Merge remote-tracking branch 'remotes/juanquintela/tags/migration/20170613' into...
[qemu/ar7.git] / hw / ppc / spapr.c
blobe877d45db8d54cd52c697b717ccd72b589c06c54
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "qom/cpu.h"
48 #include "hw/boards.h"
49 #include "hw/ppc/ppc.h"
50 #include "hw/loader.h"
52 #include "hw/ppc/fdt.h"
53 #include "hw/ppc/spapr.h"
54 #include "hw/ppc/spapr_vio.h"
55 #include "hw/pci-host/spapr.h"
56 #include "hw/ppc/xics.h"
57 #include "hw/pci/msi.h"
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
64 #include "exec/address-spaces.h"
65 #include "hw/usb.h"
66 #include "qemu/config-file.h"
67 #include "qemu/error-report.h"
68 #include "trace.h"
69 #include "hw/nmi.h"
70 #include "hw/intc/intc.h"
72 #include "hw/compat.h"
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "qmp-commands.h"
77 #include <libfdt.h>
79 /* SLOF memory layout:
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
85 * and more
87 * We load our kernel at 4M, leaving space for SLOF initial image
89 #define FDT_MAX_SIZE 0x100000
90 #define RTAS_MAX_SIZE 0x10000
91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE 0x400000
93 #define FW_FILE_NAME "slof.bin"
94 #define FW_OVERHEAD 0x2800000
95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97 #define MIN_RMA_SLOF 128UL
99 #define PHANDLE_XICP 0x00001111
101 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
103 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
104 const char *type_ics,
105 int nr_irqs, Error **errp)
107 Error *local_err = NULL;
108 Object *obj;
110 obj = object_new(type_ics);
111 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
112 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
113 &error_abort);
114 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
115 if (local_err) {
116 goto error;
118 object_property_set_bool(obj, true, "realized", &local_err);
119 if (local_err) {
120 goto error;
123 return ICS_SIMPLE(obj);
125 error:
126 error_propagate(errp, local_err);
127 return NULL;
130 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
132 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
134 if (kvm_enabled()) {
135 if (machine_kernel_irqchip_allowed(machine) &&
136 !xics_kvm_init(spapr, errp)) {
137 spapr->icp_type = TYPE_KVM_ICP;
138 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
140 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
141 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
142 return;
146 if (!spapr->ics) {
147 xics_spapr_init(spapr);
148 spapr->icp_type = TYPE_ICP;
149 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
150 if (!spapr->ics) {
151 return;
156 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
157 int smt_threads)
159 int i, ret = 0;
160 uint32_t servers_prop[smt_threads];
161 uint32_t gservers_prop[smt_threads * 2];
162 int index = ppc_get_vcpu_dt_id(cpu);
164 if (cpu->compat_pvr) {
165 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
166 if (ret < 0) {
167 return ret;
171 /* Build interrupt servers and gservers properties */
172 for (i = 0; i < smt_threads; i++) {
173 servers_prop[i] = cpu_to_be32(index + i);
174 /* Hack, direct the group queues back to cpu 0 */
175 gservers_prop[i*2] = cpu_to_be32(index + i);
176 gservers_prop[i*2 + 1] = 0;
178 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
179 servers_prop, sizeof(servers_prop));
180 if (ret < 0) {
181 return ret;
183 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
184 gservers_prop, sizeof(gservers_prop));
186 return ret;
189 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
191 int index = ppc_get_vcpu_dt_id(cpu);
192 uint32_t associativity[] = {cpu_to_be32(0x5),
193 cpu_to_be32(0x0),
194 cpu_to_be32(0x0),
195 cpu_to_be32(0x0),
196 cpu_to_be32(cpu->node_id),
197 cpu_to_be32(index)};
199 /* Advertise NUMA via ibm,associativity */
200 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
201 sizeof(associativity));
204 /* Populate the "ibm,pa-features" property */
205 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
206 bool legacy_guest)
208 uint8_t pa_features_206[] = { 6, 0,
209 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
210 uint8_t pa_features_207[] = { 24, 0,
211 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
212 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
213 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
214 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
215 uint8_t pa_features_300[] = { 66, 0,
216 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
217 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
219 /* 6: DS207 */
220 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
221 /* 16: Vector */
222 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
223 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
224 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
225 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
226 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
227 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
228 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
229 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
231 /* 42: PM, 44: PC RA, 46: SC vec'd */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
233 /* 48: SIMD, 50: QP BFP, 52: String */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
235 /* 54: DecFP, 56: DecI, 58: SHA */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
237 /* 60: NM atomic, 62: RNG */
238 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
240 uint8_t *pa_features;
241 size_t pa_size;
243 switch (POWERPC_MMU_VER(env->mmu_model)) {
244 case POWERPC_MMU_VER_2_06:
245 pa_features = pa_features_206;
246 pa_size = sizeof(pa_features_206);
247 break;
248 case POWERPC_MMU_VER_2_07:
249 pa_features = pa_features_207;
250 pa_size = sizeof(pa_features_207);
251 break;
252 case POWERPC_MMU_VER_3_00:
253 pa_features = pa_features_300;
254 pa_size = sizeof(pa_features_300);
255 break;
256 default:
257 return;
260 if (env->ci_large_pages) {
262 * Note: we keep CI large pages off by default because a 64K capable
263 * guest provisioned with large pages might otherwise try to map a qemu
264 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
265 * even if that qemu runs on a 4k host.
