monitor: fix dangling CPU pointer
[qemu/ar7.git] / block / io.c
blob3d5ef2cabeb720e13422d724edb85018a896055d
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
38 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
41 int64_t offset, int bytes, BdrvRequestFlags flags);
43 void bdrv_parent_drained_begin(BlockDriverState *bs)
45 BdrvChild *c;
47 QLIST_FOREACH(c, &bs->parents, next_parent) {
48 if (c->role->drained_begin) {
49 c->role->drained_begin(c);
54 void bdrv_parent_drained_end(BlockDriverState *bs)
56 BdrvChild *c;
58 QLIST_FOREACH(c, &bs->parents, next_parent) {
59 if (c->role->drained_end) {
60 c->role->drained_end(c);
65 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
67 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
68 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
69 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
70 src->opt_mem_alignment);
71 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
72 src->min_mem_alignment);
73 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
76 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
78 BlockDriver *drv = bs->drv;
79 Error *local_err = NULL;
81 memset(&bs->bl, 0, sizeof(bs->bl));
83 if (!drv) {
84 return;
87 /* Default alignment based on whether driver has byte interface */
88 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
90 /* Take some limits from the children as a default */
91 if (bs->file) {
92 bdrv_refresh_limits(bs->file->bs, &local_err);
93 if (local_err) {
94 error_propagate(errp, local_err);
95 return;
97 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
98 } else {
99 bs->bl.min_mem_alignment = 512;
100 bs->bl.opt_mem_alignment = getpagesize();
102 /* Safe default since most protocols use readv()/writev()/etc */
103 bs->bl.max_iov = IOV_MAX;
106 if (bs->backing) {
107 bdrv_refresh_limits(bs->backing->bs, &local_err);
108 if (local_err) {
109 error_propagate(errp, local_err);
110 return;
112 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
115 /* Then let the driver override it */
116 if (drv->bdrv_refresh_limits) {
117 drv->bdrv_refresh_limits(bs, errp);
122 * The copy-on-read flag is actually a reference count so multiple users may
123 * use the feature without worrying about clobbering its previous state.
124 * Copy-on-read stays enabled until all users have called to disable it.
126 void bdrv_enable_copy_on_read(BlockDriverState *bs)
128 atomic_inc(&bs->copy_on_read);
131 void bdrv_disable_copy_on_read(BlockDriverState *bs)
133 int old = atomic_fetch_dec(&bs->copy_on_read);
134 assert(old >= 1);
137 /* Check if any requests are in-flight (including throttled requests) */
138 bool bdrv_requests_pending(BlockDriverState *bs)
140 BdrvChild *child;
142 if (atomic_read(&bs->in_flight)) {
143 return true;
146 QLIST_FOREACH(child, &bs->children, next) {
147 if (bdrv_requests_pending(child->bs)) {
148 return true;
152 return false;
155 typedef struct {
156 Coroutine *co;
157 BlockDriverState *bs;
158 bool done;
159 bool begin;
160 } BdrvCoDrainData;
162 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
164 BdrvCoDrainData *data = opaque;
165 BlockDriverState *bs = data->bs;
167 if (data->begin) {
168 bs->drv->bdrv_co_drain_begin(bs);
169 } else {
170 bs->drv->bdrv_co_drain_end(bs);
173 /* Set data->done before reading bs->wakeup. */
174 atomic_mb_set(&data->done, true);
175 bdrv_wakeup(bs);
178 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin)
180 BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin};
182 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
183 (!begin && !bs->drv->bdrv_co_drain_end)) {
184 return;
187 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
188 bdrv_coroutine_enter(bs, data.co);
189 BDRV_POLL_WHILE(bs, !data.done);
192 static bool bdrv_drain_recurse(BlockDriverState *bs, bool begin)
194 BdrvChild *child, *tmp;
195 bool waited;
197 /* Ensure any pending metadata writes are submitted to bs->file. */
198 bdrv_drain_invoke(bs, begin);
200 /* Wait for drained requests to finish */
201 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
203 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
204 BlockDriverState *bs = child->bs;
205 bool in_main_loop =
206 qemu_get_current_aio_context() == qemu_get_aio_context();
207 assert(bs->refcnt > 0);
208 if (in_main_loop) {
209 /* In case the recursive bdrv_drain_recurse processes a
210 * block_job_defer_to_main_loop BH and modifies the graph,
211 * let's hold a reference to bs until we are done.
213 * IOThread doesn't have such a BH, and it is not safe to call
214 * bdrv_unref without BQL, so skip doing it there.
216 bdrv_ref(bs);
218 waited |= bdrv_drain_recurse(bs, begin);
219 if (in_main_loop) {
220 bdrv_unref(bs);
224 return waited;
227 static void bdrv_co_drain_bh_cb(void *opaque)
229 BdrvCoDrainData *data = opaque;
230 Coroutine *co = data->co;
231 BlockDriverState *bs = data->bs;
233 bdrv_dec_in_flight(bs);
234 if (data->begin) {
235 bdrv_drained_begin(bs);
236 } else {
237 bdrv_drained_end(bs);
240 data->done = true;
241 aio_co_wake(co);
244 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
245 bool begin)
247 BdrvCoDrainData data;
249 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
250 * other coroutines run if they were queued from
251 * qemu_co_queue_run_restart(). */
253 assert(qemu_in_coroutine());
254 data = (BdrvCoDrainData) {
255 .co = qemu_coroutine_self(),
256 .bs = bs,
257 .done = false,
258 .begin = begin,
260 bdrv_inc_in_flight(bs);
261 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
262 bdrv_co_drain_bh_cb, &data);
264 qemu_coroutine_yield();
265 /* If we are resumed from some other event (such as an aio completion or a
266 * timer callback), it is a bug in the caller that should be fixed. */
267 assert(data.done);
270 void bdrv_drained_begin(BlockDriverState *bs)
272 if (qemu_in_coroutine()) {
273 bdrv_co_yield_to_drain(bs, true);
274 return;
277 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
278 aio_disable_external(bdrv_get_aio_context(bs));
279 bdrv_parent_drained_begin(bs);
282 bdrv_drain_recurse(bs, true);
285 void bdrv_drained_end(BlockDriverState *bs)
287 if (qemu_in_coroutine()) {
288 bdrv_co_yield_to_drain(bs, false);
289 return;
291 assert(bs->quiesce_counter > 0);
292 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) {
293 return;
296 bdrv_parent_drained_end(bs);
297 bdrv_drain_recurse(bs, false);
298 aio_enable_external(bdrv_get_aio_context(bs));
302 * Wait for pending requests to complete on a single BlockDriverState subtree,
303 * and suspend block driver's internal I/O until next request arrives.
305 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
306 * AioContext.
308 * Only this BlockDriverState's AioContext is run, so in-flight requests must
309 * not depend on events in other AioContexts. In that case, use
310 * bdrv_drain_all() instead.
312 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
314 assert(qemu_in_coroutine());
315 bdrv_drained_begin(bs);
316 bdrv_drained_end(bs);
319 void bdrv_drain(BlockDriverState *bs)
321 bdrv_drained_begin(bs);
322 bdrv_drained_end(bs);
326 * Wait for pending requests to complete across all BlockDriverStates
328 * This function does not flush data to disk, use bdrv_flush_all() for that
329 * after calling this function.
331 * This pauses all block jobs and disables external clients. It must
332 * be paired with bdrv_drain_all_end().
334 * NOTE: no new block jobs or BlockDriverStates can be created between
335 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
337 void bdrv_drain_all_begin(void)
339 /* Always run first iteration so any pending completion BHs run */
340 bool waited = true;
341 BlockDriverState *bs;
342 BdrvNextIterator it;
343 GSList *aio_ctxs = NULL, *ctx;
345 block_job_pause_all();
347 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
348 AioContext *aio_context = bdrv_get_aio_context(bs);
350 aio_context_acquire(aio_context);
351 bdrv_parent_drained_begin(bs);
352 aio_disable_external(aio_context);
353 aio_context_release(aio_context);
355 if (!g_slist_find(aio_ctxs, aio_context)) {
356 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
360 /* Note that completion of an asynchronous I/O operation can trigger any
361 * number of other I/O operations on other devices---for example a
362 * coroutine can submit an I/O request to another device in response to
363 * request completion. Therefore we must keep looping until there was no
364 * more activity rather than simply draining each device independently.
