rcu_queue: remove barrier from QLIST_EMPTY_RCU
[qemu/ar7.git] / target / ppc / fpu_helper.c
blob8675d931b630c74b51bb55013e2dbac79232ed9e
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
26 static inline float128 float128_snan_to_qnan(float128 x)
28 float128 r;
30 r.high = x.high | 0x0000800000000000;
31 r.low = x.low;
32 return r;
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
39 /*****************************************************************************/
40 /* Floating point operations helpers */
41 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
43 CPU_FloatU f;
44 CPU_DoubleU d;
46 f.l = arg;
47 d.d = float32_to_float64(f.f, &env->fp_status);
48 return d.ll;
51 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
53 CPU_FloatU f;
54 CPU_DoubleU d;
56 d.ll = arg;
57 f.f = float64_to_float32(d.d, &env->fp_status);
58 return f.l;
61 static inline int ppc_float32_get_unbiased_exp(float32 f)
63 return ((f >> 23) & 0xFF) - 127;
66 static inline int ppc_float64_get_unbiased_exp(float64 f)
68 return ((f >> 52) & 0x7FF) - 1023;
71 #define COMPUTE_FPRF(tp) \
72 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
73 { \
74 int isneg; \
75 int fprf; \
77 isneg = tp##_is_neg(arg); \
78 if (unlikely(tp##_is_any_nan(arg))) { \
79 if (tp##_is_signaling_nan(arg, &env->fp_status)) { \
80 /* Signaling NaN: flags are undefined */ \
81 fprf = 0x00; \
82 } else { \
83 /* Quiet NaN */ \
84 fprf = 0x11; \
85 } \
86 } else if (unlikely(tp##_is_infinity(arg))) { \
87 /* +/- infinity */ \
88 if (isneg) { \
89 fprf = 0x09; \
90 } else { \
91 fprf = 0x05; \
92 } \
93 } else { \
94 if (tp##_is_zero(arg)) { \
95 /* +/- zero */ \
96 if (isneg) { \
97 fprf = 0x12; \
98 } else { \
99 fprf = 0x02; \
101 } else { \
102 if (tp##_is_zero_or_denormal(arg)) { \
103 /* Denormalized numbers */ \
104 fprf = 0x10; \
105 } else { \
106 /* Normalized numbers */ \
107 fprf = 0x00; \
109 if (isneg) { \
110 fprf |= 0x08; \
111 } else { \
112 fprf |= 0x04; \
116 /* We update FPSCR_FPRF */ \
117 env->fpscr &= ~(0x1F << FPSCR_FPRF); \
118 env->fpscr |= fprf << FPSCR_FPRF; \
121 COMPUTE_FPRF(float16)
122 COMPUTE_FPRF(float32)
123 COMPUTE_FPRF(float64)
124 COMPUTE_FPRF(float128)
126 /* Floating-point invalid operations exception */
127 static inline __attribute__((__always_inline__))
128 uint64_t float_invalid_op_excp(CPUPPCState *env, int op, int set_fpcc)
130 CPUState *cs = CPU(ppc_env_get_cpu(env));
131 uint64_t ret = 0;
132 int ve;
134 ve = fpscr_ve;
135 switch (op) {
136 case POWERPC_EXCP_FP_VXSNAN:
137 env->fpscr |= 1 << FPSCR_VXSNAN;
138 break;
139 case POWERPC_EXCP_FP_VXSOFT:
140 env->fpscr |= 1 << FPSCR_VXSOFT;
141 break;
142 case POWERPC_EXCP_FP_VXISI:
143 /* Magnitude subtraction of infinities */
144 env->fpscr |= 1 << FPSCR_VXISI;
145 goto update_arith;
146 case POWERPC_EXCP_FP_VXIDI:
147 /* Division of infinity by infinity */
148 env->fpscr |= 1 << FPSCR_VXIDI;
149 goto update_arith;
150 case POWERPC_EXCP_FP_VXZDZ:
151 /* Division of zero by zero */
152 env->fpscr |= 1 << FPSCR_VXZDZ;
153 goto update_arith;
154 case POWERPC_EXCP_FP_VXIMZ:
155 /* Multiplication of zero by infinity */
156 env->fpscr |= 1 << FPSCR_VXIMZ;
157 goto update_arith;
158 case POWERPC_EXCP_FP_VXVC:
159 /* Ordered comparison of NaN */
160 env->fpscr |= 1 << FPSCR_VXVC;
161 if (set_fpcc) {
162 env->fpscr &= ~(0xF << FPSCR_FPCC);
163 env->fpscr |= 0x11 << FPSCR_FPCC;
165 /* We must update the target FPR before raising the exception */
166 if (ve != 0) {
167 cs->exception_index = POWERPC_EXCP_PROGRAM;
168 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
169 /* Update the floating-point enabled exception summary */
170 env->fpscr |= 1 << FPSCR_FEX;
171 /* Exception is differed */
172 ve = 0;
174 break;
175 case POWERPC_EXCP_FP_VXSQRT:
176 /* Square root of a negative number */
177 env->fpscr |= 1 << FPSCR_VXSQRT;
178 update_arith:
179 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
180 if (ve == 0) {
181 /* Set the result to quiet NaN */
182 ret = 0x7FF8000000000000ULL;
183 if (set_fpcc) {
184 env->fpscr &= ~(0xF << FPSCR_FPCC);
185 env->fpscr |= 0x11 << FPSCR_FPCC;
188 break;
189 case POWERPC_EXCP_FP_VXCVI:
190 /* Invalid conversion */
191 env->fpscr |= 1 << FPSCR_VXCVI;
192 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
193 if (ve == 0) {
194 /* Set the result to quiet NaN */
195 ret = 0x7FF8000000000000ULL;
196 if (set_fpcc) {
197 env->fpscr &= ~(0xF << FPSCR_FPCC);
198 env->fpscr |= 0x11 << FPSCR_FPCC;
201 break;
203 /* Update the floating-point invalid operation summary */
204 env->fpscr |= 1 << FPSCR_VX;
205 /* Update the floating-point exception summary */
206 env->fpscr |= FP_FX;
207 if (ve != 0) {
208 /* Update the floating-point enabled exception summary */
209 env->fpscr |= 1 << FPSCR_FEX;
210 if (msr_fe0 != 0 || msr_fe1 != 0) {
211 /* GETPC() works here because this is inline */
212 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
213 POWERPC_EXCP_FP | op, GETPC());
216 return ret;
219 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
221 env->fpscr |= 1 << FPSCR_ZX;
222 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
223 /* Update the floating-point exception summary */
224 env->fpscr |= FP_FX;
225 if (fpscr_ze != 0) {
226 /* Update the floating-point enabled exception summary */
227 env->fpscr |= 1 << FPSCR_FEX;
228 if (msr_fe0 != 0 || msr_fe1 != 0) {
229 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
230 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
231 raddr);
236 static inline void float_overflow_excp(CPUPPCState *env)
238 CPUState *cs = CPU(ppc_env_get_cpu(env));
240 env->fpscr |= 1 << FPSCR_OX;
241 /* Update the floating-point exception summary */
242 env->fpscr |= FP_FX;
243 if (fpscr_oe != 0) {
244 /* XXX: should adjust the result */
245 /* Update the floating-point enabled exception summary */
246 env->fpscr |= 1 << FPSCR_FEX;
247 /* We must update the target FPR before raising the exception */
248 cs->exception_index = POWERPC_EXCP_PROGRAM;
249 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
250 } else {
251 env->fpscr |= 1 << FPSCR_XX;
252 env->fpscr |= 1 << FPSCR_FI;
256 static inline void float_underflow_excp(CPUPPCState *env)
258 CPUState *cs = CPU(ppc_env_get_cpu(env));
260 env->fpscr |= 1 << FPSCR_UX;
261 /* Update the floating-point exception summary */
262 env->fpscr |= FP_FX;
263 if (fpscr_ue != 0) {
264 /* XXX: should adjust the result */
265 /* Update the floating-point enabled exception summary */
266 env->fpscr |= 1 << FPSCR_FEX;
267 /* We must update the target FPR before raising the exception */
268 cs->exception_index = POWERPC_EXCP_PROGRAM;
269 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
273 static inline void float_inexact_excp(CPUPPCState *env)
275 CPUState *cs = CPU(ppc_env_get_cpu(env));
277 env->fpscr |= 1 << FPSCR_FI;
278 env->fpscr |= 1 << FPSCR_XX;
279 /* Update the floating-point exception summary */
280 env->fpscr |= FP_FX;
281 if (fpscr_xe != 0) {
282 /* Update the floating-point enabled exception summary */
283 env->fpscr |= 1 << FPSCR_FEX;
284 /* We must update the target FPR before raising the exception */
285 cs->exception_index = POWERPC_EXCP_PROGRAM;
286 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
290 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
292 int rnd_type;
294 /* Set rounding mode */
295 switch (fpscr_rn) {
296 case 0:
297 /* Best approximation (round to nearest) */
298 rnd_type = float_round_nearest_even;
299 break;
300 case 1:
301 /* Smaller magnitude (round toward zero) */
302 rnd_type = float_round_to_zero;
303 break;
304 case 2:
305 /* Round toward +infinite */
306 rnd_type = float_round_up;
307 break;
308 default:
309 case 3:
310 /* Round toward -infinite */
311 rnd_type = float_round_down;
312 break;
314 set_float_rounding_mode(rnd_type, &env->fp_status);
317 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
319 int prev;
321 prev = (env->fpscr >> bit) & 1;
322 env->fpscr &= ~(1 << bit);
323 if (prev == 1) {
324 switch (bit) {
325 case FPSCR_RN1:
326 case FPSCR_RN:
327 fpscr_set_rounding_mode(env);
328 break;
329 case FPSCR_VXSNAN:
330 case FPSCR_VXISI:
331 case FPSCR_VXIDI:
332 case FPSCR_VXZDZ:
333 case FPSCR_VXIMZ:
334 case FPSCR_VXVC:
335 case FPSCR_VXSOFT:
336 case FPSCR_VXSQRT:
337 case FPSCR_VXCVI:
338 if (!fpscr_ix) {
339 /* Set VX bit to zero */
340 env->fpscr &= ~(1 << FPSCR_VX);
342 break;
343 case FPSCR_OX:
344 case FPSCR_UX:
345 case FPSCR_ZX:
346 case FPSCR_XX:
347 case FPSCR_VE:
348 case FPSCR_OE:
349 case FPSCR_UE:
350 case FPSCR_ZE:
351 case FPSCR_XE:
352 if (!fpscr_eex) {
353 /* Set the FEX bit */
354 env->fpscr &= ~(1 << FPSCR_FEX);
356 break;
357 default:
358 break;
363 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
365 CPUState *cs = CPU(ppc_env_get_cpu(env));
366 int prev;
368 prev = (env->fpscr >> bit) & 1;
369 env->fpscr |= 1 << bit;
370 if (prev == 0) {
371 switch (bit) {
372 case FPSCR_VX:
373 env->fpscr |= FP_FX;
374 if (fpscr_ve) {
375 goto raise_ve;
377 break;
378 case FPSCR_OX:
379 env->fpscr |= FP_FX;
380 if (fpscr_oe) {
381 goto raise_oe;
383 break;
384 case FPSCR_UX:
385 env->fpscr |= FP_FX;
386 if (fpscr_ue) {
387 goto raise_ue;
389 break;
390 case FPSCR_ZX:
391 env->fpscr |= FP_FX;
392 if (fpscr_ze) {
393 goto raise_ze;
395 break;
396 case FPSCR_XX:
397 env->fpscr |= FP_FX;
398 if (fpscr_xe) {
399 goto raise_xe;
401 break;
402 case FPSCR_VXSNAN:
403 case FPSCR_VXISI:
404 case FPSCR_VXIDI:
405 case FPSCR_VXZDZ:
406 case FPSCR_VXIMZ:
407 case FPSCR_VXVC:
408 case FPSCR_VXSOFT:
409 case FPSCR_VXSQRT:
410 case FPSCR_VXCVI:
411 env->fpscr |= 1 << FPSCR_VX;
412 env->fpscr |= FP_FX;
413 if (fpscr_ve != 0) {
414 goto raise_ve;
416 break;
417 case FPSCR_VE:
418 if (fpscr_vx != 0) {
419 raise_ve:
420 env->error_code = POWERPC_EXCP_FP;
421 if (fpscr_vxsnan) {
422 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
424 if (fpscr_vxisi) {
425 env->error_code |= POWERPC_EXCP_FP_VXISI;
427 if (fpscr_vxidi) {
428 env->error_code |= POWERPC_EXCP_FP_VXIDI;
430 if (fpscr_vxzdz) {
431 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
433 if (fpscr_vximz) {
434 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
436 if (fpscr_vxvc) {
437 env->error_code |= POWERPC_EXCP_FP_VXVC;
439 if (fpscr_vxsoft) {
440 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
442 if (fpscr_vxsqrt) {
443 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
445 if (fpscr_vxcvi) {
446 env->error_code |= POWERPC_EXCP_FP_VXCVI;
448 goto raise_excp;
450 break;
451 case FPSCR_OE:
452 if (fpscr_ox != 0) {
453 raise_oe:
454 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
455 goto raise_excp;
457 break;
458 case FPSCR_UE:
459 if (fpscr_ux != 0) {
460 raise_ue:
461 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
462 goto raise_excp;
464 break;
465 case FPSCR_ZE:
466 if (fpscr_zx != 0) {
467 raise_ze:
468 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
469 goto raise_excp;
471 break;
472 case FPSCR_XE:
473 if (fpscr_xx != 0) {
474 raise_xe:
475 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
476 goto raise_excp;
478 break;
479 case FPSCR_RN1:
480 case FPSCR_RN:
481 fpscr_set_rounding_mode(env);
482 break;
483 default:
484 break;
485 raise_excp:
486 /* Update the floating-point enabled exception summary */
487 env->fpscr |= 1 << FPSCR_FEX;
488 /* We have to update Rc1 before raising the exception */
489 cs->exception_index = POWERPC_EXCP_PROGRAM;
490 break;
495 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
497 CPUState *cs = CPU(ppc_env_get_cpu(env));
498 target_ulong prev, new;
499 int i;
501 prev = env->fpscr;
502 new = (target_ulong)arg;
503 new &= ~0x60000000LL;
504 new |= prev & 0x60000000LL;
505 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
506 if (mask & (1 << i)) {
507 env->fpscr &= ~(0xFLL << (4 * i));
508 env->fpscr |= new & (0xFLL << (4 * i));
511 /* Update VX and FEX */
512 if (fpscr_ix != 0) {
