2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "qemu/cutils.h"
21 #include "migration.h"
22 #include "qemu-file.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/sockets.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/coroutine.h"
30 #include <sys/socket.h>
32 #include <arpa/inet.h>
33 #include <rdma/rdma_cma.h>
37 * Print and error on both the Monitor and the Log file.
39 #define ERROR(errp, fmt, ...) \
41 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
42 if (errp && (*(errp) == NULL)) { \
43 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
47 #define RDMA_RESOLVE_TIMEOUT_MS 10000
49 /* Do not merge data if larger than this. */
50 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
51 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
53 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
56 * This is only for non-live state being migrated.
57 * Instead of RDMA_WRITE messages, we use RDMA_SEND
58 * messages for that state, which requires a different
59 * delivery design than main memory.
61 #define RDMA_SEND_INCREMENT 32768
64 * Maximum size infiniband SEND message
66 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
67 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
69 #define RDMA_CONTROL_VERSION_CURRENT 1
71 * Capabilities for negotiation.
73 #define RDMA_CAPABILITY_PIN_ALL 0x01
76 * Add the other flags above to this list of known capabilities
77 * as they are introduced.
79 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
81 #define CHECK_ERROR_STATE() \
83 if (rdma->error_state) { \
84 if (!rdma->error_reported) { \
85 error_report("RDMA is in an error state waiting migration" \
87 rdma->error_reported = 1; \
89 return rdma->error_state; \
94 * A work request ID is 64-bits and we split up these bits
97 * bits 0-15 : type of control message, 2^16
98 * bits 16-29: ram block index, 2^14
99 * bits 30-63: ram block chunk number, 2^34
101 * The last two bit ranges are only used for RDMA writes,
102 * in order to track their completion and potentially
103 * also track unregistration status of the message.
105 #define RDMA_WRID_TYPE_SHIFT 0UL
106 #define RDMA_WRID_BLOCK_SHIFT 16UL
107 #define RDMA_WRID_CHUNK_SHIFT 30UL
109 #define RDMA_WRID_TYPE_MASK \
110 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
112 #define RDMA_WRID_BLOCK_MASK \
113 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
115 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
118 * RDMA migration protocol:
119 * 1. RDMA Writes (data messages, i.e. RAM)
120 * 2. IB Send/Recv (control channel messages)
124 RDMA_WRID_RDMA_WRITE
= 1,
125 RDMA_WRID_SEND_CONTROL
= 2000,
126 RDMA_WRID_RECV_CONTROL
= 4000,
129 static const char *wrid_desc
[] = {
130 [RDMA_WRID_NONE
] = "NONE",
131 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
132 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
133 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
137 * Work request IDs for IB SEND messages only (not RDMA writes).
138 * This is used by the migration protocol to transmit
139 * control messages (such as device state and registration commands)
141 * We could use more WRs, but we have enough for now.
151 * SEND/RECV IB Control Messages.
154 RDMA_CONTROL_NONE
= 0,
156 RDMA_CONTROL_READY
, /* ready to receive */
157 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
158 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
159 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
160 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
161 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
162 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
163 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
164 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
165 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
168 static const char *control_desc
[] = {
169 [RDMA_CONTROL_NONE
] = "NONE",
170 [RDMA_CONTROL_ERROR
] = "ERROR",
171 [RDMA_CONTROL_READY
] = "READY",
172 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
173 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
174 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
175 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
176 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
177 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
178 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
179 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
180 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
184 * Memory and MR structures used to represent an IB Send/Recv work request.
185 * This is *not* used for RDMA writes, only IB Send/Recv.
188 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
189 struct ibv_mr
*control_mr
; /* registration metadata */
190 size_t control_len
; /* length of the message */
191 uint8_t *control_curr
; /* start of unconsumed bytes */
192 } RDMAWorkRequestData
;
195 * Negotiate RDMA capabilities during connection-setup time.
202 static void caps_to_network(RDMACapabilities
*cap
)
204 cap
->version
= htonl(cap
->version
);
205 cap
->flags
= htonl(cap
->flags
);
208 static void network_to_caps(RDMACapabilities
*cap
)
210 cap
->version
= ntohl(cap
->version
);
211 cap
->flags
= ntohl(cap
->flags
);
215 * Representation of a RAMBlock from an RDMA perspective.
216 * This is not transmitted, only local.
217 * This and subsequent structures cannot be linked lists
218 * because we're using a single IB message to transmit
219 * the information. It's small anyway, so a list is overkill.
221 typedef struct RDMALocalBlock
{
223 uint8_t *local_host_addr
; /* local virtual address */
224 uint64_t remote_host_addr
; /* remote virtual address */
227 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
228 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
229 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
230 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
231 int index
; /* which block are we */
232 unsigned int src_index
; /* (Only used on dest) */
235 unsigned long *transit_bitmap
;
236 unsigned long *unregister_bitmap
;
240 * Also represents a RAMblock, but only on the dest.
241 * This gets transmitted by the dest during connection-time
242 * to the source VM and then is used to populate the
243 * corresponding RDMALocalBlock with
244 * the information needed to perform the actual RDMA.
246 typedef struct QEMU_PACKED RDMADestBlock
{
247 uint64_t remote_host_addr
;
250 uint32_t remote_rkey
;
254 static uint64_t htonll(uint64_t v
)
256 union { uint32_t lv
[2]; uint64_t llv
; } u
;
257 u
.lv
[0] = htonl(v
>> 32);
258 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
262 static uint64_t ntohll(uint64_t v
) {
263 union { uint32_t lv
[2]; uint64_t llv
; } u
;
265 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
268 static void dest_block_to_network(RDMADestBlock
*db
)
270 db
->remote_host_addr
= htonll(db
->remote_host_addr
);
271 db
->offset
= htonll(db
->offset
);
272 db
->length
= htonll(db
->length
);
273 db
->remote_rkey
= htonl(db
->remote_rkey
);
276 static void network_to_dest_block(RDMADestBlock
*db
)
278 db
->remote_host_addr
= ntohll(db
->remote_host_addr
);
279 db
->offset
= ntohll(db
->offset
);
280 db
->length
= ntohll(db
->length
);
281 db
->remote_rkey
= ntohl(db
->remote_rkey
);
285 * Virtual address of the above structures used for transmitting
286 * the RAMBlock descriptions at connection-time.
287 * This structure is *not* transmitted.
289 typedef struct RDMALocalBlocks
{
291 bool init
; /* main memory init complete */
292 RDMALocalBlock
*block
;
296 * Main data structure for RDMA state.
297 * While there is only one copy of this structure being allocated right now,
298 * this is the place where one would start if you wanted to consider
299 * having more than one RDMA connection open at the same time.
301 typedef struct RDMAContext
{
305 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
308 * This is used by *_exchange_send() to figure out whether or not
309 * the initial "READY" message has already been received or not.
310 * This is because other functions may potentially poll() and detect
311 * the READY message before send() does, in which case we need to
312 * know if it completed.
314 int control_ready_expected
;
316 /* number of outstanding writes */
319 /* store info about current buffer so that we can
320 merge it with future sends */
321 uint64_t current_addr
;
322 uint64_t current_length
;
323 /* index of ram block the current buffer belongs to */
325 /* index of the chunk in the current ram block */
331 * infiniband-specific variables for opening the device
332 * and maintaining connection state and so forth.
334 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
335 * cm_id->verbs, cm_id->channel, and cm_id->qp.
337 struct rdma_cm_id
*cm_id
; /* connection manager ID */
338 struct rdma_cm_id
*listen_id
;
341 struct ibv_context
*verbs
;
342 struct rdma_event_channel
*channel
;
343 struct ibv_qp
*qp
; /* queue pair */
344 struct ibv_comp_channel
*comp_channel
; /* completion channel */
345 struct ibv_pd
*pd
; /* protection domain */
346 struct ibv_cq
*cq
; /* completion queue */
349 * If a previous write failed (perhaps because of a failed
350 * memory registration, then do not attempt any future work
351 * and remember the error state.
358 * Description of ram blocks used throughout the code.
360 RDMALocalBlocks local_ram_blocks
;
361 RDMADestBlock
*dest_blocks
;
363 /* Index of the next RAMBlock received during block registration */
364 unsigned int next_src_index
;
367 * Migration on *destination* started.
368 * Then use coroutine yield function.
369 * Source runs in a thread, so we don't care.
371 int migration_started_on_destination
;
373 int total_registrations
;
376 int unregister_current
, unregister_next
;
377 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
379 GHashTable
*blockmap
;
382 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
383 #define QIO_CHANNEL_RDMA(obj) \
384 OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
386 typedef struct QIOChannelRDMA QIOChannelRDMA
;
389 struct QIOChannelRDMA
{
394 bool blocking
; /* XXX we don't actually honour this yet */
398 * Main structure for IB Send/Recv control messages.
399 * This gets prepended at the beginning of every Send/Recv.
401 typedef struct QEMU_PACKED
{
402 uint32_t len
; /* Total length of data portion */
403 uint32_t type
; /* which control command to perform */
404 uint32_t repeat
; /* number of commands in data portion of same type */
408 static void control_to_network(RDMAControlHeader
*control
)
410 control
->type
= htonl(control
->type
);
411 control
->len
= htonl(control
->len
);
412 control
->repeat
= htonl(control
->repeat
);
415 static void network_to_control(RDMAControlHeader
*control
)
417 control
->type
= ntohl(control
->type
);
418 control
->len
= ntohl(control
->len
);
419 control
->repeat
= ntohl(control
->repeat
);
423 * Register a single Chunk.
424 * Information sent by the source VM to inform the dest
425 * to register an single chunk of memory before we can perform
426 * the actual RDMA operation.
