86State
*env
= &cpu
->env
;
2310 struct kvm_debugregs dbgregs
;
2313 if (!kvm_has_debugregs()) {
2317 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2321 for (i
= 0; i
< 4; i
++) {
2322 env
->dr
[i
] = dbgregs
.db
[i
];
2324 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2325 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2330 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2332 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2335 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2337 if (level
>= KVM_PUT_RESET_STATE
&& has_msr_feature_control
) {
2338 ret
= kvm_put_msr_feature_control(x86_cpu
);
2344 ret
= kvm_getput_regs(x86_cpu
, 1);
2348 ret
= kvm_put_xsave(x86_cpu
);
2352 ret
= kvm_put_xcrs(x86_cpu
);
2356 ret
= kvm_put_sregs(x86_cpu
);
2360 /* must be before kvm_put_msrs */
2361 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2365 ret
= kvm_put_msrs(x86_cpu
, level
);
2369 if (level
>= KVM_PUT_RESET_STATE
) {
2370 ret
= kvm_put_mp_state(x86_cpu
);
2374 ret
= kvm_put_apic(x86_cpu
);
2380 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2385 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2389 ret
= kvm_put_debugregs(x86_cpu
);
2394 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2401 int kvm_arch_get_registers(CPUState
*cs
)
2403 X86CPU
*cpu
= X86_CPU(cs
);
2406 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2408 ret
= kvm_getput_regs(cpu
, 0);
2412 ret
= kvm_get_xsave(cpu
);
2416 ret
= kvm_get_xcrs(cpu
);
2420 ret
= kvm_get_sregs(cpu
);
2424 ret
= kvm_get_msrs(cpu
);
2428 ret
= kvm_get_mp_state(cpu
);
2432 ret
= kvm_get_apic(cpu
);
2436 ret
= kvm_get_vcpu_events(cpu
);
2440 ret
= kvm_get_debugregs(cpu
);
2447 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2449 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2450 CPUX86State
*env
= &x86_cpu
->env
;
2454 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2455 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2456 qemu_mutex_lock_iothread();
2457 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2458 qemu_mutex_unlock_iothread();
2459 DPRINTF("injected NMI\n");
2460 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2462 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2466 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2467 qemu_mutex_lock_iothread();
2468 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2469 qemu_mutex_unlock_iothread();
2470 DPRINTF("injected SMI\n");
2471 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2473 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2479 if (!kvm_irqchip_in_kernel()) {
2480 qemu_mutex_lock_iothread();
2483 /* Force the VCPU out of its inner loop to process any INIT requests
2484 * or (for userspace APIC, but it is cheap to combine the checks here)
2485 * pending TPR access reports.
2487 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2488 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2489 !(env
->hflags
& HF_SMM_MASK
)) {
2490 cpu
->exit_request
= 1;
2492 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2493 cpu
->exit_request
= 1;
2497 if (!kvm_irqchip_in_kernel()) {
2498 /* Try to inject an interrupt if the guest can accept it */
2499 if (run
->ready_for_interrupt_injection
&&
2500 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2501 (env
->eflags
& IF_MASK
)) {
2504 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2505 irq
= cpu_get_pic_interrupt(env
);
2507 struct kvm_interrupt intr
;
2510 DPRINTF("injected interrupt %d\n", irq
);
2511 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2514 "KVM: injection failed, interrupt lost (%s)\n",
2520 /* If we have an interrupt but the guest is not ready to receive an
2521 * interrupt, request an interrupt window exit. This will
2522 * cause a return to userspace as soon as the guest is ready to
2523 * receive interrupts. */
2524 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2525 run
->request_interrupt_window
= 1;
2527 run
->request_interrupt_window
= 0;
2530 DPRINTF("setting tpr\n");
2531 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2533 qemu_mutex_unlock_iothread();
2537 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2539 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2540 CPUX86State
*env
= &x86_cpu
->env
;
2542 if (run
->flags
& KVM_RUN_X86_SMM
) {
2543 env
->hflags
|= HF_SMM_MASK
;
2545 env
->hflags
&= HF_SMM_MASK
;
2548 env
->eflags
|= IF_MASK
;
2550 env
->eflags
&= ~IF_MASK
;
2553 /* We need to protect the apic state against concurrent accesses from
2554 * different threads in case the userspace irqchip is used. */
2555 if (!kvm_irqchip_in_kernel()) {
2556 qemu_mutex_lock_iothread();
2558 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2559 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2560 if (!kvm_irqchip_in_kernel()) {
2561 qemu_mutex_unlock_iothread();
2563 return cpu_get_mem_attrs(env
);
2566 int kvm_arch_process_async_events(CPUState
*cs
)
2568 X86CPU
*cpu
= X86_CPU(cs
);
2569 CPUX86State
*env
= &cpu
->env
;
2571 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2572 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2573 assert(env
->mcg_cap
);
2575 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2577 kvm_cpu_synchronize_state(cs
);
2579 if (env
->exception_injected
== EXCP08_DBLE
) {
2580 /* this means triple fault */
2581 qemu_system_reset_request();
2582 cs
->exit_request
= 1;
2585 env
->exception_injected
= EXCP12_MCHK
;
2586 env
->has_error_code
= 0;
2589 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2590 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2594 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2595 !(env