366 while (waited) {
367 waited = false;
369 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
370 AioContext *aio_context = ctx->data;
372 aio_context_acquire(aio_context);
373 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
374 if (aio_context == bdrv_get_aio_context(bs)) {
375 waited |= bdrv_drain_recurse(bs, true);
378 aio_context_release(aio_context);
382 g_slist_free(aio_ctxs);
385 void bdrv_drain_all_end(void)
387 BlockDriverState *bs;
388 BdrvNextIterator it;
390 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
391 AioContext *aio_context = bdrv_get_aio_context(bs);
393 aio_context_acquire(aio_context);
394 aio_enable_external(aio_context);
395 bdrv_parent_drained_end(bs);
396 bdrv_drain_recurse(bs, false);
397 aio_context_release(aio_context);
400 block_job_resume_all();
403 void bdrv_drain_all(void)
405 bdrv_drain_all_begin();
406 bdrv_drain_all_end();
410 * Remove an active request from the tracked requests list
412 * This function should be called when a tracked request is completing.
414 static void tracked_request_end(BdrvTrackedRequest *req)
416 if (req->serialising) {
417 atomic_dec(&req->bs->serialising_in_flight);
420 qemu_co_mutex_lock(&req->bs->reqs_lock);
421 QLIST_REMOVE(req, list);
422 qemu_co_queue_restart_all(&req->wait_queue);
423 qemu_co_mutex_unlock(&req->bs->reqs_lock);
427 * Add an active request to the tracked requests list
429 static void tracked_request_begin(BdrvTrackedRequest *req,
430 BlockDriverState *bs,
431 int64_t offset,
432 unsigned int bytes,
433 enum BdrvTrackedRequestType type)
435 *req = (BdrvTrackedRequest){
436 .bs = bs,
437 .offset = offset,
438 .bytes = bytes,
439 .type = type,
440 .co = qemu_coroutine_self(),
441 .serialising = false,
442 .overlap_offset = offset,
443 .overlap_bytes = bytes,
446 qemu_co_queue_init(&req->wait_queue);
448 qemu_co_mutex_lock(&bs->reqs_lock);
449 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
450 qemu_co_mutex_unlock(&bs->reqs_lock);
453 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
455 int64_t overlap_offset = req->offset & ~(align - 1);
456 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
457 - overlap_offset;
459 if (!req->serialising) {
460 atomic_inc(&req->bs->serialising_in_flight);
461 req->serialising = true;
464 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
465 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
469 * Round a region to cluster boundaries
471 void bdrv_round_to_clusters(BlockDriverState *bs,
472 int64_t offset, int64_t bytes,
473 int64_t *cluster_offset,
474 int64_t *cluster_bytes)
476 BlockDriverInfo bdi;
478 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
479 *cluster_offset = offset;
480 *cluster_bytes = bytes;
481 } else {
482 int64_t c = bdi.cluster_size;
483 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
484 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
488 static int bdrv_get_cluster_size(BlockDriverState *bs)
490 BlockDriverInfo bdi;
491 int ret;
493 ret = bdrv_get_info(bs, &bdi);
494 if (ret < 0 || bdi.cluster_size == 0) {
495 return bs->bl.request_alignment;
496 } else {
497 return bdi.cluster_size;
501 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
502 int64_t offset, unsigned int bytes)
504 /* aaaa bbbb */
505 if (offset >= req->overlap_offset + req->overlap_bytes) {
506 return false;
508 /* bbbb aaaa */
509 if (req->overlap_offset >= offset + bytes) {
510 return false;
512 return true;
515 void bdrv_inc_in_flight(BlockDriverState *bs)
517 atomic_inc(&bs->in_flight);
520 static void dummy_bh_cb(void *opaque)
524 void bdrv_wakeup(BlockDriverState *bs)
526 /* The barrier (or an atomic op) is in the caller. */
527 if (atomic_read(&bs->wakeup)) {
528 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
532 void bdrv_dec_in_flight(BlockDriverState *bs)
534 atomic_dec(&bs->in_flight);
535 bdrv_wakeup(bs);
538 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
540 BlockDriverState *bs = self->bs;
541 BdrvTrackedRequest *req;
542 bool retry;
543 bool waited = false;
545 if (!atomic_read(&bs->serialising_in_flight)) {
546 return false;
549 do {
550 retry = false;
551 qemu_co_mutex_lock(&bs->reqs_lock);
552 QLIST_FOREACH(req, &bs->tracked_requests, list) {
553 if (req == self || (!req->serialising && !self->serialising)) {
554 continue;
556 if (tracked_request_overlaps(req, self->overlap_offset,
557 self->overlap_bytes))
559 /* Hitting this means there was a reentrant request, for
560 * example, a block driver issuing nested requests. This must
561 * never happen since it means deadlock.
563 assert(qemu_coroutine_self() != req->co);
565 /* If the request is already (indirectly) waiting for us, or
566 * will wait for us as soon as it wakes up, then just go on
567 * (instead of producing a deadlock in the former case). */
568 if (!req->waiting_for) {
569 self->waiting_for = req;
570 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
571 self->waiting_for = NULL;
572 retry = true;
573 waited = true;
574 break;
578 qemu_co_mutex_unlock(&bs->reqs_lock);
579 } while (retry);
581 return waited;
584 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
585 size_t size)
587 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
588 return -EIO;
591 if (!bdrv_is_inserted(bs)) {
592 return -ENOMEDIUM;
595 if (offset < 0) {
596 return -EIO;
599 return 0;
602 typedef struct RwCo {
603 BdrvChild *child;
604 int64_t offset;
605 QEMUIOVector *qiov;
606 bool is_write;
607 int ret;
608 BdrvRequestFlags flags;
609 } RwCo;
611 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
613 RwCo *rwco = opaque;
615 if (!rwco->is_write) {
616 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
617 rwco->qiov->size, rwco->qiov,
618 rwco->flags);
619 } else {
620 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
621 rwco->qiov->size, rwco->qiov,
622 rwco->flags);
627 * Process a vectored synchronous request using coroutines
629 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
630 QEMUIOVector *qiov, bool is_write,
631 BdrvRequestFlags flags)
633 Coroutine *co;
634 RwCo rwco = {
635 .child = child,
636 .offset = offset,
637 .qiov = qiov,
638 .is_write = is_write,
639 .ret = NOT_DONE,
640 .flags = flags,
643 if (qemu_in_coroutine()) {
644 /* Fast-path if already in coroutine context */
645 bdrv_rw_co_entry(&rwco);
646 } else {
647 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
648 bdrv_coroutine_enter(child->bs, co);
649 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
651 return rwco.ret;
655 * Process a synchronous request using coroutines
657 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
658 int nb_sectors, bool is_write, BdrvRequestFlags flags)
660 QEMUIOVector qiov;
661 struct iovec iov = {
662 .iov_base = (void *)buf,
663 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
666 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
667 return -EINVAL;
670 qemu_iovec_init_external(&qiov, &iov, 1);
671 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
672 &qiov, is_write, flags);
675 /* return < 0 if error. See bdrv_write() for the return codes */
676 int bdrv_read(BdrvChild *child, int64_t sector_num,
677 uint8_t *buf, int nb_sectors)
679 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
682 /* Return < 0 if error. Important errors are:
683 -EIO generic I/O error (may happen for all errors)
684 -ENOMEDIUM No media inserted.
685 -EINVAL Invalid sector number or nb_sectors
686 -EACCES Trying to write a read-only device
688 int bdrv_write(BdrvChild *child, int64_t sector_num,
689 const uint8_t *buf, int nb_sectors)
691 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
694 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
695 int bytes, BdrvRequestFlags flags)
697 QEMUIOVector qiov;
698 struct iovec iov = {
699 .iov_base = NULL,
700 .iov_len = bytes,
703 qemu_iovec_init_external(&qiov, &iov, 1);
704 return bdrv_prwv_co(child, offset, &qiov, true,
705 BDRV_REQ_ZERO_WRITE | flags);
709 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
710 * The operation is sped up by checking the block status and only writing
711 * zeroes to the device if they currently do not return zeroes. Optional
712 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
713 * BDRV_REQ_FUA).