428 typedef struct QEMU_PACKED
{
430 uint64_t current_addr
; /* offset into the ram_addr_t space */
431 uint64_t chunk
; /* chunk to lookup if unregistering */
433 uint32_t current_index
; /* which ramblock the chunk belongs to */
435 uint64_t chunks
; /* how many sequential chunks to register */
438 static void register_to_network(RDMAContext
*rdma
, RDMARegister
*reg
)
440 RDMALocalBlock
*local_block
;
441 local_block
= &rdma
->local_ram_blocks
.block
[reg
->current_index
];
443 if (local_block
->is_ram_block
) {
445 * current_addr as passed in is an address in the local ram_addr_t
446 * space, we need to translate this for the destination
448 reg
->key
.current_addr
-= local_block
->offset
;
449 reg
->key
.current_addr
+= rdma
->dest_blocks
[reg
->current_index
].offset
;
451 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
452 reg
->current_index
= htonl(reg
->current_index
);
453 reg
->chunks
= htonll(reg
->chunks
);
456 static void network_to_register(RDMARegister
*reg
)
458 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
459 reg
->current_index
= ntohl(reg
->current_index
);
460 reg
->chunks
= ntohll(reg
->chunks
);
463 typedef struct QEMU_PACKED
{
464 uint32_t value
; /* if zero, we will madvise() */
465 uint32_t block_idx
; /* which ram block index */
466 uint64_t offset
; /* Address in remote ram_addr_t space */
467 uint64_t length
; /* length of the chunk */
470 static void compress_to_network(RDMAContext
*rdma
, RDMACompress
*comp
)
472 comp
->value
= htonl(comp
->value
);
474 * comp->offset as passed in is an address in the local ram_addr_t
475 * space, we need to translate this for the destination
477 comp
->offset
-= rdma
->local_ram_blocks
.block
[comp
->block_idx
].offset
;
478 comp
->offset
+= rdma
->dest_blocks
[comp
->block_idx
].offset
;
479 comp
->block_idx
= htonl(comp
->block_idx
);
480 comp
->offset
= htonll(comp
->offset
);
481 comp
->length
= htonll(comp
->length
);
484 static void network_to_compress(RDMACompress
*comp
)
486 comp
->value
= ntohl(comp
->value
);
487 comp
->block_idx
= ntohl(comp
->block_idx
);
488 comp
->offset
= ntohll(comp
->offset
);
489 comp
->length
= ntohll(comp
->length
);
493 * The result of the dest's memory registration produces an "rkey"
494 * which the source VM must reference in order to perform
495 * the RDMA operation.
497 typedef struct QEMU_PACKED
{
501 } RDMARegisterResult
;
503 static void result_to_network(RDMARegisterResult
*result
)
505 result
->rkey
= htonl(result
->rkey
);
506 result
->host_addr
= htonll(result
->host_addr
);
509 static void network_to_result(RDMARegisterResult
*result
)
511 result
->rkey
= ntohl(result
->rkey
);
512 result
->host_addr
= ntohll(result
->host_addr
);
515 const char *print_wrid(int wrid
);
516 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
517 uint8_t *data
, RDMAControlHeader
*resp
,
519 int (*callback
)(RDMAContext
*rdma
));
521 static inline uint64_t ram_chunk_index(const uint8_t *start
,
524 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
527 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
530 return (uint8_t *)(uintptr_t)(rdma_ram_block
->local_host_addr
+
531 (i
<< RDMA_REG_CHUNK_SHIFT
));
534 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
537 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
538 (1UL << RDMA_REG_CHUNK_SHIFT
);
540 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
541 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
547 static int rdma_add_block(RDMAContext
*rdma
, const char *block_name
,
549 ram_addr_t block_offset
, uint64_t length
)
551 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
552 RDMALocalBlock
*block
;
553 RDMALocalBlock
*old
= local
->block
;
555 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
+ 1);
557 if (local
->nb_blocks
) {
560 if (rdma
->blockmap
) {
561 for (x
= 0; x
< local
->nb_blocks
; x
++) {
562 g_hash_table_remove(rdma
->blockmap
,
563 (void *)(uintptr_t)old
[x
].offset
);
564 g_hash_table_insert(rdma
->blockmap
,
565 (void *)(uintptr_t)old
[x
].offset
,
569 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
573 block
= &local
->block
[local
->nb_blocks
];
575 block
->block_name
= g_strdup(block_name
);
576 block
->local_host_addr
= host_addr
;
577 block
->offset
= block_offset
;
578 block
->length
= length
;
579 block
->index
= local
->nb_blocks
;
580 block
->src_index
= ~0U; /* Filled in by the receipt of the block list */
581 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
582 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
583 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
584 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
585 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
586 block
->remote_keys
= g_new0(uint32_t, block
->nb_chunks
);
588 block
->is_ram_block
= local
->init
? false : true;
590 if (rdma
->blockmap
) {
591 g_hash_table_insert(rdma
->blockmap
, (void *)(uintptr_t)block_offset
, block
);
594 trace_rdma_add_block(block_name
, local
->nb_blocks
,
595 (uintptr_t) block
->local_host_addr
,
596 block
->offset
, block
->length
,
597 (uintptr_t) (block
->local_host_addr
+ block
->length
),
598 BITS_TO_LONGS(block
->nb_chunks
) *
599 sizeof(unsigned long) * 8,
608 * Memory regions need to be registered with the device and queue pairs setup
609 * in advanced before the migration starts. This tells us where the RAM blocks
610 * are so that we can register them individually.
612 static int qemu_rdma_init_one_block(const char *block_name
, void *host_addr
,
613 ram_addr_t block_offset
, ram_addr_t length
, void *opaque
)
615 return rdma_add_block(opaque
, block_name
, host_addr
, block_offset
, length
);
619 * Identify the RAMBlocks and their quantity. They will be references to
620 * identify chunk boundaries inside each RAMBlock and also be referenced
621 * during dynamic page registration.
623 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
625 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
627 assert(rdma
->blockmap
== NULL
);
628 memset(local
, 0, sizeof *local
);
629 qemu_ram_foreach_block(qemu_rdma_init_one_block
, rdma
);
630 trace_qemu_rdma_init_ram_blocks(local
->nb_blocks
);
631 rdma
->dest_blocks
= g_new0(RDMADestBlock
,
632 rdma
->local_ram_blocks
.nb_blocks
);
638 * Note: If used outside of cleanup, the caller must ensure that the destination
639 * block structures are also updated
641 static int rdma_delete_block(RDMAContext
*rdma
, RDMALocalBlock
*block
)
643 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
644 RDMALocalBlock
*old
= local
->block
;
647 if (rdma
->blockmap
) {
648 g_hash_table_remove(rdma
->blockmap
, (void *)(uintptr_t)block
->offset
);
653 for (j
= 0; j
< block
->nb_chunks
; j
++) {
654 if (!block
->pmr
[j
]) {
657 ibv_dereg_mr(block
->pmr
[j
]);
658 rdma
->total_registrations
--;
665 ibv_dereg_mr(block
->mr
);
666 rdma
->total_registrations
--;
670 g_free(block
->transit_bitmap
);
671 block
->transit_bitmap
= NULL
;
673 g_free(block
->unregister_bitmap
);
674 block
->unregister_bitmap
= NULL
;
676 g_free(block
->remote_keys
);
677 block
->remote_keys
= NULL
;
679 g_free(block
->block_name
);
680 block
->block_name
= NULL
;
682 if (rdma
->blockmap
) {
683 for (x
= 0; x
< local
->nb_blocks
; x
++) {
684 g_hash_table_remove(rdma
->blockmap
,
685 (void *)(uintptr_t)old
[x
].offset
);
689 if (local
->nb_blocks
> 1) {
691 local
->block
= g_new0(RDMALocalBlock
, local
->nb_blocks
- 1);
694 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
697 if (block
->index
< (local
->nb_blocks
- 1)) {
698 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
699 sizeof(RDMALocalBlock
) *
700 (local
->nb_blocks
- (block
->index
+ 1)));
703 assert(block
== local
->block
);
707 trace_rdma_delete_block(block
, (uintptr_t)block
->local_host_addr
,
708 block
->offset
, block
->length
,
709 (uintptr_t)(block
->local_host_addr
+ block
->length
),
710 BITS_TO_LONGS(block
->nb_chunks
) *
711 sizeof(unsigned long) * 8, block
->nb_chunks
);
717 if (local
->nb_blocks
&& rdma
->blockmap
) {
718 for (x
= 0; x
< local
->nb_blocks
; x
++) {
719 g_hash_table_insert(rdma
->blockmap
,
720 (void *)(uintptr_t)local
->block
[x
].offset
,
729 * Put in the log file which RDMA device was opened and the details
730 * associated with that device.
732 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
734 struct ibv_port_attr port
;
736 if (ibv_query_port(verbs
, 1, &port
)) {
737 error_report("Failed to query port information");
741 printf("%s RDMA Device opened: kernel name %s "
742 "uverbs device name %s, "
743 "infiniband_verbs class device path %s, "
744 "infiniband class device path %s, "
745 "transport: (%d) %s\n",
748 verbs
->device
->dev_name
,
749 verbs
->device
->dev_path
,
750 verbs
->device
->ibdev_path
,
752 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
753 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
754 ? "Ethernet" : "Unknown"));
758 * Put in the log file the RDMA gid addressing information,
759 * useful for folks who have trouble understanding the
760 * RDMA device hierarchy in the kernel.
762 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
766 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
767 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
768 trace_qemu_rdma_dump_gid(who
, sgid
, dgid
);
772 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
773 * We will try the next addrinfo struct, and fail if there are
774 * no other valid addresses to bind against.
776 * If user is listening on '[::]', then we will not have a opened a device
777 * yet and have no way of verifying if the device is RoCE or not.
779 * In this case, the source VM will throw an error for ALL types of
780 * connections (both IPv4 and IPv6) if the destination machine does not have
781 * a regular infiniband network available for use.
783 * The only way to guarantee that an error is thrown for broken kernels is
784 * for the management software to choose a *specific* interface at bind time
785 * and validate what time of hardware it is.
787 * Unfortunately, this puts the user in a fix:
789 * If the source VM connects with an IPv4 address without knowing that the
790 * destination has bound to '[::]' the migration will unconditionally fail
791 * unless the management software is explicitly listening on the IPv4
792 * address while using a RoCE-based device.
794 * If the source VM connects with an IPv6 address, then we're OK because we can
795 * throw an error on the source (and similarly on the destination).
797 * But in mixed environments, this will be broken for a while until it is fixed
800 * We do provide a *tiny* bit of help in this function: We can list all of the
801 * devices in the system and check to see if all the devices are RoCE or
804 * If we detect that we have a *pure* RoCE environment, then we can safely
805 * thrown an error even if the management software has specified '[::]' as the
808 * However, if there is are multiple hetergeneous devices, then we cannot make
809 * this assumption and the user just has to be sure they know what they are
812 * Patches are being reviewed on linux-rdma.
814 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context
*verbs
, Error
**errp
)
816 struct ibv_port_attr port_attr
;
818 /* This bug only exists in linux, to our knowledge. */
822 * Verbs are only NULL if management has bound to '[::]'.
824 * Let's iterate through all the devices and see if there any pure IB
825 * devices (non-ethernet).
827 * If not, then we can safely proceed with the migration.
828 * Otherwise, there are no guarantees until the bug is fixed in linux.
832 struct ibv_device
** dev_list
= ibv_get_device_list(&num_devices
);
833 bool roce_found
= false;
834 bool ib_found
= false;
836 for (x
= 0; x
< num_devices
; x
++) {
837 verbs
= ibv_open_device(dev_list
[x
]);
839 if (errno
== EPERM
) {
846 if (ibv_query_port(verbs
, 1, &port_attr
)) {
847 ibv_close_device(verbs
);
848 ERROR(errp
, "Could not query initial IB port");
852 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
854 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
858 ibv_close_device(verbs
);
864 fprintf(stderr
, "WARN: migrations may fail:"
865 " IPv6 over RoCE / iWARP in linux"
866 " is broken. But since you appear to have a"
867 " mixed RoCE / IB environment, be sure to only"
868 " migrate over the IB fabric until the kernel "
869 " fixes the bug.\n");
871 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
872 " and your management software has specified '[::]'"
873 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
882 * If we have a verbs context, that means that some other than '[::]' was
883 * used by the management software for binding. In which case we can
884 * actually warn the user about a potentially broken kernel.