513 env->fpscr |= 1 << FPSCR_VX;
514 } else {
515 env->fpscr &= ~(1 << FPSCR_VX);
517 if ((fpscr_ex & fpscr_eex) != 0) {
518 env->fpscr |= 1 << FPSCR_FEX;
519 cs->exception_index = POWERPC_EXCP_PROGRAM;
520 /* XXX: we should compute it properly */
521 env->error_code = POWERPC_EXCP_FP;
522 } else {
523 env->fpscr &= ~(1 << FPSCR_FEX);
525 fpscr_set_rounding_mode(env);
528 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
530 helper_store_fpscr(env, arg, mask);
533 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
535 CPUState *cs = CPU(ppc_env_get_cpu(env));
536 int status = get_float_exception_flags(&env->fp_status);
537 bool inexact_happened = false;
539 if (status & float_flag_divbyzero) {
540 float_zero_divide_excp(env, raddr);
541 } else if (status & float_flag_overflow) {
542 float_overflow_excp(env);
543 } else if (status & float_flag_underflow) {
544 float_underflow_excp(env);
545 } else if (status & float_flag_inexact) {
546 float_inexact_excp(env);
547 inexact_happened = true;
550 /* if the inexact flag was not set */
551 if (inexact_happened == false) {
552 env->fpscr &= ~(1 << FPSCR_FI); /* clear the FPSCR[FI] bit */
555 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
556 (env->error_code & POWERPC_EXCP_FP)) {
557 /* Differred floating-point exception after target FPR update */
558 if (msr_fe0 != 0 || msr_fe1 != 0) {
559 raise_exception_err_ra(env, cs->exception_index,
560 env->error_code, raddr);
565 static inline __attribute__((__always_inline__))
566 void float_check_status(CPUPPCState *env)
568 /* GETPC() works here because this is inline */
569 do_float_check_status(env, GETPC());
572 void helper_float_check_status(CPUPPCState *env)
574 do_float_check_status(env, GETPC());
577 void helper_reset_fpstatus(CPUPPCState *env)
579 set_float_exception_flags(0, &env->fp_status);
582 /* fadd - fadd. */
583 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
585 CPU_DoubleU farg1, farg2;
587 farg1.ll = arg1;
588 farg2.ll = arg2;
590 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
591 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
592 /* Magnitude subtraction of infinities */
593 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
594 } else {
595 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
596 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
597 /* sNaN addition */
598 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
600 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
603 return farg1.ll;
606 /* fsub - fsub. */
607 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
609 CPU_DoubleU farg1, farg2;
611 farg1.ll = arg1;
612 farg2.ll = arg2;
614 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
615 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
616 /* Magnitude subtraction of infinities */
617 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
618 } else {
619 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
620 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
621 /* sNaN subtraction */
622 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
624 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
627 return farg1.ll;
630 /* fmul - fmul. */
631 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
633 CPU_DoubleU farg1, farg2;
635 farg1.ll = arg1;
636 farg2.ll = arg2;
638 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
639 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
640 /* Multiplication of zero by infinity */
641 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
642 } else {
643 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
644 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
645 /* sNaN multiplication */
646 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
648 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
651 return farg1.ll;
654 /* fdiv - fdiv. */
655 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
657 CPU_DoubleU farg1, farg2;
659 farg1.ll = arg1;
660 farg2.ll = arg2;
662 if (unlikely(float64_is_infinity(farg1.d) &&
663 float64_is_infinity(farg2.d))) {
664 /* Division of infinity by infinity */
665 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
666 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
667 /* Division of zero by zero */
668 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
669 } else {
670 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
671 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
672 /* sNaN division */
673 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
675 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
678 return farg1.ll;
682 #define FPU_FCTI(op, cvt, nanval) \
683 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
685 CPU_DoubleU farg; \
687 farg.ll = arg; \
688 farg.ll = float64_to_##cvt(farg.d, &env->fp_status); \
690 if (unlikely(env->fp_status.float_exception_flags)) { \
691 if (float64_is_any_nan(arg)) { \
692 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
693 if (float64_is_signaling_nan(arg, &env->fp_status)) { \
694 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
696 farg.ll = nanval; \
697 } else if (env->fp_status.float_exception_flags & \
698 float_flag_invalid) { \
699 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
701 float_check_status(env); \
703 return farg.ll; \
706 FPU_FCTI(fctiw, int32, 0x80000000U)
707 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
708 FPU_FCTI(fctiwu, uint32, 0x00000000U)
709 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
710 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
711 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
712 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
713 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
715 #define FPU_FCFI(op, cvtr, is_single) \
716 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
718 CPU_DoubleU farg; \
720 if (is_single) { \
721 float32 tmp = cvtr(arg, &env->fp_status); \
722 farg.d = float32_to_float64(tmp, &env->fp_status); \
723 } else { \
724 farg.d = cvtr(arg, &env->fp_status); \
726 float_check_status(env); \
727 return farg.ll; \
730 FPU_FCFI(fcfid, int64_to_float64, 0)
731 FPU_FCFI(fcfids, int64_to_float32, 1)
732 FPU_FCFI(fcfidu, uint64_to_float64, 0)
733 FPU_FCFI(fcfidus, uint64_to_float32, 1)
735 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
736 int rounding_mode)
738 CPU_DoubleU farg;
740 farg.ll = arg;
742 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
743 /* sNaN round */
744 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
745 farg.ll = arg | 0x0008000000000000ULL;
746 } else {
747 int inexact = get_float_exception_flags(&env->fp_status) &
748 float_flag_inexact;
749 set_float_rounding_mode(rounding_mode, &env->fp_status);
750 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
751 /* Restore rounding mode from FPSCR */
752 fpscr_set_rounding_mode(env);
754 /* fri* does not set FPSCR[XX] */
755 if (!inexact) {
756 env->fp_status.float_exception_flags &= ~float_flag_inexact;
759 float_check_status(env);
760 return farg.ll;
763 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
765 return do_fri(env, arg, float_round_ties_away);
768 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
770 return do_fri(env, arg, float_round_to_zero);
773 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
775 return do_fri(env, arg, float_round_up);
778 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
780 return do_fri(env, arg, float_round_down);
783 #define FPU_MADDSUB_UPDATE(NAME, TP) \
784 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \
785 unsigned int madd_flags) \
787 if (TP##_is_signaling_nan(arg1, &env->fp_status) || \
788 TP##_is_signaling_nan(arg2, &env->fp_status) || \
789 TP##_is_signaling_nan(arg3, &env->fp_status)) { \
790 /* sNaN operation */ \
791 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
793 if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \
794 (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \
795 /* Multiplication of zero by infinity */ \
796 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); \
798 if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \
799 TP##_is_infinity(arg3)) { \
800 uint8_t aSign, bSign, cSign; \
802 aSign = TP##_is_neg(arg1); \
803 bSign = TP##_is_neg(arg2); \
804 cSign = TP##_is_neg(arg3); \
805 if (madd_flags & float_muladd_negate_c) { \
806 cSign ^= 1; \
808 if (aSign ^ bSign ^ cSign) { \
809 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); \
813 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
814 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
816 #define FPU_FMADD(op, madd_flags) \
817 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
818 uint64_t arg2, uint64_t arg3) \
820 uint32_t flags; \
821 float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \
822 &env->fp_status); \
823 flags = get_float_exception_flags(&env->fp_status); \
824 if (flags) { \
825 if (flags & float_flag_invalid) { \
826 float64_maddsub_update_excp(env, arg1, arg2, arg3, \
827 madd_flags); \
829 float_check_status(env); \
831 return ret; \
834 #define MADD_FLGS 0
835 #define MSUB_FLGS float_muladd_negate_c
836 #define NMADD_FLGS float_muladd_negate_result
837 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
839 FPU_FMADD(fmadd, MADD_FLGS)
840 FPU_FMADD(fnmadd, NMADD_FLGS)
841 FPU_FMADD(fmsub, MSUB_FLGS)
842 FPU_FMADD(fnmsub, NMSUB_FLGS)
844 /* frsp - frsp. */
845 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
847 CPU_DoubleU farg;
848 float32 f32;
850 farg.ll = arg;
852 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
853 /* sNaN square root */
854 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
856 f32 = float64_to_float32(farg.d, &env->fp_status);
857 farg.d = float32_to_float64(f32, &env->fp_status);
859 return farg.ll;
862 /* fsqrt - fsqrt. */
863 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
865 CPU_DoubleU farg;
867 farg.ll = arg;
869 if (unlikely(float64_is_any_nan(farg.d))) {
870 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
871 /* sNaN reciprocal square root */
872 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
873 farg.ll = float64_snan_to_qnan(farg.ll);
875 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
876 /* Square root of a negative nonzero number */
877 farg.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
878 } else {
879 farg.d = float64_sqrt(farg.d, &env->fp_status);
881 return farg.ll;
884 /* fre - fre. */
885 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
887 CPU_DoubleU farg;
889 farg.ll = arg;
891 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
892 /* sNaN reciprocal */
893 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
895 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
896 return farg.d;
899 /* fres - fres. */
900 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
902 CPU_DoubleU farg;
903 float32 f32;
905 farg.ll = arg;
907 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
908 /* sNaN reciprocal */
909 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
911 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
912 f32 = float64_to_float32(farg.d, &env->fp_status);
913 farg.d = float32_to_float64(f32, &env->fp_status);
915 return farg.ll;
918 /* frsqrte - frsqrte. */
919 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
921 CPU_DoubleU farg;
923 farg.ll = arg;
925 if (unlikely(float64_is_any_nan(farg.d))) {
926 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
927 /* sNaN reciprocal square root */
928 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
929 farg.ll = float64_snan_to_qnan(farg.ll);
931 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
932 /* Reciprocal square root of a negative nonzero number */
933 farg.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
934 } else {
935 farg.d = float64_sqrt(farg.d, &env->fp_status);
936 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