715 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
717 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
719 int ret;
720 int64_t target_size, bytes, offset = 0;
721 BlockDriverState *bs = child->bs;
723 target_size = bdrv_getlength(bs);
724 if (target_size < 0) {
725 return target_size;
728 for (;;) {
729 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
730 if (bytes <= 0) {
731 return 0;
733 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
734 if (ret < 0) {
735 error_report("error getting block status at offset %" PRId64 ": %s",
736 offset, strerror(-ret));
737 return ret;
739 if (ret & BDRV_BLOCK_ZERO) {
740 offset += bytes;
741 continue;
743 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
744 if (ret < 0) {
745 error_report("error writing zeroes at offset %" PRId64 ": %s",
746 offset, strerror(-ret));
747 return ret;
749 offset += bytes;
753 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
755 int ret;
757 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
758 if (ret < 0) {
759 return ret;
762 return qiov->size;
765 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
767 QEMUIOVector qiov;
768 struct iovec iov = {
769 .iov_base = (void *)buf,
770 .iov_len = bytes,
773 if (bytes < 0) {
774 return -EINVAL;
777 qemu_iovec_init_external(&qiov, &iov, 1);
778 return bdrv_preadv(child, offset, &qiov);
781 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
783 int ret;
785 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
786 if (ret < 0) {
787 return ret;
790 return qiov->size;
793 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
795 QEMUIOVector qiov;
796 struct iovec iov = {
797 .iov_base = (void *) buf,
798 .iov_len = bytes,
801 if (bytes < 0) {
802 return -EINVAL;
805 qemu_iovec_init_external(&qiov, &iov, 1);
806 return bdrv_pwritev(child, offset, &qiov);
810 * Writes to the file and ensures that no writes are reordered across this
811 * request (acts as a barrier)
813 * Returns 0 on success, -errno in error cases.
815 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
816 const void *buf, int count)
818 int ret;
820 ret = bdrv_pwrite(child, offset, buf, count);
821 if (ret < 0) {
822 return ret;
825 ret = bdrv_flush(child->bs);
826 if (ret < 0) {
827 return ret;
830 return 0;
833 typedef struct CoroutineIOCompletion {
834 Coroutine *coroutine;
835 int ret;
836 } CoroutineIOCompletion;
838 static void bdrv_co_io_em_complete(void *opaque, int ret)
840 CoroutineIOCompletion *co = opaque;
842 co->ret = ret;
843 aio_co_wake(co->coroutine);
846 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
847 uint64_t offset, uint64_t bytes,
848 QEMUIOVector *qiov, int flags)
850 BlockDriver *drv = bs->drv;
851 int64_t sector_num;
852 unsigned int nb_sectors;
854 assert(!(flags & ~BDRV_REQ_MASK));
856 if (drv->bdrv_co_preadv) {
857 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
860 sector_num = offset >> BDRV_SECTOR_BITS;
861 nb_sectors = bytes >> BDRV_SECTOR_BITS;
863 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
864 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
865 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
867 if (drv->bdrv_co_readv) {
868 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
869 } else {
870 BlockAIOCB *acb;
871 CoroutineIOCompletion co = {
872 .coroutine = qemu_coroutine_self(),
875 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
876 bdrv_co_io_em_complete, &co);
877 if (acb == NULL) {
878 return -EIO;
879 } else {
880 qemu_coroutine_yield();
881 return co.ret;
886 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
887 uint64_t offset, uint64_t bytes,
888 QEMUIOVector *qiov, int flags)
890 BlockDriver *drv = bs->drv;
891 int64_t sector_num;
892 unsigned int nb_sectors;
893 int ret;
895 assert(!(flags & ~BDRV_REQ_MASK));
897 if (drv->bdrv_co_pwritev) {
898 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
899 flags & bs->supported_write_flags);
900 flags &= ~bs->supported_write_flags;
901 goto emulate_flags;
904 sector_num = offset >> BDRV_SECTOR_BITS;
905 nb_sectors = bytes >> BDRV_SECTOR_BITS;
907 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
908 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
909 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
911 if (drv->bdrv_co_writev_flags) {
912 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
913 flags & bs->supported_write_flags);
914 flags &= ~bs->supported_write_flags;
915 } else if (drv->bdrv_co_writev) {
916 assert(!bs->supported_write_flags);
917 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
918 } else {
919 BlockAIOCB *acb;
920 CoroutineIOCompletion co = {
921 .coroutine = qemu_coroutine_self(),
924 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
925 bdrv_co_io_em_complete, &co);
926 if (acb == NULL) {
927 ret = -EIO;
928 } else {
929 qemu_coroutine_yield();
930 ret = co.ret;
934 emulate_flags:
935 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
936 ret = bdrv_co_flush(bs);
939 return ret;
942 static int coroutine_fn
943 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
944 uint64_t bytes, QEMUIOVector *qiov)
946 BlockDriver *drv = bs->drv;
948 if (!drv->bdrv_co_pwritev_compressed) {
949 return -ENOTSUP;
952 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
955 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
956 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
958 BlockDriverState *bs = child->bs;
960 /* Perform I/O through a temporary buffer so that users who scribble over
961 * their read buffer while the operation is in progress do not end up
962 * modifying the image file. This is critical for zero-copy guest I/O
963 * where anything might happen inside guest memory.
965 void *bounce_buffer;
967 BlockDriver *drv = bs->drv;
968 struct iovec iov;
969 QEMUIOVector local_qiov;
970 int64_t cluster_offset;
971 int64_t cluster_bytes;
972 size_t skip_bytes;
973 int ret;
974 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
975 BDRV_REQUEST_MAX_BYTES);
976 unsigned int progress = 0;
978 /* FIXME We cannot require callers to have write permissions when all they
979 * are doing is a read request. If we did things right, write permissions
980 * would be obtained anyway, but internally by the copy-on-read code. As
981 * long as it is implemented here rather than in a separate filter driver,
982 * the copy-on-read code doesn't have its own BdrvChild, however, for which
983 * it could request permissions. Therefore we have to bypass the permission
984 * system for the moment. */
985 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
987 /* Cover entire cluster so no additional backing file I/O is required when
988 * allocating cluster in the image file. Note that this value may exceed
989 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
990 * is one reason we loop rather than doing it all at once.
992 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
993 skip_bytes = offset - cluster_offset;
995 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
996 cluster_offset, cluster_bytes);
998 bounce_buffer = qemu_try_blockalign(bs,
999 MIN(MIN(max_transfer, cluster_bytes),
1000 MAX_BOUNCE_BUFFER));
1001 if (bounce_buffer == NULL) {
1002 ret = -ENOMEM;
1003 goto err;
1006 while (cluster_bytes) {
1007 int64_t pnum;
1009 ret = bdrv_is_allocated(bs, cluster_offset,
1010 MIN(cluster_bytes, max_transfer), &pnum);
1011 if (ret < 0) {
1012 /* Safe to treat errors in querying allocation as if
1013 * unallocated; we'll probably fail again soon on the
1014 * read, but at least that will set a decent errno.
1016 pnum = MIN(cluster_bytes, max_transfer);
1019 assert(skip_bytes < pnum);
1021 if (ret <= 0) {
1022 /* Must copy-on-read; use the bounce buffer */
1023 iov.iov_base = bounce_buffer;
1024 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1025 qemu_iovec_init_external(&local_qiov, &iov, 1);
1027 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1028 &local_qiov, 0);
1029 if (ret < 0) {
1030 goto err;
1033 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1034 if (drv->bdrv_co_pwrite_zeroes &&
1035 buffer_is_zero(bounce_buffer, pnum)) {
1036 /* FIXME: Should we (perhaps conditionally) be setting
1037 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1038 * that still correctly reads as zero? */
1039 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0);
1040 } else {
1041 /* This does not change the data on the disk, it is not
1042 * necessary to flush even in cache=writethrough mode.
1044 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1045 &local_qiov, 0);
1048 if (ret < 0) {
1049 /* It might be okay to ignore write errors for guest
1050 * requests. If this is a deliberate copy-on-read
1051 * then we don't want to ignore the error. Simply
1052 * report it in all cases.
