kvm: factor out kvm_has_msr_star
[qemu/ar7.git] / target-i386 / kvm.c
blob06474d6161baa4d39006e1aefdc48a7529b229c1
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "hw/apic.h"
29 #include "ioport.h"
30 #include "kvm_x86.h"
32 #ifdef CONFIG_KVM_PARA
33 #include <linux/kvm_para.h>
34 #endif
36 //#define DEBUG_KVM
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
56 #ifdef KVM_CAP_EXT_CPUID
58 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
60 struct kvm_cpuid2 *cpuid;
61 int r, size;
63 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
64 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
65 cpuid->nent = max;
66 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
67 if (r == 0 && cpuid->nent >= max) {
68 r = -E2BIG;
70 if (r < 0) {
71 if (r == -E2BIG) {
72 qemu_free(cpuid);
73 return NULL;
74 } else {
75 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
76 strerror(-r));
77 exit(1);
80 return cpuid;
83 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
84 uint32_t index, int reg)
86 struct kvm_cpuid2 *cpuid;
87 int i, max;
88 uint32_t ret = 0;
89 uint32_t cpuid_1_edx;
91 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
92 return -1U;
95 max = 1;
96 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
97 max *= 2;
100 for (i = 0; i < cpuid->nent; ++i) {
101 if (cpuid->entries[i].function == function &&
102 cpuid->entries[i].index == index) {
103 switch (reg) {
104 case R_EAX:
105 ret = cpuid->entries[i].eax;
106 break;
107 case R_EBX:
108 ret = cpuid->entries[i].ebx;
109 break;
110 case R_ECX:
111 ret = cpuid->entries[i].ecx;
112 break;
113 case R_EDX:
114 ret = cpuid->entries[i].edx;
115 switch (function) {
116 case 1:
117 /* KVM before 2.6.30 misreports the following features */
118 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
119 break;
120 case 0x80000001:
121 /* On Intel, kvm returns cpuid according to the Intel spec,
122 * so add missing bits according to the AMD spec:
124 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
125 ret |= cpuid_1_edx & 0x183f7ff;
126 break;
128 break;
133 qemu_free(cpuid);
135 return ret;
138 #else
140 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
141 uint32_t index, int reg)
143 return -1U;
146 #endif
148 #ifdef CONFIG_KVM_PARA
149 struct kvm_para_features {
150 int cap;
151 int feature;
152 } para_features[] = {
153 #ifdef KVM_CAP_CLOCKSOURCE
154 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
155 #endif
156 #ifdef KVM_CAP_NOP_IO_DELAY
157 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
158 #endif
159 #ifdef KVM_CAP_PV_MMU
160 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
161 #endif
162 { -1, -1 }
165 static int get_para_features(CPUState *env)
167 int i, features = 0;
169 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
170 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
171 features |= (1 << para_features[i].feature);
174 return features;
176 #endif
178 #ifdef KVM_CAP_MCE
179 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
180 int *max_banks)
182 int r;
184 r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
185 if (r > 0) {
186 *max_banks = r;
187 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
189 return -ENOSYS;
192 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
194 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
197 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
199 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
202 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
204 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
205 int r;
207 kmsrs->nmsrs = n;
208 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
209 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
210 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
211 free(kmsrs);
212 return r;
215 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
216 static int kvm_mce_in_exception(CPUState *env)
218 struct kvm_msr_entry msr_mcg_status = {
219 .index = MSR_MCG_STATUS,
221 int r;
223 r = kvm_get_msr(env, &msr_mcg_status, 1);
224 if (r == -1 || r == 0) {
225 return -1;
227 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
230 struct kvm_x86_mce_data
232 CPUState *env;
233 struct kvm_x86_mce *mce;
234 int abort_on_error;
237 static void kvm_do_inject_x86_mce(void *_data)
239 struct kvm_x86_mce_data *data = _data;
240 int r;
242 /* If there is an MCE exception being processed, ignore this SRAO MCE */
243 if ((data->env->mcg_cap & MCG_SER_P) &&
244 !(data->mce->status & MCI_STATUS_AR)) {
245 r = kvm_mce_in_exception(data->env);
246 if (r == -1) {
247 fprintf(stderr, "Failed to get MCE status\n");
248 } else if (r) {
249 return;
253 r = kvm_set_mce(data->env, data->mce);
254 if (r < 0) {
255 perror("kvm_set_mce FAILED");
256 if (data->abort_on_error) {
257 abort();
261 #endif
263 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
264 uint64_t mcg_status, uint64_t addr, uint64_t misc,
265 int abort_on_error)
267 #ifdef KVM_CAP_MCE
268 struct kvm_x86_mce mce = {
269 .bank = bank,
270 .status = status,
271 .mcg_status = mcg_status,
272 .addr = addr,
273 .misc = misc,
275 struct kvm_x86_mce_data data = {
276 .env = cenv,
277 .mce = &mce,
280 if (!cenv->mcg_cap) {
281 fprintf(stderr, "MCE support is not enabled!\n");
282 return;
285 run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
286 #else
287 if (abort_on_error)
288 abort();
289 #endif
292 int kvm_arch_init_vcpu(CPUState *env)
294 struct {
295 struct kvm_cpuid2 cpuid;
296 struct kvm_cpuid_entry2 entries[100];
297 } __attribute__((packed)) cpuid_data;
298 uint32_t limit, i, j, cpuid_i;
299 uint32_t unused;
300 struct kvm_cpuid_entry2 *c;
301 #ifdef KVM_CPUID_SIGNATURE
302 uint32_t signature[3];
303 #endif
305 env->mp_state = KVM_MP_STATE_RUNNABLE;
307 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
309 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