939 return farg.ll;
942 /* fsel - fsel. */
943 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
944 uint64_t arg3)
946 CPU_DoubleU farg1;
948 farg1.ll = arg1;
950 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
951 !float64_is_any_nan(farg1.d)) {
952 return arg2;
953 } else {
954 return arg3;
958 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
960 int fe_flag = 0;
961 int fg_flag = 0;
963 if (unlikely(float64_is_infinity(fra) ||
964 float64_is_infinity(frb) ||
965 float64_is_zero(frb))) {
966 fe_flag = 1;
967 fg_flag = 1;
968 } else {
969 int e_a = ppc_float64_get_unbiased_exp(fra);
970 int e_b = ppc_float64_get_unbiased_exp(frb);
972 if (unlikely(float64_is_any_nan(fra) ||
973 float64_is_any_nan(frb))) {
974 fe_flag = 1;
975 } else if ((e_b <= -1022) || (e_b >= 1021)) {
976 fe_flag = 1;
977 } else if (!float64_is_zero(fra) &&
978 (((e_a - e_b) >= 1023) ||
979 ((e_a - e_b) <= -1021) ||
980 (e_a <= -970))) {
981 fe_flag = 1;
984 if (unlikely(float64_is_zero_or_denormal(frb))) {
985 /* XB is not zero because of the above check and */
986 /* so must be denormalized. */
987 fg_flag = 1;
991 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
994 uint32_t helper_ftsqrt(uint64_t frb)
996 int fe_flag = 0;
997 int fg_flag = 0;
999 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1000 fe_flag = 1;
1001 fg_flag = 1;
1002 } else {
1003 int e_b = ppc_float64_get_unbiased_exp(frb);
1005 if (unlikely(float64_is_any_nan(frb))) {
1006 fe_flag = 1;
1007 } else if (unlikely(float64_is_zero(frb))) {
1008 fe_flag = 1;
1009 } else if (unlikely(float64_is_neg(frb))) {
1010 fe_flag = 1;
1011 } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1012 fe_flag = 1;
1015 if (unlikely(float64_is_zero_or_denormal(frb))) {
1016 /* XB is not zero because of the above check and */
1017 /* therefore must be denormalized. */
1018 fg_flag = 1;
1022 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1025 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1026 uint32_t crfD)
1028 CPU_DoubleU farg1, farg2;
1029 uint32_t ret = 0;
1031 farg1.ll = arg1;
1032 farg2.ll = arg2;
1034 if (unlikely(float64_is_any_nan(farg1.d) ||
1035 float64_is_any_nan(farg2.d))) {
1036 ret = 0x01UL;
1037 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1038 ret = 0x08UL;
1039 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1040 ret = 0x04UL;
1041 } else {
1042 ret = 0x02UL;
1045 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1046 env->fpscr |= ret << FPSCR_FPRF;
1047 env->crf[crfD] = ret;
1048 if (unlikely(ret == 0x01UL
1049 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1050 float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1051 /* sNaN comparison */
1052 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1056 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1057 uint32_t crfD)
1059 CPU_DoubleU farg1, farg2;
1060 uint32_t ret = 0;
1062 farg1.ll = arg1;
1063 farg2.ll = arg2;
1065 if (unlikely(float64_is_any_nan(farg1.d) ||
1066 float64_is_any_nan(farg2.d))) {
1067 ret = 0x01UL;
1068 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1069 ret = 0x08UL;
1070 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1071 ret = 0x04UL;
1072 } else {
1073 ret = 0x02UL;
1076 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1077 env->fpscr |= ret << FPSCR_FPRF;
1078 env->crf[crfD] = ret;
1079 if (unlikely(ret == 0x01UL)) {
1080 if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1081 float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1082 /* sNaN comparison */
1083 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1084 POWERPC_EXCP_FP_VXVC, 1);
1085 } else {
1086 /* qNaN comparison */
1087 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1092 /* Single-precision floating-point conversions */
1093 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1095 CPU_FloatU u;
1097 u.f = int32_to_float32(val, &env->vec_status);
1099 return u.l;
1102 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1104 CPU_FloatU u;
1106 u.f = uint32_to_float32(val, &env->vec_status);
1108 return u.l;
1111 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1113 CPU_FloatU u;
1115 u.l = val;
1116 /* NaN are not treated the same way IEEE 754 does */
1117 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1118 return 0;
1121 return float32_to_int32(u.f, &env->vec_status);
1124 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1126 CPU_FloatU u;
1128 u.l = val;
1129 /* NaN are not treated the same way IEEE 754 does */
1130 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1131 return 0;
1134 return float32_to_uint32(u.f, &env->vec_status);
1137 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1139 CPU_FloatU u;
1141 u.l = val;
1142 /* NaN are not treated the same way IEEE 754 does */
1143 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1144 return 0;
1147 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1150 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1152 CPU_FloatU u;
1154 u.l = val;
1155 /* NaN are not treated the same way IEEE 754 does */
1156 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1157 return 0;
1160 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1163 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1165 CPU_FloatU u;
1166 float32 tmp;
1168 u.f = int32_to_float32(val, &env->vec_status);
1169 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1170 u.f = float32_div(u.f, tmp, &env->vec_status);
1172 return u.l;
1175 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1177 CPU_FloatU u;
1178 float32 tmp;
1180 u.f = uint32_to_float32(val, &env->vec_status);
1181 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1182 u.f = float32_div(u.f, tmp, &env->vec_status);
1184 return u.l;
1187 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1189 CPU_FloatU u;
1190 float32 tmp;
1192 u.l = val;
1193 /* NaN are not treated the same way IEEE 754 does */
1194 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1195 return 0;
1197 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1198 u.f = float32_mul(u.f, tmp, &env->vec_status);
1200 return float32_to_int32(u.f, &env->vec_status);
1203 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1205 CPU_FloatU u;
1206 float32 tmp;
1208 u.l = val;
1209 /* NaN are not treated the same way IEEE 754 does */
1210 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1211 return 0;
1213 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1214 u.f = float32_mul(u.f, tmp, &env->vec_status);
1216 return float32_to_uint32(u.f, &env->vec_status);
1219 #define HELPER_SPE_SINGLE_CONV(name) \
1220 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1222 return e##name(env, val); \
1224 /* efscfsi */
1225 HELPER_SPE_SINGLE_CONV(fscfsi);
1226 /* efscfui */
1227 HELPER_SPE_SINGLE_CONV(fscfui);
1228 /* efscfuf */
1229 HELPER_SPE_SINGLE_CONV(fscfuf);
1230 /* efscfsf */
1231 HELPER_SPE_SINGLE_CONV(fscfsf);
1232 /* efsctsi */
1233 HELPER_SPE_SINGLE_CONV(fsctsi);
1234 /* efsctui */
1235 HELPER_SPE_SINGLE_CONV(fsctui);
1236 /* efsctsiz */
1237 HELPER_SPE_SINGLE_CONV(fsctsiz);
1238 /* efsctuiz */
1239 HELPER_SPE_SINGLE_CONV(fsctuiz);
1240 /* efsctsf */
1241 HELPER_SPE_SINGLE_CONV(fsctsf);
1242 /* efsctuf */
1243 HELPER_SPE_SINGLE_CONV(fsctuf);
1245 #define HELPER_SPE_VECTOR_CONV(name) \
1246 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1248 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1249 (uint64_t)e##name(env, val); \
1251 /* evfscfsi */
1252 HELPER_SPE_VECTOR_CONV(fscfsi);
1253 /* evfscfui */
1254 HELPER_SPE_VECTOR_CONV(fscfui);
1255 /* evfscfuf */
1256 HELPER_SPE_VECTOR_CONV(fscfuf);
1257 /* evfscfsf */
1258 HELPER_SPE_VECTOR_CONV(fscfsf);
1259 /* evfsctsi */
1260 HELPER_SPE_VECTOR_CONV(fsctsi);
1261 /* evfsctui */
1262 HELPER_SPE_VECTOR_CONV(fsctui);
1263 /* evfsctsiz */
1264 HELPER_SPE_VECTOR_CONV(fsctsiz);
1265 /* evfsctuiz */
1266 HELPER_SPE_VECTOR_CONV(fsctuiz);
1267 /* evfsctsf */
1268 HELPER_SPE_VECTOR_CONV(fsctsf);
1269 /* evfsctuf */
1270 HELPER_SPE_VECTOR_CONV(fsctuf);
1272 /* Single-precision floating-point arithmetic */
1273 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1275 CPU_FloatU u1, u2;
1277 u1.l = op1;
1278 u2.l = op2;
1279 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1280 return u1.l;
1283 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1285 CPU_FloatU u1, u2;
1287 u1.l = op1;
1288 u2.l = op2;
1289 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1290 return u1.l;
1293 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1295 CPU_FloatU u1, u2;
1297 u1.l = op1;
1298 u2.l = op2;
1299 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1300 return u1.l;
1303 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1305 CPU_FloatU u1, u2;
1307 u1.l = op1;
1308 u2.l = op2;
1309 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1310 return u1.l;
1313 #define HELPER_SPE_SINGLE_ARITH(name) \
1314 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1316 return e##name(env, op1, op2); \
1318 /* efsadd */
1319 HELPER_SPE_SINGLE_ARITH(fsadd);
1320 /* efssub */
1321 HELPER_SPE_SINGLE_ARITH(fssub);
1322 /* efsmul */
1323 HELPER_SPE_SINGLE_ARITH(fsmul);
1324 /* efsdiv */
1325 HELPER_SPE_SINGLE_ARITH(fsdiv);
1327 #define HELPER_SPE_VECTOR_ARITH(name) \
1328 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1330 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1331 (uint64_t)e##name(env, op1, op2); \
1333 /* evfsadd */
1334 HELPER_SPE_VECTOR_ARITH(fsadd);
1335 /* evfssub */
1336 HELPER_SPE_VECTOR_ARITH(fssub);
1337 /* evfsmul */
1338 HELPER_SPE_VECTOR_ARITH(fsmul);
1339 /* evfsdiv */
1340 HELPER_SPE_VECTOR_ARITH(fsdiv);
1342 /* Single-precision floating-point comparisons */
1343 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1345 CPU_FloatU u1, u2;
1347 u1.l = op1;
1348 u2.l = op2;
1349 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1352 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1354 CPU_FloatU u1, u2;
1356 u1.l = op1;
1357 u2.l = op2;
1358 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1361 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1363 CPU_FloatU u1, u2;
1365 u1.l = op1;
1366 u2.l = op2;
1367 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1370 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1372 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1373 return efscmplt(env, op1, op2);
1376 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1378 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1379 return efscmpgt(env, op1, op2);
1382 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1384 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1385 return efscmpeq(env, op1, op2);
1388 #define HELPER_SINGLE_SPE_CMP(name) \
1389 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1391 return e##name(env, op1, op2); \
1393 /* efststlt */
1394 HELPER_SINGLE_SPE_CMP(fststlt);
1395 /* efststgt */
1396 HELPER_SINGLE_SPE_CMP(fststgt);
1397 /* efststeq */
1398 HELPER_SINGLE_SPE_CMP(fststeq);
1399 /* efscmplt */
1400 HELPER_SINGLE_SPE_CMP(fscmplt);
1401 /* efscmpgt */
1402 HELPER_SINGLE_SPE_CMP(fscmpgt);
1403 /* efscmpeq */
1404 HELPER_SINGLE_SPE_CMP(fscmpeq);
1406 static inline uint32_t evcmp_merge(int t0, int t1)
1408 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1411 #define HELPER_VECTOR_SPE_CMP(name) \
1412 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1414 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1415 e##name(env, op1, op2)); \
1417 /* evfststlt */
1418 HELPER_VECTOR_SPE_CMP(fststlt);
1419 /* evfststgt */
1420 HELPER_VECTOR_SPE_CMP(fststgt);
1421 /* evfststeq */
1422 HELPER_VECTOR_SPE_CMP(fststeq);
1423 /* evfscmplt */
1424 HELPER_VECTOR_SPE_CMP(fscmplt);
1425 /* evfscmpgt */
1426 HELPER_VECTOR_SPE_CMP(fscmpgt);
1427 /* evfscmpeq */
1428 HELPER_VECTOR_SPE_CMP(fscmpeq);
1430 /* Double-precision floating-point conversion */