887 /* IB ports start with 1, not 0 */
888 if (ibv_query_port(verbs
, 1, &port_attr
)) {
889 ERROR(errp
, "Could not query initial IB port");
893 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
894 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
895 "(but patches on linux-rdma in progress)");
905 * Figure out which RDMA device corresponds to the requested IP hostname
906 * Also create the initial connection manager identifiers for opening
909 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
912 struct rdma_addrinfo
*res
;
914 struct rdma_cm_event
*cm_event
;
915 char ip
[40] = "unknown";
916 struct rdma_addrinfo
*e
;
918 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
919 ERROR(errp
, "RDMA hostname has not been set");
923 /* create CM channel */
924 rdma
->channel
= rdma_create_event_channel();
925 if (!rdma
->channel
) {
926 ERROR(errp
, "could not create CM channel");
931 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
933 ERROR(errp
, "could not create channel id");
934 goto err_resolve_create_id
;
937 snprintf(port_str
, 16, "%d", rdma
->port
);
940 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
942 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
943 goto err_resolve_get_addr
;
946 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
947 inet_ntop(e
->ai_family
,
948 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
949 trace_qemu_rdma_resolve_host_trying(rdma
->host
, ip
);
951 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
952 RDMA_RESOLVE_TIMEOUT_MS
);
954 if (e
->ai_family
== AF_INET6
) {
955 ret
= qemu_rdma_broken_ipv6_kernel(rdma
->cm_id
->verbs
, errp
);
964 ERROR(errp
, "could not resolve address %s", rdma
->host
);
965 goto err_resolve_get_addr
;
968 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
970 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
972 ERROR(errp
, "could not perform event_addr_resolved");
973 goto err_resolve_get_addr
;
976 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
977 ERROR(errp
, "result not equal to event_addr_resolved %s",
978 rdma_event_str(cm_event
->event
));
979 perror("rdma_resolve_addr");
980 rdma_ack_cm_event(cm_event
);
982 goto err_resolve_get_addr
;
984 rdma_ack_cm_event(cm_event
);
987 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
989 ERROR(errp
, "could not resolve rdma route");
990 goto err_resolve_get_addr
;
993 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
995 ERROR(errp
, "could not perform event_route_resolved");
996 goto err_resolve_get_addr
;
998 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
999 ERROR(errp
, "result not equal to event_route_resolved: %s",
1000 rdma_event_str(cm_event
->event
));
1001 rdma_ack_cm_event(cm_event
);
1003 goto err_resolve_get_addr
;
1005 rdma_ack_cm_event(cm_event
);
1006 rdma
->verbs
= rdma
->cm_id
->verbs
;
1007 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
1008 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
1011 err_resolve_get_addr
:
1012 rdma_destroy_id(rdma
->cm_id
);
1014 err_resolve_create_id
:
1015 rdma_destroy_event_channel(rdma
->channel
);
1016 rdma
->channel
= NULL
;
1021 * Create protection domain and completion queues
1023 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
1026 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1028 error_report("failed to allocate protection domain");
1032 /* create completion channel */
1033 rdma
->comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1034 if (!rdma
->comp_channel
) {
1035 error_report("failed to allocate completion channel");
1036 goto err_alloc_pd_cq
;
1040 * Completion queue can be filled by both read and write work requests,
1041 * so must reflect the sum of both possible queue sizes.
1043 rdma
->cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1044 NULL
, rdma
->comp_channel
, 0);
1046 error_report("failed to allocate completion queue");
1047 goto err_alloc_pd_cq
;
1054 ibv_dealloc_pd(rdma
->pd
);
1056 if (rdma
->comp_channel
) {
1057 ibv_destroy_comp_channel(rdma
->comp_channel
);
1060 rdma
->comp_channel
= NULL
;
1066 * Create queue pairs.
1068 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1070 struct ibv_qp_init_attr attr
= { 0 };
1073 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1074 attr
.cap
.max_recv_wr
= 3;
1075 attr
.cap
.max_send_sge
= 1;
1076 attr
.cap
.max_recv_sge
= 1;
1077 attr
.send_cq
= rdma
->cq
;
1078 attr
.recv_cq
= rdma
->cq
;
1079 attr
.qp_type
= IBV_QPT_RC
;
1081 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1086 rdma
->qp
= rdma
->cm_id
->qp
;
1090 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1093 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1095 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1096 local
->block
[i
].mr
=
1097 ibv_reg_mr(rdma
->pd
,
1098 local
->block
[i
].local_host_addr
,
1099 local
->block
[i
].length
,
1100 IBV_ACCESS_LOCAL_WRITE
|
1101 IBV_ACCESS_REMOTE_WRITE
1103 if (!local
->block
[i
].mr
) {
1104 perror("Failed to register local dest ram block!\n");
1107 rdma
->total_registrations
++;
1110 if (i
>= local
->nb_blocks
) {
1114 for (i
--; i
>= 0; i
--) {
1115 ibv_dereg_mr(local
->block
[i
].mr
);
1116 rdma
->total_registrations
--;
1124 * Find the ram block that corresponds to the page requested to be
1125 * transmitted by QEMU.
1127 * Once the block is found, also identify which 'chunk' within that
1128 * block that the page belongs to.
1130 * This search cannot fail or the migration will fail.
1132 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1133 uintptr_t block_offset
,
1136 uint64_t *block_index
,
1137 uint64_t *chunk_index
)
1139 uint64_t current_addr
= block_offset
+ offset
;
1140 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1141 (void *) block_offset
);
1143 assert(current_addr
>= block
->offset
);
1144 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1146 *block_index
= block
->index
;
1147 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1148 block
->local_host_addr
+ (current_addr
- block
->offset
));
1154 * Register a chunk with IB. If the chunk was already registered
1155 * previously, then skip.
1157 * Also return the keys associated with the registration needed
1158 * to perform the actual RDMA operation.
1160 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1161 RDMALocalBlock
*block
, uintptr_t host_addr
,
1162 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1163 uint8_t *chunk_start
, uint8_t *chunk_end
)
1167 *lkey
= block
->mr
->lkey
;
1170 *rkey
= block
->mr
->rkey
;
1175 /* allocate memory to store chunk MRs */
1177 block
->pmr
= g_new0(struct ibv_mr
*, block
->nb_chunks
);
1181 * If 'rkey', then we're the destination, so grant access to the source.
1183 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1185 if (!block
->pmr
[chunk
]) {
1186 uint64_t len
= chunk_end
- chunk_start
;
1188 trace_qemu_rdma_register_and_get_keys(len
, chunk_start
);
1190 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
,
1192 (rkey
? (IBV_ACCESS_LOCAL_WRITE
|
1193 IBV_ACCESS_REMOTE_WRITE
) : 0));
1195 if (!block
->pmr
[chunk
]) {
1196 perror("Failed to register chunk!");
1197 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1198 " start %" PRIuPTR
" end %" PRIuPTR
1200 " local %" PRIuPTR
" registrations: %d\n",
1201 block
->index
, chunk
, (uintptr_t)chunk_start
,
1202 (uintptr_t)chunk_end
, host_addr
,
1203 (uintptr_t)block
->local_host_addr
,
1204 rdma
->total_registrations
);
1207 rdma
->total_registrations
++;
1211 *lkey
= block
->pmr
[chunk
]->lkey
;
1214 *rkey
= block
->pmr
[chunk
]->rkey
;
1220 * Register (at connection time) the memory used for control
1223 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1225 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1226 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1227 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1228 if (rdma
->wr_data
[idx
].control_mr
) {
1229 rdma
->total_registrations
++;
1232 error_report("qemu_rdma_reg_control failed");
1236 const char *print_wrid(int wrid
)
1238 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1239 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1241 return wrid_desc
[wrid
];
1245 * RDMA requires memory registration (mlock/pinning), but this is not good for
1248 * In preparation for the future where LRU information or workload-specific
1249 * writable writable working set memory access behavior is available to QEMU
1250 * it would be nice to have in place the ability to UN-register/UN-pin
1251 * particular memory regions from the RDMA hardware when it is determine that
1252 * those regions of memory will likely not be accessed again in the near future.
1254 * While we do not yet have such information right now, the following
1255 * compile-time option allows us to perform a non-optimized version of this
1258 * By uncommenting this option, you will cause *all* RDMA transfers to be
1259 * unregistered immediately after the transfer completes on both sides of the
1260 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1262 * This will have a terrible impact on migration performance, so until future
1263 * workload information or LRU information is available, do not attempt to use
1264 * this feature except for basic testing.
1266 //#define RDMA_UNREGISTRATION_EXAMPLE
1269 * Perform a non-optimized memory unregistration after every transfer
1270 * for demonstration purposes, only if pin-all is not requested.
1272 * Potential optimizations:
1273 * 1. Start a new thread to run this function continuously
1275 - and for receipt of unregister messages
1277 * 3. Use workload hints.
1279 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1281 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1283 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1285 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1287 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1288 RDMALocalBlock
*block
=
1289 &(rdma
->local_ram_blocks
.block
[index
]);
1290 RDMARegister reg
= { .current_index
= index
};
1291 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1293 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1294 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1298 trace_qemu_rdma_unregister_waiting_proc(chunk
,
1299 rdma
->unregister_current
);
1301 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1302 rdma
->unregister_current
++;
1304 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1305 rdma
->unregister_current
= 0;
1310 * Unregistration is speculative (because migration is single-threaded
1311 * and we cannot break the protocol's inifinband message ordering).
1312 * Thus, if the memory is currently being used for transmission,
1313 * then abort the attempt to unregister and try again
1314 * later the next time a completion is received for this memory.
1316 clear_bit(chunk
, block
->unregister_bitmap
);
1318 if (test_bit(chunk
, block
->transit_bitmap
)) {
1319 trace_qemu_rdma_unregister_waiting_inflight(chunk
);
1323 trace_qemu_rdma_unregister_waiting_send(chunk
);
1325 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1326 block
->pmr
[chunk
] = NULL
;
1327 block
->remote_keys
[chunk
] = 0;
1330 perror("unregistration chunk failed");
1333 rdma
->total_registrations
--;
1335 reg
.key
.chunk
= chunk
;
1336 register_to_network(rdma
, ®
);
1337 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1343 trace_qemu_rdma_unregister_waiting_complete(chunk
);
1349 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1352 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1354 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1355 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1361 * Set bit for unregistration in the next iteration.
1362 * We cannot transmit right here, but will unpin later.
