2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/cutils.h"
21 #include "qemu/option.h"
22 #include "qemu/vfio-helpers.h"
23 #include "block/block_int.h"
26 #include "block/nvme.h"
28 #define NVME_SQ_ENTRY_BYTES 64
29 #define NVME_CQ_ENTRY_BYTES 16
30 #define NVME_QUEUE_SIZE 128
31 #define NVME_BAR_SIZE 8192
37 /* Hardware MMIO register */
38 volatile uint32_t *doorbell
;
42 BlockCompletionFunc
*cb
;
46 uint64_t prp_list_iova
;
51 CoQueue free_req_queue
;
54 /* Fields protected by BQL */
56 uint8_t *prp_list_pages
;
58 /* Fields protected by @lock */
61 NVMeRequest reqs
[NVME_QUEUE_SIZE
];
67 /* Memory mapped registers */
68 typedef volatile struct {
82 uint8_t reserved1
[0xec0];
83 uint8_t cmd_set_specfic
[0x100];
87 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs
, doorbells
) != 0x1000);
90 AioContext
*aio_context
;
93 /* The submission/completion queue pairs.
97 NVMeQueuePair
**queues
;
100 /* How many uint32_t elements does each doorbell entry take. */
101 size_t doorbell_scale
;
102 bool write_cache_supported
;
103 EventNotifier irq_notifier
;
104 uint64_t nsze
; /* Namespace size reported by identify command */
105 int nsid
; /* The namespace id to read/write data. */
106 uint64_t max_transfer
;
109 CoMutex dma_map_lock
;
110 CoQueue dma_flush_queue
;
112 /* Total size of mapped qiov, accessed under dma_map_lock */
115 /* PCI address (required for nvme_refresh_filename()) */
119 #define NVME_BLOCK_OPT_DEVICE "device"
120 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
122 static QemuOptsList runtime_opts
= {
124 .head
= QTAILQ_HEAD_INITIALIZER(runtime_opts
.head
),
127 .name
= NVME_BLOCK_OPT_DEVICE
,
128 .type
= QEMU_OPT_STRING
,
129 .help
= "NVMe PCI device address",
132 .name
= NVME_BLOCK_OPT_NAMESPACE
,
133 .type
= QEMU_OPT_NUMBER
,
134 .help
= "NVMe namespace",
136 { /* end of list */ }
140 static void nvme_init_queue(BlockDriverState
*bs
, NVMeQueue
*q
,
141 int nentries
, int entry_bytes
, Error
**errp
)
143 BDRVNVMeState
*s
= bs
->opaque
;
147 bytes
= ROUND_UP(nentries
* entry_bytes
, s
->page_size
);
148 q
->head
= q
->tail
= 0;
149 q
->queue
= qemu_try_blockalign0(bs
, bytes
);
152 error_setg(errp
, "Cannot allocate queue");
155 r
= qemu_vfio_dma_map(s
->vfio
, q
->queue
, bytes
, false, &q
->iova
);
157 error_setg(errp
, "Cannot map queue");
161 static void nvme_free_queue_pair(BlockDriverState
*bs
, NVMeQueuePair
*q
)
163 qemu_vfree(q
->prp_list_pages
);
164 qemu_vfree(q
->sq
.queue
);
165 qemu_vfree(q
->cq
.queue
);
166 qemu_mutex_destroy(&q
->lock
);
170 static void nvme_free_req_queue_cb(void *opaque
)
172 NVMeQueuePair
*q
= opaque
;
174 qemu_mutex_lock(&q
->lock
);
175 while (qemu_co_enter_next(&q
->free_req_queue
, &q
->lock
)) {
176 /* Retry all pending requests */
178 qemu_mutex_unlock(&q
->lock
);
181 static NVMeQueuePair
*nvme_create_queue_pair(BlockDriverState
*bs
,
186 BDRVNVMeState
*s
= bs
->opaque
;
187 Error
*local_err
= NULL
;
188 NVMeQueuePair
*q
= g_new0(NVMeQueuePair
, 1);
189 uint64_t prp_list_iova
;
191 qemu_mutex_init(&q
->lock
);
193 qemu_co_queue_init(&q
->free_req_queue
);
194 q
->prp_list_pages
= qemu_blockalign0(bs
, s
->page_size
* NVME_QUEUE_SIZE
);
195 r
= qemu_vfio_dma_map(s
->vfio
, q
->prp_list_pages
,
196 s
->page_size