1054 goto err;
1057 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1058 pnum - skip_bytes);
1059 } else {
1060 /* Read directly into the destination */
1061 qemu_iovec_init(&local_qiov, qiov->niov);
1062 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1063 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1064 &local_qiov, 0);
1065 qemu_iovec_destroy(&local_qiov);
1066 if (ret < 0) {
1067 goto err;
1071 cluster_offset += pnum;
1072 cluster_bytes -= pnum;
1073 progress += pnum - skip_bytes;
1074 skip_bytes = 0;
1076 ret = 0;
1078 err:
1079 qemu_vfree(bounce_buffer);
1080 return ret;
1084 * Forwards an already correctly aligned request to the BlockDriver. This
1085 * handles copy on read, zeroing after EOF, and fragmentation of large
1086 * reads; any other features must be implemented by the caller.
1088 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1089 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1090 int64_t align, QEMUIOVector *qiov, int flags)
1092 BlockDriverState *bs = child->bs;
1093 int64_t total_bytes, max_bytes;
1094 int ret = 0;
1095 uint64_t bytes_remaining = bytes;
1096 int max_transfer;
1098 assert(is_power_of_2(align));
1099 assert((offset & (align - 1)) == 0);
1100 assert((bytes & (align - 1)) == 0);
1101 assert(!qiov || bytes == qiov->size);
1102 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1103 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1104 align);
1106 /* TODO: We would need a per-BDS .supported_read_flags and
1107 * potential fallback support, if we ever implement any read flags
1108 * to pass through to drivers. For now, there aren't any
1109 * passthrough flags. */
1110 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1112 /* Handle Copy on Read and associated serialisation */
1113 if (flags & BDRV_REQ_COPY_ON_READ) {
1114 /* If we touch the same cluster it counts as an overlap. This
1115 * guarantees that allocating writes will be serialized and not race
1116 * with each other for the same cluster. For example, in copy-on-read
1117 * it ensures that the CoR read and write operations are atomic and
1118 * guest writes cannot interleave between them. */
1119 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1122 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1123 wait_serialising_requests(req);
1126 if (flags & BDRV_REQ_COPY_ON_READ) {
1127 int64_t pnum;
1129 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1130 if (ret < 0) {
1131 goto out;
1134 if (!ret || pnum != bytes) {
1135 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1136 goto out;
1140 /* Forward the request to the BlockDriver, possibly fragmenting it */
1141 total_bytes = bdrv_getlength(bs);
1142 if (total_bytes < 0) {
1143 ret = total_bytes;
1144 goto out;
1147 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1148 if (bytes <= max_bytes && bytes <= max_transfer) {
1149 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1150 goto out;
1153 while (bytes_remaining) {
1154 int num;
1156 if (max_bytes) {
1157 QEMUIOVector local_qiov;
1159 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1160 assert(num);
1161 qemu_iovec_init(&local_qiov, qiov->niov);
1162 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1164 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1165 num, &local_qiov, 0);
1166 max_bytes -= num;
1167 qemu_iovec_destroy(&local_qiov);
1168 } else {
1169 num = bytes_remaining;
1170 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1171 bytes_remaining);
1173 if (ret < 0) {
1174 goto out;
1176 bytes_remaining -= num;
1179 out:
1180 return ret < 0 ? ret : 0;
1184 * Handle a read request in coroutine context
1186 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1187 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1188 BdrvRequestFlags flags)
1190 BlockDriverState *bs = child->bs;
1191 BlockDriver *drv = bs->drv;
1192 BdrvTrackedRequest req;
1194 uint64_t align = bs->bl.request_alignment;
1195 uint8_t *head_buf = NULL;
1196 uint8_t *tail_buf = NULL;
1197 QEMUIOVector local_qiov;
1198 bool use_local_qiov = false;
1199 int ret;
1201 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1203 if (!drv) {
1204 return -ENOMEDIUM;
1207 ret = bdrv_check_byte_request(bs, offset, bytes);
1208 if (ret < 0) {
1209 return ret;
1212 bdrv_inc_in_flight(bs);
1214 /* Don't do copy-on-read if we read data before write operation */
1215 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1216 flags |= BDRV_REQ_COPY_ON_READ;
1219 /* Align read if necessary by padding qiov */
1220 if (offset & (align - 1)) {
1221 head_buf = qemu_blockalign(bs, align);
1222 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1223 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1224 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1225 use_local_qiov = true;
1227 bytes += offset & (align - 1);
1228 offset = offset & ~(align - 1);
1231 if ((offset + bytes) & (align - 1)) {
1232 if (!use_local_qiov) {
1233 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1234 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1235 use_local_qiov = true;
1237 tail_buf = qemu_blockalign(bs, align);
1238 qemu_iovec_add(&local_qiov, tail_buf,
1239 align - ((offset + bytes) & (align - 1)));
1241 bytes = ROUND_UP(bytes, align);
1244 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1245 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1246 use_local_qiov ? &local_qiov : qiov,
1247 flags);
1248 tracked_request_end(&req);
1249 bdrv_dec_in_flight(bs);
1251 if (use_local_qiov) {
1252 qemu_iovec_destroy(&local_qiov);
1253 qemu_vfree(head_buf);
1254 qemu_vfree(tail_buf);
1257 return ret;
1260 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1261 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1262 BdrvRequestFlags flags)
1264 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1265 return -EINVAL;
1268 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1269 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1272 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1273 int nb_sectors, QEMUIOVector *qiov)
1275 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1278 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1279 int64_t offset, int bytes, BdrvRequestFlags flags)
1281 BlockDriver *drv = bs->drv;
1282 QEMUIOVector qiov;
1283 struct iovec iov = {0};
1284 int ret = 0;
1285 bool need_flush = false;
1286 int head = 0;
1287 int tail = 0;
1289 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1290 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1291 bs->bl.request_alignment);
1292 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1294 assert(alignment % bs->bl.request_alignment == 0);
1295 head = offset % alignment;
1296 tail = (offset + bytes) % alignment;
1297 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1298 assert(max_write_zeroes >= bs->bl.request_alignment);
1300 while (bytes > 0 && !ret) {
1301 int num = bytes;
1303 /* Align request. Block drivers can expect the "bulk" of the request
1304 * to be aligned, and that unaligned requests do not cross cluster
1305 * boundaries.
1307 if (head) {
1308 /* Make a small request up to the first aligned sector. For
1309 * convenience, limit this request to max_transfer even if
1310 * we don't need to fall back to writes. */
1311 num = MIN(MIN(bytes, max_transfer), alignment - head);
1312 head = (head + num) % alignment;
1313 assert(num < max_write_zeroes);
1314 } else if (tail && num > alignment) {
1315 /* Shorten the request to the last aligned sector. */
1316 num -= tail;
1319 /* limit request size */
1320 if (num > max_write_zeroes) {
1321 num = max_write_zeroes;
1324 ret = -ENOTSUP;
1325 /* First try the efficient write zeroes operation */
1326 if (drv->bdrv_co_pwrite_zeroes) {
1327 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1328 flags & bs->supported_zero_flags);
1329 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1330 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1331 need_flush = true;
1333 } else {
1334 assert(!bs->supported_zero_flags);
1337 if (ret == -ENOTSUP) {
1338 /* Fall back to bounce buffer if write zeroes is unsupported */
1339 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1341 if ((flags & BDRV_REQ_FUA) &&
1342 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1343 /* No need for bdrv_driver_pwrite() to do a fallback
1344 * flush on each chunk; use just one at the end */
1345 write_flags &= ~BDRV_REQ_FUA;
1346 need_flush = true;
1348 num = MIN(num, max_transfer);
1349 iov.iov_len = num;
1350 if (iov.iov_base == NULL) {
1351 iov.iov_base = qemu_try_blockalign(bs, num);
1352 if (iov.iov_base == NULL) {
1353 ret = -ENOMEM;
1354 goto fail;
1356 memset(iov.iov_base, 0, num);
1358 qemu_iovec_init_external(&qiov, &iov, 1);
1360 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1362 /* Keep bounce buffer around if it is big enough for all
1363 * all future requests.
1365 if (num < max_transfer) {
1366 qemu_vfree(iov.iov_base);
1367 iov.iov_base = NULL;
1371 offset += num;
1372 bytes -= num;
1375 fail:
1376 if (ret == 0 && need_flush) {
1377 ret = bdrv_co_flush(bs);
1379 qemu_vfree(iov.iov_base);
1380 return ret;
1384 * Forwards an already correctly aligned write request to the BlockDriver,
1385 * after possibly fragmenting it.