1364 static void qemu_rdma_signal_unregister(RDMAContext
*rdma
, uint64_t index
,
1365 uint64_t chunk
, uint64_t wr_id
)
1367 if (rdma
->unregistrations
[rdma
->unregister_next
] != 0) {
1368 error_report("rdma migration: queue is full");
1370 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1372 if (!test_and_set_bit(chunk
, block
->unregister_bitmap
)) {
1373 trace_qemu_rdma_signal_unregister_append(chunk
,
1374 rdma
->unregister_next
);
1376 rdma
->unregistrations
[rdma
->unregister_next
++] =
1377 qemu_rdma_make_wrid(wr_id
, index
, chunk
);
1379 if (rdma
->unregister_next
== RDMA_SIGNALED_SEND_MAX
) {
1380 rdma
->unregister_next
= 0;
1383 trace_qemu_rdma_signal_unregister_already(chunk
);
1389 * Consult the connection manager to see a work request
1390 * (of any kind) has completed.
1391 * Return the work request ID that completed.
1393 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, uint64_t *wr_id_out
,
1400 ret
= ibv_poll_cq(rdma
->cq
, 1, &wc
);
1403 *wr_id_out
= RDMA_WRID_NONE
;
1408 error_report("ibv_poll_cq return %d", ret
);
1412 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1414 if (wc
.status
!= IBV_WC_SUCCESS
) {
1415 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1416 wc
.status
, ibv_wc_status_str(wc
.status
));
1417 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1422 if (rdma
->control_ready_expected
&&
1423 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1424 trace_qemu_rdma_poll_recv(wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1425 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1426 rdma
->control_ready_expected
= 0;
1429 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1431 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1433 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1434 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1436 trace_qemu_rdma_poll_write(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
,
1437 index
, chunk
, block
->local_host_addr
,
1438 (void *)(uintptr_t)block
->remote_host_addr
);
1440 clear_bit(chunk
, block
->transit_bitmap
);
1442 if (rdma
->nb_sent
> 0) {
1446 if (!rdma
->pin_all
) {
1448 * FYI: If one wanted to signal a specific chunk to be unregistered
1449 * using LRU or workload-specific information, this is the function
1450 * you would call to do so. That chunk would then get asynchronously
1451 * unregistered later.
1453 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1454 qemu_rdma_signal_unregister(rdma
, index
, chunk
, wc
.wr_id
);
1458 trace_qemu_rdma_poll_other(print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1461 *wr_id_out
= wc
.wr_id
;
1463 *byte_len
= wc
.byte_len
;
1470 * Block until the next work request has completed.
1472 * First poll to see if a work request has already completed,
1475 * If we encounter completed work requests for IDs other than
1476 * the one we're interested in, then that's generally an error.
1478 * The only exception is actual RDMA Write completions. These
1479 * completions only need to be recorded, but do not actually
1480 * need further processing.
1482 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
,
1485 int num_cq_events
= 0, ret
= 0;
1488 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1490 if (ibv_req_notify_cq(rdma
->cq
, 0)) {
1494 while (wr_id
!= wrid_requested
) {
1495 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1500 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1502 if (wr_id
== RDMA_WRID_NONE
) {
1505 if (wr_id
!= wrid_requested
) {
1506 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1507 wrid_requested
, print_wrid(wr_id
), wr_id
);
1511 if (wr_id
== wrid_requested
) {
1517 * Coroutine doesn't start until migration_fd_process_incoming()
1518 * so don't yield unless we know we're running inside of a coroutine.
1520 if (rdma
->migration_started_on_destination
) {
1521 yield_until_fd_readable(rdma
->comp_channel
->fd
);
1524 if (ibv_get_cq_event(rdma
->comp_channel
, &cq
, &cq_ctx
)) {
1525 perror("ibv_get_cq_event");
1526 goto err_block_for_wrid
;
1531 if (ibv_req_notify_cq(cq
, 0)) {
1532 goto err_block_for_wrid
;
1535 while (wr_id
!= wrid_requested
) {
1536 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1538 goto err_block_for_wrid
;
1541 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1543 if (wr_id
== RDMA_WRID_NONE
) {
1546 if (wr_id
!= wrid_requested
) {
1547 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested
),
1548 wrid_requested
, print_wrid(wr_id
), wr_id
);
1552 if (wr_id
== wrid_requested
) {
1553 goto success_block_for_wrid
;
1557 success_block_for_wrid
:
1558 if (num_cq_events
) {
1559 ibv_ack_cq_events(cq
, num_cq_events
);
1564 if (num_cq_events
) {
1565 ibv_ack_cq_events(cq
, num_cq_events
);
1571 * Post a SEND message work request for the control channel
1572 * containing some data and block until the post completes.
1574 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1575 RDMAControlHeader
*head
)
1578 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1579 struct ibv_send_wr
*bad_wr
;
1580 struct ibv_sge sge
= {
1581 .addr
= (uintptr_t)(wr
->control
),
1582 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1583 .lkey
= wr
->control_mr
->lkey
,
1585 struct ibv_send_wr send_wr
= {
1586 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1587 .opcode
= IBV_WR_SEND
,
1588 .send_flags
= IBV_SEND_SIGNALED
,
1593 trace_qemu_rdma_post_send_control(control_desc
[head
->type
]);
1596 * We don't actually need to do a memcpy() in here if we used
1597 * the "sge" properly, but since we're only sending control messages
1598 * (not RAM in a performance-critical path), then its OK for now.
1600 * The copy makes the RDMAControlHeader simpler to manipulate
1601 * for the time being.
1603 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1604 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1605 control_to_network((void *) wr
->control
);
1608 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1612 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1615 error_report("Failed to use post IB SEND for control");
1619 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1621 error_report("rdma migration: send polling control error");
1628 * Post a RECV work request in anticipation of some future receipt
1629 * of data on the control channel.
1631 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1633 struct ibv_recv_wr
*bad_wr
;
1634 struct ibv_sge sge
= {
1635 .addr
= (uintptr_t)(rdma
->wr_data
[idx
].control
),
1636 .length
= RDMA_CONTROL_MAX_BUFFER
,
1637 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1640 struct ibv_recv_wr recv_wr
= {
1641 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1647 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1655 * Block and wait for a RECV control channel message to arrive.
1657 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1658 RDMAControlHeader
*head
, int expecting
, int idx
)
1661 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1665 error_report("rdma migration: recv polling control error!");
1669 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1670 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1672 trace_qemu_rdma_exchange_get_response_start(control_desc
[expecting
]);
1674 if (expecting
== RDMA_CONTROL_NONE
) {
1675 trace_qemu_rdma_exchange_get_response_none(control_desc
[head
->type
],
1677 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1678 error_report("Was expecting a %s (%d) control message"
1679 ", but got: %s (%d), length: %d",
1680 control_desc
[expecting
], expecting
,
1681 control_desc
[head
->type
], head
->type
, head
->len
);
1682 if (head
->type
== RDMA_CONTROL_ERROR
) {
1683 rdma
->received_error
= true;
1687 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1688 error_report("too long length: %d", head
->len
);
1691 if (sizeof(*head
) + head
->len
!= byte_len
) {
1692 error_report("Malformed length: %d byte_len %d", head
->len
, byte_len
);
1700 * When a RECV work request has completed, the work request's
1701 * buffer is pointed at the header.
1703 * This will advance the pointer to the data portion
1704 * of the control message of the work request's buffer that
1705 * was populated after the work request finished.
1707 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1708 RDMAControlHeader
*head
)
1710 rdma
->wr_data
[idx
].control_len
= head
->len
;
1711 rdma
->wr_data
[idx
].control_curr
=
1712 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1716 * This is an 'atomic' high-level operation to deliver a single, unified
1717 * control-channel message.
1719 * Additionally, if the user is expecting some kind of reply to this message,
1720 * they can request a 'resp' response message be filled in by posting an
1721 * additional work request on behalf of the user and waiting for an additional
1724 * The extra (optional) response is used during registration to us from having
1725 * to perform an *additional* exchange of message just to provide a response by
1726 * instead piggy-backing on the acknowledgement.
1728 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1729 uint8_t *data
, RDMAControlHeader
*resp
,
1731 int (*callback
)(RDMAContext
*rdma
))
1736 * Wait until the dest is ready before attempting to deliver the message
1737 * by waiting for a READY message.
1739 if (rdma
->control_ready_expected
) {
1740 RDMAControlHeader resp
;
1741 ret
= qemu_rdma_exchange_get_response(rdma
,
1742 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1749 * If the user is expecting a response, post a WR in anticipation of it.
1752 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1754 error_report("rdma migration: error posting"
1755 " extra control recv for anticipated result!");
1761 * Post a WR to replace the one we just consumed for the READY message.
1763 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1765 error_report("rdma migration: error posting first control recv!");
1770 * Deliver the control message that was requested.
1772 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1775 error_report("Failed to send control buffer!");
1780 * If we're expecting a response, block and wait for it.
1784 trace_qemu_rdma_exchange_send_issue_callback();
1785 ret
= callback(rdma
);
1791 trace_qemu_rdma_exchange_send_waiting(control_desc
[resp
->type
]);
1792 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1793 resp
->type
, RDMA_WRID_DATA
);
1799 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1801 *resp_idx
= RDMA_WRID_DATA
;
1803 trace_qemu_rdma_exchange_send_received(control_desc
[resp
->type
]);
1806 rdma
->control_ready_expected
= 1;
1812 * This is an 'atomic' high-level operation to receive a single, unified
1813 * control-channel message.
1815 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1818 RDMAControlHeader ready
= {
1820 .type
= RDMA_CONTROL_READY
,
1826 * Inform the source that we're ready to receive a message.
1828 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1831 error_report("Failed to send control buffer!");
1836 * Block and wait for the message.
1838 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1839 expecting
, RDMA_WRID_READY
);
1845 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1848 * Post a new RECV work request to replace the one we just consumed.
1850 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1852 error_report("rdma migration: error posting second control recv!");
1860 * Write an actual chunk of memory using RDMA.
1862 * If we're using dynamic registration on the dest-side, we have to
1863 * send a registration command first.