* NVME_QUEUE_SIZE
,
197 false, &prp_list_iova
);
201 for (i
= 0; i
< NVME_QUEUE_SIZE
; i
++) {
202 NVMeRequest
*req
= &q
->reqs
[i
];
204 req
->prp_list_page
= q
->prp_list_pages
+ i
* s
->page_size
;
205 req
->prp_list_iova
= prp_list_iova
+ i
* s
->page_size
;
207 nvme_init_queue(bs
, &q
->sq
, size
, NVME_SQ_ENTRY_BYTES
, &local_err
);
209 error_propagate(errp
, local_err
);
212 q
->sq
.doorbell
= &s
->regs
->doorbells
[idx
* 2 * s
->doorbell_scale
];
214 nvme_init_queue(bs
, &q
->cq
, size
, NVME_CQ_ENTRY_BYTES
, &local_err
);
216 error_propagate(errp
, local_err
);
219 q
->cq
.doorbell
= &s
->regs
->doorbells
[idx
* 2 * s
->doorbell_scale
+ 1];
223 nvme_free_queue_pair(bs
, q
);
228 static void nvme_kick(BDRVNVMeState
*s
, NVMeQueuePair
*q
)
230 if (s
->plugged
|| !q
->need_kick
) {
233 trace_nvme_kick(s
, q
->index
);
234 assert(!(q
->sq
.tail
& 0xFF00));
235 /* Fence the write to submission queue entry before notifying the device. */
237 *q
->sq
.doorbell
= cpu_to_le32(q
->sq
.tail
);
238 q
->inflight
+= q
->need_kick
;
242 /* Find a free request element if any, otherwise:
243 * a) if in coroutine context, try to wait for one to become available;
244 * b) if not in coroutine, return NULL;
246 static NVMeRequest
*nvme_get_free_req(NVMeQueuePair
*q
)
249 NVMeRequest
*req
= NULL
;
251 qemu_mutex_lock(&q
->lock
);
252 while (q
->inflight
+ q
->need_kick
> NVME_QUEUE_SIZE
- 2) {
253 /* We have to leave one slot empty as that is the full queue case (head
255 if (qemu_in_coroutine()) {
256 trace_nvme_free_req_queue_wait(q
);
257 qemu_co_queue_wait(&q
->free_req_queue
, &q
->lock
);
259 qemu_mutex_unlock(&q
->lock
);
263 for (i
= 0; i
< NVME_QUEUE_SIZE
; i
++) {
264 if (!q
->reqs
[i
].busy
) {
265 q
->reqs
[i
].busy
= true;
270 /* We have checked inflight and need_kick while holding q->lock, so one
271 * free req must be available. */
273 qemu_mutex_unlock(&q
->lock
);
277 static inline int nvme_translate_error(const NvmeCqe
*c
)
279 uint16_t status
= (le16_to_cpu(c
->status
) >> 1) & 0xFF;
281 trace_nvme_error(le32_to_cpu(c
->result
),
282 le16_to_cpu(c
->sq_head
),
283 le16_to_cpu(c
->sq_id
),
285 le16_to_cpu(status
));
300 static bool nvme_process_completion(BDRVNVMeState
*s
, NVMeQueuePair
*q
)
302 bool progress
= false;
307 trace_nvme_process_completion(s
, q
->index
, q
->inflight
);
308 if (q
->busy
|| s
->plugged
) {
309 trace_nvme_process_completion_queue_busy(s
, q
->index
);
313 assert(q
->inflight
>= 0);
314 while (q
->inflight
) {
316 c
= (NvmeCqe
*)&q
->cq
.queue
[q
->cq
.head
* NVME_CQ_ENTRY_BYTES
];
317 if (!c
->cid
|| (le16_to_cpu(c
->status
) & 0x1) == q
->cq_phase
) {
320 q
->cq
.head
= (q
->cq
.head
+ 1) % NVME_QUEUE_SIZE
;
322 q
->cq_phase
= !q
->cq_phase
;
324 cid
= le16_to_cpu(c
->cid
);
325 if (cid
== 0 || cid
> NVME_QUEUE_SIZE
) {
326 fprintf(stderr
, "Unexpected CID in completion queue: %" PRIu32
"\n",
330 assert(cid
<= NVME_QUEUE_SIZE
);
331 trace_nvme_complete_command(s
, q
->index
, cid
);
332 preq
= &q
->reqs
[cid
- 1];
334 assert(req
.cid
== cid
);
337 preq
->cb
= preq
->opaque
= NULL
;
338 qemu_mutex_unlock(&q
->lock
);
339 req
.cb(req
.opaque
, nvme_translate_error(c
));
340 qemu_mutex_lock(&q
->lock
);
341 c
->cid
= cpu_to_le16(0);
343 /* Flip Phase Tag bit. */