266 * We dd this bit back here if we are confident this is not an issue
268 pa_features[3] |= 0x20;
270 if (kvmppc_has_cap_htm() && pa_size > 24) {
271 pa_features[24] |= 0x80; /* Transactional memory support */
273 if (legacy_guest && pa_size > 40) {
274 /* Workaround for broken kernels that attempt (guest) radix
275 * mode when they can't handle it, if they see the radix bit set
276 * in pa-features. So hide it from them. */
277 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
280 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
283 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
285 int ret = 0, offset, cpus_offset;
286 CPUState *cs;
287 char cpu_model[32];
288 int smt = kvmppc_smt_threads();
289 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
291 CPU_FOREACH(cs) {
292 PowerPCCPU *cpu = POWERPC_CPU(cs);
293 CPUPPCState *env = &cpu->env;
294 DeviceClass *dc = DEVICE_GET_CLASS(cs);
295 int index = ppc_get_vcpu_dt_id(cpu);
296 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
298 if ((index % smt) != 0) {
299 continue;
302 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
304 cpus_offset = fdt_path_offset(fdt, "/cpus");
305 if (cpus_offset < 0) {
306 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
307 "cpus");
308 if (cpus_offset < 0) {
309 return cpus_offset;
312 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
313 if (offset < 0) {
314 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
315 if (offset < 0) {
316 return offset;
320 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
321 pft_size_prop, sizeof(pft_size_prop));
322 if (ret < 0) {
323 return ret;
326 if (nb_numa_nodes > 1) {
327 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
328 if (ret < 0) {
329 return ret;
333 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
334 if (ret < 0) {
335 return ret;
338 spapr_populate_pa_features(env, fdt, offset,
339 spapr->cas_legacy_guest_workaround);
341 return ret;
344 static hwaddr spapr_node0_size(void)
346 MachineState *machine = MACHINE(qdev_get_machine());
348 if (nb_numa_nodes) {
349 int i;
350 for (i = 0; i < nb_numa_nodes; ++i) {
351 if (numa_info[i].node_mem) {
352 return MIN(pow2floor(numa_info[i].node_mem),
353 machine->ram_size);
357 return machine->ram_size;
360 static void add_str(GString *s, const gchar *s1)
362 g_string_append_len(s, s1, strlen(s1) + 1);
365 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
366 hwaddr size)
368 uint32_t associativity[] = {
369 cpu_to_be32(0x4), /* length */
370 cpu_to_be32(0x0), cpu_to_be32(0x0),
371 cpu_to_be32(0x0), cpu_to_be32(nodeid)
373 char mem_name[32];
374 uint64_t mem_reg_property[2];
375 int off;
377 mem_reg_property[0] = cpu_to_be64(start);
378 mem_reg_property[1] = cpu_to_be64(size);
380 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
381 off = fdt_add_subnode(fdt, 0, mem_name);
382 _FDT(off);
383 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
384 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
385 sizeof(mem_reg_property))));
386 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
387 sizeof(associativity))));
388 return off;
391 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
393 MachineState *machine = MACHINE(spapr);
394 hwaddr mem_start, node_size;
395 int i, nb_nodes = nb_numa_nodes;
396 NodeInfo *nodes = numa_info;
397 NodeInfo ramnode;
399 /* No NUMA nodes, assume there is just one node with whole RAM */
400 if (!nb_numa_nodes) {
401 nb_nodes = 1;
402 ramnode.node_mem = machine->ram_size;
403 nodes = &ramnode;
406 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
407 if (!nodes[i].node_mem) {
408 continue;
410 if (mem_start >= machine->ram_size) {
411 node_size = 0;
412 } else {
413 node_size = nodes[i].node_mem;
414 if (node_size > machine->ram_size - mem_start) {
415 node_size = machine->ram_size - mem_start;
418 if (!mem_start) {
419 /* ppc_spapr_init() checks for rma_size <= node0_size already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
438 return 0;
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 sPAPRMachineState *spapr)
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = ppc_get_vcpu_dt_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
458 sPAPRDRConnector *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 error_report("Warning: Unknown L1 dcache size for cpu");
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 error_report("Warning: Unknown L1 icache size for cpu");
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
506 if (env->mmu_model & POWERPC_MMU_1TSEG) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
511 /* Advertise VMX/VSX (vector extensions) if available
512 * 0 / no property == no vector extensions