1431 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1433 CPU_DoubleU u;
1435 u.d = int32_to_float64(val, &env->vec_status);
1437 return u.ll;
1440 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1442 CPU_DoubleU u;
1444 u.d = int64_to_float64(val, &env->vec_status);
1446 return u.ll;
1449 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1451 CPU_DoubleU u;
1453 u.d = uint32_to_float64(val, &env->vec_status);
1455 return u.ll;
1458 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1460 CPU_DoubleU u;
1462 u.d = uint64_to_float64(val, &env->vec_status);
1464 return u.ll;
1467 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1469 CPU_DoubleU u;
1471 u.ll = val;
1472 /* NaN are not treated the same way IEEE 754 does */
1473 if (unlikely(float64_is_any_nan(u.d))) {
1474 return 0;
1477 return float64_to_int32(u.d, &env->vec_status);
1480 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1482 CPU_DoubleU u;
1484 u.ll = val;
1485 /* NaN are not treated the same way IEEE 754 does */
1486 if (unlikely(float64_is_any_nan(u.d))) {
1487 return 0;
1490 return float64_to_uint32(u.d, &env->vec_status);
1493 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1495 CPU_DoubleU u;
1497 u.ll = val;
1498 /* NaN are not treated the same way IEEE 754 does */
1499 if (unlikely(float64_is_any_nan(u.d))) {
1500 return 0;
1503 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1506 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1508 CPU_DoubleU u;
1510 u.ll = val;
1511 /* NaN are not treated the same way IEEE 754 does */
1512 if (unlikely(float64_is_any_nan(u.d))) {
1513 return 0;
1516 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1519 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1521 CPU_DoubleU u;
1523 u.ll = val;
1524 /* NaN are not treated the same way IEEE 754 does */
1525 if (unlikely(float64_is_any_nan(u.d))) {
1526 return 0;
1529 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1532 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1534 CPU_DoubleU u;
1536 u.ll = val;
1537 /* NaN are not treated the same way IEEE 754 does */
1538 if (unlikely(float64_is_any_nan(u.d))) {
1539 return 0;
1542 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1545 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1547 CPU_DoubleU u;
1548 float64 tmp;
1550 u.d = int32_to_float64(val, &env->vec_status);
1551 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1552 u.d = float64_div(u.d, tmp, &env->vec_status);
1554 return u.ll;
1557 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1559 CPU_DoubleU u;
1560 float64 tmp;
1562 u.d = uint32_to_float64(val, &env->vec_status);
1563 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1564 u.d = float64_div(u.d, tmp, &env->vec_status);
1566 return u.ll;
1569 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1571 CPU_DoubleU u;
1572 float64 tmp;
1574 u.ll = val;
1575 /* NaN are not treated the same way IEEE 754 does */
1576 if (unlikely(float64_is_any_nan(u.d))) {
1577 return 0;
1579 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1580 u.d = float64_mul(u.d, tmp, &env->vec_status);
1582 return float64_to_int32(u.d, &env->vec_status);
1585 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1587 CPU_DoubleU u;
1588 float64 tmp;
1590 u.ll = val;
1591 /* NaN are not treated the same way IEEE 754 does */
1592 if (unlikely(float64_is_any_nan(u.d))) {
1593 return 0;
1595 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1596 u.d = float64_mul(u.d, tmp, &env->vec_status);
1598 return float64_to_uint32(u.d, &env->vec_status);
1601 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1603 CPU_DoubleU u1;
1604 CPU_FloatU u2;
1606 u1.ll = val;
1607 u2.f = float64_to_float32(u1.d, &env->vec_status);
1609 return u2.l;
1612 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1614 CPU_DoubleU u2;
1615 CPU_FloatU u1;
1617 u1.l = val;
1618 u2.d = float32_to_float64(u1.f, &env->vec_status);
1620 return u2.ll;
1623 /* Double precision fixed-point arithmetic */
1624 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1626 CPU_DoubleU u1, u2;
1628 u1.ll = op1;
1629 u2.ll = op2;
1630 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1631 return u1.ll;
1634 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1636 CPU_DoubleU u1, u2;
1638 u1.ll = op1;
1639 u2.ll = op2;
1640 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1641 return u1.ll;
1644 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1646 CPU_DoubleU u1, u2;
1648 u1.ll = op1;
1649 u2.ll = op2;
1650 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1651 return u1.ll;
1654 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1656 CPU_DoubleU u1, u2;
1658 u1.ll = op1;
1659 u2.ll = op2;
1660 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1661 return u1.ll;
1664 /* Double precision floating point helpers */
1665 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1667 CPU_DoubleU u1, u2;
1669 u1.ll = op1;
1670 u2.ll = op2;
1671 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1674 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1676 CPU_DoubleU u1, u2;
1678 u1.ll = op1;
1679 u2.ll = op2;
1680 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1683 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1685 CPU_DoubleU u1, u2;
1687 u1.ll = op1;
1688 u2.ll = op2;
1689 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1692 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1694 /* XXX: TODO: test special values (NaN, infinites, ...) */
1695 return helper_efdtstlt(env, op1, op2);
1698 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1700 /* XXX: TODO: test special values (NaN, infinites, ...) */
1701 return helper_efdtstgt(env, op1, op2);
1704 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1706 /* XXX: TODO: test special values (NaN, infinites, ...) */
1707 return helper_efdtsteq(env, op1, op2);
1710 #define float64_to_float64(x, env) x
1713 /* VSX_ADD_SUB - VSX floating point add/subract
1714 * name - instruction mnemonic
1715 * op - operation (add or sub)
1716 * nels - number of elements (1, 2 or 4)
1717 * tp - type (float32 or float64)
1718 * fld - vsr_t field (VsrD(*) or VsrW(*))
1719 * sfprf - set FPRF
1721 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1722 void helper_##name(CPUPPCState *env, uint32_t opcode) \
1724 ppc_vsr_t xt, xa, xb; \
1725 int i; \
1727 getVSR(xA(opcode), &xa, env); \
1728 getVSR(xB(opcode), &xb, env); \
1729 getVSR(xT(opcode), &xt, env); \
1730 helper_reset_fpstatus(env); \
1732 for (i = 0; i < nels; i++) { \
1733 float_status tstat = env->fp_status; \
1734 set_float_exception_flags(0, &tstat); \
1735 xt.fld = tp##_##op(xa.fld, xb.fld, &tstat); \
1736 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1738 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1739 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1740 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
1741 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1742 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1743 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1747 if (r2sp) { \
1748 xt.fld = helper_frsp(env, xt.fld); \
1751 if (sfprf) { \
1752 helper_compute_fprf_float64(env, xt.fld); \
1755 putVSR(xT(opcode), &xt, env); \
1756 float_check_status(env); \
1759 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1760 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1761 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1762 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1763 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1764 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1765 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1766 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1768 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode)
1770 ppc_vsr_t xt, xa, xb;
1771 float_status tstat;
1773 getVSR(rA(opcode) + 32, &xa, env);
1774 getVSR(rB(opcode) + 32, &xb, env);
1775 getVSR(rD(opcode) + 32, &xt, env);
1776 helper_reset_fpstatus(env);
1778 tstat = env->fp_status;
1779 if (unlikely(Rc(opcode) != 0)) {
1780 tstat.float_rounding_mode = float_round_to_odd;
1783 set_float_exception_flags(0, &tstat);
1784 xt.f128 = float128_add(xa.f128, xb.f128, &tstat);
1785 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1787 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1788 if (float128_is_infinity(xa.f128) && float128_is_infinity(xb.f128)) {
1789 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
1790 } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
1791 float128_is_signaling_nan(xb.f128, &tstat)) {
1792 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1796 helper_compute_fprf_float128(env, xt.f128);
1798 putVSR(rD(opcode) + 32, &xt, env);
1799 float_check_status(env);
1802 /* VSX_MUL - VSX floating point multiply
1803 * op - instruction mnemonic
1804 * nels - number of elements (1, 2 or 4)
1805 * tp - type (float32 or float64)
1806 * fld - vsr_t field (VsrD(*) or VsrW(*))
1807 * sfprf - set FPRF
1809 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1810 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1812 ppc_vsr_t xt, xa, xb; \
1813 int i; \
1815 getVSR(xA(opcode), &xa, env); \
1816 getVSR(xB(opcode), &xb, env); \
1817 getVSR(xT(opcode), &xt, env); \
1818 helper_reset_fpstatus(env); \
1820 for (i = 0; i < nels; i++) { \
1821 float_status tstat = env->fp_status; \
1822 set_float_exception_flags(0, &tstat); \
1823 xt.fld = tp##_mul(xa.fld, xb.fld, &tstat); \
1824 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1826 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1827 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) || \
1828 (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) { \
1829 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf); \
1830 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1831 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1832 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1836 if (r2sp) { \
1837 xt.fld = helper_frsp(env, xt.fld); \
1840 if (sfprf) { \
1841 helper_compute_fprf_float64(env, xt.fld); \
1845 putVSR(xT(opcode), &xt, env); \
1846 float_check_status(env); \
1849 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1850 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1851 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1852 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1854 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode)
1856 ppc_vsr_t xt, xa, xb;
1857 float_status tstat;
1859 getVSR(rA(opcode) + 32, &xa, env);
1860 getVSR(rB(opcode) + 32, &xb, env);
1861 getVSR(rD(opcode) + 32, &xt, env);
1863 helper_reset_fpstatus(env);
1864 tstat = env->fp_status;
1865 if (unlikely(Rc(opcode) != 0)) {
1866 tstat.float_rounding_mode = float_round_to_odd;
1869 set_float_exception_flags(0, &tstat);
1870 xt.f128 = float128_mul(xa.f128, xb.f128, &tstat);
1871 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1873 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1874 if ((float128_is_infinity(xa.f128) && float128_is_zero(xb.f128)) ||
1875 (float128_is_infinity(xb.f128) && float128_is_zero(xa.f128))) {
1876 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
1877 } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
1878 float128_is_signaling_nan(xb.f128, &tstat)) {
1879 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1882 helper_compute_fprf_float128(env, xt.f128);
1884 putVSR(rD(opcode) + 32, &xt, env);
1885 float_check_status(env);
1888 /* VSX_DIV - VSX floating point divide
1889 * op - instruction mnemonic
1890 * nels - number of elements (1, 2 or 4)
1891 * tp - type (float32 or float64)
1892 * fld - vsr_t field (VsrD(*) or VsrW(*))
1893 * sfprf - set FPRF
1895 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1896 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1898 ppc_vsr_t xt, xa, xb; \
1899 int i; \
1901 getVSR(xA(opcode), &xa, env); \
1902 getVSR(xB(opcode), &xb, env); \