344 c
->status
= cpu_to_le16(le16_to_cpu(c
->status
) ^ 0x1);
348 /* Notify the device so it can post more completions. */
350 *q
->cq
.doorbell
= cpu_to_le32(q
->cq
.head
);
351 if (!qemu_co_queue_empty(&q
->free_req_queue
)) {
352 aio_bh_schedule_oneshot(s
->aio_context
, nvme_free_req_queue_cb
, q
);
359 static void nvme_trace_command(const NvmeCmd
*cmd
)
363 for (i
= 0; i
< 8; ++i
) {
364 uint8_t *cmdp
= (uint8_t *)cmd
+ i
* 8;
365 trace_nvme_submit_command_raw(cmdp
[0], cmdp
[1], cmdp
[2], cmdp
[3],
366 cmdp
[4], cmdp
[5], cmdp
[6], cmdp
[7]);
370 static void nvme_submit_command(BDRVNVMeState
*s
, NVMeQueuePair
*q
,
372 NvmeCmd
*cmd
, BlockCompletionFunc cb
,
377 req
->opaque
= opaque
;
378 cmd
->cid
= cpu_to_le32(req
->cid
);
380 trace_nvme_submit_command(s
, q
->index
, req
->cid
);
381 nvme_trace_command(cmd
);
382 qemu_mutex_lock(&q
->lock
);
383 memcpy((uint8_t *)q
->sq
.queue
+
384 q
->sq
.tail
* NVME_SQ_ENTRY_BYTES
, cmd
, sizeof(*cmd
));
385 q
->sq
.tail
= (q
->sq
.tail
+ 1) % NVME_QUEUE_SIZE
;
388 nvme_process_completion(s
, q
);
389 qemu_mutex_unlock(&q
->lock
);
392 static void nvme_cmd_sync_cb(void *opaque
, int ret
)
399 static int nvme_cmd_sync(BlockDriverState
*bs
, NVMeQueuePair
*q
,
403 BDRVNVMeState
*s
= bs
->opaque
;
404 int ret
= -EINPROGRESS
;
405 req
= nvme_get_free_req(q
);
409 nvme_submit_command(s
, q
, req
, cmd
, nvme_cmd_sync_cb
, &ret
);
411 BDRV_POLL_WHILE(bs
, ret
== -EINPROGRESS
);
415 static void nvme_identify(BlockDriverState
*bs
, int namespace, Error
**errp
)
417 BDRVNVMeState
*s
= bs
->opaque
;
424 .opcode
= NVME_ADM_CMD_IDENTIFY
,
425 .cdw10
= cpu_to_le32(0x1),
428 resp
= qemu_try_blockalign0(bs
, sizeof(NvmeIdCtrl
));
430 error_setg(errp
, "Cannot allocate buffer for identify response");
433 idctrl
= (NvmeIdCtrl
*)resp
;
434 idns
= (NvmeIdNs
*)resp
;
435 r
= qemu_vfio_dma_map(s
->vfio
, resp
, sizeof(NvmeIdCtrl
), true, &iova
);
437 error_setg(errp
, "Cannot map buffer for DMA");
440 cmd
.prp1
= cpu_to_le64(iova
);
442 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
443 error_setg(errp
, "Failed to identify controller");
447 if (le32_to_cpu(idctrl
->nn
) < namespace) {
448 error_setg(errp
, "Invalid namespace");
451 s
->write_cache_supported
= le32_to_cpu(idctrl
->vwc
) & 0x1;
452 s
->max_transfer
= (idctrl
->mdts
? 1 << idctrl
->mdts
: 0) * s
->page_size
;
453 /* For now the page list buffer per command is one page, to hold at most
454 * s->page_size / sizeof(uint64_t) entries. */
455 s
->max_transfer
= MIN_NON_ZERO(s
->max_transfer
,
456 s
->page_size
/ sizeof(uint64_t) * s
->page_size
);
458 memset(resp
, 0, 4096);
461 cmd
.nsid
= cpu_to_le32(namespace);
462 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
463 error_setg(errp
, "Failed to identify namespace");
467 s
->nsze
= le64_to_cpu(idns
->nsze
);
470 qemu_vfio_dma_unmap(s
->vfio
, resp
);
474 static bool nvme_poll_queues(BDRVNVMeState
*s
)
476 bool progress
= false;
479 for (i
= 0; i
< s
->nr_queues
; i
++) {
480 NVMeQueuePair
*q
= s
->queues
[i
];
481 qemu_mutex_lock(&q
->lock
);
482 while (nvme_process_completion(s
, q
)) {
486 qemu_mutex_unlock(&q
->lock
);
491 static void nvme_handle_event(EventNotifier
*n
)
493 BDRVNVMeState
*s
= container_of(n
, BDRVNVMeState