310 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
311 env->cpuid_ext_features |= i;
313 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
314 0, R_EDX);
315 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
316 0, R_ECX);
317 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
318 0, R_EDX);
321 cpuid_i = 0;
323 #ifdef CONFIG_KVM_PARA
324 /* Paravirtualization CPUIDs */
325 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
326 c = &cpuid_data.entries[cpuid_i++];
327 memset(c, 0, sizeof(*c));
328 c->function = KVM_CPUID_SIGNATURE;
329 c->eax = 0;
330 c->ebx = signature[0];
331 c->ecx = signature[1];
332 c->edx = signature[2];
334 c = &cpuid_data.entries[cpuid_i++];
335 memset(c, 0, sizeof(*c));
336 c->function = KVM_CPUID_FEATURES;
337 c->eax = env->cpuid_kvm_features & get_para_features(env);
338 #endif
340 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
342 for (i = 0; i <= limit; i++) {
343 c = &cpuid_data.entries[cpuid_i++];
345 switch (i) {
346 case 2: {
347 /* Keep reading function 2 till all the input is received */
348 int times;
350 c->function = i;
351 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
352 KVM_CPUID_FLAG_STATE_READ_NEXT;
353 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
354 times = c->eax & 0xff;
356 for (j = 1; j < times; ++j) {
357 c = &cpuid_data.entries[cpuid_i++];
358 c->function = i;
359 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
360 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
362 break;
364 case 4:
365 case 0xb:
366 case 0xd:
367 for (j = 0; ; j++) {
368 c->function = i;
369 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
370 c->index = j;
371 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
373 if (i == 4 && c->eax == 0)
374 break;
375 if (i == 0xb && !(c->ecx & 0xff00))
376 break;
377 if (i == 0xd && c->eax == 0)
378 break;
380 c = &cpuid_data.entries[cpuid_i++];
382 break;
383 default:
384 c->function = i;
385 c->flags = 0;
386 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
387 break;
390 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
392 for (i = 0x80000000; i <= limit; i++) {
393 c = &cpuid_data.entries[cpuid_i++];
395 c->function = i;
396 c->flags = 0;
397 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
400 cpuid_data.cpuid.nent = cpuid_i;
402 #ifdef KVM_CAP_MCE
403 if (((env->cpuid_version >> 8)&0xF) >= 6
404 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
405 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
406 uint64_t mcg_cap;
407 int banks;
409 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
410 perror("kvm_get_mce_cap_supported FAILED");
411 else {
412 if (banks > MCE_BANKS_DEF)
413 banks = MCE_BANKS_DEF;
414 mcg_cap &= MCE_CAP_DEF;
415 mcg_cap |= banks;
416 if (kvm_setup_mce(env, &mcg_cap))
417 perror("kvm_setup_mce FAILED");
418 else
419 env->mcg_cap = mcg_cap;
422 #endif
424 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
427 void kvm_arch_reset_vcpu(CPUState *env)
429 env->exception_injected = -1;
430 env->interrupt_injected = -1;
431 env->nmi_injected = 0;
432 env->nmi_pending = 0;
433 if (kvm_irqchip_in_kernel()) {
434 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
435 KVM_MP_STATE_UNINITIALIZED;
436 } else {
437 env->mp_state = KVM_MP_STATE_RUNNABLE;
441 int has_msr_star;
442 int has_msr_hsave_pa;
444 static void kvm_supported_msrs(CPUState *env)
446 static int kvm_supported_msrs;
447 int ret;
449 /* first time */
450 if (kvm_supported_msrs == 0) {
451 struct kvm_msr_list msr_list, *kvm_msr_list;
453 kvm_supported_msrs = -1;
455 /* Obtain MSR list from KVM. These are the MSRs that we must
456 * save/restore */
457 msr_list.nmsrs = 0;
458 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
459 if (ret < 0 && ret != -E2BIG) {
460 return;
462 /* Old kernel modules had a bug and could write beyond the provided
463 memory. Allocate at least a safe amount of 1K. */
464 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
465 msr_list.nmsrs *
466 sizeof(msr_list.indices[0])));
468 kvm_msr_list->nmsrs = msr_list.nmsrs;
469 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
470 if (ret >= 0) {
471 int i;
473 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
474 if (kvm_msr_list->indices[i] == MSR_STAR) {
475 has_msr_star = 1;
476 continue;
478 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
479 has_msr_hsave_pa = 1;
480 continue;
485 free(kvm_msr_list);
488 return;
491 static int kvm_has_msr_hsave_pa(CPUState *env)
493 kvm_supported_msrs(env);
494 return has_msr_hsave_pa;
497 static int kvm_has_msr_star(CPUState *env)
499 kvm_supported_msrs(env);
500 return has_msr_star;
503 static int kvm_init_identity_map_page(KVMState *s)
505 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
506 int ret;
507 uint64_t addr = 0xfffbc000;
509 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
510 return 0;
513 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
514 if (ret < 0) {
515 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
516 return ret;
518 #endif
519 return 0;
522 int kvm_arch_init(KVMState *s, int smp_cpus)
524 int ret;
526 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
527 * directly. In order to use vm86 mode, a TSS is needed. Since this
528 * must be part of guest physical memory, we need to allocate it. Older
529 * versions of KVM just assumed that it would be at the end of physical
530 * memory but that doesn't work with more than 4GB of memory. We simply
531 * refuse to work with those older versions of KVM. */
532 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
533 if (ret <= 0) {
534 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
535 return ret;
538 /* this address is 3 pages before the bios, and the bios should present
539 * as unavaible memory. FIXME, need to ensure the e820 map deals with
540 * this?