1903 getVSR(xT(opcode), &xt, env); \
1904 helper_reset_fpstatus(env); \
1906 for (i = 0; i < nels; i++) { \
1907 float_status tstat = env->fp_status; \
1908 set_float_exception_flags(0, &tstat); \
1909 xt.fld = tp##_div(xa.fld, xb.fld, &tstat); \
1910 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1912 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1913 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1914 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf); \
1915 } else if (tp##_is_zero(xa.fld) && \
1916 tp##_is_zero(xb.fld)) { \
1917 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf); \
1918 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1919 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1920 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1924 if (r2sp) { \
1925 xt.fld = helper_frsp(env, xt.fld); \
1928 if (sfprf) { \
1929 helper_compute_fprf_float64(env, xt.fld); \
1933 putVSR(xT(opcode), &xt, env); \
1934 float_check_status(env); \
1937 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1938 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1939 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1940 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1942 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode)
1944 ppc_vsr_t xt, xa, xb;
1945 float_status tstat;
1947 getVSR(rA(opcode) + 32, &xa, env);
1948 getVSR(rB(opcode) + 32, &xb, env);
1949 getVSR(rD(opcode) + 32, &xt, env);
1951 helper_reset_fpstatus(env);
1952 tstat = env->fp_status;
1953 if (unlikely(Rc(opcode) != 0)) {
1954 tstat.float_rounding_mode = float_round_to_odd;
1957 set_float_exception_flags(0, &tstat);
1958 xt.f128 = float128_div(xa.f128, xb.f128, &tstat);
1959 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1961 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1962 if (float128_is_infinity(xa.f128) && float128_is_infinity(xb.f128)) {
1963 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
1964 } else if (float128_is_zero(xa.f128) &&
1965 float128_is_zero(xb.f128)) {
1966 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
1967 } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
1968 float128_is_signaling_nan(xb.f128, &tstat)) {
1969 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1973 helper_compute_fprf_float128(env, xt.f128);
1974 putVSR(rD(opcode) + 32, &xt, env);
1975 float_check_status(env);
1978 /* VSX_RE - VSX floating point reciprocal estimate
1979 * op - instruction mnemonic
1980 * nels - number of elements (1, 2 or 4)
1981 * tp - type (float32 or float64)
1982 * fld - vsr_t field (VsrD(*) or VsrW(*))
1983 * sfprf - set FPRF
1985 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
1986 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1988 ppc_vsr_t xt, xb; \
1989 int i; \
1991 getVSR(xB(opcode), &xb, env); \
1992 getVSR(xT(opcode), &xt, env); \
1993 helper_reset_fpstatus(env); \
1995 for (i = 0; i < nels; i++) { \
1996 if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
1997 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1999 xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status); \
2001 if (r2sp) { \
2002 xt.fld = helper_frsp(env, xt.fld); \
2005 if (sfprf) { \
2006 helper_compute_fprf_float64(env, xt.fld); \
2010 putVSR(xT(opcode), &xt, env); \
2011 float_check_status(env); \
2014 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2015 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2016 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2017 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2019 /* VSX_SQRT - VSX floating point square root
2020 * op - instruction mnemonic
2021 * nels - number of elements (1, 2 or 4)
2022 * tp - type (float32 or float64)
2023 * fld - vsr_t field (VsrD(*) or VsrW(*))
2024 * sfprf - set FPRF
2026 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2027 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2029 ppc_vsr_t xt, xb; \
2030 int i; \
2032 getVSR(xB(opcode), &xb, env); \
2033 getVSR(xT(opcode), &xt, env); \
2034 helper_reset_fpstatus(env); \
2036 for (i = 0; i < nels; i++) { \
2037 float_status tstat = env->fp_status; \
2038 set_float_exception_flags(0, &tstat); \
2039 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2040 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2042 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2043 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2044 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2045 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2046 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2050 if (r2sp) { \
2051 xt.fld = helper_frsp(env, xt.fld); \
2054 if (sfprf) { \
2055 helper_compute_fprf_float64(env, xt.fld); \
2059 putVSR(xT(opcode), &xt, env); \
2060 float_check_status(env); \
2063 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2064 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2065 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2066 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2068 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2069 * op - instruction mnemonic
2070 * nels - number of elements (1, 2 or 4)
2071 * tp - type (float32 or float64)
2072 * fld - vsr_t field (VsrD(*) or VsrW(*))
2073 * sfprf - set FPRF
2075 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2076 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2078 ppc_vsr_t xt, xb; \
2079 int i; \
2081 getVSR(xB(opcode), &xb, env); \
2082 getVSR(xT(opcode), &xt, env); \
2083 helper_reset_fpstatus(env); \
2085 for (i = 0; i < nels; i++) { \
2086 float_status tstat = env->fp_status; \
2087 set_float_exception_flags(0, &tstat); \
2088 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2089 xt.fld = tp##_div(tp##_one, xt.fld, &tstat); \
2090 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2092 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2093 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2094 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2095 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2096 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2100 if (r2sp) { \
2101 xt.fld = helper_frsp(env, xt.fld); \
2104 if (sfprf) { \
2105 helper_compute_fprf_float64(env, xt.fld); \
2109 putVSR(xT(opcode), &xt, env); \
2110 float_check_status(env); \
2113 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2114 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2115 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2116 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2118 /* VSX_TDIV - VSX floating point test for divide
2119 * op - instruction mnemonic
2120 * nels - number of elements (1, 2 or 4)
2121 * tp - type (float32 or float64)
2122 * fld - vsr_t field (VsrD(*) or VsrW(*))
2123 * emin - minimum unbiased exponent
2124 * emax - maximum unbiased exponent
2125 * nbits - number of fraction bits
2127 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2128 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2130 ppc_vsr_t xa, xb; \
2131 int i; \
2132 int fe_flag = 0; \
2133 int fg_flag = 0; \
2135 getVSR(xA(opcode), &xa, env); \
2136 getVSR(xB(opcode), &xb, env); \
2138 for (i = 0; i < nels; i++) { \
2139 if (unlikely(tp##_is_infinity(xa.fld) || \
2140 tp##_is_infinity(xb.fld) || \
2141 tp##_is_zero(xb.fld))) { \
2142 fe_flag = 1; \
2143 fg_flag = 1; \
2144 } else { \
2145 int e_a = ppc_##tp##_get_unbiased_exp(xa.fld); \
2146 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2148 if (unlikely(tp##_is_any_nan(xa.fld) || \
2149 tp##_is_any_nan(xb.fld))) { \
2150 fe_flag = 1; \
2151 } else if ((e_b <= emin) || (e_b >= (emax-2))) { \
2152 fe_flag = 1; \
2153 } else if (!tp##_is_zero(xa.fld) && \
2154 (((e_a - e_b) >= emax) || \
2155 ((e_a - e_b) <= (emin+1)) || \
2156 (e_a <= (emin+nbits)))) { \
2157 fe_flag = 1; \
2160 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2161 /* XB is not zero because of the above check and */ \
2162 /* so must be denormalized. */ \
2163 fg_flag = 1; \
2168 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2171 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2172 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2173 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2175 /* VSX_TSQRT - VSX floating point test for square root
2176 * op - instruction mnemonic
2177 * nels - number of elements (1, 2 or 4)
2178 * tp - type (float32 or float64)
2179 * fld - vsr_t field (VsrD(*) or VsrW(*))
2180 * emin - minimum unbiased exponent
2181 * emax - maximum unbiased exponent
2182 * nbits - number of fraction bits
2184 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2185 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2187 ppc_vsr_t xa, xb; \
2188 int i; \
2189 int fe_flag = 0; \
2190 int fg_flag = 0; \
2192 getVSR(xA(opcode), &xa, env); \
2193 getVSR(xB(opcode), &xb, env); \
2195 for (i = 0; i < nels; i++) { \
2196 if (unlikely(tp##_is_infinity(xb.fld) || \
2197 tp##_is_zero(xb.fld))) { \
2198 fe_flag = 1; \
2199 fg_flag = 1; \
2200 } else { \
2201 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2203 if (unlikely(tp##_is_any_nan(xb.fld))) { \
2204 fe_flag = 1; \
2205 } else if (unlikely(tp##_is_zero(xb.fld))) { \
2206 fe_flag = 1; \
2207 } else if (unlikely(tp##_is_neg(xb.fld))) { \
2208 fe_flag = 1; \
2209 } else if (!tp##_is_zero(xb.fld) && \
2210 (e_b <= (emin+nbits))) { \
2211 fe_flag = 1; \
2214 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2215 /* XB is not zero because of the above check and */ \
2216 /* therefore must be denormalized. */ \
2217 fg_flag = 1; \
2222 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2225 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2226 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2227 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2229 /* VSX_MADD - VSX floating point muliply/add variations
2230 * op - instruction mnemonic
2231 * nels - number of elements (1, 2 or 4)
2232 * tp - type (float32 or float64)
2233 * fld - vsr_t field (VsrD(*) or VsrW(*))
2234 * maddflgs - flags for the float*muladd routine that control the
2235 * various forms (madd, msub, nmadd, nmsub)
2236 * afrm - A form (1=A, 0=M)
2237 * sfprf - set FPRF
2239 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \
2240 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2242 ppc_vsr_t xt_in, xa, xb, xt_out; \
2243 ppc_vsr_t *b, *c; \
2244 int i; \
2246 if (afrm) { /* AxB + T */ \
2247 b = &xb; \
2248 c = &xt_in; \
2249 } else { /* AxT + B */ \
2250 b = &xt_in; \
2251 c = &xb; \
2254 getVSR(xA(opcode), &xa, env); \
2255 getVSR(xB(opcode), &xb, env); \
2256 getVSR(xT(opcode), &xt_in, env); \
2258 xt_out = xt_in; \
2260 helper_reset_fpstatus(env); \
2262 for (i = 0; i < nels; i++) { \
2263 float_status tstat = env->fp_status; \
2264 set_float_exception_flags(0, &tstat); \
2265 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2266 /* Avoid double rounding errors by rounding the intermediate */ \
2267 /* result to odd. */ \
2268 set_float_rounding_mode(float_round_to_zero, &tstat); \
2269 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2270 maddflgs, &tstat); \
2271 xt_out.fld |= (get_float_exception_flags(&tstat) & \
2272 float_flag_inexact) != 0; \
2273 } else { \
2274 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2275 maddflgs, &tstat); \
2277 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2279 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2280 tp##_maddsub_update_excp(env, xa.fld, b->fld, c->fld, maddflgs); \
2283 if (r2sp) { \
2284 xt_out.fld = helper_frsp(env, xt_out.fld); \
2287 if (sfprf) { \
2288 helper_compute_fprf_float64(env, xt_out.fld); \
2291 putVSR(xT(opcode), &xt_out, env); \
2292 float_check_status(env); \