, irq_notifier
);
495 trace_nvme_handle_event(s
);
496 event_notifier_test_and_clear(n
);
500 static bool nvme_add_io_queue(BlockDriverState
*bs
, Error
**errp
)
502 BDRVNVMeState
*s
= bs
->opaque
;
503 int n
= s
->nr_queues
;
506 int queue_size
= NVME_QUEUE_SIZE
;
508 q
= nvme_create_queue_pair(bs
, n
, queue_size
, errp
);
513 .opcode
= NVME_ADM_CMD_CREATE_CQ
,
514 .prp1
= cpu_to_le64(q
->cq
.iova
),
515 .cdw10
= cpu_to_le32(((queue_size
- 1) << 16) | (n
& 0xFFFF)),
516 .cdw11
= cpu_to_le32(0x3),
518 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
519 error_setg(errp
, "Failed to create io queue [%d]", n
);
520 nvme_free_queue_pair(bs
, q
);
524 .opcode
= NVME_ADM_CMD_CREATE_SQ
,
525 .prp1
= cpu_to_le64(q
->sq
.iova
),
526 .cdw10
= cpu_to_le32(((queue_size
- 1) << 16) | (n
& 0xFFFF)),
527 .cdw11
= cpu_to_le32(0x1 | (n
<< 16)),
529 if (nvme_cmd_sync(bs
, s
->queues
[0], &cmd
)) {
530 error_setg(errp
, "Failed to create io queue [%d]", n
);
531 nvme_free_queue_pair(bs
, q
);
534 s
->queues
= g_renew(NVMeQueuePair
*, s
->queues
, n
+ 1);
540 static bool nvme_poll_cb(void *opaque
)
542 EventNotifier
*e
= opaque
;
543 BDRVNVMeState
*s
= container_of(e
, BDRVNVMeState
, irq_notifier
);
544 bool progress
= false;
546 trace_nvme_poll_cb(s
);
547 progress
= nvme_poll_queues(s
);
551 static int nvme_init(BlockDriverState
*bs
, const char *device
, int namespace,
554 BDRVNVMeState
*s
= bs
->opaque
;
558 uint64_t deadline
, now
;
559 Error
*local_err
= NULL
;
561 qemu_co_mutex_init(&s
->dma_map_lock
);
562 qemu_co_queue_init(&s
->dma_flush_queue
);
563 s
->device
= g_strdup(device
);
565 s
->aio_context
= bdrv_get_aio_context(bs
);
566 ret
= event_notifier_init(&s
->irq_notifier
, 0);
568 error_setg(errp
, "Failed to init event notifier");
572 s
->vfio
= qemu_vfio_open_pci(device
, errp
);
578 s
->regs
= qemu_vfio_pci_map_bar(s
->vfio
, 0, 0, NVME_BAR_SIZE
, errp
);
584 /* Perform initialize sequence as described in NVMe spec "7.6.1
585 * Initialization". */
587 cap
= le64_to_cpu(s
->regs
->cap
);
588 if (!(cap
& (1ULL << 37))) {
589 error_setg(errp
, "Device doesn't support NVMe command set");
594 s
->page_size
= MAX(4096, 1 << (12 + ((cap
>> 48) & 0xF)));
595 s
->doorbell_scale
= (4 << (((cap
>> 32) & 0xF))) / sizeof(uint32_t);
596 bs
->bl
.opt_mem_alignment
= s
->page_size
;
597 timeout_ms
= MIN(500 * ((cap
>> 24) & 0xFF), 30000);
599 /* Reset device to get a clean state. */
600 s
->regs
->cc
= cpu_to_le32(le32_to_cpu(s
->regs
->cc
) & 0xFE);
601 /* Wait for CSTS.RDY = 0. */
602 deadline
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) + timeout_ms
* 1000000ULL;
603 while (le32_to_cpu(s
->regs
->csts
) & 0x1) {
604 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) > deadline
) {
605 error_setg(errp
, "Timeout while waiting for device to reset (%"
613 /* Set up admin queue. */
614 s
->queues
= g_new(NVMeQueuePair
*, 1);
616 s
->queues
[0] = nvme_create_queue_pair(bs
, 0, NVME_QUEUE_SIZE
, errp
);
621 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE
& 0xF000);
622 s
->regs
->aqa
= cpu_to_le32((NVME_QUEUE_SIZE
<< 16) | NVME_QUEUE_SIZE
);
623 s
->regs
->asq
= cpu_to_le64(s
->queues
[0]->sq
.iova
);
624 s
->regs
->acq
= cpu_to_le64(s
->queues
[0]->cq
.iova
);