1387 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1388 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1389 int64_t align, QEMUIOVector *qiov, int flags)
1391 BlockDriverState *bs = child->bs;
1392 BlockDriver *drv = bs->drv;
1393 bool waited;
1394 int ret;
1396 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1397 uint64_t bytes_remaining = bytes;
1398 int max_transfer;
1400 if (bdrv_has_readonly_bitmaps(bs)) {
1401 return -EPERM;
1404 assert(is_power_of_2(align));
1405 assert((offset & (align - 1)) == 0);
1406 assert((bytes & (align - 1)) == 0);
1407 assert(!qiov || bytes == qiov->size);
1408 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1409 assert(!(flags & ~BDRV_REQ_MASK));
1410 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1411 align);
1413 waited = wait_serialising_requests(req);
1414 assert(!waited || !req->serialising);
1415 assert(req->overlap_offset <= offset);
1416 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1417 assert(child->perm & BLK_PERM_WRITE);
1418 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1420 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1422 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1423 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1424 qemu_iovec_is_zero(qiov)) {
1425 flags |= BDRV_REQ_ZERO_WRITE;
1426 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1427 flags |= BDRV_REQ_MAY_UNMAP;
1431 if (ret < 0) {
1432 /* Do nothing, write notifier decided to fail this request */
1433 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1434 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1435 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1436 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1437 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1438 } else if (bytes <= max_transfer) {
1439 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1440 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1441 } else {
1442 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1443 while (bytes_remaining) {
1444 int num = MIN(bytes_remaining, max_transfer);
1445 QEMUIOVector local_qiov;
1446 int local_flags = flags;
1448 assert(num);
1449 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1450 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1451 /* If FUA is going to be emulated by flush, we only
1452 * need to flush on the last iteration */
1453 local_flags &= ~BDRV_REQ_FUA;
1455 qemu_iovec_init(&local_qiov, qiov->niov);
1456 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1458 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1459 num, &local_qiov, local_flags);
1460 qemu_iovec_destroy(&local_qiov);
1461 if (ret < 0) {
1462 break;
1464 bytes_remaining -= num;
1467 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1469 atomic_inc(&bs->write_gen);
1470 bdrv_set_dirty(bs, offset, bytes);
1472 stat64_max(&bs->wr_highest_offset, offset + bytes);
1474 if (ret >= 0) {
1475 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1476 ret = 0;
1479 return ret;
1482 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1483 int64_t offset,
1484 unsigned int bytes,
1485 BdrvRequestFlags flags,
1486 BdrvTrackedRequest *req)
1488 BlockDriverState *bs = child->bs;
1489 uint8_t *buf = NULL;
1490 QEMUIOVector local_qiov;
1491 struct iovec iov;
1492 uint64_t align = bs->bl.request_alignment;
1493 unsigned int head_padding_bytes, tail_padding_bytes;
1494 int ret = 0;
1496 head_padding_bytes = offset & (align - 1);
1497 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1500 assert(flags & BDRV_REQ_ZERO_WRITE);
1501 if (head_padding_bytes || tail_padding_bytes) {
1502 buf = qemu_blockalign(bs, align);
1503 iov = (struct iovec) {
1504 .iov_base = buf,
1505 .iov_len = align,
1507 qemu_iovec_init_external(&local_qiov, &iov, 1);
1509 if (head_padding_bytes) {
1510 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1512 /* RMW the unaligned part before head. */
1513 mark_request_serialising(req, align);
1514 wait_serialising_requests(req);
1515 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1516 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1517 align, &local_qiov, 0);
1518 if (ret < 0) {
1519 goto fail;
1521 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1523 memset(buf + head_padding_bytes, 0, zero_bytes);
1524 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1525 align, &local_qiov,
1526 flags & ~BDRV_REQ_ZERO_WRITE);
1527 if (ret < 0) {
1528 goto fail;
1530 offset += zero_bytes;
1531 bytes -= zero_bytes;
1534 assert(!bytes || (offset & (align - 1)) == 0);
1535 if (bytes >= align) {
1536 /* Write the aligned part in the middle. */
1537 uint64_t aligned_bytes = bytes & ~(align - 1);
1538 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1539 NULL, flags);
1540 if (ret < 0) {
1541 goto fail;
1543 bytes -= aligned_bytes;
1544 offset += aligned_bytes;
1547 assert(!bytes || (offset & (align - 1)) == 0);
1548 if (bytes) {
1549 assert(align == tail_padding_bytes + bytes);
1550 /* RMW the unaligned part after tail. */
1551 mark_request_serialising(req, align);
1552 wait_serialising_requests(req);
1553 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1554 ret = bdrv_aligned_preadv(child, req, offset, align,
1555 align, &local_qiov, 0);
1556 if (ret < 0) {
1557 goto fail;
1559 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1561 memset(buf, 0, bytes);
1562 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1563 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1565 fail:
1566 qemu_vfree(buf);
1567 return ret;
1572 * Handle a write request in coroutine context
1574 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1575 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1576 BdrvRequestFlags flags)
1578 BlockDriverState *bs = child->bs;
1579 BdrvTrackedRequest req;
1580 uint64_t align = bs->bl.request_alignment;
1581 uint8_t *head_buf = NULL;
1582 uint8_t *tail_buf = NULL;
1583 QEMUIOVector local_qiov;
1584 bool use_local_qiov = false;
1585 int ret;
1587 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1589 if (!bs->drv) {
1590 return -ENOMEDIUM;
1592 if (bs->read_only) {
1593 return -EPERM;
1595 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1597 ret = bdrv_check_byte_request(bs, offset, bytes);
1598 if (ret < 0) {
1599 return ret;
1602 bdrv_inc_in_flight(bs);
1604 * Align write if necessary by performing a read-modify-write cycle.
1605 * Pad qiov with the read parts and be sure to have a tracked request not
1606 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1608 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1610 if (!qiov) {
1611 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1612 goto out;
1615 if (offset & (align - 1)) {
1616 QEMUIOVector head_qiov;
1617 struct iovec head_iov;
1619 mark_request_serialising(&req, align);
1620 wait_serialising_requests(&req);
1622 head_buf = qemu_blockalign(bs, align);
1623 head_iov = (struct iovec) {
1624 .iov_base = head_buf,
1625 .iov_len = align,
1627 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1629 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1630 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1631 align, &head_qiov, 0);
1632 if (ret < 0) {
1633 goto fail;
1635 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1637 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1638 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1639 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1640 use_local_qiov = true;
1642 bytes += offset & (align - 1);
1643 offset = offset & ~(align - 1);
1645 /* We have read the tail already if the request is smaller
1646 * than one aligned block.