1865 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
1866 int current_index
, uint64_t current_addr
,
1870 struct ibv_send_wr send_wr
= { 0 };
1871 struct ibv_send_wr
*bad_wr
;
1872 int reg_result_idx
, ret
, count
= 0;
1873 uint64_t chunk
, chunks
;
1874 uint8_t *chunk_start
, *chunk_end
;
1875 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
1877 RDMARegisterResult
*reg_result
;
1878 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
1879 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1880 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
1885 sge
.addr
= (uintptr_t)(block
->local_host_addr
+
1886 (current_addr
- block
->offset
));
1887 sge
.length
= length
;
1889 chunk
= ram_chunk_index(block
->local_host_addr
,
1890 (uint8_t *)(uintptr_t)sge
.addr
);
1891 chunk_start
= ram_chunk_start(block
, chunk
);
1893 if (block
->is_ram_block
) {
1894 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1896 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1900 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1902 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1907 trace_qemu_rdma_write_one_top(chunks
+ 1,
1909 (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
1911 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
1913 if (!rdma
->pin_all
) {
1914 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1915 qemu_rdma_unregister_waiting(rdma
);
1919 while (test_bit(chunk
, block
->transit_bitmap
)) {
1921 trace_qemu_rdma_write_one_block(count
++, current_index
, chunk
,
1922 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
1924 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
1927 error_report("Failed to Wait for previous write to complete "
1928 "block %d chunk %" PRIu64
1929 " current %" PRIu64
" len %" PRIu64
" %d",
1930 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
1935 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
1936 if (!block
->remote_keys
[chunk
]) {
1938 * This chunk has not yet been registered, so first check to see
1939 * if the entire chunk is zero. If so, tell the other size to
1940 * memset() + madvise() the entire chunk without RDMA.
1943 if (buffer_is_zero((void *)(uintptr_t)sge
.addr
, length
)) {
1944 RDMACompress comp
= {
1945 .offset
= current_addr
,
1947 .block_idx
= current_index
,
1951 head
.len
= sizeof(comp
);
1952 head
.type
= RDMA_CONTROL_COMPRESS
;
1954 trace_qemu_rdma_write_one_zero(chunk
, sge
.length
,
1955 current_index
, current_addr
);
1957 compress_to_network(rdma
, &comp
);
1958 ret
= qemu_rdma_exchange_send(rdma
, &head
,
1959 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
1965 acct_update_position(f
, sge
.length
, true);
1971 * Otherwise, tell other side to register.
1973 reg
.current_index
= current_index
;
1974 if (block
->is_ram_block
) {
1975 reg
.key
.current_addr
= current_addr
;
1977 reg
.key
.chunk
= chunk
;
1979 reg
.chunks
= chunks
;
1981 trace_qemu_rdma_write_one_sendreg(chunk
, sge
.length
, current_index
,
1984 register_to_network(rdma
, ®
);
1985 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1986 &resp
, ®_result_idx
, NULL
);
1991 /* try to overlap this single registration with the one we sent. */
1992 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
1993 &sge
.lkey
, NULL
, chunk
,
1994 chunk_start
, chunk_end
)) {
1995 error_report("cannot get lkey");
1999 reg_result
= (RDMARegisterResult
*)
2000 rdma
->wr_data
[reg_result_idx
].control_curr
;
2002 network_to_result(reg_result
);
2004 trace_qemu_rdma_write_one_recvregres(block
->remote_keys
[chunk
],
2005 reg_result
->rkey
, chunk
);
2007 block
->remote_keys
[chunk
] = reg_result
->rkey
;
2008 block
->remote_host_addr
= reg_result
->host_addr
;
2010 /* already registered before */
2011 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2012 &sge
.lkey
, NULL
, chunk
,
2013 chunk_start
, chunk_end
)) {
2014 error_report("cannot get lkey!");
2019 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2021 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2023 if (qemu_rdma_register_and_get_keys(rdma
, block
, sge
.addr
,
2024 &sge
.lkey
, NULL
, chunk
,
2025 chunk_start
, chunk_end
)) {
2026 error_report("cannot get lkey!");
2032 * Encode the ram block index and chunk within this wrid.
2033 * We will use this information at the time of completion
2034 * to figure out which bitmap to check against and then which
2035 * chunk in the bitmap to look for.
2037 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2038 current_index
, chunk
);
2040 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2041 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2042 send_wr
.sg_list
= &sge
;
2043 send_wr
.num_sge
= 1;
2044 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2045 (current_addr
- block
->offset
);
2047 trace_qemu_rdma_write_one_post(chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2051 * ibv_post_send() does not return negative error numbers,
2052 * per the specification they are positive - no idea why.
2054 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2056 if (ret
== ENOMEM
) {
2057 trace_qemu_rdma_write_one_queue_full();
2058 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2060 error_report("rdma migration: failed to make "
2061 "room in full send queue! %d", ret
);
2067 } else if (ret
> 0) {
2068 perror("rdma migration: post rdma write failed");
2072 set_bit(chunk
, block
->transit_bitmap
);
2073 acct_update_position(f
, sge
.length
, false);
2074 rdma
->total_writes
++;
2080 * Push out any unwritten RDMA operations.
2082 * We support sending out multiple chunks at the same time.
2083 * Not all of them need to get signaled in the completion queue.
2085 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
2089 if (!rdma
->current_length
) {
2093 ret
= qemu_rdma_write_one(f
, rdma
,
2094 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2102 trace_qemu_rdma_write_flush(rdma
->nb_sent
);
2105 rdma
->current_length
= 0;
2106 rdma
->current_addr
= 0;
2111 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
2112 uint64_t offset
, uint64_t len
)
2114 RDMALocalBlock
*block
;
2118 if (rdma
->current_index
< 0) {
2122 if (rdma
->current_chunk
< 0) {
2126 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2127 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2128 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2130 if (rdma
->current_length
== 0) {
2135 * Only merge into chunk sequentially.
2137 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2141 if (offset
< block
->offset
) {
2145 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2149 if ((host_addr
+ len
) > chunk_end
) {
2157 * We're not actually writing here, but doing three things:
2159 * 1. Identify the chunk the buffer belongs to.
2160 * 2. If the chunk is full or the buffer doesn't belong to the current
2161 * chunk, then start a new chunk and flush() the old chunk.
2162 * 3. To keep the hardware busy, we also group chunks into batches
2163 * and only require that a batch gets acknowledged in the completion
2164 * qeueue instead of each individual chunk.
2166 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
2167 uint64_t block_offset
, uint64_t offset
,
2170 uint64_t current_addr
= block_offset
+ offset
;
2171 uint64_t index
= rdma
->current_index
;
2172 uint64_t chunk
= rdma
->current_chunk
;
2175 /* If we cannot merge it, we flush the current buffer first. */
2176 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
2177 ret
= qemu_rdma_write_flush(f
, rdma
);
2181 rdma
->current_length
= 0;
2182 rdma
->current_addr
= current_addr
;
2184 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2185 offset
, len
, &index
, &chunk
);
2187 error_report("ram block search failed");
2190 rdma
->current_index
= index
;
2191 rdma
->current_chunk
= chunk
;
2195 rdma
->current_length
+= len
;
2197 /* flush it if buffer is too large */
2198 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2199 return qemu_rdma_write_flush(f
, rdma
);
2205 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2207 struct rdma_cm_event
*cm_event
;
2210 if (rdma
->cm_id
&& rdma
->connected
) {
2211 if (rdma
->error_state
&& !rdma
->received_error
) {
2212 RDMAControlHeader head
= { .len
= 0,
2213 .type
= RDMA_CONTROL_ERROR
,
2216 error_report("Early error. Sending error.");
2217 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2220 ret
= rdma_disconnect(rdma
->cm_id
);
2222 trace_qemu_rdma_cleanup_waiting_for_disconnect();
2223 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2225 rdma_ack_cm_event(cm_event
);
2228 trace_qemu_rdma_cleanup_disconnect();
2229 rdma
->connected
= false;
2232 g_free(rdma
->dest_blocks
);
2233 rdma
->dest_blocks
= NULL
;
2235 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2236 if (rdma
->wr_data
[idx
].control_mr
) {
2237 rdma
->total_registrations
--;
2238 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2240 rdma
->wr_data
[idx
].control_mr
= NULL
;
2243 if (rdma
->local_ram_blocks
.block
) {
2244 while (rdma
->local_ram_blocks
.nb_blocks
) {
2245 rdma_delete_block(rdma
, &rdma
->local_ram_blocks
.block
[0]);
2250 rdma_destroy_qp(rdma
->cm_id
);
2254 ibv_destroy_cq(rdma
->cq
);
2257 if (rdma
->comp_channel
) {
2258 ibv_destroy_comp_channel(rdma
->comp_channel
);
2259 rdma
->comp_channel
= NULL
;
2262 ibv_dealloc_pd(rdma
->pd
);
2266 rdma_destroy_id(rdma
->cm_id
);
2269 if (rdma
->listen_id
) {
2270 rdma_destroy_id(rdma
->listen_id
);
2271 rdma
->listen_id
= NULL
;
2273 if (rdma
->channel
) {
2274 rdma_destroy_event_channel(rdma
->channel
);
2275 rdma
->channel
= NULL
;
2282 static int qemu_rdma_source_init(RDMAContext
*rdma
, bool pin_all
, Error
**errp
)
2285 Error
*local_err
= NULL
, **temp
= &local_err
;
2288 * Will be validated against destination's actual capabilities
2289 * after the connect() completes.
2291 rdma
->pin_all
= pin_all
;
2293 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2295 goto err_rdma_source_init
;
2298 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2300 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2301 " limits may be too low. Please check $ ulimit -a # and "
2302 "search for 'ulimit -l' in the output");
2303 goto err_rdma_source_init
;
2306 ret
= qemu_rdma_alloc_qp(rdma
);
2308 ERROR(temp
, "rdma migration: error allocating qp!");
2309 goto err_rdma_source_init
;
2312 ret
= qemu_rdma_init_ram_blocks(rdma
);
2314 ERROR(temp
, "rdma migration: error initializing ram blocks!");
2315 goto err_rdma_source_init
;
2318 /* Build the hash that maps from offset to RAMBlock */
2319 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
2320 for (idx
= 0; idx
< rdma
->local_ram_blocks
.nb_blocks
; idx
++) {
2321 g_hash_table_insert(rdma
->blockmap
,
2322 (void *)(uintptr_t)rdma
->local_ram_blocks
.block
[idx
].offset
,
2323 &rdma
->local_ram_blocks
.block
[idx
]);
2326 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2327 ret
= qemu_rdma_reg_control(rdma
, idx
);
2329 ERROR(temp
, "rdma migration: error registering %d control!",
2331 goto err_rdma_source_init
;
2337 err_rdma_source_init
:
2338 error_propagate(errp
, local_err
);
2339 qemu_rdma_cleanup(rdma
);
2343 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
)
2345 RDMACapabilities cap
= {
2346 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2349 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2351 .private_data
= &cap
,
2352 .private_data_len
= sizeof(cap
),
2354 struct rdma_cm_event
*cm_event
;
2358 * Only negotiate the capability with destination if the user
2359 * on the source first requested the capability.
2361 if (rdma
->pin_all
) {
2362 trace_qemu_rdma_connect_pin_all_requested();
2363 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2366 caps_to_network(&cap
);
2368 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2370 perror("rdma_connect");
2371 ERROR(errp
, "connecting to destination!");
2372 goto err_rdma_source_connect
;
2375 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2377 perror("rdma_get_cm_event after rdma_connect");
2378 ERROR(errp
, "connecting to destination!");
2379 rdma_ack_cm_event(cm_event
);
2380 goto err_rdma_source_connect
;
2383 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2384 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2385 ERROR(errp
, "connecting to destination!");
2386 rdma_ack_cm_event(cm_event
);
2387 goto err_rdma_source_connect
;
2389 rdma
->connected
= true;
2391 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2392 network_to_caps(&cap
);
2395 * Verify that the *requested* capabilities are supported by the destination
2396 * and disable them otherwise.