2295 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2296 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2297 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2298 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2299 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2300 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2301 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2302 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2304 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2305 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2306 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2307 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2308 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2309 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2310 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2311 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2313 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2314 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2315 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2316 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2317 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2318 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2319 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2320 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2322 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2323 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2324 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2325 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2326 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2327 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2328 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2329 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2331 /* VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2332 * op - instruction mnemonic
2333 * cmp - comparison operation
2334 * exp - expected result of comparison
2335 * svxvc - set VXVC bit
2337 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
2338 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2340 ppc_vsr_t xt, xa, xb; \
2341 bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
2343 getVSR(xA(opcode), &xa, env); \
2344 getVSR(xB(opcode), &xb, env); \
2345 getVSR(xT(opcode), &xt, env); \
2347 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2348 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2349 vxsnan_flag = true; \
2350 if (fpscr_ve == 0 && svxvc) { \
2351 vxvc_flag = true; \
2353 } else if (svxvc) { \
2354 vxvc_flag = float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) || \
2355 float64_is_quiet_nan(xb.VsrD(0), &env->fp_status); \
2357 if (vxsnan_flag) { \
2358 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2360 if (vxvc_flag) { \
2361 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2363 vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
2365 if (!vex_flag) { \
2366 if (float64_##cmp(xb.VsrD(0), xa.VsrD(0), &env->fp_status) == exp) { \
2367 xt.VsrD(0) = -1; \
2368 xt.VsrD(1) = 0; \
2369 } else { \
2370 xt.VsrD(0) = 0; \
2371 xt.VsrD(1) = 0; \
2374 putVSR(xT(opcode), &xt, env); \
2375 helper_float_check_status(env); \
2378 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2379 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2380 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2381 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2383 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode)
2385 ppc_vsr_t xa, xb;
2386 int64_t exp_a, exp_b;
2387 uint32_t cc;
2389 getVSR(xA(opcode), &xa, env);
2390 getVSR(xB(opcode), &xb, env);
2392 exp_a = extract64(xa.VsrD(0), 52, 11);
2393 exp_b = extract64(xb.VsrD(0), 52, 11);
2395 if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||
2396 float64_is_any_nan(xb.VsrD(0)))) {
2397 cc = CRF_SO;
2398 } else {
2399 if (exp_a < exp_b) {
2400 cc = CRF_LT;
2401 } else if (exp_a > exp_b) {
2402 cc = CRF_GT;
2403 } else {
2404 cc = CRF_EQ;
2408 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2409 env->fpscr |= cc << FPSCR_FPRF;
2410 env->crf[BF(opcode)] = cc;
2412 helper_float_check_status(env);
2415 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode)
2417 ppc_vsr_t xa, xb;
2418 int64_t exp_a, exp_b;
2419 uint32_t cc;
2421 getVSR(rA(opcode) + 32, &xa, env);
2422 getVSR(rB(opcode) + 32, &xb, env);
2424 exp_a = extract64(xa.VsrD(0), 48, 15);
2425 exp_b = extract64(xb.VsrD(0), 48, 15);
2427 if (unlikely(float128_is_any_nan(xa.f128) ||
2428 float128_is_any_nan(xb.f128))) {
2429 cc = CRF_SO;
2430 } else {
2431 if (exp_a < exp_b) {
2432 cc = CRF_LT;
2433 } else if (exp_a > exp_b) {
2434 cc = CRF_GT;
2435 } else {
2436 cc = CRF_EQ;
2440 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2441 env->fpscr |= cc << FPSCR_FPRF;
2442 env->crf[BF(opcode)] = cc;
2444 helper_float_check_status(env);
2447 #define VSX_SCALAR_CMP(op, ordered) \
2448 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2450 ppc_vsr_t xa, xb; \
2451 uint32_t cc = 0; \
2452 bool vxsnan_flag = false, vxvc_flag = false; \
2454 helper_reset_fpstatus(env); \
2455 getVSR(xA(opcode), &xa, env); \
2456 getVSR(xB(opcode), &xb, env); \
2458 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2459 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2460 vxsnan_flag = true; \
2461 cc = CRF_SO; \
2462 if (fpscr_ve == 0 && ordered) { \
2463 vxvc_flag = true; \
2465 } else if (float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) || \
2466 float64_is_quiet_nan(xb.VsrD(0), &env->fp_status)) { \
2467 cc = CRF_SO; \
2468 if (ordered) { \
2469 vxvc_flag = true; \
2472 if (vxsnan_flag) { \
2473 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2475 if (vxvc_flag) { \
2476 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2479 if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2480 cc |= CRF_LT; \
2481 } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2482 cc |= CRF_GT; \
2483 } else { \
2484 cc |= CRF_EQ; \
2487 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2488 env->fpscr |= cc << FPSCR_FPRF; \
2489 env->crf[BF(opcode)] = cc; \
2491 float_check_status(env); \
2494 VSX_SCALAR_CMP(xscmpodp, 1)
2495 VSX_SCALAR_CMP(xscmpudp, 0)
2497 #define VSX_SCALAR_CMPQ(op, ordered) \
2498 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2500 ppc_vsr_t xa, xb; \
2501 uint32_t cc = 0; \
2502 bool vxsnan_flag = false, vxvc_flag = false; \
2504 helper_reset_fpstatus(env); \
2505 getVSR(rA(opcode) + 32, &xa, env); \
2506 getVSR(rB(opcode) + 32, &xb, env); \
2508 if (float128_is_signaling_nan(xa.f128, &env->fp_status) || \
2509 float128_is_signaling_nan(xb.f128, &env->fp_status)) { \
2510 vxsnan_flag = true; \
2511 cc = CRF_SO; \
2512 if (fpscr_ve == 0 && ordered) { \
2513 vxvc_flag = true; \
2515 } else if (float128_is_quiet_nan(xa.f128, &env->fp_status) || \
2516 float128_is_quiet_nan(xb.f128, &env->fp_status)) { \
2517 cc = CRF_SO; \
2518 if (ordered) { \
2519 vxvc_flag = true; \
2522 if (vxsnan_flag) { \
2523 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2525 if (vxvc_flag) { \
2526 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2529 if (float128_lt(xa.f128, xb.f128, &env->fp_status)) { \
2530 cc |= CRF_LT; \
2531 } else if (!float128_le(xa.f128, xb.f128, &env->fp_status)) { \
2532 cc |= CRF_GT; \
2533 } else { \
2534 cc |= CRF_EQ; \
2537 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2538 env->fpscr |= cc << FPSCR_FPRF; \
2539 env->crf[BF(opcode)] = cc; \
2541 float_check_status(env); \
2544 VSX_SCALAR_CMPQ(xscmpoqp, 1)
2545 VSX_SCALAR_CMPQ(xscmpuqp, 0)
2547 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2548 * name - instruction mnemonic
2549 * op - operation (max or min)
2550 * nels - number of elements (1, 2 or 4)
2551 * tp - type (float32 or float64)
2552 * fld - vsr_t field (VsrD(*) or VsrW(*))
2554 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2555 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2557 ppc_vsr_t xt, xa, xb; \
2558 int i; \
2560 getVSR(xA(opcode), &xa, env); \
2561 getVSR(xB(opcode), &xb, env); \
2562 getVSR(xT(opcode), &xt, env); \
2564 for (i = 0; i < nels; i++) { \
2565 xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status); \
2566 if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2567 tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
2568 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2572 putVSR(xT(opcode), &xt, env); \
2573 float_check_status(env); \
2576 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2577 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2578 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2579 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2580 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2581 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2583 #define VSX_MAX_MINC(name, max) \
2584 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2586 ppc_vsr_t xt, xa, xb; \
2587 bool vxsnan_flag = false, vex_flag = false; \
2589 getVSR(rA(opcode) + 32, &xa, env); \
2590 getVSR(rB(opcode) + 32, &xb, env); \
2591 getVSR(rD(opcode) + 32, &xt, env); \
2593 if (unlikely(float64_is_any_nan(xa.VsrD(0)) || \
2594 float64_is_any_nan(xb.VsrD(0)))) { \
2595 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2596 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2597 vxsnan_flag = true; \
2599 xt.VsrD(0) = xb.VsrD(0); \
2600 } else if ((max && \
2601 !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) || \
2602 (!max && \
2603 float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) { \
2604 xt.VsrD(0) = xa.VsrD(0); \
2605 } else { \
2606 xt.VsrD(0) = xb.VsrD(0); \
2609 vex_flag = fpscr_ve & vxsnan_flag; \
2610 if (vxsnan_flag) { \
2611 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2613 if (!vex_flag) { \
2614 putVSR(rD(opcode) + 32, &xt, env); \
2618 VSX_MAX_MINC(xsmaxcdp, 1);
2619 VSX_MAX_MINC(xsmincdp, 0);
2621 #define VSX_MAX_MINJ(name, max) \
2622 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2624 ppc_vsr_t xt, xa, xb; \
2625 bool vxsnan_flag = false, vex_flag = false; \
2627 getVSR(rA(opcode) + 32, &xa, env); \
2628 getVSR(rB(opcode) + 32, &xb, env); \
2629 getVSR(rD(opcode) + 32, &xt, env); \
2631 if (unlikely(float64_is_any_nan(xa.VsrD(0)))) { \
2632 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status)) { \
2633 vxsnan_flag = true; \
2635 xt.VsrD(0) = xa.VsrD(0); \
2636 } else if (unlikely(float64_is_any_nan(xb.VsrD(0)))) { \
2637 if (float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2638 vxsnan_flag = true; \
2640 xt.VsrD(0) = xb.VsrD(0); \
2641 } else if (float64_is_zero(xa.VsrD(0)) && float64_is_zero(xb.VsrD(0))) { \
2642 if (max) { \
2643 if (!float64_is_neg(xa.VsrD(0)) || !float64_is_neg(xb.VsrD(0))) { \
2644 xt.VsrD(0) = 0ULL; \
2645 } else { \
2646 xt.VsrD(0) = 0x8000000000000000ULL; \
2648 } else { \
2649 if (float64_is_neg(xa.VsrD(0)) || float64_is_neg(xb.VsrD(0))) { \
2650 xt.VsrD(0) = 0x8000000000000000ULL; \
2651 } else { \
2652 xt.VsrD(0) = 0ULL; \
2655 } else if ((max && \
2656 !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) || \
2657 (!max && \
2658 float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) { \
2659 xt.VsrD(0) = xa.VsrD(0); \
2660 } else { \
2661 xt.VsrD(0) = xb.VsrD(0); \
2664 vex_flag = fpscr_ve & vxsnan_flag; \
2665 if (vxsnan_flag) { \
2666 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2668 if (!vex_flag) { \
2669 putVSR(rD(opcode) + 32, &xt, env); \
2673 VSX_MAX_MINJ(xsmaxjdp, 1);
2674 VSX_MAX_MINJ(xsminjdp, 0);
2676 /* VSX_CMP - VSX floating point compare
2677 * op - instruction mnemonic
2678 * nels - number of elements (1, 2 or 4)
2679 * tp - type (float32 or float64)
2680 * fld - vsr_t field (VsrD(*) or VsrW(*))
2681 * cmp - comparison operation
2682 * svxvc - set VXVC bit
2683 * exp - expected result of comparison
2685 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2686 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2688 ppc_vsr_t xt, xa, xb; \
2689 int i; \
2690 int all_true = 1; \
2691 int all_false = 1; \