1648 if (bytes < align) {
1649 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1650 bytes = align;
1654 if ((offset + bytes) & (align - 1)) {
1655 QEMUIOVector tail_qiov;
1656 struct iovec tail_iov;
1657 size_t tail_bytes;
1658 bool waited;
1660 mark_request_serialising(&req, align);
1661 waited = wait_serialising_requests(&req);
1662 assert(!waited || !use_local_qiov);
1664 tail_buf = qemu_blockalign(bs, align);
1665 tail_iov = (struct iovec) {
1666 .iov_base = tail_buf,
1667 .iov_len = align,
1669 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1671 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1672 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1673 align, align, &tail_qiov, 0);
1674 if (ret < 0) {
1675 goto fail;
1677 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1679 if (!use_local_qiov) {
1680 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1681 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1682 use_local_qiov = true;
1685 tail_bytes = (offset + bytes) & (align - 1);
1686 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1688 bytes = ROUND_UP(bytes, align);
1691 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1692 use_local_qiov ? &local_qiov : qiov,
1693 flags);
1695 fail:
1697 if (use_local_qiov) {
1698 qemu_iovec_destroy(&local_qiov);
1700 qemu_vfree(head_buf);
1701 qemu_vfree(tail_buf);
1702 out:
1703 tracked_request_end(&req);
1704 bdrv_dec_in_flight(bs);
1705 return ret;
1708 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1709 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1710 BdrvRequestFlags flags)
1712 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1713 return -EINVAL;
1716 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1717 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1720 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1721 int nb_sectors, QEMUIOVector *qiov)
1723 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1726 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1727 int bytes, BdrvRequestFlags flags)
1729 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1731 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1732 flags &= ~BDRV_REQ_MAY_UNMAP;
1735 return bdrv_co_pwritev(child, offset, bytes, NULL,
1736 BDRV_REQ_ZERO_WRITE | flags);
1740 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1742 int bdrv_flush_all(void)
1744 BdrvNextIterator it;
1745 BlockDriverState *bs = NULL;
1746 int result = 0;
1748 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1749 AioContext *aio_context = bdrv_get_aio_context(bs);
1750 int ret;
1752 aio_context_acquire(aio_context);
1753 ret = bdrv_flush(bs);
1754 if (ret < 0 && !result) {
1755 result = ret;
1757 aio_context_release(aio_context);
1760 return result;
1764 typedef struct BdrvCoBlockStatusData {
1765 BlockDriverState *bs;
1766 BlockDriverState *base;
1767 bool want_zero;
1768 int64_t offset;
1769 int64_t bytes;
1770 int64_t *pnum;
1771 int64_t *map;
1772 BlockDriverState **file;
1773 int ret;
1774 bool done;
1775 } BdrvCoBlockStatusData;
1777 int64_t coroutine_fn bdrv_co_get_block_status_from_file(BlockDriverState *bs,
1778 int64_t sector_num,
1779 int nb_sectors,
1780 int *pnum,
1781 BlockDriverState **file)
1783 assert(bs->file && bs->file->bs);
1784 *pnum = nb_sectors;
1785 *file = bs->file->bs;
1786 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1787 (sector_num << BDRV_SECTOR_BITS);
1790 int64_t coroutine_fn bdrv_co_get_block_status_from_backing(BlockDriverState *bs,
1791 int64_t sector_num,
1792 int nb_sectors,
1793 int *pnum,
1794 BlockDriverState **file)
1796 assert(bs->backing && bs->backing->bs);
1797 *pnum = nb_sectors;
1798 *file = bs->backing->bs;
1799 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1800 (sector_num << BDRV_SECTOR_BITS);
1804 * Returns the allocation status of the specified sectors.
1805 * Drivers not implementing the functionality are assumed to not support
1806 * backing files, hence all their sectors are reported as allocated.
1808 * If 'want_zero' is true, the caller is querying for mapping purposes,
1809 * and the result should include BDRV_BLOCK_OFFSET_VALID and
1810 * BDRV_BLOCK_ZERO where possible; otherwise, the result may omit those
1811 * bits particularly if it allows for a larger value in 'pnum'.
1813 * If 'offset' is beyond the end of the disk image the return value is
1814 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1816 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
1817 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1818 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1820 * 'pnum' is set to the number of bytes (including and immediately
1821 * following the specified offset) that are easily known to be in the
1822 * same allocated/unallocated state. Note that a second call starting
1823 * at the original offset plus returned pnum may have the same status.
1824 * The returned value is non-zero on success except at end-of-file.
1826 * Returns negative errno on failure. Otherwise, if the
1827 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
1828 * set to the host mapping and BDS corresponding to the guest offset.
1830 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
1831 bool want_zero,
1832 int64_t offset, int64_t bytes,
1833 int64_t *pnum, int64_t *map,
1834 BlockDriverState **file)
1836 int64_t total_size;
1837 int64_t n; /* bytes */
1838 int ret;
1839 int64_t local_map = 0;
1840 BlockDriverState *local_file = NULL;
1841 int64_t aligned_offset, aligned_bytes;
1842 uint32_t align;
1844 assert(pnum);
1845 *pnum = 0;
1846 total_size = bdrv_getlength(bs);
1847 if (total_size < 0) {
1848 ret = total_size;
1849 goto early_out;
1852 if (offset >= total_size) {
1853 ret = BDRV_BLOCK_EOF;
1854 goto early_out;
1856 if (!bytes) {
1857 ret = 0;
1858 goto early_out;
1861 n = total_size - offset;
1862 if (n < bytes) {
1863 bytes = n;
1866 if (!bs->drv->bdrv_co_get_block_status) {
1867 *pnum = bytes;
1868 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1869 if (offset + bytes == total_size) {
1870 ret |= BDRV_BLOCK_EOF;
1872 if (bs->drv->protocol_name) {
1873 ret |= BDRV_BLOCK_OFFSET_VALID;
1874 local_map = offset;
1875 local_file = bs;
1877 goto early_out;
1880 bdrv_inc_in_flight(bs);
1882 /* Round out to request_alignment boundaries */
1883 /* TODO: until we have a byte-based driver callback, we also have to
1884 * round out to sectors, even if that is bigger than request_alignment */
1885 align = MAX(bs->bl.request_alignment, BDRV_SECTOR_SIZE);
1886 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
1887 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
1890 int count; /* sectors */
1891 int64_t longret;
1893 assert(QEMU_IS_ALIGNED(aligned_offset | aligned_bytes,
1894 BDRV_SECTOR_SIZE));
1896 * The contract allows us to return pnum smaller than bytes, even
1897 * if the next query would see the same status; we truncate the
1898 * request to avoid overflowing the driver's 32-bit interface.
1900 longret = bs->drv->bdrv_co_get_block_status(
1901 bs, aligned_offset >> BDRV_SECTOR_BITS,
1902 MIN(INT_MAX, aligned_bytes) >> BDRV_SECTOR_BITS, &count,
1903 &local_file);
1904 if (longret < 0) {
1905 assert(INT_MIN <= longret);
1906 ret = longret;
1907 goto out;
1909 if (longret & BDRV_BLOCK_OFFSET_VALID) {
1910 local_map = longret & BDRV_BLOCK_OFFSET_MASK;
1912 ret = longret & ~BDRV_BLOCK_OFFSET_MASK;
1913 *pnum = count * BDRV_SECTOR_SIZE;
1917 * The driver's result must be a multiple of request_alignment.
1918 * Clamp pnum and adjust map to original request.
1920 assert(QEMU_IS_ALIGNED(*pnum, align) && align > offset - aligned_offset);
1921 *pnum -= offset - aligned_offset;
1922 if (*pnum > bytes) {
1923 *pnum = bytes;
1925 if (ret & BDRV_BLOCK_OFFSET_VALID) {
1926 local_map += offset - aligned_offset;
1929 if (ret & BDRV_BLOCK_RAW) {
1930 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
1931 ret = bdrv_co_block_status(local_file, want_zero, local_map,
1932 *pnum, pnum, &local_map, &local_file);
1933 goto out;
1936 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1937 ret |= BDRV_BLOCK_ALLOCATED;
1938 } else if (want_zero) {
1939 if (bdrv_unallocated_blocks_are_zero(bs)) {
1940 ret |= BDRV_BLOCK_ZERO;
1941 } else if (bs->backing) {
1942 BlockDriverState *bs2 = bs->backing->bs;
1943 int64_t size2 = bdrv_getlength(bs2);
1945 if (size2 >= 0 && offset >= size2) {
1946 ret |= BDRV_BLOCK_ZERO;
1951 if (want_zero && local_file && local_file != bs &&
1952 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1953 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1954 int64_t file_pnum;
1955 int ret2;
1957 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
1958 *pnum, &file_pnum, NULL, NULL);
1959 if (ret2 >= 0) {
1960 /* Ignore errors. This is just providing extra information, it
1961 * is useful but not necessary.
1963 if (ret2 & BDRV_BLOCK_EOF &&
1964 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
1966 * It is valid for the format block driver to read
1967 * beyond the end of the underlying file's current
1968 * size; such areas read as zero.
1970 ret |= BDRV_BLOCK_ZERO;
1971 } else {
1972 /* Limit request to the range reported by the protocol driver */
1973 *pnum = file_pnum;
1974 ret |= (ret2 & BDRV_BLOCK_ZERO);
1979 out:
1980 bdrv_dec_in_flight(bs);
1981 if (ret >= 0 && offset + *pnum == total_size) {
1982 ret |= BDRV_BLOCK_EOF;
1984 early_out:
1985 if (file) {
1986 *file = local_file;
1988 if (map) {
1989 *map = local_map;
1991 return ret;
1994 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
1995 BlockDriverState *base,
1996 bool want_zero,
1997 int64_t offset,
1998 int64_t bytes,
1999 int64_t *pnum,
2000 int64_t *map,
2001 BlockDriverState **file)
2003 BlockDriverState *p;
2004 int ret = 0;
2005 bool first = true;
2007 assert(bs != base);
2008 for (p = bs; p != base; p = backing_bs(p)) {
2009 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2010 file);
2011 if (ret < 0) {
2012 break;
2014 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2016 * Reading beyond the end of the file continues to read
2017 * zeroes, but we can only widen the result to the
2018 * unallocated length we learned from an earlier
2019 * iteration.