->hflags
& HF_SMM_MASK
)) {
2596 kvm_cpu_synchronize_state(cs
);
2600 if (kvm_irqchip_in_kernel()) {
2604 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2605 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2606 apic_poll_irq(cpu
->apic_state
);
2608 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2609 (env
->eflags
& IF_MASK
)) ||
2610 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2613 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2614 kvm_cpu_synchronize_state(cs
);
2617 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2618 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2619 kvm_cpu_synchronize_state(cs
);
2620 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2621 env
->tpr_access_type
);
2627 static int kvm_handle_halt(X86CPU
*cpu
)
2629 CPUState
*cs
= CPU(cpu
);
2630 CPUX86State
*env
= &cpu
->env
;
2632 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2633 (env
->eflags
& IF_MASK
)) &&
2634 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2642 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2644 CPUState
*cs
= CPU(cpu
);
2645 struct kvm_run
*run
= cs
->kvm_run
;
2647 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2648 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2653 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2655 static const uint8_t int3
= 0xcc;
2657 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2658 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2664 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2668 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2669 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2681 static int nb_hw_breakpoint
;
2683 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2687 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2688 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2689 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2696 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2697 target_ulong len
, int type
)
2700 case GDB_BREAKPOINT_HW
:
2703 case GDB_WATCHPOINT_WRITE
:
2704 case GDB_WATCHPOINT_ACCESS
:
2711 if (addr
& (len
- 1)) {
2723 if (nb_hw_breakpoint
== 4) {
2726 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
2729 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
2730 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
2731 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
2737 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
2738 target_ulong len
, int type
)
2742 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
2747 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
2752 void kvm_arch_remove_all_hw_breakpoints(void)
2754 nb_hw_breakpoint
= 0;
2757 static CPUWatchpoint hw_watchpoint
;
2759 static int kvm_handle_debug(X86CPU
*cpu
,
2760 struct kvm_debug_exit_arch
*arch_info
)
2762 CPUState
*cs
= CPU(cpu
);
2763 CPUX86State
*env
= &cpu
->env
;
2767 if (arch_info
->exception
== 1) {
2768 if (arch_info
->dr6
& (1 << 14)) {
2769 if (cs
->singlestep_enabled
) {
2773 for (n
= 0; n
< 4; n
++) {
2774 if (arch_info
->dr6
& (1 << n
)) {
2775 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
2781 cs
->watchpoint_hit
= &hw_watchpoint
;
2782 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2783 hw_watchpoint
.flags
= BP_MEM_WRITE
;
2787 cs
->watchpoint_hit
= &hw_watchpoint
;
2788 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2789 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
2795 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
2799 cpu_synchronize_state(cs
);
2800 assert(env
->exception_injected
== -1);
2803 env
->exception_injected
= arch_info
->exception
;
2804 env
->has_error_code
= 0;
2810 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
2812 const uint8_t type_code
[] = {
2813 [GDB_BREAKPOINT_HW
] = 0x0,
2814 [GDB_WATCHPOINT_WRITE
] = 0x1,
2815 [GDB_WATCHPOINT_ACCESS
] = 0x3
2817 const uint8_t len_code
[] = {
2818 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2822 if (kvm_sw_breakpoints_active(cpu
)) {
2823 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
2825 if (nb_hw_breakpoint
> 0) {
2826 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
2827 dbg
->arch
.debugreg
[7] = 0x0600;
2828 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2829 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
2830 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
2831 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
2832 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
2837 static bool host_supports_vmx(void)
2839 uint32_t ecx
, unused
;
2841 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
2842 return ecx
& CPUID_EXT_VMX
;
2845 #define VMX_INVALID_GUEST_STATE 0x80000021
2847 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
2849 X86CPU
*cpu
= X86_CPU(cs
);
2853 switch (run
->exit_reason
) {
2855 DPRINTF("handle_hlt\n");
2856 qemu_mutex_lock_iothread();
2857 ret
= kvm_handle_halt(cpu
);
2858 qemu_mutex_unlock_iothread();
2860 case KVM_EXIT_SET_TPR
:
2863 case KVM_EXIT_TPR_ACCESS
:
2864 qemu_mutex_lock_iothread();
2865 ret
= kvm_handle_tpr_access(cpu
);
2866 qemu_mutex_unlock_iothread();
2868 case KVM_EXIT_FAIL_ENTRY
:
2869 code
= run
->fail_entry
.hardware_entry_failure_reason
;
2870 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
2872 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
2874 "\nIf you're running a guest on an Intel machine without "
2875 "unrestricted mode\n"
2876 "support, the failure can be most likely due to the guest "
2877 "entering an invalid\n"
2878 "state for Intel VT. For example, the guest maybe running "
2879 "in big real mode\n"
2880 "which is not supported on less recent Intel processors."