543 * Tell fw_cfg to notify the BIOS to reserve the range.
545 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
546 perror("e820_add_entry() table is full");
547 exit(1);
549 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
550 if (ret < 0) {
551 return ret;
554 return kvm_init_identity_map_page(s);
557 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
559 lhs->selector = rhs->selector;
560 lhs->base = rhs->base;
561 lhs->limit = rhs->limit;
562 lhs->type = 3;
563 lhs->present = 1;
564 lhs->dpl = 3;
565 lhs->db = 0;
566 lhs->s = 1;
567 lhs->l = 0;
568 lhs->g = 0;
569 lhs->avl = 0;
570 lhs->unusable = 0;
573 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
575 unsigned flags = rhs->flags;
576 lhs->selector = rhs->selector;
577 lhs->base = rhs->base;
578 lhs->limit = rhs->limit;
579 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
580 lhs->present = (flags & DESC_P_MASK) != 0;
581 lhs->dpl = rhs->selector & 3;
582 lhs->db = (flags >> DESC_B_SHIFT) & 1;
583 lhs->s = (flags & DESC_S_MASK) != 0;
584 lhs->l = (flags >> DESC_L_SHIFT) & 1;
585 lhs->g = (flags & DESC_G_MASK) != 0;
586 lhs->avl = (flags & DESC_AVL_MASK) != 0;
587 lhs->unusable = 0;
590 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
592 lhs->selector = rhs->selector;
593 lhs->base = rhs->base;
594 lhs->limit = rhs->limit;
595 lhs->flags =
596 (rhs->type << DESC_TYPE_SHIFT)
597 | (rhs->present * DESC_P_MASK)
598 | (rhs->dpl << DESC_DPL_SHIFT)
599 | (rhs->db << DESC_B_SHIFT)
600 | (rhs->s * DESC_S_MASK)
601 | (rhs->l << DESC_L_SHIFT)
602 | (rhs->g * DESC_G_MASK)
603 | (rhs->avl * DESC_AVL_MASK);
606 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
608 if (set)
609 *kvm_reg = *qemu_reg;
610 else
611 *qemu_reg = *kvm_reg;
614 static int kvm_getput_regs(CPUState *env, int set)
616 struct kvm_regs regs;
617 int ret = 0;
619 if (!set) {
620 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
621 if (ret < 0)
622 return ret;
625 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
626 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
627 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
628 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
629 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
630 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
631 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
632 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
633 #ifdef TARGET_X86_64
634 kvm_getput_reg(&regs.r8, &env->regs[8], set);
635 kvm_getput_reg(&regs.r9, &env->regs[9], set);
636 kvm_getput_reg(&regs.r10, &env->regs[10], set);
637 kvm_getput_reg(&regs.r11, &env->regs[11], set);
638 kvm_getput_reg(&regs.r12, &env->regs[12], set);
639 kvm_getput_reg(&regs.r13, &env->regs[13], set);
640 kvm_getput_reg(&regs.r14, &env->regs[14], set);
641 kvm_getput_reg(&regs.r15, &env->regs[15], set);
642 #endif
644 kvm_getput_reg(&regs.rflags, &env->eflags, set);
645 kvm_getput_reg(&regs.rip, &env->eip, set);
647 if (set)
648 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
650 return ret;
653 static int kvm_put_fpu(CPUState *env)
655 struct kvm_fpu fpu;
656 int i;
658 memset(&fpu, 0, sizeof fpu);
659 fpu.fsw = env->fpus & ~(7 << 11);
660 fpu.fsw |= (env->fpstt & 7) << 11;
661 fpu.fcw = env->fpuc;
662 for (i = 0; i < 8; ++i)
663 fpu.ftwx |= (!env->fptags[i]) << i;
664 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
665 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
666 fpu.mxcsr = env->mxcsr;
668 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
671 #ifdef KVM_CAP_XSAVE
672 #define XSAVE_CWD_RIP 2
673 #define XSAVE_CWD_RDP 4
674 #define XSAVE_MXCSR 6
675 #define XSAVE_ST_SPACE 8
676 #define XSAVE_XMM_SPACE 40
677 #define XSAVE_XSTATE_BV 128
678 #define XSAVE_YMMH_SPACE 144
679 #endif
681 static int kvm_put_xsave(CPUState *env)
683 #ifdef KVM_CAP_XSAVE
684 int i, r;
685 struct kvm_xsave* xsave;
686 uint16_t cwd, swd, twd, fop;
688 if (!kvm_has_xsave())
689 return kvm_put_fpu(env);
691 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
692 memset(xsave, 0, sizeof(struct kvm_xsave));
693 cwd = swd = twd = fop = 0;
694 swd = env->fpus & ~(7 << 11);
695 swd |= (env->fpstt & 7) << 11;
696 cwd = env->fpuc;
697 for (i = 0; i < 8; ++i)
698 twd |= (!env->fptags[i]) << i;
699 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
700 xsave->region[1] = (uint32_t)(fop << 16) + twd;
701 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
702 sizeof env->fpregs);
703 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
704 sizeof env->xmm_regs);
705 xsave->region[XSAVE_MXCSR] = env->mxcsr;
706 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
707 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
708 sizeof env->ymmh_regs);
709 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
710 qemu_free(xsave);
711 return r;
712 #else
713 return kvm_put_fpu(env);
714 #endif
717 static int kvm_put_xcrs(CPUState *env)
719 #ifdef KVM_CAP_XCRS
720 struct kvm_xcrs xcrs;
722 if (!kvm_has_xcrs())
723 return 0;
725 xcrs.nr_xcrs = 1;
726 xcrs.flags = 0;
727 xcrs.xcrs[0].xcr = 0;
728 xcrs.xcrs[0].value = env->xcr0;
729 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
730 #else
731 return 0;
732 #endif
735 static int kvm_put_sregs(CPUState *env)
737 struct kvm_sregs sregs;
739 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