2021 *pnum = bytes;
2023 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2024 break;
2026 /* [offset, pnum] unallocated on this layer, which could be only
2027 * the first part of [offset, bytes]. */
2028 bytes = MIN(bytes, *pnum);
2029 first = false;
2031 return ret;
2034 /* Coroutine wrapper for bdrv_block_status_above() */
2035 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2037 BdrvCoBlockStatusData *data = opaque;
2039 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2040 data->want_zero,
2041 data->offset, data->bytes,
2042 data->pnum, data->map, data->file);
2043 data->done = true;
2047 * Synchronous wrapper around bdrv_co_block_status_above().
2049 * See bdrv_co_block_status_above() for details.
2051 static int bdrv_common_block_status_above(BlockDriverState *bs,
2052 BlockDriverState *base,
2053 bool want_zero, int64_t offset,
2054 int64_t bytes, int64_t *pnum,
2055 int64_t *map,
2056 BlockDriverState **file)
2058 Coroutine *co;
2059 BdrvCoBlockStatusData data = {
2060 .bs = bs,
2061 .base = base,
2062 .want_zero = want_zero,
2063 .offset = offset,
2064 .bytes = bytes,
2065 .pnum = pnum,
2066 .map = map,
2067 .file = file,
2068 .done = false,
2071 if (qemu_in_coroutine()) {
2072 /* Fast-path if already in coroutine context */
2073 bdrv_block_status_above_co_entry(&data);
2074 } else {
2075 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2076 bdrv_coroutine_enter(bs, co);
2077 BDRV_POLL_WHILE(bs, !data.done);
2079 return data.ret;
2082 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2083 int64_t offset, int64_t bytes, int64_t *pnum,
2084 int64_t *map, BlockDriverState **file)
2086 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2087 pnum, map, file);
2090 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2091 int64_t *pnum, int64_t *map, BlockDriverState **file)
2093 return bdrv_block_status_above(bs, backing_bs(bs),
2094 offset, bytes, pnum, map, file);
2097 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2098 int64_t bytes, int64_t *pnum)
2100 int ret;
2101 int64_t dummy;
2103 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2104 bytes, pnum ? pnum : &dummy, NULL,
2105 NULL);
2106 if (ret < 0) {
2107 return ret;
2109 return !!(ret & BDRV_BLOCK_ALLOCATED);
2113 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2115 * Return true if (a prefix of) the given range is allocated in any image
2116 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2117 * offset is allocated in any image of the chain. Return false otherwise,
2118 * or negative errno on failure.
2120 * 'pnum' is set to the number of bytes (including and immediately
2121 * following the specified offset) that are known to be in the same
2122 * allocated/unallocated state. Note that a subsequent call starting
2123 * at 'offset + *pnum' may return the same allocation status (in other
2124 * words, the result is not necessarily the maximum possible range);
2125 * but 'pnum' will only be 0 when end of file is reached.
2128 int bdrv_is_allocated_above(BlockDriverState *top,
2129 BlockDriverState *base,
2130 int64_t offset, int64_t bytes, int64_t *pnum)
2132 BlockDriverState *intermediate;
2133 int ret;
2134 int64_t n = bytes;
2136 intermediate = top;
2137 while (intermediate && intermediate != base) {
2138 int64_t pnum_inter;
2139 int64_t size_inter;
2141 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2142 if (ret < 0) {
2143 return ret;
2145 if (ret) {
2146 *pnum = pnum_inter;
2147 return 1;
2150 size_inter = bdrv_getlength(intermediate);
2151 if (size_inter < 0) {
2152 return size_inter;
2154 if (n > pnum_inter &&
2155 (intermediate == top || offset + pnum_inter < size_inter)) {
2156 n = pnum_inter;
2159 intermediate = backing_bs(intermediate);
2162 *pnum = n;
2163 return 0;
2166 typedef struct BdrvVmstateCo {
2167 BlockDriverState *bs;
2168 QEMUIOVector *qiov;
2169 int64_t pos;
2170 bool is_read;
2171 int ret;
2172 } BdrvVmstateCo;
2174 static int coroutine_fn
2175 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2176 bool is_read)
2178 BlockDriver *drv = bs->drv;
2179 int ret = -ENOTSUP;
2181 bdrv_inc_in_flight(bs);
2183 if (!drv) {
2184 ret = -ENOMEDIUM;
2185 } else if (drv->bdrv_load_vmstate) {
2186 if (is_read) {
2187 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2188 } else {
2189 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2191 } else if (bs->file) {
2192 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2195 bdrv_dec_in_flight(bs);
2196 return ret;
2199 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2201 BdrvVmstateCo *co = opaque;
2202 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2205 static inline int
2206 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2207 bool is_read)
2209 if (qemu_in_coroutine()) {
2210 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2211 } else {
2212 BdrvVmstateCo data = {
2213 .bs = bs,
2214 .qiov = qiov,
2215 .pos = pos,
2216 .is_read = is_read,
2217 .ret = -EINPROGRESS,
2219 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2221 bdrv_coroutine_enter(bs, co);
2222 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2223 return data.ret;
2227 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2228 int64_t pos, int size)
2230 QEMUIOVector qiov;
2231 struct iovec iov = {
2232 .iov_base = (void *) buf,
2233 .iov_len = size,
2235 int ret;
2237 qemu_iovec_init_external(&qiov, &iov, 1);
2239 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2240 if (ret < 0) {
2241 return ret;
2244 return size;
2247 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2249 return bdrv_rw_vmstate(bs, qiov, pos, false);
2252 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2253 int64_t pos, int size)
2255 QEMUIOVector qiov;
2256 struct iovec iov = {
2257 .iov_base = buf,
2258 .iov_len = size,
2260 int ret;
2262 qemu_iovec_init_external(&qiov, &iov, 1);
2263 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2264 if (ret < 0) {
2265 return ret;
2268 return size;
2271 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2273 return bdrv_rw_vmstate(bs, qiov, pos, true);
2276 /**************************************************************/
2277 /* async I/Os */
2279 void bdrv_aio_cancel(BlockAIOCB *acb)
2281 qemu_aio_ref(acb);
2282 bdrv_aio_cancel_async(acb);
2283 while (acb->refcnt > 1) {
2284 if (acb->aiocb_info->get_aio_context) {
2285 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2286 } else if (acb->bs) {
2287 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2288 * assert that we're not using an I/O thread. Thread-safe
2289 * code should use bdrv_aio_cancel_async exclusively.
2291 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2292 aio_poll(bdrv_get_aio_context(acb->bs), true);
2293 } else {
2294 abort();
2297 qemu_aio_unref(acb);
2300 /* Async version of aio cancel. The caller is not blocked if the acb implements
2301 * cancel_async, otherwise we do nothing and let the request normally complete.
2302 * In either case the completion callback must be called. */
2303 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2305 if (acb->aiocb_info->cancel_async) {
2306 acb->aiocb_info->cancel_async(acb);
2310 /**************************************************************/
2311 /* Coroutine block device emulation */
2313 typedef struct FlushCo {
2314 BlockDriverState *bs;
2315 int ret;
2316 } FlushCo;
2319 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2321 FlushCo *rwco = opaque;
2323 rwco->ret = bdrv_co_flush(rwco->bs);
2326 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2328 int current_gen;
2329 int ret = 0;
2331 bdrv_inc_in_flight(bs);
2333 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2334 bdrv_is_sg(bs)) {
2335 goto early_exit;
2338 qemu_co_mutex_lock(&bs->reqs_lock);
2339 current_gen = atomic_read(&bs->write_gen);
2341 /* Wait until any previous flushes are completed */
2342 while (bs->active_flush_req) {
2343 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2346 /* Flushes reach this point in nondecreasing current_gen order. */
2347 bs->active_flush_req = true;
2348 qemu_co_mutex_unlock(&bs->reqs_lock);
2350 /* Write back all layers by calling one driver function */
2351 if (bs->drv->bdrv_co_flush) {
2352 ret = bs->drv->bdrv_co_flush(bs);
2353 goto out;
2356 /* Write back cached data to the OS even with cache=unsafe */
2357 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2358 if (bs->drv->bdrv_co_flush_to_os) {
2359 ret = bs->drv->bdrv_co_flush_to_os(bs);
2360 if (ret < 0) {
2361 goto out;
2365 /* But don't actually force it to the disk with cache=unsafe */
2366 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2367 goto flush_parent;
2370 /* Check if we really need to flush anything */
2371 if (bs->flushed_gen == current_gen) {
2372 goto flush_parent;
2375 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2376 if (bs->drv->bdrv_co_flush_to_disk) {
2377 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2378 } else if (bs->drv->bdrv_aio_flush) {
2379 BlockAIOCB *acb;
2380 CoroutineIOCompletion co = {
2381 .coroutine = qemu_coroutine_self(),
2384 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2385 if (acb == NULL) {
2386 ret = -EIO;
2387 } else {
2388 qemu_coroutine_yield();
2389 ret = co.ret;
2391 } else {
2393 * Some block drivers always operate in either writethrough or unsafe
2394 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2395 * know how the server works (because the behaviour is hardcoded or
2396 * depends on server-side configuration), so we can't ensure that
2397 * everything is safe on disk. Returning an error doesn't work because
2398 * that would break guests even if the server operates in writethrough
2399 * mode.