2885 case KVM_EXIT_EXCEPTION
:
2886 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
2887 run
->ex
.exception
, run
->ex
.error_code
);
2890 case KVM_EXIT_DEBUG
:
2891 DPRINTF("kvm_exit_debug\n");
2892 qemu_mutex_lock_iothread();
2893 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
2894 qemu_mutex_unlock_iothread();
2897 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
2905 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
2907 X86CPU
*cpu
= X86_CPU(cs
);
2908 CPUX86State
*env
= &cpu
->env
;
2910 kvm_cpu_synchronize_state(cs
);
2911 return !(env
->cr
[0] & CR0_PE_MASK
) ||
2912 ((env
->segs
[R_CS
].selector
& 3) != 3);
2915 void kvm_arch_init_irq_routing(KVMState
*s
)
2917 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
2918 /* If kernel can't do irq routing, interrupt source
2919 * override 0->2 cannot be set up as required by HPET.
2920 * So we have to disable it.
2924 /* We know at this point that we're using the in-kernel
2925 * irqchip, so we can use irqfds, and on x86 we know
2926 * we can use msi via irqfd and GSI routing.
2928 kvm_msi_via_irqfd_allowed
= true;
2929 kvm_gsi_routing_allowed
= true;
2932 /* Classic KVM device assignment interface. Will remain x86 only. */
2933 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
2934 uint32_t flags
, uint32_t *dev_id
)
2936 struct kvm_assigned_pci_dev dev_data
= {
2937 .segnr
= dev_addr
->domain
,
2938 .busnr
= dev_addr
->bus
,
2939 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
2944 dev_data
.assigned_dev_id
=
2945 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
2947 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
2952 *dev_id
= dev_data
.assigned_dev_id
;
2957 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
2959 struct kvm_assigned_pci_dev dev_data
= {
2960 .assigned_dev_id
= dev_id
,
2963 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
2966 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
2967 uint32_t irq_type
, uint32_t guest_irq
)
2969 struct kvm_assigned_irq assigned_irq
= {
2970 .assigned_dev_id
= dev_id
,
2971 .guest_irq
= guest_irq
,
2975 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
2976 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
2978 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
2982 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
2985 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
2986 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
2988 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
2991 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
2993 struct kvm_assigned_pci_dev dev_data
= {
2994 .assigned_dev_id
= dev_id
,
2995 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
2998 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3001 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3004 struct kvm_assigned_irq assigned_irq
= {
3005 .assigned_dev_id
= dev_id
,
3009 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3012 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3014 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3015 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3018 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3020 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3021 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3024 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3026 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3027 KVM_DEV_IRQ_HOST_MSI
);
3030 bool kvm_device_msix_supported(KVMState
*s
)
3032 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3033 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3034 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3037 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3038 uint32_t nr_vectors
)
3040 struct kvm_assigned_msix_nr msix_nr
= {
3041 .assigned_dev_id
= dev_id
,
3042 .entry_nr
= nr_vectors
,
3045 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3048 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3051 struct kvm_assigned_msix_entry msix_entry
= {
3052 .assigned_dev_id
= dev_id
,
3057 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3060 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3062 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3063 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3066 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3068 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3069 KVM_DEV_IRQ_HOST_MSIX
);
3072 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3073 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3078 int kvm_arch_msi_data_to_gsi(uint32_t data
)