740 if (env->interrupt_injected >= 0) {
741 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
742 (uint64_t)1 << (env->interrupt_injected % 64);
745 if ((env->eflags & VM_MASK)) {
746 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
747 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
748 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
749 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
750 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
751 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
752 } else {
753 set_seg(&sregs.cs, &env->segs[R_CS]);
754 set_seg(&sregs.ds, &env->segs[R_DS]);
755 set_seg(&sregs.es, &env->segs[R_ES]);
756 set_seg(&sregs.fs, &env->segs[R_FS]);
757 set_seg(&sregs.gs, &env->segs[R_GS]);
758 set_seg(&sregs.ss, &env->segs[R_SS]);
760 if (env->cr[0] & CR0_PE_MASK) {
761 /* force ss cpl to cs cpl */
762 sregs.ss.selector = (sregs.ss.selector & ~3) |
763 (sregs.cs.selector & 3);
764 sregs.ss.dpl = sregs.ss.selector & 3;
768 set_seg(&sregs.tr, &env->tr);
769 set_seg(&sregs.ldt, &env->ldt);
771 sregs.idt.limit = env->idt.limit;
772 sregs.idt.base = env->idt.base;
773 sregs.gdt.limit = env->gdt.limit;
774 sregs.gdt.base = env->gdt.base;
776 sregs.cr0 = env->cr[0];
777 sregs.cr2 = env->cr[2];
778 sregs.cr3 = env->cr[3];
779 sregs.cr4 = env->cr[4];
781 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
782 sregs.apic_base = cpu_get_apic_base(env->apic_state);
784 sregs.efer = env->efer;
786 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
789 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
790 uint32_t index, uint64_t value)
792 entry->index = index;
793 entry->data = value;
796 static int kvm_put_msrs(CPUState *env, int level)
798 struct {
799 struct kvm_msrs info;
800 struct kvm_msr_entry entries[100];
801 } msr_data;
802 struct kvm_msr_entry *msrs = msr_data.entries;
803 int n = 0;
805 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
806 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
807 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
808 if (kvm_has_msr_star(env))
809 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
810 if (kvm_has_msr_hsave_pa(env))
811 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
812 #ifdef TARGET_X86_64
813 /* FIXME if lm capable */
814 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
815 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
816 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
817 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
818 #endif
819 if (level == KVM_PUT_FULL_STATE) {
820 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
821 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
822 env->system_time_msr);
823 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
825 #ifdef KVM_CAP_MCE
826 if (env->mcg_cap) {
827 int i;
828 if (level == KVM_PUT_RESET_STATE)
829 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
830 else if (level == KVM_PUT_FULL_STATE) {
831 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
832 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
833 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
834 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
837 #endif
839 msr_data.info.nmsrs = n;
841 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
846 static int kvm_get_fpu(CPUState *env)
848 struct kvm_fpu fpu;
849 int i, ret;
851 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
852 if (ret < 0)
853 return ret;
855 env->fpstt = (fpu.fsw >> 11) & 7;
856 env->fpus = fpu.fsw;
857 env->fpuc = fpu.fcw;
858 for (i = 0; i < 8; ++i)
859 env->fptags[i] = !((fpu.ftwx >> i) & 1);
860 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
861 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
862 env->mxcsr = fpu.mxcsr;
864 return 0;
867 static int kvm_get_xsave(CPUState *env)
869 #ifdef KVM_CAP_XSAVE
870 struct kvm_xsave* xsave;
871 int ret, i;
872 uint16_t cwd, swd, twd, fop;
874 if (!kvm_has_xsave())
875 return kvm_get_fpu(env);
877 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
878 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
879 if (ret < 0) {
880 qemu_free(xsave);
881 return ret;
884 cwd = (uint16_t)xsave->region[0];
885 swd = (uint16_t)(xsave->region[0] >> 16);
886 twd = (uint16_t)xsave->region[1];
887 fop = (uint16_t)(xsave->region[1] >> 16);
888 env->fpstt = (swd >> 11) & 7;
889 env->fpus = swd;
890 env->fpuc = cwd;
891 for (i = 0; i < 8; ++i)
892 env->fptags[i] = !((twd >> i) & 1);
893 env->mxcsr = xsave->region[XSAVE_MXCSR];
894 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
895 sizeof env->fpregs);
896 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
897 sizeof env->xmm_regs);
898 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
899 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
900 sizeof env->ymmh_regs);
901 qemu_free(xsave);
902 return 0;
903 #else
904 return kvm_get_fpu(env);
905 #endif
908 static int kvm_get_xcrs(CPUState *env)
910 #ifdef KVM_CAP_XCRS
911 int i, ret;
912 struct kvm_xcrs xcrs;
914 if (!kvm_has_xcrs())
915 return 0;
917 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
918 if (ret < 0)
919 return ret;
921 for (i = 0; i < xcrs.nr_xcrs; i++)
922 /* Only support xcr0 now */
923 if (xcrs.xcrs[0].xcr == 0) {
924 env->xcr0 = xcrs.xcrs[0].value;
925 break;
927 return 0;
928 #else