2398 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2399 ERROR(errp
, "Server cannot support pinning all memory. "
2400 "Will register memory dynamically.");
2401 rdma
->pin_all
= false;
2404 trace_qemu_rdma_connect_pin_all_outcome(rdma
->pin_all
);
2406 rdma_ack_cm_event(cm_event
);
2408 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2410 ERROR(errp
, "posting second control recv!");
2411 goto err_rdma_source_connect
;
2414 rdma
->control_ready_expected
= 1;
2418 err_rdma_source_connect
:
2419 qemu_rdma_cleanup(rdma
);
2423 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2426 struct rdma_cm_id
*listen_id
;
2427 char ip
[40] = "unknown";
2428 struct rdma_addrinfo
*res
, *e
;
2431 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2432 rdma
->wr_data
[idx
].control_len
= 0;
2433 rdma
->wr_data
[idx
].control_curr
= NULL
;
2436 if (!rdma
->host
|| !rdma
->host
[0]) {
2437 ERROR(errp
, "RDMA host is not set!");
2438 rdma
->error_state
= -EINVAL
;
2441 /* create CM channel */
2442 rdma
->channel
= rdma_create_event_channel();
2443 if (!rdma
->channel
) {
2444 ERROR(errp
, "could not create rdma event channel");
2445 rdma
->error_state
= -EINVAL
;
2450 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2452 ERROR(errp
, "could not create cm_id!");
2453 goto err_dest_init_create_listen_id
;
2456 snprintf(port_str
, 16, "%d", rdma
->port
);
2457 port_str
[15] = '\0';
2459 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2461 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2462 goto err_dest_init_bind_addr
;
2465 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2466 inet_ntop(e
->ai_family
,
2467 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2468 trace_qemu_rdma_dest_init_trying(rdma
->host
, ip
);
2469 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2473 if (e
->ai_family
== AF_INET6
) {
2474 ret
= qemu_rdma_broken_ipv6_kernel(listen_id
->verbs
, errp
);
2483 ERROR(errp
, "Error: could not rdma_bind_addr!");
2484 goto err_dest_init_bind_addr
;
2487 rdma
->listen_id
= listen_id
;
2488 qemu_rdma_dump_gid("dest_init", listen_id
);
2491 err_dest_init_bind_addr
:
2492 rdma_destroy_id(listen_id
);
2493 err_dest_init_create_listen_id
:
2494 rdma_destroy_event_channel(rdma
->channel
);
2495 rdma
->channel
= NULL
;
2496 rdma
->error_state
= ret
;
2501 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2503 RDMAContext
*rdma
= NULL
;
2504 InetSocketAddress
*addr
;
2507 rdma
= g_new0(RDMAContext
, 1);
2508 rdma
->current_index
= -1;
2509 rdma
->current_chunk
= -1;
2511 addr
= g_new(InetSocketAddress
, 1);
2512 if (!inet_parse(addr
, host_port
, NULL
)) {
2513 rdma
->port
= atoi(addr
->port
);
2514 rdma
->host
= g_strdup(addr
->host
);
2516 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2521 qapi_free_InetSocketAddress(addr
);
2528 * QEMUFile interface to the control channel.
2529 * SEND messages for control only.
2530 * VM's ram is handled with regular RDMA messages.
2532 static ssize_t
qio_channel_rdma_writev(QIOChannel
*ioc
,
2533 const struct iovec
*iov
,
2539 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2540 QEMUFile
*f
= rioc
->file
;
2541 RDMAContext
*rdma
= rioc
->rdma
;
2546 CHECK_ERROR_STATE();
2549 * Push out any writes that
2550 * we're queued up for VM's ram.
2552 ret
= qemu_rdma_write_flush(f
, rdma
);
2554 rdma
->error_state
= ret
;
2558 for (i
= 0; i
< niov
; i
++) {
2559 size_t remaining
= iov
[i
].iov_len
;
2560 uint8_t * data
= (void *)iov
[i
].iov_base
;
2562 RDMAControlHeader head
;
2564 rioc
->len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2565 remaining
-= rioc
->len
;
2567 head
.len
= rioc
->len
;
2568 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2570 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2573 rdma
->error_state
= ret
;
2585 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2586 size_t size
, int idx
)
2590 if (rdma
->wr_data
[idx
].control_len
) {
2591 trace_qemu_rdma_fill(rdma
->wr_data
[idx
].control_len
, size
);
2593 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2594 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2595 rdma
->wr_data
[idx
].control_curr
+= len
;
2596 rdma
->wr_data
[idx
].control_len
-= len
;
2603 * QEMUFile interface to the control channel.
2604 * RDMA links don't use bytestreams, so we have to
2605 * return bytes to QEMUFile opportunistically.
2607 static ssize_t
qio_channel_rdma_readv(QIOChannel
*ioc
,
2608 const struct iovec
*iov
,
2614 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2615 RDMAContext
*rdma
= rioc
->rdma
;
2616 RDMAControlHeader head
;
2621 CHECK_ERROR_STATE();
2623 for (i
= 0; i
< niov
; i
++) {
2624 size_t want
= iov
[i
].iov_len
;
2625 uint8_t *data
= (void *)iov
[i
].iov_base
;
2628 * First, we hold on to the last SEND message we
2629 * were given and dish out the bytes until we run
2632 ret
= qemu_rdma_fill(rioc
->rdma
, data
, want
, 0);
2635 /* Got what we needed, so go to next iovec */
2640 /* If we got any data so far, then don't wait
2641 * for more, just return what we have */
2647 /* We've got nothing at all, so lets wait for
2650 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2653 rdma
->error_state
= ret
;
2658 * SEND was received with new bytes, now try again.
2660 ret
= qemu_rdma_fill(rioc
->rdma
, data
, want
, 0);
2664 /* Still didn't get enough, so lets just return */
2667 return QIO_CHANNEL_ERR_BLOCK
;
2678 * Block until all the outstanding chunks have been delivered by the hardware.
2680 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2684 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2688 while (rdma
->nb_sent
) {
2689 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2691 error_report("rdma migration: complete polling error!");
2696 qemu_rdma_unregister_waiting(rdma
);
2702 static int qio_channel_rdma_set_blocking(QIOChannel
*ioc
,
2706 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2707 /* XXX we should make readv/writev actually honour this :-) */
2708 rioc
->blocking
= blocking
;
2713 typedef struct QIOChannelRDMASource QIOChannelRDMASource
;
2714 struct QIOChannelRDMASource
{
2716 QIOChannelRDMA
*rioc
;
2717 GIOCondition condition
;
2721 qio_channel_rdma_source_prepare(GSource
*source
,
2724 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2725 RDMAContext
*rdma
= rsource
->rioc
->rdma
;
2726 GIOCondition cond
= 0;
2729 if (rdma
->wr_data
[0].control_len
) {
2734 return cond
& rsource
->condition
;
2738 qio_channel_rdma_source_check(GSource
*source
)
2740 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2741 RDMAContext
*rdma
= rsource
->rioc
->rdma
;
2742 GIOCondition cond
= 0;
2744 if (rdma
->wr_data
[0].control_len
) {
2749 return cond
& rsource
->condition
;
2753 qio_channel_rdma_source_dispatch(GSource
*source
,
2754 GSourceFunc callback
,
2757 QIOChannelFunc func
= (QIOChannelFunc
)callback
;
2758 QIOChannelRDMASource
*rsource
= (QIOChannelRDMASource
*)source
;
2759 RDMAContext
*rdma
= rsource
->rioc
->rdma
;
2760 GIOCondition cond
= 0;
2762 if (rdma
->wr_data
[0].control_len
) {
2767 return (*func
)(QIO_CHANNEL(rsource
->rioc
),
2768 (cond
& rsource
->condition
),
2773 qio_channel_rdma_source_finalize(GSource
*source
)
2775 QIOChannelRDMASource
*ssource
= (QIOChannelRDMASource
*)source
;
2777 object_unref(OBJECT(ssource
->rioc
));
2780 GSourceFuncs qio_channel_rdma_source_funcs
= {
2781 qio_channel_rdma_source_prepare
,
2782 qio_channel_rdma_source_check
,
2783 qio_channel_rdma_source_dispatch
,
2784 qio_channel_rdma_source_finalize
2787 static GSource
*qio_channel_rdma_create_watch(QIOChannel
*ioc
,
2788 GIOCondition condition
)
2790 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2791 QIOChannelRDMASource
*ssource
;
2794 source
= g_source_new(&qio_channel_rdma_source_funcs
,
2795 sizeof(QIOChannelRDMASource
));
2796 ssource
= (QIOChannelRDMASource
*)source
;
2798 ssource
->rioc
= rioc
;
2799 object_ref(OBJECT(rioc
));
2801 ssource
->condition
= condition
;
2807 static int qio_channel_rdma_close(QIOChannel
*ioc
,
2810 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(ioc
);
2811 trace_qemu_rdma_close();
2813 if (!rioc
->rdma
->error_state
) {
2814 rioc
->rdma
->error_state
= qemu_file_get_error(rioc
->file
);
2816 qemu_rdma_cleanup(rioc
->rdma
);
2826 * This means that 'block_offset' is a full virtual address that does not
2827 * belong to a RAMBlock of the virtual machine and instead
2828 * represents a private malloc'd memory area that the caller wishes to
2832 * Offset is an offset to be added to block_offset and used
2833 * to also lookup the corresponding RAMBlock.
2836 * Initiate an transfer this size.
2839 * A 'hint' or 'advice' that means that we wish to speculatively
2840 * and asynchronously unregister this memory. In this case, there is no
2841 * guarantee that the unregister will actually happen, for example,
2842 * if the memory is being actively transmitted. Additionally, the memory
2843 * may be re-registered at any future time if a write within the same
2844 * chunk was requested again, even if you attempted to unregister it
2847 * @size < 0 : TODO, not yet supported
2848 * Unregister the memory NOW. This means that the caller does not
2849 * expect there to be any future RDMA transfers and we just want to clean
2850 * things up. This is used in case the upper layer owns the memory and
2851 * cannot wait for qemu_fclose() to occur.
2853 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2854 * sent. Usually, this will not be more than a few bytes of
2855 * the protocol because most transfers are sent asynchronously.
2857 static size_t qemu_rdma_save_page(QEMUFile
*f
, void *opaque
,
2858 ram_addr_t block_offset
, ram_addr_t offset
,
2859 size_t size
, uint64_t *bytes_sent
)
2861 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
2862 RDMAContext
*rdma
= rioc
->rdma
;
2865 CHECK_ERROR_STATE();
2871 * Add this page to the current 'chunk'. If the chunk
2872 * is full, or the page doen't belong to the current chunk,
2873 * an actual RDMA write will occur and a new chunk will be formed.