626 /* After setting up all control registers we can enable device now. */
627 s
->regs
->cc
= cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES
) << 20) |
628 (ctz32(NVME_SQ_ENTRY_BYTES
) << 16) |
630 /* Wait for CSTS.RDY = 1. */
631 now
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
632 deadline
= now
+ timeout_ms
* 1000000;
633 while (!(le32_to_cpu(s
->regs
->csts
) & 0x1)) {
634 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) > deadline
) {
635 error_setg(errp
, "Timeout while waiting for device to start (%"
643 ret
= qemu_vfio_pci_init_irq(s
->vfio
, &s
->irq_notifier
,
644 VFIO_PCI_MSIX_IRQ_INDEX
, errp
);
648 aio_set_event_notifier(bdrv_get_aio_context(bs
), &s
->irq_notifier
,
649 false, nvme_handle_event
, nvme_poll_cb
);
651 nvme_identify(bs
, namespace, &local_err
);
653 error_propagate(errp
, local_err
);
658 /* Set up command queues. */
659 if (!nvme_add_io_queue(bs
, errp
)) {
663 /* Cleaning up is done in nvme_file_open() upon error. */
667 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
669 * nvme://0000:44:00.0/1
671 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
672 * is the PCI address, and the last part is the namespace number starting from
673 * 1 according to the NVMe spec. */
674 static void nvme_parse_filename(const char *filename
, QDict
*options
,
677 int pref
= strlen("nvme://");
679 if (strlen(filename
) > pref
&& !strncmp(filename
, "nvme://", pref
)) {
680 const char *tmp
= filename
+ pref
;
682 const char *namespace;
684 const char *slash
= strchr(tmp
, '/');
686 qdict_put_str(options
, NVME_BLOCK_OPT_DEVICE
, tmp
);
689 device
= g_strndup(tmp
, slash
- tmp
);
690 qdict_put_str(options
, NVME_BLOCK_OPT_DEVICE
, device
);
692 namespace = slash
+ 1;
693 if (*namespace && qemu_strtoul(namespace, NULL
, 10, &ns
)) {
694 error_setg(errp
, "Invalid namespace '%s', positive number expected",
698 qdict_put_str(options
, NVME_BLOCK_OPT_NAMESPACE
,
699 *namespace ? namespace : "1");
703 static int nvme_enable_disable_write_cache(BlockDriverState
*bs
, bool enable
,
707 BDRVNVMeState
*s
= bs
->opaque
;
709 .opcode
= NVME_ADM_CMD_SET_FEATURES
,
710 .nsid
= cpu_to_le32(s
->nsid
),
711 .cdw10
= cpu_to_le32(0x06),
712 .cdw11
= cpu_to_le32(enable
? 0x01 : 0x00),
715 ret
= nvme_cmd_sync(bs
, s
->queues
[0], &cmd
);
717 error_setg(errp
, "Failed to configure NVMe write cache");
722 static void nvme_close(BlockDriverState
*bs
)
725 BDRVNVMeState
*s
= bs
->opaque
;
727 for (i
= 0; i
< s
->nr_queues
; ++i
) {
728 nvme_free_queue_pair(bs
, s
->queues
[i
]);
731 aio_set_event_notifier(bdrv_get_aio_context(bs
), &s
->irq_notifier
,
733 event_notifier_cleanup(&s
->irq_notifier
);
734 qemu_vfio_pci_unmap_bar(s
->vfio
, 0, (void *)s
->regs
, 0, NVME_BAR_SIZE
);
735 qemu_vfio_close(s
->vfio
);
740 static int nvme_file_open(BlockDriverState
*bs
, QDict
*options
, int flags
,
747 BDRVNVMeState
*s
= bs
->opaque
;
749 opts
= qemu_opts_create(&runtime_opts
, NULL
, 0, &error_abort
);
750 qemu_opts_absorb_qdict(opts
, options
, &error_abort
);
751 device
= qemu_opt_get(opts
, NVME_BLOCK_OPT_DEVICE
);
753 error_setg(errp
, "'" NVME_BLOCK_OPT_DEVICE
"' option is required");
758 namespace = qemu_opt_get_number(opts
, NVME_BLOCK_OPT_NAMESPACE
, 1);
759 ret
= nvme_init(bs
, device