513 * 1 == VMX / Altivec available
514 * 2 == VSX available */
515 if (env->insns_flags & PPC_ALTIVEC) {
516 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
521 /* Advertise DFP (Decimal Floating Point) if available
522 * 0 / no property == no DFP
523 * 1 == DFP available */
524 if (env->insns_flags2 & PPC2_DFP) {
525 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
528 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
529 sizeof(page_sizes_prop));
530 if (page_sizes_prop_size) {
531 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
532 page_sizes_prop, page_sizes_prop_size)));
535 spapr_populate_pa_features(env, fdt, offset, false);
537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
538 cs->cpu_index / vcpus_per_socket)));
540 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
541 pft_size_prop, sizeof(pft_size_prop))));
543 if (nb_numa_nodes > 1) {
544 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
547 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
549 if (pcc->radix_page_info) {
550 for (i = 0; i < pcc->radix_page_info->count; i++) {
551 radix_AP_encodings[i] =
552 cpu_to_be32(pcc->radix_page_info->entries[i]);
554 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
555 radix_AP_encodings,
556 pcc->radix_page_info->count *
557 sizeof(radix_AP_encodings[0]))));
561 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
563 CPUState *cs;
564 int cpus_offset;
565 char *nodename;
566 int smt = kvmppc_smt_threads();
568 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
569 _FDT(cpus_offset);
570 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
571 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
574 * We walk the CPUs in reverse order to ensure that CPU DT nodes
575 * created by fdt_add_subnode() end up in the right order in FDT
576 * for the guest kernel the enumerate the CPUs correctly.
578 CPU_FOREACH_REVERSE(cs) {
579 PowerPCCPU *cpu = POWERPC_CPU(cs);
580 int index = ppc_get_vcpu_dt_id(cpu);
581 DeviceClass *dc = DEVICE_GET_CLASS(cs);
582 int offset;
584 if ((index % smt) != 0) {
585 continue;
588 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
589 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
590 g_free(nodename);
591 _FDT(offset);
592 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
598 * Adds ibm,dynamic-reconfiguration-memory node.
599 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
600 * of this device tree node.
602 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
604 MachineState *machine = MACHINE(spapr);
605 int ret, i, offset;
606 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
607 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
608 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
609 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
610 memory_region_size(&spapr->hotplug_memory.mr)) /
611 lmb_size;
612 uint32_t *int_buf, *cur_index, buf_len;
613 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
616 * Don't create the node if there is no hotpluggable memory
618 if (machine->ram_size == machine->maxram_size) {
619 return 0;
623 * Allocate enough buffer size to fit in ibm,dynamic-memory
624 * or ibm,associativity-lookup-arrays
626 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
627 * sizeof(uint32_t);
628 cur_index = int_buf = g_malloc0(buf_len);
630 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
632 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
633 sizeof(prop_lmb_size));
634 if (ret < 0) {
635 goto out;
638 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
639 if (ret < 0) {
640 goto out;
643 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
644 if (ret < 0) {
645 goto out;
648 /* ibm,dynamic-memory */
649 int_buf[0] = cpu_to_be32(nr_lmbs);
650 cur_index++;
651 for (i = 0; i < nr_lmbs; i++) {
652 uint64_t addr = i * lmb_size;
653 uint32_t *dynamic_memory = cur_index;
655 if (i >= hotplug_lmb_start) {
656 sPAPRDRConnector *drc;
658 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
659 g_assert(drc);
661 dynamic_memory[0] = cpu_to_be32(addr >> 32);
662 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
663 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
664 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
665 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
666 if (memory_region_present(get_system_memory(), addr)) {
667 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
668 } else {
669 dynamic_memory[5] = cpu_to_be32(0);
671 } else {
673 * LMB information for RMA, boot time RAM and gap b/n RAM and
674 * hotplug memory region -- all these are marked as reserved
675 * and as having no valid DRC.