929 return 0;
930 #endif
933 static int kvm_get_sregs(CPUState *env)
935 struct kvm_sregs sregs;
936 uint32_t hflags;
937 int bit, i, ret;
939 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
940 if (ret < 0)
941 return ret;
943 /* There can only be one pending IRQ set in the bitmap at a time, so try
944 to find it and save its number instead (-1 for none). */
945 env->interrupt_injected = -1;
946 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
947 if (sregs.interrupt_bitmap[i]) {
948 bit = ctz64(sregs.interrupt_bitmap[i]);
949 env->interrupt_injected = i * 64 + bit;
950 break;
954 get_seg(&env->segs[R_CS], &sregs.cs);
955 get_seg(&env->segs[R_DS], &sregs.ds);
956 get_seg(&env->segs[R_ES], &sregs.es);
957 get_seg(&env->segs[R_FS], &sregs.fs);
958 get_seg(&env->segs[R_GS], &sregs.gs);
959 get_seg(&env->segs[R_SS], &sregs.ss);
961 get_seg(&env->tr, &sregs.tr);
962 get_seg(&env->ldt, &sregs.ldt);
964 env->idt.limit = sregs.idt.limit;
965 env->idt.base = sregs.idt.base;
966 env->gdt.limit = sregs.gdt.limit;
967 env->gdt.base = sregs.gdt.base;
969 env->cr[0] = sregs.cr0;
970 env->cr[2] = sregs.cr2;
971 env->cr[3] = sregs.cr3;
972 env->cr[4] = sregs.cr4;
974 cpu_set_apic_base(env->apic_state, sregs.apic_base);
976 env->efer = sregs.efer;
977 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
979 #define HFLAG_COPY_MASK ~( \
980 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
981 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
982 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
983 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
987 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
988 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
989 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
990 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
991 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
992 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
993 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
995 if (env->efer & MSR_EFER_LMA) {
996 hflags |= HF_LMA_MASK;
999 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1000 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1001 } else {
1002 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1003 (DESC_B_SHIFT - HF_CS32_SHIFT);
1004 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1005 (DESC_B_SHIFT - HF_SS32_SHIFT);
1006 if (!(env->cr[0] & CR0_PE_MASK) ||
1007 (env->eflags & VM_MASK) ||
1008 !(hflags & HF_CS32_MASK)) {
1009 hflags |= HF_ADDSEG_MASK;
1010 } else {
1011 hflags |= ((env->segs[R_DS].base |
1012 env->segs[R_ES].base |
1013 env->segs[R_SS].base) != 0) <<
1014 HF_ADDSEG_SHIFT;
1017 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1019 return 0;
1022 static int kvm_get_msrs(CPUState *env)
1024 struct {
1025 struct kvm_msrs info;
1026 struct kvm_msr_entry entries[100];
1027 } msr_data;
1028 struct kvm_msr_entry *msrs = msr_data.entries;
1029 int ret, i, n;
1031 n = 0;
1032 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1033 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1034 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1035 if (kvm_has_msr_star(env))
1036 msrs[n++].index = MSR_STAR;
1037 if (kvm_has_msr_hsave_pa(env))
1038 msrs[n++].index = MSR_VM_HSAVE_PA;
1039 msrs[n++].index = MSR_IA32_TSC;
1040 #ifdef TARGET_X86_64
1041 /* FIXME lm_capable_kernel */
1042 msrs[n++].index = MSR_CSTAR;
1043 msrs[n++].index = MSR_KERNELGSBASE;
1044 msrs[n++].index = MSR_FMASK;
1045 msrs[n++].index = MSR_LSTAR;
1046 #endif
1047 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1048 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1050 #ifdef KVM_CAP_MCE
1051 if (env->mcg_cap) {
1052 msrs[n++].index = MSR_MCG_STATUS;
1053 msrs[n++].index = MSR_MCG_CTL;
1054 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1055 msrs[n++].index = MSR_MC0_CTL + i;
1057 #endif
1059 msr_data.info.nmsrs = n;
1060 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1061 if (ret < 0)
1062 return ret;
1064 for (i = 0; i < ret; i++) {
1065 switch (msrs[i].index) {
1066 case MSR_IA32_SYSENTER_CS:
1067 env->sysenter_cs = msrs[i].data;
1068 break;
1069 case MSR_IA32_SYSENTER_ESP:
1070 env->sysenter_esp = msrs[i].data;
1071 break;
1072 case MSR_IA32_SYSENTER_EIP:
1073 env->sysenter_eip = msrs[i].data;
1074 break;
1075 case MSR_STAR:
1076 env->star = msrs[i].data;
1077 break;
1078 #ifdef TARGET_X86_64
1079 case MSR_CSTAR:
1080 env->cstar = msrs[i].data;
1081 break;
1082 case MSR_KERNELGSBASE:
1083 env->kernelgsbase = msrs[i].data;
1084 break;
1085 case MSR_FMASK:
1086 env->fmask = msrs[i].data;
1087 break;
1088 case MSR_LSTAR:
1089 env->lstar = msrs[i].data;
1090 break;
1091 #endif
1092 case MSR_IA32_TSC:
1093 env->tsc = msrs[i].data;
1094 break;
1095 case MSR_VM_HSAVE_PA:
1096 env->vm_hsave = msrs[i].data;
1097 break;
1098 case MSR_KVM_SYSTEM_TIME:
1099 env->system_time_msr = msrs[i].data;
1100 break;
1101 case MSR_KVM_WALL_CLOCK:
1102 env->wall_clock_msr = msrs[i].data;
1103 break;
1104 #ifdef KVM_CAP_MCE
1105 case MSR_MCG_STATUS:
1106 env->mcg_status = msrs[i].data;
1107 break;
1108 case MSR_MCG_CTL:
1109 env->mcg_ctl = msrs[i].data;
1110 break;
1111 #endif
1112 default:
1113 #ifdef KVM_CAP_MCE
1114 if (msrs[i].index >= MSR_MC0_CTL &&
1115 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1116 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1118 #endif