, namespace, errp
);
764 if (flags
& BDRV_O_NOCACHE
) {
765 if (!s
->write_cache_supported
) {
767 "NVMe controller doesn't support write cache configuration");
770 ret
= nvme_enable_disable_write_cache(bs
, !(flags
& BDRV_O_NOCACHE
),
777 bs
->supported_write_flags
= BDRV_REQ_FUA
;
784 static int64_t nvme_getlength(BlockDriverState
*bs
)
786 BDRVNVMeState
*s
= bs
->opaque
;
788 return s
->nsze
<< BDRV_SECTOR_BITS
;
791 /* Called with s->dma_map_lock */
792 static coroutine_fn
int nvme_cmd_unmap_qiov(BlockDriverState
*bs
,
796 BDRVNVMeState
*s
= bs
->opaque
;
798 s
->dma_map_count
-= qiov
->size
;
799 if (!s
->dma_map_count
&& !qemu_co_queue_empty(&s
->dma_flush_queue
)) {
800 r
= qemu_vfio_dma_reset_temporary(s
->vfio
);
802 qemu_co_queue_restart_all(&s
->dma_flush_queue
);
808 /* Called with s->dma_map_lock */
809 static coroutine_fn
int nvme_cmd_map_qiov(BlockDriverState
*bs
, NvmeCmd
*cmd
,
810 NVMeRequest
*req
, QEMUIOVector
*qiov
)
812 BDRVNVMeState
*s
= bs
->opaque
;
813 uint64_t *pagelist
= req
->prp_list_page
;
818 assert(QEMU_IS_ALIGNED(qiov
->size
, s
->page_size
));
819 assert(qiov
->size
/ s
->page_size
<= s
->page_size
/ sizeof(uint64_t));
820 for (i
= 0; i
< qiov
->niov
; ++i
) {
824 r
= qemu_vfio_dma_map(s
->vfio
,
825 qiov
->iov
[i
].iov_base
,
826 qiov
->iov
[i
].iov_len
,
828 if (r
== -ENOMEM
&& retry
) {
830 trace_nvme_dma_flush_queue_wait(s
);
831 if (s
->dma_map_count
) {
832 trace_nvme_dma_map_flush(s
);
833 qemu_co_queue_wait(&s
->dma_flush_queue
, &s
->dma_map_lock
);
835 r
= qemu_vfio_dma_reset_temporary(s
->vfio
);
846 for (j
= 0; j
< qiov
->iov
[i
].iov_len
/ s
->page_size
; j
++) {
847 pagelist
[entries
++] = cpu_to_le64(iova
+ j
* s
->page_size
);
849 trace_nvme_cmd_map_qiov_iov(s
, i
, qiov
->iov
[i
].iov_base
,
850 qiov
->iov
[i
].iov_len
/ s
->page_size
);
853 s
->dma_map_count
+= qiov
->size
;
855 assert(entries
<= s
->page_size
/ sizeof(uint64_t));
860 cmd
->prp1
= pagelist
[0];
864 cmd
->prp1
= pagelist
[0];
865 cmd
->prp2
= pagelist
[1];
868 cmd
->prp1
= pagelist
[0];
869 cmd
->prp2
= cpu_to_le64(req
->prp_list_iova
+ sizeof(uint64_t));
872 trace_nvme_cmd_map_qiov(s
, cmd
, req
, qiov
, entries
);
873 for (i
= 0; i
< entries
; ++i
) {
874 trace_nvme_cmd_map_qiov_pages(s
, i
, pagelist
[i
]);
878 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
879 * increment s->dma_map_count. This is okay for fixed mapping memory areas
880 * because they are already mapped before calling this function; for
881 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
882 * calling qemu_vfio_dma_reset_temporary when necessary. */
892 static void nvme_rw_cb_bh(void *opaque
)
894 NVMeCoData
*data
= opaque
;
895 qemu_coroutine_enter(data
->co
);
898 static void nvme_rw_cb(void *opaque
, int ret
)
900 NVMeCoData
*data
= opaque
;
903 /* The rw coroutine hasn't yielded, don't try to enter. */
906 aio_bh_schedule_oneshot(data
->ctx
, nvme_rw_cb_bh
, data
);
909 static coroutine_fn
int nvme_co_prw_aligned(BlockDriverState
*bs
,
910 uint64_t offset
, uint64_t bytes
,
916 BDRVNVMeState
*s
= bs
->opaque
;
917 NVMeQueuePair
*ioq
= s
->queues
[1];
919 uint32_t cdw12
= (((bytes
>> BDRV_SECTOR_BITS
) - 1) & 0xFFFF) |
920 (flags
& BDRV_REQ_FUA
? 1 << 30 : 0);
922 .opcode
= is_write