2875 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
2877 error_report("rdma migration: write error! %d", ret
);
2882 * We always return 1 bytes because the RDMA
2883 * protocol is completely asynchronous. We do not yet know
2884 * whether an identified chunk is zero or not because we're
2885 * waiting for other pages to potentially be merged with
2886 * the current chunk. So, we have to call qemu_update_position()
2887 * later on when the actual write occurs.
2893 uint64_t index
, chunk
;
2895 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2897 ret = qemu_rdma_drain_cq(f, rdma);
2899 fprintf(stderr, "rdma: failed to synchronously drain"
2900 " completion queue before unregistration.\n");
2906 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2907 offset
, size
, &index
, &chunk
);
2910 error_report("ram block search failed");
2914 qemu_rdma_signal_unregister(rdma
, index
, chunk
, 0);
2917 * TODO: Synchronous, guaranteed unregistration (should not occur during
2918 * fast-path). Otherwise, unregisters will process on the next call to
2919 * qemu_rdma_drain_cq()
2921 qemu_rdma_unregister_waiting(rdma);
2927 * Drain the Completion Queue if possible, but do not block,
2930 * If nothing to poll, the end of the iteration will do this
2931 * again to make sure we don't overflow the request queue.
2934 uint64_t wr_id
, wr_id_in
;
2935 int ret
= qemu_rdma_poll(rdma
, &wr_id_in
, NULL
);
2937 error_report("rdma migration: polling error! %d", ret
);
2941 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
2943 if (wr_id
== RDMA_WRID_NONE
) {
2948 return RAM_SAVE_CONTROL_DELAYED
;
2950 rdma
->error_state
= ret
;
2954 static int qemu_rdma_accept(RDMAContext
*rdma
)
2956 RDMACapabilities cap
;
2957 struct rdma_conn_param conn_param
= {
2958 .responder_resources
= 2,
2959 .private_data
= &cap
,
2960 .private_data_len
= sizeof(cap
),
2962 struct rdma_cm_event
*cm_event
;
2963 struct ibv_context
*verbs
;
2967 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2969 goto err_rdma_dest_wait
;
2972 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
2973 rdma_ack_cm_event(cm_event
);
2974 goto err_rdma_dest_wait
;
2977 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2979 network_to_caps(&cap
);
2981 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
2982 error_report("Unknown source RDMA version: %d, bailing...",
2984 rdma_ack_cm_event(cm_event
);
2985 goto err_rdma_dest_wait
;
2989 * Respond with only the capabilities this version of QEMU knows about.
2991 cap
.flags
&= known_capabilities
;
2994 * Enable the ones that we do know about.
2995 * Add other checks here as new ones are introduced.
2997 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
2998 rdma
->pin_all
= true;
3001 rdma
->cm_id
= cm_event
->id
;
3002 verbs
= cm_event
->id
->verbs
;
3004 rdma_ack_cm_event(cm_event
);
3006 trace_qemu_rdma_accept_pin_state(rdma
->pin_all
);
3008 caps_to_network(&cap
);
3010 trace_qemu_rdma_accept_pin_verbsc(verbs
);
3013 rdma
->verbs
= verbs
;
3014 } else if (rdma
->verbs
!= verbs
) {
3015 error_report("ibv context not matching %p, %p!", rdma
->verbs
,
3017 goto err_rdma_dest_wait
;
3020 qemu_rdma_dump_id("dest_init", verbs
);
3022 ret
= qemu_rdma_alloc_pd_cq(rdma
);
3024 error_report("rdma migration: error allocating pd and cq!");
3025 goto err_rdma_dest_wait
;
3028 ret
= qemu_rdma_alloc_qp(rdma
);
3030 error_report("rdma migration: error allocating qp!");
3031 goto err_rdma_dest_wait
;
3034 ret
= qemu_rdma_init_ram_blocks(rdma
);
3036 error_report("rdma migration: error initializing ram blocks!");
3037 goto err_rdma_dest_wait
;
3040 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
3041 ret
= qemu_rdma_reg_control(rdma
, idx
);
3043 error_report("rdma: error registering %d control", idx
);
3044 goto err_rdma_dest_wait
;
3048 qemu_set_fd_handler(rdma
->channel
->fd
, NULL
, NULL
, NULL
);
3050 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
3052 error_report("rdma_accept returns %d", ret
);
3053 goto err_rdma_dest_wait
;
3056 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
3058 error_report("rdma_accept get_cm_event failed %d", ret
);
3059 goto err_rdma_dest_wait
;
3062 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
3063 error_report("rdma_accept not event established");
3064 rdma_ack_cm_event(cm_event
);
3065 goto err_rdma_dest_wait
;
3068 rdma_ack_cm_event(cm_event
);
3069 rdma
->connected
= true;
3071 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
3073 error_report("rdma migration: error posting second control recv");
3074 goto err_rdma_dest_wait
;
3077 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
3082 rdma
->error_state
= ret
;
3083 qemu_rdma_cleanup(rdma
);
3087 static int dest_ram_sort_func(const void *a
, const void *b
)
3089 unsigned int a_index
= ((const RDMALocalBlock
*)a
)->src_index
;
3090 unsigned int b_index
= ((const RDMALocalBlock
*)b
)->src_index
;
3092 return (a_index
< b_index
) ? -1 : (a_index
!= b_index
);
3096 * During each iteration of the migration, we listen for instructions
3097 * by the source VM to perform dynamic page registrations before they
3098 * can perform RDMA operations.
3100 * We respond with the 'rkey'.
3102 * Keep doing this until the source tells us to stop.
3104 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
)
3106 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
3107 .type
= RDMA_CONTROL_REGISTER_RESULT
,
3110 RDMAControlHeader unreg_resp
= { .len
= 0,
3111 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
3114 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
3116 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3117 RDMAContext
*rdma
= rioc
->rdma
;
3118 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3119 RDMAControlHeader head
;
3120 RDMARegister
*reg
, *registers
;
3122 RDMARegisterResult
*reg_result
;
3123 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
3124 RDMALocalBlock
*block
;
3131 CHECK_ERROR_STATE();
3134 trace_qemu_rdma_registration_handle_wait();
3136 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
3142 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
3143 error_report("rdma: Too many requests in this message (%d)."
3144 "Bailing.", head
.repeat
);
3149 switch (head
.type
) {
3150 case RDMA_CONTROL_COMPRESS
:
3151 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
3152 network_to_compress(comp
);
3154 trace_qemu_rdma_registration_handle_compress(comp
->length
,
3157 if (comp
->block_idx
>= rdma
->local_ram_blocks
.nb_blocks
) {
3158 error_report("rdma: 'compress' bad block index %u (vs %d)",
3159 (unsigned int)comp
->block_idx
,
3160 rdma
->local_ram_blocks
.nb_blocks
);
3164 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
3166 host_addr
= block
->local_host_addr
+
3167 (comp
->offset
- block
->offset
);
3169 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3172 case RDMA_CONTROL_REGISTER_FINISHED
:
3173 trace_qemu_rdma_registration_handle_finished();
3176 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3177 trace_qemu_rdma_registration_handle_ram_blocks();
3179 /* Sort our local RAM Block list so it's the same as the source,
3180 * we can do this since we've filled in a src_index in the list
3181 * as we received the RAMBlock list earlier.
3183 qsort(rdma
->local_ram_blocks
.block
,
3184 rdma
->local_ram_blocks
.nb_blocks
,
3185 sizeof(RDMALocalBlock
), dest_ram_sort_func
);
3186 if (rdma
->pin_all
) {
3187 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3189 error_report("rdma migration: error dest "
3190 "registering ram blocks");
3196 * Dest uses this to prepare to transmit the RAMBlock descriptions
3197 * to the source VM after connection setup.
3198 * Both sides use the "remote" structure to communicate and update
3199 * their "local" descriptions with what was sent.