1119 break;
1123 return 0;
1126 static int kvm_put_mp_state(CPUState *env)
1128 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1130 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1133 static int kvm_get_mp_state(CPUState *env)
1135 struct kvm_mp_state mp_state;
1136 int ret;
1138 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1139 if (ret < 0) {
1140 return ret;
1142 env->mp_state = mp_state.mp_state;
1143 return 0;
1146 static int kvm_put_vcpu_events(CPUState *env, int level)
1148 #ifdef KVM_CAP_VCPU_EVENTS
1149 struct kvm_vcpu_events events;
1151 if (!kvm_has_vcpu_events()) {
1152 return 0;
1155 events.exception.injected = (env->exception_injected >= 0);
1156 events.exception.nr = env->exception_injected;
1157 events.exception.has_error_code = env->has_error_code;
1158 events.exception.error_code = env->error_code;
1160 events.interrupt.injected = (env->interrupt_injected >= 0);
1161 events.interrupt.nr = env->interrupt_injected;
1162 events.interrupt.soft = env->soft_interrupt;
1164 events.nmi.injected = env->nmi_injected;
1165 events.nmi.pending = env->nmi_pending;
1166 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1168 events.sipi_vector = env->sipi_vector;
1170 events.flags = 0;
1171 if (level >= KVM_PUT_RESET_STATE) {
1172 events.flags |=
1173 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1176 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1177 #else
1178 return 0;
1179 #endif
1182 static int kvm_get_vcpu_events(CPUState *env)
1184 #ifdef KVM_CAP_VCPU_EVENTS
1185 struct kvm_vcpu_events events;
1186 int ret;
1188 if (!kvm_has_vcpu_events()) {
1189 return 0;
1192 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1193 if (ret < 0) {
1194 return ret;
1196 env->exception_injected =
1197 events.exception.injected ? events.exception.nr : -1;
1198 env->has_error_code = events.exception.has_error_code;
1199 env->error_code = events.exception.error_code;
1201 env->interrupt_injected =
1202 events.interrupt.injected ? events.interrupt.nr : -1;
1203 env->soft_interrupt = events.interrupt.soft;
1205 env->nmi_injected = events.nmi.injected;
1206 env->nmi_pending = events.nmi.pending;
1207 if (events.nmi.masked) {
1208 env->hflags2 |= HF2_NMI_MASK;
1209 } else {
1210 env->hflags2 &= ~HF2_NMI_MASK;
1213 env->sipi_vector = events.sipi_vector;
1214 #endif
1216 return 0;
1219 static int kvm_guest_debug_workarounds(CPUState *env)
1221 int ret = 0;
1222 #ifdef KVM_CAP_SET_GUEST_DEBUG
1223 unsigned long reinject_trap = 0;
1225 if (!kvm_has_vcpu_events()) {
1226 if (env->exception_injected == 1) {
1227 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1228 } else if (env->exception_injected == 3) {
1229 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1231 env->exception_injected = -1;
1235 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1236 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1237 * by updating the debug state once again if single-stepping is on.
1238 * Another reason to call kvm_update_guest_debug here is a pending debug
1239 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1240 * reinject them via SET_GUEST_DEBUG.
1242 if (reinject_trap ||
1243 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1244 ret = kvm_update_guest_debug(env, reinject_trap);
1246 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1247 return ret;
1250 static int kvm_put_debugregs(CPUState *env)
1252 #ifdef KVM_CAP_DEBUGREGS
1253 struct kvm_debugregs dbgregs;
1254 int i;
1256 if (!kvm_has_debugregs()) {
1257 return 0;
1260 for (i = 0; i < 4; i++) {
1261 dbgregs.db[i] = env->dr[i];
1263 dbgregs.dr6 = env->dr[6];
1264 dbgregs.dr7 = env->dr[7];
1265 dbgregs.flags = 0;
1267 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1268 #else
1269 return 0;
1270 #endif
1273 static int kvm_get_debugregs(CPUState *env)
1275 #ifdef KVM_CAP_DEBUGREGS
1276 struct kvm_debugregs dbgregs;
1277 int i, ret;
1279 if (!kvm_has_debugregs()) {
1280 return 0;
1283 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1284 if (ret < 0) {
1285 return ret;
1287 for (i = 0; i < 4; i++) {
1288 env->dr[i] = dbgregs.db[i];
1290 env->dr[4] = env->dr[6] = dbgregs.dr6;
1291 env->dr[5] = env->dr[7] = dbgregs.dr7;
1292 #endif
1294 return 0;
1297 int kvm_arch_put_registers(CPUState *env, int level)
1299 int ret;
1301 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1303 ret = kvm_getput_regs(env, 1);
1304 if (ret < 0)
1305 return ret;
1307 ret = kvm_put_xsave(env);
1308 if (ret < 0)
1309 return ret;
1311 ret = kvm_put_xcrs(env);
1312 if (ret < 0)
1313 return ret;
1315 ret = kvm_put_sregs(env);
1316 if (ret < 0)
1317 return ret;
1319 ret = kvm_put_msrs(env, level);
1320 if (ret < 0)
1321 return ret;
1323 if (level >= KVM_PUT_RESET_STATE) {
1324 ret = kvm_put_mp_state(env);
1325 if (ret < 0)
1326 return ret;
1329 ret = kvm_put_vcpu_events(env, level);
1330 if (ret < 0)
1331 return ret;
1333 /* must be last */
1334 ret = kvm_guest_debug_workarounds(env);
1335 if (ret < 0)
1336 return ret;
1338 ret = kvm_put_debugregs(env);
1339 if (ret < 0)
1340 return ret;
1342 return 0;
1345 int kvm_arch_get_registers(CPUState *env)
1347 int ret;
1349 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1351 ret = kvm_getput_regs(env, 0);
1352 if (ret < 0)
1353 return ret;
1355 ret = kvm_get_xsave(env);
1356 if (ret < 0)