? NVME_CMD_WRITE
: NVME_CMD_READ
,
923 .nsid
= cpu_to_le32(s
->nsid
),
924 .cdw10
= cpu_to_le32((offset
>> BDRV_SECTOR_BITS
) & 0xFFFFFFFF),
925 .cdw11
= cpu_to_le32(((offset
>> BDRV_SECTOR_BITS
) >> 32) & 0xFFFFFFFF),
926 .cdw12
= cpu_to_le32(cdw12
),
929 .ctx
= bdrv_get_aio_context(bs
),
933 trace_nvme_prw_aligned(s
, is_write
, offset
, bytes
, flags
, qiov
->niov
);
934 assert(s
->nr_queues
> 1);
935 req
= nvme_get_free_req(ioq
);
938 qemu_co_mutex_lock(&s
->dma_map_lock
);
939 r
= nvme_cmd_map_qiov(bs
, &cmd
, req
, qiov
);
940 qemu_co_mutex_unlock(&s
->dma_map_lock
);
945 nvme_submit_command(s
, ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
947 data
.co
= qemu_coroutine_self();
948 while (data
.ret
== -EINPROGRESS
) {
949 qemu_coroutine_yield();
952 qemu_co_mutex_lock(&s
->dma_map_lock
);
953 r
= nvme_cmd_unmap_qiov(bs
, qiov
);
954 qemu_co_mutex_unlock(&s
->dma_map_lock
);
959 trace_nvme_rw_done(s
, is_write
, offset
, bytes
, data
.ret
);
963 static inline bool nvme_qiov_aligned(BlockDriverState
*bs
,
964 const QEMUIOVector
*qiov
)
967 BDRVNVMeState
*s
= bs
->opaque
;
969 for (i
= 0; i
< qiov
->niov
; ++i
) {
970 if (!QEMU_PTR_IS_ALIGNED(qiov
->iov
[i
].iov_base
, s
->page_size
) ||
971 !QEMU_IS_ALIGNED(qiov
->iov
[i
].iov_len
, s
->page_size
)) {
972 trace_nvme_qiov_unaligned(qiov
, i
, qiov
->iov
[i
].iov_base
,
973 qiov
->iov
[i
].iov_len
, s
->page_size
);
980 static int nvme_co_prw(BlockDriverState
*bs
, uint64_t offset
, uint64_t bytes
,
981 QEMUIOVector
*qiov
, bool is_write
, int flags
)
983 BDRVNVMeState
*s
= bs
->opaque
;
986 QEMUIOVector local_qiov
;
988 assert(QEMU_IS_ALIGNED(offset
, s
->page_size
));
989 assert(QEMU_IS_ALIGNED(bytes
, s
->page_size
));
990 assert(bytes
<= s
->max_transfer
);
991 if (nvme_qiov_aligned(bs
, qiov
)) {
992 return nvme_co_prw_aligned(bs
, offset
, bytes
, qiov
, is_write
, flags
);
994 trace_nvme_prw_buffered(s
, offset
, bytes
, qiov
->niov
, is_write
);
995 buf
= qemu_try_blockalign(bs
, bytes
);
1000 qemu_iovec_init(&local_qiov
, 1);
1002 qemu_iovec_to_buf(qiov
, 0, buf
, bytes
);
1004 qemu_iovec_add(&local_qiov
, buf
, bytes
);
1005 r
= nvme_co_prw_aligned(bs
, offset
, bytes
, &local_qiov
, is_write
, flags
);
1006 qemu_iovec_destroy(&local_qiov
);
1007 if (!r
&& !is_write
) {
1008 qemu_iovec_from_buf(qiov
, 0, buf
, bytes
);
1014 static coroutine_fn
int nvme_co_preadv(BlockDriverState
*bs
,
1015 uint64_t offset
, uint64_t bytes
,
1016 QEMUIOVector
*qiov
, int flags
)
1018 return nvme_co_prw(bs
, offset
, bytes
, qiov
, false, flags
);
1021 static coroutine_fn
int nvme_co_pwritev(BlockDriverState
*bs
,
1022 uint64_t offset
, uint64_t bytes
,
1023 QEMUIOVector
*qiov
, int flags
)
1025 return nvme_co_prw(bs
, offset
, bytes
, qiov
, true, flags
);
1028 static coroutine_fn
int nvme_co_flush(BlockDriverState
*bs
)
1030 BDRVNVMeState
*s
= bs
->opaque
;
1031 NVMeQueuePair
*ioq
= s
->queues
[1];
1034 .opcode
= NVME_CMD_FLUSH
,
1035 .nsid
= cpu_to_le32(s
->nsid
),
1038 .ctx
= bdrv_get_aio_context(bs
),
1039 .ret
= -EINPROGRESS
,
1042 assert(s
->nr_queues
> 1);
1043 req
= nvme_get_free_req(ioq
);
1045 nvme_submit_command(s
, ioq
, req
, &cmd
, nvme_rw_cb
, &data
);
1047 data
.co
= qemu_coroutine_self();
1048 if (data
.ret