3201 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3202 rdma
->dest_blocks
[i
].remote_host_addr
=
3203 (uintptr_t)(local
->block
[i
].local_host_addr
);
3205 if (rdma
->pin_all
) {
3206 rdma
->dest_blocks
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3209 rdma
->dest_blocks
[i
].offset
= local
->block
[i
].offset
;
3210 rdma
->dest_blocks
[i
].length
= local
->block
[i
].length
;
3212 dest_block_to_network(&rdma
->dest_blocks
[i
]);
3213 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3214 local
->block
[i
].block_name
,
3215 local
->block
[i
].offset
,
3216 local
->block
[i
].length
,
3217 local
->block
[i
].local_host_addr
,
3218 local
->block
[i
].src_index
);
3221 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3222 * sizeof(RDMADestBlock
);
3225 ret
= qemu_rdma_post_send_control(rdma
,
3226 (uint8_t *) rdma
->dest_blocks
, &blocks
);
3229 error_report("rdma migration: error sending remote info");
3234 case RDMA_CONTROL_REGISTER_REQUEST
:
3235 trace_qemu_rdma_registration_handle_register(head
.repeat
);
3237 reg_resp
.repeat
= head
.repeat
;
3238 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3240 for (count
= 0; count
< head
.repeat
; count
++) {
3242 uint8_t *chunk_start
, *chunk_end
;
3244 reg
= ®isters
[count
];
3245 network_to_register(reg
);
3247 reg_result
= &results
[count
];
3249 trace_qemu_rdma_registration_handle_register_loop(count
,
3250 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3252 if (reg
->current_index
>= rdma
->local_ram_blocks
.nb_blocks
) {
3253 error_report("rdma: 'register' bad block index %u (vs %d)",
3254 (unsigned int)reg
->current_index
,
3255 rdma
->local_ram_blocks
.nb_blocks
);
3259 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3260 if (block
->is_ram_block
) {
3261 if (block
->offset
> reg
->key
.current_addr
) {
3262 error_report("rdma: bad register address for block %s"
3263 " offset: %" PRIx64
" current_addr: %" PRIx64
,
3264 block
->block_name
, block
->offset
,
3265 reg
->key
.current_addr
);
3269 host_addr
= (block
->local_host_addr
+
3270 (reg
->key
.current_addr
- block
->offset
));
3271 chunk
= ram_chunk_index(block
->local_host_addr
,
3272 (uint8_t *) host_addr
);
3274 chunk
= reg
->key
.chunk
;
3275 host_addr
= block
->local_host_addr
+
3276 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3277 /* Check for particularly bad chunk value */
3278 if (host_addr
< (void *)block
->local_host_addr
) {
3279 error_report("rdma: bad chunk for block %s"
3281 block
->block_name
, reg
->key
.chunk
);
3286 chunk_start
= ram_chunk_start(block
, chunk
);
3287 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3288 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3289 (uintptr_t)host_addr
, NULL
, ®_result
->rkey
,
3290 chunk
, chunk_start
, chunk_end
)) {
3291 error_report("cannot get rkey");
3296 reg_result
->host_addr
= (uintptr_t)block
->local_host_addr
;
3298 trace_qemu_rdma_registration_handle_register_rkey(
3301 result_to_network(reg_result
);
3304 ret
= qemu_rdma_post_send_control(rdma
,
3305 (uint8_t *) results
, ®_resp
);
3308 error_report("Failed to send control buffer");
3312 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3313 trace_qemu_rdma_registration_handle_unregister(head
.repeat
);
3314 unreg_resp
.repeat
= head
.repeat
;
3315 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3317 for (count
= 0; count
< head
.repeat
; count
++) {
3318 reg
= ®isters
[count
];
3319 network_to_register(reg
);
3321 trace_qemu_rdma_registration_handle_unregister_loop(count
,
3322 reg
->current_index
, reg
->key
.chunk
);
3324 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3326 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3327 block
->pmr
[reg
->key
.chunk
] = NULL
;
3330 perror("rdma unregistration chunk failed");
3335 rdma
->total_registrations
--;
3337 trace_qemu_rdma_registration_handle_unregister_success(
3341 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3344 error_report("Failed to send control buffer");
3348 case RDMA_CONTROL_REGISTER_RESULT
:
3349 error_report("Invalid RESULT message at dest.");
3353 error_report("Unknown control message %s", control_desc
[head
.type
]);
3360 rdma
->error_state
= ret
;
3366 * Called via a ram_control_load_hook during the initial RAM load section which
3367 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3369 * We've already built our local RAMBlock list, but not yet sent the list to
3373 rdma_block_notification_handle(QIOChannelRDMA
*rioc
, const char *name
)
3375 RDMAContext
*rdma
= rioc
->rdma
;
3379 /* Find the matching RAMBlock in our local list */
3380 for (curr
= 0; curr
< rdma
->local_ram_blocks
.nb_blocks
; curr
++) {
3381 if (!strcmp(rdma
->local_ram_blocks
.block
[curr
].block_name
, name
)) {
3388 error_report("RAMBlock '%s' not found on destination", name
);
3392 rdma
->local_ram_blocks
.block
[curr
].src_index
= rdma
->next_src_index
;
3393 trace_rdma_block_notification_handle(name
, rdma
->next_src_index
);
3394 rdma
->next_src_index
++;
3399 static int rdma_load_hook(QEMUFile
*f
, void *opaque
, uint64_t flags
, void *data
)
3402 case RAM_CONTROL_BLOCK_REG
:
3403 return rdma_block_notification_handle(opaque
, data
);
3405 case RAM_CONTROL_HOOK
:
3406 return qemu_rdma_registration_handle(f
, opaque
);
3409 /* Shouldn't be called with any other values */
3414 static int qemu_rdma_registration_start(QEMUFile
*f
, void *opaque
,
3415 uint64_t flags
, void *data
)
3417 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3418 RDMAContext
*rdma
= rioc
->rdma
;
3420 CHECK_ERROR_STATE();
3422 trace_qemu_rdma_registration_start(flags
);
3423 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3430 * Inform dest that dynamic registrations are done for now.
3431 * First, flush writes, if any.
3433 static int qemu_rdma_registration_stop(QEMUFile
*f
, void *opaque
,
3434 uint64_t flags
, void *data
)
3436 Error
*local_err
= NULL
, **errp
= &local_err
;
3437 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(opaque
);
3438 RDMAContext
*rdma
= rioc
->rdma
;
3439 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3442 CHECK_ERROR_STATE();
3445 ret
= qemu_rdma_drain_cq(f
, rdma
);
3451 if (flags
== RAM_CONTROL_SETUP
) {
3452 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3453 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3454 int reg_result_idx
, i
, nb_dest_blocks
;
3456 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3457 trace_qemu_rdma_registration_stop_ram();
3460 * Make sure that we parallelize the pinning on both sides.
3461 * For very large guests, doing this serially takes a really
3462 * long time, so we have to 'interleave' the pinning locally
3463 * with the control messages by performing the pinning on this
3464 * side before we receive the control response from the other
3465 * side that the pinning has completed.
3467 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3468 ®_result_idx
, rdma
->pin_all
?
3469 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3471 ERROR(errp
, "receiving remote info!");
3475 nb_dest_blocks
= resp
.len
/ sizeof(RDMADestBlock
);
3478 * The protocol uses two different sets of rkeys (mutually exclusive):
3479 * 1. One key to represent the virtual address of the entire ram block.
3480 * (dynamic chunk registration disabled - pin everything with one rkey.)
3481 * 2. One to represent individual chunks within a ram block.
3482 * (dynamic chunk registration enabled - pin individual chunks.)
3484 * Once the capability is successfully negotiated, the destination transmits
3485 * the keys to use (or sends them later) including the virtual addresses
3486 * and then propagates the remote ram block descriptions to his local copy.
3489 if (local
->nb_blocks
!= nb_dest_blocks
) {
3490 ERROR(errp
, "ram blocks mismatch (Number of blocks %d vs %d) "
3491 "Your QEMU command line parameters are probably "
3492 "not identical on both the source and destination.",
3493 local
->nb_blocks
, nb_dest_blocks
);
3494 rdma
->error_state
= -EINVAL
;
3498 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3499 memcpy(rdma
->dest_blocks
,
3500 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3501 for (i
= 0; i
< nb_dest_blocks
; i
++) {
3502 network_to_dest_block(&rdma
->dest_blocks
[i
]);
3504 /* We require that the blocks are in the same order */
3505 if (rdma
->dest_blocks
[i
].length
!= local
->block
[i
].length
) {
3506 ERROR(errp
, "Block %s/%d has a different length %" PRIu64
3507 "vs %" PRIu64
, local
->block
[i
].block_name
, i
,
3508 local
->block
[i
].length
,
3509 rdma
->dest_blocks
[i
].length
);
3510 rdma
->error_state
= -EINVAL
;
3513 local
->block
[i
].remote_host_addr
=
3514 rdma
->dest_blocks
[i
].remote_host_addr
;
3515 local
->block
[i
].remote_rkey
= rdma
->dest_blocks
[i
].remote_rkey
;
3519 trace_qemu_rdma_registration_stop(flags
);
3521 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3522 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3530 rdma
->error_state
= ret
;
3534 static const QEMUFileHooks rdma_read_hooks
= {
3535 .hook_ram_load
= rdma_load_hook
,
3538 static const QEMUFileHooks rdma_write_hooks
= {
3539 .before_ram_iterate
= qemu_rdma_registration_start
,
3540 .after_ram_iterate
= qemu_rdma_registration_stop
,
3541 .save_page
= qemu_rdma_save_page
,
3545 static void qio_channel_rdma_finalize(Object
*obj
)
3547 QIOChannelRDMA
*rioc
= QIO_CHANNEL_RDMA(obj
);
3549 qemu_rdma_cleanup(rioc
->rdma
);
3555 static void qio_channel_rdma_class_init(ObjectClass
*klass
,
3556 void *class_data G_GNUC_UNUSED
)
3558 QIOChannelClass
*ioc_klass
= QIO_CHANNEL_CLASS(klass
);
3560 ioc_klass
->io_writev
= qio_channel_rdma_writev
;
3561 ioc_klass
->io_readv
= qio_channel_rdma_readv
;
3562 ioc_klass
->io_set_blocking
= qio_channel_rdma_set_blocking
;
3563 ioc_klass
->io_close
= qio_channel_rdma_close
;
3564 ioc_klass
->io_create_watch
= qio_channel_rdma_create_watch
;
3567 static const TypeInfo qio_channel_rdma_info
= {
3568 .parent
= TYPE_QIO_CHANNEL
,
3569 .name
= TYPE_QIO_CHANNEL_RDMA
,
3570 .instance_size
= sizeof(QIOChannelRDMA
),
3571 .instance_finalize
= qio_channel_rdma_finalize
,
3572 .class_init
= qio_channel_rdma_class_init
,
3575 static void qio_channel_rdma_register_types(void)
3577 type_register_static(&qio_channel_rdma_info
);
3580 type_init(qio_channel_rdma_register_types
);
3582 static QEMUFile
*qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
3584 QIOChannelRDMA
*rioc
;
3586 if (qemu_file_mode_is_not_valid(mode
)) {
3590 rioc
= QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA
));
3593 if (mode
[0] == 'w') {
3594 rioc
->file
= qemu_fopen_channel_output(QIO_CHANNEL(rioc
));
3595 qemu_file_set_hooks(rioc
->file
, &rdma_write_hooks
);
3597 rioc
->file
= qemu_fopen_channel_input(QIO_CHANNEL(rioc
));
3598 qemu_file_set_hooks(rioc
->file
, &rdma_read_hooks
);
3604 static void rdma_accept_incoming_migration(void *opaque
)
3606 RDMAContext
*rdma
= opaque
;
3609 Error
*local_err
= NULL
, **errp
= &local_err
;
3611 trace_qemu_rdma_accept_incoming_migration();
3612 ret
= qemu_rdma_accept(rdma
);
3615 ERROR(errp
, "RDMA Migration initialization failed!");
3619 trace_qemu_rdma_accept_incoming_migration_accepted();
3621 f
= qemu_fopen_rdma(rdma
, "rb");
3623 ERROR(errp
, "could not qemu_fopen_rdma!");
3624 qemu_rdma_cleanup(rdma
);
3628 rdma
->migration_started_on_destination
= 1;
3629 migration_fd_process_incoming(f
);
3632 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
3636 Error
*local_err
= NULL
;
3638 trace_rdma_start_incoming_migration();
3639 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3645 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
3651 trace_rdma_start_incoming_migration_after_dest_init();
3653 ret
= rdma_listen(rdma
->listen_id
, 5);
3656 ERROR(errp
, "listening on socket!");
3660 trace_rdma_start_incoming_migration_after_rdma_listen();
3662 qemu_set_fd_handler(rdma
->channel
->fd
, rdma_accept_incoming_migration
,
3663 NULL
, (void *)(intptr_t)rdma
);
3666 error_propagate(errp
, local_err
);
3670 void rdma_start_outgoing_migration(void *opaque
,
3671 const char *host_port
, Error
**errp
)
3673 MigrationState
*s
= opaque
;
3674 RDMAContext
*rdma
= qemu_rdma_data_init(host_port
, errp
);
3681 ret
= qemu_rdma_source_init(rdma
,
3682 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
], errp
);
3688 trace_rdma_start_outgoing_migration_after_rdma_source_init();
3689 ret
= qemu_rdma_connect(rdma
, errp
);
3695 trace_rdma_start_outgoing_migration_after_rdma_connect();
3697 s
->to_dst_file
= qemu_fopen_rdma(rdma
, "wb");
3698 migrate_fd_connect(s
);