2693 getVSR(xA(opcode), &xa, env); \
2694 getVSR(xB(opcode), &xb, env); \
2695 getVSR(xT(opcode), &xt, env); \
2697 for (i = 0; i < nels; i++) { \
2698 if (unlikely(tp##_is_any_nan(xa.fld) || \
2699 tp##_is_any_nan(xb.fld))) { \
2700 if (tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2701 tp##_is_signaling_nan(xb.fld, &env->fp_status)) { \
2702 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2704 if (svxvc) { \
2705 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2707 xt.fld = 0; \
2708 all_true = 0; \
2709 } else { \
2710 if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == exp) { \
2711 xt.fld = -1; \
2712 all_false = 0; \
2713 } else { \
2714 xt.fld = 0; \
2715 all_true = 0; \
2720 putVSR(xT(opcode), &xt, env); \
2721 if ((opcode >> (31-21)) & 1) { \
2722 env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2724 float_check_status(env); \
2727 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2728 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2729 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2730 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2731 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2732 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2733 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2734 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2736 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2737 * op - instruction mnemonic
2738 * nels - number of elements (1, 2 or 4)
2739 * stp - source type (float32 or float64)
2740 * ttp - target type (float32 or float64)
2741 * sfld - source vsr_t field
2742 * tfld - target vsr_t field (f32 or f64)
2743 * sfprf - set FPRF
2745 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2746 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2748 ppc_vsr_t xt, xb; \
2749 int i; \
2751 getVSR(xB(opcode), &xb, env); \
2752 getVSR(xT(opcode), &xt, env); \
2754 for (i = 0; i < nels; i++) { \
2755 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2756 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2757 &env->fp_status))) { \
2758 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2759 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2761 if (sfprf) { \
2762 helper_compute_fprf_##ttp(env, xt.tfld); \
2766 putVSR(xT(opcode), &xt, env); \
2767 float_check_status(env); \
2770 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2771 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2772 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2773 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2775 /* VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2776 * op - instruction mnemonic
2777 * nels - number of elements (1, 2 or 4)
2778 * stp - source type (float32 or float64)
2779 * ttp - target type (float32 or float64)
2780 * sfld - source vsr_t field
2781 * tfld - target vsr_t field (f32 or f64)
2782 * sfprf - set FPRF
2784 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2785 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2787 ppc_vsr_t xt, xb; \
2788 int i; \
2790 getVSR(rB(opcode) + 32, &xb, env); \
2791 getVSR(rD(opcode) + 32, &xt, env); \
2793 for (i = 0; i < nels; i++) { \
2794 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2795 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2796 &env->fp_status))) { \
2797 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2798 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2800 if (sfprf) { \
2801 helper_compute_fprf_##ttp(env, xt.tfld); \
2805 putVSR(rD(opcode) + 32, &xt, env); \
2806 float_check_status(env); \
2809 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2811 /* VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2812 * involving one half precision value
2813 * op - instruction mnemonic
2814 * nels - number of elements (1, 2 or 4)
2815 * stp - source type
2816 * ttp - target type
2817 * sfld - source vsr_t field
2818 * tfld - target vsr_t field
2819 * sfprf - set FPRF
2821 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2822 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2824 ppc_vsr_t xt, xb; \
2825 int i; \
2827 getVSR(xB(opcode), &xb, env); \
2828 memset(&xt, 0, sizeof(xt)); \
2830 for (i = 0; i < nels; i++) { \
2831 xt.tfld = stp##_to_##ttp(xb.sfld, 1, &env->fp_status); \
2832 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2833 &env->fp_status))) { \
2834 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2835 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2837 if (sfprf) { \
2838 helper_compute_fprf_##ttp(env, xt.tfld); \
2842 putVSR(xT(opcode), &xt, env); \
2843 float_check_status(env); \
2846 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2847 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2848 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
2849 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2852 * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2853 * added to this later.
2855 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode)
2857 ppc_vsr_t xt, xb;
2858 float_status tstat;
2860 getVSR(rB(opcode) + 32, &xb, env);
2861 memset(&xt, 0, sizeof(xt));
2863 tstat = env->fp_status;
2864 if (unlikely(Rc(opcode) != 0)) {
2865 tstat.float_rounding_mode = float_round_to_odd;
2868 xt.VsrD(0) = float128_to_float64(xb.f128, &tstat);
2869 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2870 if (unlikely(float128_is_signaling_nan(xb.f128,
2871 &tstat))) {
2872 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);
2873 xt.VsrD(0) = float64_snan_to_qnan(xt.VsrD(0));
2875 helper_compute_fprf_float64(env, xt.VsrD(0));
2877 putVSR(rD(opcode) + 32, &xt, env);
2878 float_check_status(env);
2881 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2883 float_status tstat = env->fp_status;
2884 set_float_exception_flags(0, &tstat);
2886 return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2889 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2891 float_status tstat = env->fp_status;
2892 set_float_exception_flags(0, &tstat);
2894 return float32_to_float64(xb >> 32, &tstat);
2897 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2898 * op - instruction mnemonic
2899 * nels - number of elements (1, 2 or 4)
2900 * stp - source type (float32 or float64)
2901 * ttp - target type (int32, uint32, int64 or uint64)
2902 * sfld - source vsr_t field
2903 * tfld - target vsr_t field
2904 * rnan - resulting NaN
2906 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2907 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2909 ppc_vsr_t xt, xb; \
2910 int i; \
2912 getVSR(xB(opcode), &xb, env); \
2913 getVSR(xT(opcode), &xt, env); \
2915 for (i = 0; i < nels; i++) { \
2916 if (unlikely(stp##_is_any_nan(xb.sfld))) { \
2917 if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) { \
2918 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2920 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2921 xt.tfld = rnan; \
2922 } else { \
2923 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, \
2924 &env->fp_status); \
2925 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2926 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2931 putVSR(xT(opcode), &xt, env); \
2932 float_check_status(env); \
2935 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2936 0x8000000000000000ULL)
2937 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2938 0x80000000U)
2939 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2940 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2941 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2942 0x8000000000000000ULL)
2943 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2944 0x80000000U)
2945 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2946 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2947 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2948 0x8000000000000000ULL)
2949 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2950 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2951 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2953 /* VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2954 * op - instruction mnemonic
2955 * stp - source type (float32 or float64)
2956 * ttp - target type (int32, uint32, int64 or uint64)
2957 * sfld - source vsr_t field
2958 * tfld - target vsr_t field
2959 * rnan - resulting NaN
2961 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
2962 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2964 ppc_vsr_t xt, xb; \
2966 getVSR(rB(opcode) + 32, &xb, env); \
2967 memset(&xt, 0, sizeof(xt)); \
2969 if (unlikely(stp##_is_any_nan(xb.sfld))) { \
2970 if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) { \
2971 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2973 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2974 xt.tfld = rnan; \
2975 } else { \
2976 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, \
2977 &env->fp_status); \
2978 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2979 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2983 putVSR(rD(opcode) + 32, &xt, env); \
2984 float_check_status(env); \
2987 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
2988 0x8000000000000000ULL)
2990 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
2991 0xffffffff80000000ULL)
2992 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
2993 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
2995 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2996 * op - instruction mnemonic
2997 * nels - number of elements (1, 2 or 4)
2998 * stp - source type (int32, uint32, int64 or uint64)
2999 * ttp - target type (float32 or float64)
3000 * sfld - source vsr_t field
3001 * tfld - target vsr_t field
3002 * jdef - definition of the j index (i or 2*i)
3003 * sfprf - set FPRF
3005 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
3006 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3008 ppc_vsr_t xt, xb; \
3009 int i; \
3011 getVSR(xB(opcode), &xb, env); \
3012 getVSR(xT(opcode), &xt, env); \
3014 for (i = 0; i < nels; i++) { \
3015 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
3016 if (r2sp) { \
3017 xt.tfld = helper_frsp(env, xt.tfld); \
3019 if (sfprf) { \
3020 helper_compute_fprf_float64(env, xt.tfld); \
3024 putVSR(xT(opcode), &xt, env); \
3025 float_check_status(env); \
3028 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3029 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3030 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3031 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3032 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3033 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3034 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
3035 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
3036 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
3037 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
3038 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3039 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3041 /* VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3042 * op - instruction mnemonic
3043 * stp - source type (int32, uint32, int64 or uint64)
3044 * ttp - target type (float32 or float64)
3045 * sfld - source vsr_t field
3046 * tfld - target vsr_t field
3048 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3049 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3051 ppc_vsr_t xt, xb; \
3053 getVSR(rB(opcode) + 32, &xb, env); \
3054 getVSR(rD(opcode) + 32, &xt, env); \
3056 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
3057 helper_compute_fprf_##ttp(env, xt.tfld); \
3059 putVSR(xT(opcode) + 32, &xt, env); \
3060 float_check_status(env); \
3063 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3064 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3066 /* For "use current rounding mode", define a value that will not be one of
3067 * the existing rounding model enums.