== -EINPROGRESS
) {
1049 qemu_coroutine_yield();
1056 static int nvme_reopen_prepare(BDRVReopenState
*reopen_state
,
1057 BlockReopenQueue
*queue
, Error
**errp
)
1062 static void nvme_refresh_filename(BlockDriverState
*bs
)
1064 BDRVNVMeState
*s
= bs
->opaque
;
1066 snprintf(bs
->exact_filename
, sizeof(bs
->exact_filename
), "nvme://%s/%i",
1067 s
->device
, s
->nsid
);
1070 static void nvme_refresh_limits(BlockDriverState
*bs
, Error
**errp
)
1072 BDRVNVMeState
*s
= bs
->opaque
;
1074 bs
->bl
.opt_mem_alignment
= s
->page_size
;
1075 bs
->bl
.request_alignment
= s
->page_size
;
1076 bs
->bl
.max_transfer
= s
->max_transfer
;
1079 static void nvme_detach_aio_context(BlockDriverState
*bs
)
1081 BDRVNVMeState
*s
= bs
->opaque
;
1083 aio_set_event_notifier(bdrv_get_aio_context(bs
), &s
->irq_notifier
,
1087 static void nvme_attach_aio_context(BlockDriverState
*bs
,
1088 AioContext
*new_context
)
1090 BDRVNVMeState
*s
= bs
->opaque
;
1092 s
->aio_context
= new_context
;
1093 aio_set_event_notifier(new_context
, &s
->irq_notifier
,
1094 false, nvme_handle_event
, nvme_poll_cb
);
1097 static void nvme_aio_plug(BlockDriverState
*bs
)
1099 BDRVNVMeState
*s
= bs
->opaque
;
1100 assert(!s
->plugged
);
1104 static void nvme_aio_unplug(BlockDriverState
*bs
)
1107 BDRVNVMeState
*s
= bs
->opaque
;
1110 for (i
= 1; i
< s
->nr_queues
; i
++) {
1111 NVMeQueuePair
*q
= s
->queues
[i
];
1112 qemu_mutex_lock(&q
->lock
);
1114 nvme_process_completion(s
, q
);
1115 qemu_mutex_unlock(&q
->lock
);
1119 static void nvme_register_buf(BlockDriverState
*bs
, void *host
, size_t size
)
1122 BDRVNVMeState
*s
= bs
->opaque
;
1124 ret
= qemu_vfio_dma_map(s
->vfio
, host
, size
, false, NULL
);
1126 /* FIXME: we may run out of IOVA addresses after repeated
1127 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1128 * doesn't reclaim addresses for fixed mappings. */
1129 error_report("nvme_register_buf failed: %s", strerror(-ret
));
1133 static void nvme_unregister_buf(BlockDriverState
*bs
, void *host
)
1135 BDRVNVMeState
*s
= bs
->opaque
;
1137 qemu_vfio_dma_unmap(s
->vfio
, host
);
1140 static const char *const nvme_strong_runtime_opts
[] = {
1141 NVME_BLOCK_OPT_DEVICE
,
1142 NVME_BLOCK_OPT_NAMESPACE
,
1147 static BlockDriver bdrv_nvme
= {
1148 .format_name
= "nvme",
1149 .protocol_name
= "nvme",
1150 .instance_size
= sizeof(BDRVNVMeState
),
1152 .bdrv_parse_filename
= nvme_parse_filename
,
1153 .bdrv_file_open
= nvme_file_open
,
1154 .bdrv_close
= nvme_close
,
1155 .bdrv_getlength
= nvme_getlength
,
1157 .bdrv_co_preadv
= nvme_co_preadv
,
1158 .bdrv_co_pwritev
= nvme_co_pwritev
,
1159 .bdrv_co_flush_to_disk
= nvme_co_flush
,
1160 .bdrv_reopen_prepare
= nvme_reopen_prepare
,
1162 .bdrv_refresh_filename
= nvme_refresh_filename
,
1163 .bdrv_refresh_limits
= nvme_refresh_limits
,
1164 .strong_runtime_opts
= nvme_strong_runtime_opts
,
1166 .bdrv_detach_aio_context
= nvme_detach_aio_context
,
1167 .bdrv_attach_aio_context
= nvme_attach_aio_context
,
1169 .bdrv_io_plug
= nvme_aio_plug
,
1170 .bdrv_io_unplug
= nvme_aio_unplug
,
1172 .bdrv_register_buf
= nvme_register_buf
,
1173 .bdrv_unregister_buf
= nvme_unregister_buf
,
1176 static void bdrv_nvme_init(void)
1178 bdrv_register(&bdrv_nvme
);
1181 block_init(bdrv_nvme_init
);