2401 * Let's hope the user knows what he's doing.
2403 ret = 0;
2406 if (ret < 0) {
2407 goto out;
2410 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2411 * in the case of cache=unsafe, so there are no useless flushes.
2413 flush_parent:
2414 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2415 out:
2416 /* Notify any pending flushes that we have completed */
2417 if (ret == 0) {
2418 bs->flushed_gen = current_gen;
2421 qemu_co_mutex_lock(&bs->reqs_lock);
2422 bs->active_flush_req = false;
2423 /* Return value is ignored - it's ok if wait queue is empty */
2424 qemu_co_queue_next(&bs->flush_queue);
2425 qemu_co_mutex_unlock(&bs->reqs_lock);
2427 early_exit:
2428 bdrv_dec_in_flight(bs);
2429 return ret;
2432 int bdrv_flush(BlockDriverState *bs)
2434 Coroutine *co;
2435 FlushCo flush_co = {
2436 .bs = bs,
2437 .ret = NOT_DONE,
2440 if (qemu_in_coroutine()) {
2441 /* Fast-path if already in coroutine context */
2442 bdrv_flush_co_entry(&flush_co);
2443 } else {
2444 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2445 bdrv_coroutine_enter(bs, co);
2446 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2449 return flush_co.ret;
2452 typedef struct DiscardCo {
2453 BlockDriverState *bs;
2454 int64_t offset;
2455 int bytes;
2456 int ret;
2457 } DiscardCo;
2458 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2460 DiscardCo *rwco = opaque;
2462 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2465 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2466 int bytes)
2468 BdrvTrackedRequest req;
2469 int max_pdiscard, ret;
2470 int head, tail, align;
2472 if (!bs->drv) {
2473 return -ENOMEDIUM;
2476 if (bdrv_has_readonly_bitmaps(bs)) {
2477 return -EPERM;
2480 ret = bdrv_check_byte_request(bs, offset, bytes);
2481 if (ret < 0) {
2482 return ret;
2483 } else if (bs->read_only) {
2484 return -EPERM;
2486 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2488 /* Do nothing if disabled. */
2489 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2490 return 0;
2493 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2494 return 0;
2497 /* Discard is advisory, but some devices track and coalesce
2498 * unaligned requests, so we must pass everything down rather than
2499 * round here. Still, most devices will just silently ignore
2500 * unaligned requests (by returning -ENOTSUP), so we must fragment
2501 * the request accordingly. */
2502 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2503 assert(align % bs->bl.request_alignment == 0);
2504 head = offset % align;
2505 tail = (offset + bytes) % align;
2507 bdrv_inc_in_flight(bs);
2508 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2510 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2511 if (ret < 0) {
2512 goto out;
2515 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2516 align);
2517 assert(max_pdiscard >= bs->bl.request_alignment);
2519 while (bytes > 0) {
2520 int num = bytes;
2522 if (head) {
2523 /* Make small requests to get to alignment boundaries. */
2524 num = MIN(bytes, align - head);
2525 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2526 num %= bs->bl.request_alignment;
2528 head = (head + num) % align;
2529 assert(num < max_pdiscard);
2530 } else if (tail) {
2531 if (num > align) {
2532 /* Shorten the request to the last aligned cluster. */
2533 num -= tail;
2534 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2535 tail > bs->bl.request_alignment) {
2536 tail %= bs->bl.request_alignment;
2537 num -= tail;
2540 /* limit request size */
2541 if (num > max_pdiscard) {
2542 num = max_pdiscard;
2545 if (bs->drv->bdrv_co_pdiscard) {
2546 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2547 } else {
2548 BlockAIOCB *acb;
2549 CoroutineIOCompletion co = {
2550 .coroutine = qemu_coroutine_self(),
2553 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2554 bdrv_co_io_em_complete, &co);
2555 if (acb == NULL) {
2556 ret = -EIO;
2557 goto out;
2558 } else {
2559 qemu_coroutine_yield();
2560 ret = co.ret;
2563 if (ret && ret != -ENOTSUP) {
2564 goto out;
2567 offset += num;
2568 bytes -= num;
2570 ret = 0;
2571 out:
2572 atomic_inc(&bs->write_gen);
2573 bdrv_set_dirty(bs, req.offset, req.bytes);
2574 tracked_request_end(&req);
2575 bdrv_dec_in_flight(bs);
2576 return ret;
2579 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2581 Coroutine *co;
2582 DiscardCo rwco = {
2583 .bs = bs,
2584 .offset = offset,
2585 .bytes = bytes,
2586 .ret = NOT_DONE,
2589 if (qemu_in_coroutine()) {
2590 /* Fast-path if already in coroutine context */
2591 bdrv_pdiscard_co_entry(&rwco);
2592 } else {
2593 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2594 bdrv_coroutine_enter(bs, co);
2595 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2598 return rwco.ret;
2601 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2603 BlockDriver *drv = bs->drv;
2604 CoroutineIOCompletion co = {
2605 .coroutine = qemu_coroutine_self(),
2607 BlockAIOCB *acb;
2609 bdrv_inc_in_flight(bs);
2610 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2611 co.ret = -ENOTSUP;
2612 goto out;
2615 if (drv->bdrv_co_ioctl) {
2616 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2617 } else {
2618 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2619 if (!acb) {
2620 co.ret = -ENOTSUP;
2621 goto out;
2623 qemu_coroutine_yield();
2625 out:
2626 bdrv_dec_in_flight(bs);
2627 return co.ret;
2630 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2632 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2635 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2637 return memset(qemu_blockalign(bs, size), 0, size);
2640 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2642 size_t align = bdrv_opt_mem_align(bs);
2644 /* Ensure that NULL is never returned on success */
2645 assert(align > 0);
2646 if (size == 0) {
2647 size = align;
2650 return qemu_try_memalign(align, size);
2653 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2655 void *mem = qemu_try_blockalign(bs, size);
2657 if (mem) {
2658 memset(mem, 0, size);
2661 return mem;
2665 * Check if all memory in this vector is sector aligned.
2667 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2669 int i;
2670 size_t alignment = bdrv_min_mem_align(bs);
2672 for (i = 0; i < qiov->niov; i++) {
2673 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2674 return false;
2676 if (qiov->iov[i].iov_len % alignment) {
2677 return false;
2681 return true;
2684 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2685 NotifierWithReturn *notifier)
2687 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2690 void bdrv_io_plug(BlockDriverState *bs)
2692 BdrvChild *child;
2694 QLIST_FOREACH(child, &bs->children, next) {
2695 bdrv_io_plug(child->bs);
2698 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2699 BlockDriver *drv = bs->drv;
2700 if (drv && drv->bdrv_io_plug) {
2701 drv->bdrv_io_plug(bs);
2706 void bdrv_io_unplug(BlockDriverState *bs)
2708 BdrvChild *child;
2710 assert(bs->io_plugged);
2711 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2712 BlockDriver *drv = bs->drv;
2713 if (drv && drv->bdrv_io_unplug) {
2714 drv->bdrv_io_unplug(bs);
2718 QLIST_FOREACH(child, &bs->children, next) {
2719 bdrv_io_unplug(child->bs);