1357 return ret;
1359 ret = kvm_get_xcrs(env);
1360 if (ret < 0)
1361 return ret;
1363 ret = kvm_get_sregs(env);
1364 if (ret < 0)
1365 return ret;
1367 ret = kvm_get_msrs(env);
1368 if (ret < 0)
1369 return ret;
1371 ret = kvm_get_mp_state(env);
1372 if (ret < 0)
1373 return ret;
1375 ret = kvm_get_vcpu_events(env);
1376 if (ret < 0)
1377 return ret;
1379 ret = kvm_get_debugregs(env);
1380 if (ret < 0)
1381 return ret;
1383 return 0;
1386 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1388 /* Try to inject an interrupt if the guest can accept it */
1389 if (run->ready_for_interrupt_injection &&
1390 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1391 (env->eflags & IF_MASK)) {
1392 int irq;
1394 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1395 irq = cpu_get_pic_interrupt(env);
1396 if (irq >= 0) {
1397 struct kvm_interrupt intr;
1398 intr.irq = irq;
1399 /* FIXME: errors */
1400 DPRINTF("injected interrupt %d\n", irq);
1401 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1405 /* If we have an interrupt but the guest is not ready to receive an
1406 * interrupt, request an interrupt window exit. This will
1407 * cause a return to userspace as soon as the guest is ready to
1408 * receive interrupts. */
1409 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1410 run->request_interrupt_window = 1;
1411 else
1412 run->request_interrupt_window = 0;
1414 DPRINTF("setting tpr\n");
1415 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1417 return 0;
1420 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1422 if (run->if_flag)
1423 env->eflags |= IF_MASK;
1424 else
1425 env->eflags &= ~IF_MASK;
1427 cpu_set_apic_tpr(env->apic_state, run->cr8);
1428 cpu_set_apic_base(env->apic_state, run->apic_base);
1430 return 0;
1433 int kvm_arch_process_irqchip_events(CPUState *env)
1435 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1436 kvm_cpu_synchronize_state(env);
1437 do_cpu_init(env);
1438 env->exception_index = EXCP_HALTED;
1441 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1442 kvm_cpu_synchronize_state(env);
1443 do_cpu_sipi(env);
1446 return env->halted;
1449 static int kvm_handle_halt(CPUState *env)
1451 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1452 (env->eflags & IF_MASK)) &&
1453 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1454 env->halted = 1;
1455 env->exception_index = EXCP_HLT;
1456 return 0;
1459 return 1;
1462 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1464 int ret = 0;
1466 switch (run->exit_reason) {
1467 case KVM_EXIT_HLT:
1468 DPRINTF("handle_hlt\n");
1469 ret = kvm_handle_halt(env);
1470 break;
1473 return ret;
1476 #ifdef KVM_CAP_SET_GUEST_DEBUG
1477 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1479 static const uint8_t int3 = 0xcc;
1481 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1482 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1483 return -EINVAL;
1484 return 0;
1487 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1489 uint8_t int3;
1491 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1492 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1493 return -EINVAL;
1494 return 0;
1497 static struct {
1498 target_ulong addr;
1499 int len;
1500 int type;
1501 } hw_breakpoint[4];
1503 static int nb_hw_breakpoint;
1505 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1507 int n;
1509 for (n = 0; n < nb_hw_breakpoint; n++)
1510 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1511 (hw_breakpoint[n].len == len || len == -1))
1512 return n;
1513 return -1;
1516 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1517 target_ulong len, int type)
1519 switch (type) {
1520 case GDB_BREAKPOINT_HW:
1521 len = 1;
1522 break;
1523 case GDB_WATCHPOINT_WRITE:
1524 case GDB_WATCHPOINT_ACCESS:
1525 switch (len) {
1526 case 1:
1527 break;
1528 case 2:
1529 case 4:
1530 case 8:
1531 if (addr & (len - 1))
1532 return -EINVAL;
1533 break;
1534 default:
1535 return -EINVAL;
1537 break;
1538 default:
1539 return -ENOSYS;
1542 if (nb_hw_breakpoint == 4)
1543 return -ENOBUFS;
1545 if (find_hw_breakpoint(addr, len, type) >= 0)
1546 return -EEXIST;
1548 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1549 hw_breakpoint[nb_hw_breakpoint].len = len;
1550 hw_breakpoint[nb_hw_breakpoint].type = type;
1551 nb_hw_breakpoint++;
1553 return 0;
1556 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1557 target_ulong len, int type)
1559 int n;
1561 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1562 if (n < 0)
1563 return -ENOENT;
1565 nb_hw_breakpoint--;
1566 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1568 return 0;
1571 void kvm_arch_remove_all_hw_breakpoints(void)
1573 nb_hw_breakpoint = 0;
1576 static CPUWatchpoint hw_watchpoint;
1578 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1580 int handle = 0;
1581 int n;
1583 if (arch_info->exception == 1) {
1584 if (arch_info->dr6 & (1 << 14)) {
1585 if (cpu_single_env->singlestep_enabled)
1586 handle = 1;
1587 } else {
1588 for (n = 0; n < 4; n++)
1589 if (arch_info->dr6 & (1 << n))
1590 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1591 case 0x0:
1592 handle = 1;
1593 break;
1594 case 0x1:
1595 handle = 1;
1596 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1597 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1598 hw_watchpoint.flags = BP_MEM_WRITE;