3069 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3070 float_round_up + float_round_to_zero)
3072 /* VSX_ROUND - VSX floating point round
3073 * op - instruction mnemonic
3074 * nels - number of elements (1, 2 or 4)
3075 * tp - type (float32 or float64)
3076 * fld - vsr_t field (VsrD(*) or VsrW(*))
3077 * rmode - rounding mode
3078 * sfprf - set FPRF
3080 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
3081 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3083 ppc_vsr_t xt, xb; \
3084 int i; \
3085 getVSR(xB(opcode), &xb, env); \
3086 getVSR(xT(opcode), &xt, env); \
3088 if (rmode != FLOAT_ROUND_CURRENT) { \
3089 set_float_rounding_mode(rmode, &env->fp_status); \
3092 for (i = 0; i < nels; i++) { \
3093 if (unlikely(tp##_is_signaling_nan(xb.fld, \
3094 &env->fp_status))) { \
3095 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
3096 xt.fld = tp##_snan_to_qnan(xb.fld); \
3097 } else { \
3098 xt.fld = tp##_round_to_int(xb.fld, &env->fp_status); \
3100 if (sfprf) { \
3101 helper_compute_fprf_float64(env, xt.fld); \
3105 /* If this is not a "use current rounding mode" instruction, \
3106 * then inhibit setting of the XX bit and restore rounding \
3107 * mode from FPSCR */ \
3108 if (rmode != FLOAT_ROUND_CURRENT) { \
3109 fpscr_set_rounding_mode(env); \
3110 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3113 putVSR(xT(opcode), &xt, env); \
3114 float_check_status(env); \
3117 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3118 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3119 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3120 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3121 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3123 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3124 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3125 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3126 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3127 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3129 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3130 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3131 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3132 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3133 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3135 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3137 helper_reset_fpstatus(env);
3139 uint64_t xt = helper_frsp(env, xb);
3141 helper_compute_fprf_float64(env, xt);
3142 float_check_status(env);
3143 return xt;
3146 #define VSX_XXPERM(op, indexed) \
3147 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3149 ppc_vsr_t xt, xa, pcv, xto; \
3150 int i, idx; \
3152 getVSR(xA(opcode), &xa, env); \
3153 getVSR(xT(opcode), &xt, env); \
3154 getVSR(xB(opcode), &pcv, env); \
3156 for (i = 0; i < 16; i++) { \
3157 idx = pcv.VsrB(i) & 0x1F; \
3158 if (indexed) { \
3159 idx = 31 - idx; \
3161 xto.VsrB(i) = (idx <= 15) ? xa.VsrB(idx) : xt.VsrB(idx - 16); \
3163 putVSR(xT(opcode), &xto, env); \
3166 VSX_XXPERM(xxperm, 0)
3167 VSX_XXPERM(xxpermr, 1)
3169 void helper_xvxsigsp(CPUPPCState *env, uint32_t opcode)
3171 ppc_vsr_t xt, xb;
3172 uint32_t exp, i, fraction;
3174 getVSR(xB(opcode), &xb, env);
3175 memset(&xt, 0, sizeof(xt));
3177 for (i = 0; i < 4; i++) {
3178 exp = (xb.VsrW(i) >> 23) & 0xFF;
3179 fraction = xb.VsrW(i) & 0x7FFFFF;
3180 if (exp != 0 && exp != 255) {
3181 xt.VsrW(i) = fraction | 0x00800000;
3182 } else {
3183 xt.VsrW(i) = fraction;
3186 putVSR(xT(opcode), &xt, env);
3189 /* VSX_TEST_DC - VSX floating point test data class
3190 * op - instruction mnemonic
3191 * nels - number of elements (1, 2 or 4)
3192 * xbn - VSR register number
3193 * tp - type (float32 or float64)
3194 * fld - vsr_t field (VsrD(*) or VsrW(*))
3195 * tfld - target vsr_t field (VsrD(*) or VsrW(*))
3196 * fld_max - target field max
3197 * scrf - set result in CR and FPCC
3199 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
3200 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3202 ppc_vsr_t xt, xb; \
3203 uint32_t i, sign, dcmx; \
3204 uint32_t cc, match = 0; \
3206 getVSR(xbn, &xb, env); \
3207 if (!scrf) { \
3208 memset(&xt, 0, sizeof(xt)); \
3209 dcmx = DCMX_XV(opcode); \
3210 } else { \
3211 dcmx = DCMX(opcode); \
3214 for (i = 0; i < nels; i++) { \
3215 sign = tp##_is_neg(xb.fld); \
3216 if (tp##_is_any_nan(xb.fld)) { \
3217 match = extract32(dcmx, 6, 1); \
3218 } else if (tp##_is_infinity(xb.fld)) { \
3219 match = extract32(dcmx, 4 + !sign, 1); \
3220 } else if (tp##_is_zero(xb.fld)) { \
3221 match = extract32(dcmx, 2 + !sign, 1); \
3222 } else if (tp##_is_zero_or_denormal(xb.fld)) { \
3223 match = extract32(dcmx, 0 + !sign, 1); \
3226 if (scrf) { \
3227 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3228 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
3229 env->fpscr |= cc << FPSCR_FPRF; \
3230 env->crf[BF(opcode)] = cc; \
3231 } else { \
3232 xt.tfld = match ? fld_max : 0; \
3234 match = 0; \
3236 if (!scrf) { \
3237 putVSR(xT(opcode), &xt, env); \
3241 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3242 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3243 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3244 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3246 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode)
3248 ppc_vsr_t xb;
3249 uint32_t dcmx, sign, exp;
3250 uint32_t cc, match = 0, not_sp = 0;
3252 getVSR(xB(opcode), &xb, env);
3253 dcmx = DCMX(opcode);
3254 exp = (xb.VsrD(0) >> 52) & 0x7FF;
3256 sign = float64_is_neg(xb.VsrD(0));
3257 if (float64_is_any_nan(xb.VsrD(0))) {
3258 match = extract32(dcmx, 6, 1);
3259 } else if (float64_is_infinity(xb.VsrD(0))) {
3260 match = extract32(dcmx, 4 + !sign, 1);
3261 } else if (float64_is_zero(xb.VsrD(0))) {
3262 match = extract32(dcmx, 2 + !sign, 1);
3263 } else if (float64_is_zero_or_denormal(xb.VsrD(0)) ||
3264 (exp > 0 && exp < 0x381)) {
3265 match = extract32(dcmx, 0 + !sign, 1);
3268 not_sp = !float64_eq(xb.VsrD(0),
3269 float32_to_float64(
3270 float64_to_float32(xb.VsrD(0), &env->fp_status),
3271 &env->fp_status), &env->fp_status);
3273 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3274 env->fpscr &= ~(0x0F << FPSCR_FPRF);
3275 env->fpscr |= cc << FPSCR_FPRF;
3276 env->crf[BF(opcode)] = cc;
3279 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode)
3281 ppc_vsr_t xb;
3282 ppc_vsr_t xt;
3283 uint8_t r = Rrm(opcode);
3284 uint8_t ex = Rc(opcode);
3285 uint8_t rmc = RMC(opcode);
3286 uint8_t rmode = 0;
3287 float_status tstat;
3289 getVSR(rB(opcode) + 32, &xb, env);
3290 memset(&xt, 0, sizeof(xt));
3291 helper_reset_fpstatus(env);
3293 if (r == 0 && rmc == 0) {
3294 rmode = float_round_ties_away;
3295 } else if (r == 0 && rmc == 0x3) {
3296 rmode = fpscr_rn;
3297 } else if (r == 1) {
3298 switch (rmc) {
3299 case 0:
3300 rmode = float_round_nearest_even;
3301 break;
3302 case 1:
3303 rmode = float_round_to_zero;
3304 break;
3305 case 2:
3306 rmode = float_round_up;
3307 break;
3308 case 3:
3309 rmode = float_round_down;
3310 break;
3311 default:
3312 abort();
3316 tstat = env->fp_status;
3317 set_float_exception_flags(0, &tstat);
3318 set_float_rounding_mode(rmode, &tstat);
3319 xt.f128 = float128_round_to_int(xb.f128, &tstat);
3320 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3322 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3323 if (float128_is_signaling_nan(xb.f128, &tstat)) {
3324 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);
3325 xt.f128 = float128_snan_to_qnan(xt.f128);
3329 if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3330 env->fp_status.float_exception_flags &= ~float_flag_inexact;
3333 helper_compute_fprf_float128(env, xt.f128);
3334 float_check_status(env);
3335 putVSR(rD(opcode) + 32, &xt, env);
3338 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode)
3340 ppc_vsr_t xb;
3341 ppc_vsr_t xt;
3342 uint8_t r = Rrm(opcode);
3343 uint8_t rmc = RMC(opcode);
3344 uint8_t rmode = 0;
3345 floatx80 round_res;
3346 float_status tstat;
3348 getVSR(rB(opcode) + 32, &xb, env);
3349 memset(&xt, 0, sizeof(xt));
3350 helper_reset_fpstatus(env);
3352 if (r == 0 && rmc == 0) {
3353 rmode = float_round_ties_away;
3354 } else if (r == 0 && rmc == 0x3) {
3355 rmode = fpscr_rn;
3356 } else if (r == 1) {
3357 switch (rmc) {
3358 case 0:
3359 rmode = float_round_nearest_even;
3360 break;
3361 case 1:
3362 rmode = float_round_to_zero;
3363 break;
3364 case 2:
3365 rmode = float_round_up;
3366 break;
3367 case 3:
3368 rmode = float_round_down;
3369 break;
3370 default:
3371 abort();
3375 tstat = env->fp_status;
3376 set_float_exception_flags(0, &tstat);
3377 set_float_rounding_mode(rmode, &tstat);
3378 round_res = float128_to_floatx80(xb.f128, &tstat);
3379 xt.f128 = floatx80_to_float128(round_res, &tstat);
3380 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3382 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3383 if (float128_is_signaling_nan(xb.f128, &tstat)) {
3384 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);
3385 xt.f128 = float128_snan_to_qnan(xt.f128);
3389 helper_compute_fprf_float128(env, xt.f128);
3390 putVSR(rD(opcode) + 32, &xt, env);
3391 float_check_status(env);
3394 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode)
3396 ppc_vsr_t xb;
3397 ppc_vsr_t xt;
3398 float_status tstat;
3400 getVSR(rB(opcode) + 32, &xb, env);
3401 memset(&xt, 0, sizeof(xt));
3402 helper_reset_fpstatus(env);
3404 tstat = env->fp_status;
3405 if (unlikely(Rc(opcode) != 0)) {
3406 tstat.float_rounding_mode = float_round_to_odd;
3409 set_float_exception_flags(0, &tstat);
3410 xt.f128 = float128_sqrt(xb.f128, &tstat);
3411 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3413 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3414 if (float128_is_signaling_nan(xb.f128, &tstat)) {
3415 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
3416 xt.f128 = float128_snan_to_qnan(xb.f128);
3417 } else if (float128_is_quiet_nan(xb.f128, &tstat)) {
3418 xt.f128 = xb.f128;
3419 } else if (float128_is_neg(xb.f128) && !float128_is_zero(xb.f128)) {
3420 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
3421 xt.f128 = float128_default_nan(&env->fp_status);
3425 helper_compute_fprf_float128(env, xt.f128);
3426 putVSR(rD(opcode) + 32, &xt, env);
3427 float_check_status(env);
3430 void helper_xssubqp(CPUPPCState *env, uint32_t opcode)
3432 ppc_vsr_t xt, xa, xb;
3433 float_status tstat;
3435 getVSR(rA(opcode) + 32, &xa, env);
3436 getVSR(rB(opcode) + 32, &xb, env);
3437 getVSR(rD(opcode) + 32, &xt, env);
3438 helper_reset_fpstatus(env);
3440 tstat = env->fp_status;
3441 if (unlikely(Rc(opcode) != 0)) {
3442 tstat.float_rounding_mode = float_round_to_odd;
3445 set_float_exception_flags(0, &tstat);
3446 xt.f128 = float128_sub(xa.f128, xb.f128, &tstat);
3447 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3449 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3450 if (float128_is_infinity(xa.f128) && float128_is_infinity(xb.f128)) {
3451 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
3452 } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
3453 float128_is_signaling_nan(xb.f128, &tstat)) {
3454 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
3458 helper_compute_fprf_float128(env, xt.f128);
3459 putVSR(rD(opcode) + 32, &xt, env);
3460 float_check_status(env);