1599 break;
1600 case 0x3:
1601 handle = 1;
1602 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1603 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1604 hw_watchpoint.flags = BP_MEM_ACCESS;
1605 break;
1608 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1609 handle = 1;
1611 if (!handle) {
1612 cpu_synchronize_state(cpu_single_env);
1613 assert(cpu_single_env->exception_injected == -1);
1615 cpu_single_env->exception_injected = arch_info->exception;
1616 cpu_single_env->has_error_code = 0;
1619 return handle;
1622 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1624 const uint8_t type_code[] = {
1625 [GDB_BREAKPOINT_HW] = 0x0,
1626 [GDB_WATCHPOINT_WRITE] = 0x1,
1627 [GDB_WATCHPOINT_ACCESS] = 0x3
1629 const uint8_t len_code[] = {
1630 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1632 int n;
1634 if (kvm_sw_breakpoints_active(env))
1635 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1637 if (nb_hw_breakpoint > 0) {
1638 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1639 dbg->arch.debugreg[7] = 0x0600;
1640 for (n = 0; n < nb_hw_breakpoint; n++) {
1641 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1642 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1643 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1644 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1647 /* Legal xcr0 for loading */
1648 env->xcr0 = 1;
1650 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1652 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1654 return !(env->cr[0] & CR0_PE_MASK) ||
1655 ((env->segs[R_CS].selector & 3) != 3);
1658 static void hardware_memory_error(void)
1660 fprintf(stderr, "Hardware memory error!\n");
1661 exit(1);
1664 #ifdef KVM_CAP_MCE
1665 static void kvm_mce_broadcast_rest(CPUState *env)
1667 CPUState *cenv;
1668 int family, model, cpuver = env->cpuid_version;
1670 family = (cpuver >> 8) & 0xf;
1671 model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf);
1673 /* Broadcast MCA signal for processor version 06H_EH and above */
1674 if ((family == 6 && model >= 14) || family > 6) {
1675 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1676 if (cenv == env) {
1677 continue;
1679 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1680 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1684 #endif
1686 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1688 #if defined(KVM_CAP_MCE)
1689 struct kvm_x86_mce mce = {
1690 .bank = 9,
1692 void *vaddr;
1693 ram_addr_t ram_addr;
1694 target_phys_addr_t paddr;
1695 int r;
1697 if ((env->mcg_cap & MCG_SER_P) && addr
1698 && (code == BUS_MCEERR_AR
1699 || code == BUS_MCEERR_AO)) {
1700 if (code == BUS_MCEERR_AR) {
1701 /* Fake an Intel architectural Data Load SRAR UCR */
1702 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1703 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1704 | MCI_STATUS_AR | 0x134;
1705 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1706 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1707 } else {
1709 * If there is an MCE excpetion being processed, ignore
1710 * this SRAO MCE
1712 r = kvm_mce_in_exception(env);
1713 if (r == -1) {
1714 fprintf(stderr, "Failed to get MCE status\n");
1715 } else if (r) {
1716 return 0;
1718 /* Fake an Intel architectural Memory scrubbing UCR */
1719 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1720 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1721 | 0xc0;
1722 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1723 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1725 vaddr = (void *)addr;
1726 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1727 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1728 fprintf(stderr, "Hardware memory error for memory used by "
1729 "QEMU itself instead of guest system!\n");
1730 /* Hope we are lucky for AO MCE */
1731 if (code == BUS_MCEERR_AO) {
1732 return 0;
1733 } else {
1734 hardware_memory_error();
1737 mce.addr = paddr;
1738 r = kvm_set_mce(env, &mce);
1739 if (r < 0) {
1740 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1741 abort();
1743 kvm_mce_broadcast_rest(env);
1744 } else
1745 #endif
1747 if (code == BUS_MCEERR_AO) {
1748 return 0;
1749 } else if (code == BUS_MCEERR_AR) {
1750 hardware_memory_error();
1751 } else {
1752 return 1;
1755 return 0;
1758 int kvm_on_sigbus(int code, void *addr)
1760 #if defined(KVM_CAP_MCE)
1761 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1762 uint64_t status;
1763 void *vaddr;
1764 ram_addr_t ram_addr;
1765 target_phys_addr_t paddr;
1767 /* Hope we are lucky for AO MCE */
1768 vaddr = addr;
1769 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1770 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1771 fprintf(stderr, "Hardware memory error for memory used by "
1772 "QEMU itself instead of guest system!: %p\n", addr);
1773 return 0;
1775 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1776 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1777 | 0xc0;
1778 kvm_inject_x86_mce(first_cpu, 9, status,
1779 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1780 (MCM_ADDR_PHYS << 6) | 0xc, 1);
1781 kvm_mce_broadcast_rest(first_cpu);
1782 } else
1783 #endif
1785 if (code == BUS_MCEERR_AO) {
1786 return 0;
1787 } else if (code == BUS_MCEERR_AR) {
1788 hardware_memory_error();
1789 } else {
1790 return 1;
1793 return 0;