677 dynamic_memory[0] = cpu_to_be32(addr >> 32);
678 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
679 dynamic_memory[2] = cpu_to_be32(0);
680 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
681 dynamic_memory[4] = cpu_to_be32(-1);
682 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
683 SPAPR_LMB_FLAGS_DRC_INVALID);
686 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
688 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
689 if (ret < 0) {
690 goto out;
693 /* ibm,associativity-lookup-arrays */
694 cur_index = int_buf;
695 int_buf[0] = cpu_to_be32(nr_nodes);
696 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
697 cur_index += 2;
698 for (i = 0; i < nr_nodes; i++) {
699 uint32_t associativity[] = {
700 cpu_to_be32(0x0),
701 cpu_to_be32(0x0),
702 cpu_to_be32(0x0),
703 cpu_to_be32(i)
705 memcpy(cur_index, associativity, sizeof(associativity));
706 cur_index += 4;
708 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
709 (cur_index - int_buf) * sizeof(uint32_t));
710 out:
711 g_free(int_buf);
712 return ret;
715 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
716 sPAPROptionVector *ov5_updates)
718 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
719 int ret = 0, offset;
721 /* Generate ibm,dynamic-reconfiguration-memory node if required */
722 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
723 g_assert(smc->dr_lmb_enabled);
724 ret = spapr_populate_drconf_memory(spapr, fdt);
725 if (ret) {
726 goto out;
730 offset = fdt_path_offset(fdt, "/chosen");
731 if (offset < 0) {
732 offset = fdt_add_subnode(fdt, 0, "chosen");
733 if (offset < 0) {
734 return offset;
737 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
738 "ibm,architecture-vec-5");
740 out:
741 return ret;
744 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
745 target_ulong addr, target_ulong size,
746 sPAPROptionVector *ov5_updates)
748 void *fdt, *fdt_skel;
749 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
751 size -= sizeof(hdr);
753 /* Create sceleton */
754 fdt_skel = g_malloc0(size);
755 _FDT((fdt_create(fdt_skel, size)));
756 _FDT((fdt_begin_node(fdt_skel, "")));
757 _FDT((fdt_end_node(fdt_skel)));
758 _FDT((fdt_finish(fdt_skel)));
759 fdt = g_malloc0(size);
760 _FDT((fdt_open_into(fdt_skel, fdt, size)));
761 g_free(fdt_skel);
763 /* Fixup cpu nodes */
764 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
766 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
767 return -1;
770 /* Pack resulting tree */
771 _FDT((fdt_pack(fdt)));
773 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
774 trace_spapr_cas_failed(size);
775 return -1;
778 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
779 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
780 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
781 g_free(fdt);
783 return 0;
786 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
788 int rtas;
789 GString *hypertas = g_string_sized_new(256);
790 GString *qemu_hypertas = g_string_sized_new(256);
791 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
792 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
793 memory_region_size(&spapr->hotplug_memory.mr);
794 uint32_t lrdr_capacity[] = {
795 cpu_to_be32(max_hotplug_addr >> 32),
796 cpu_to_be32(max_hotplug_addr & 0xffffffff),
797 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
798 cpu_to_be32(max_cpus / smp_threads),
801 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
803 /* hypertas */
804 add_str(hypertas, "hcall-pft");
805 add_str(hypertas, "hcall-term");
806 add_str(hypertas, "hcall-dabr");
807 add_str(hypertas, "hcall-interrupt");
808 add_str(hypertas, "hcall-tce");
809 add_str(hypertas, "hcall-vio");
810 add_str(hypertas, "hcall-splpar");
811 add_str(hypertas, "hcall-bulk");
812 add_str(hypertas, "hcall-set-mode");
813 add_str(hypertas, "hcall-sprg0");
814 add_str(hypertas, "hcall-copy");
815 add_str(hypertas, "hcall-debug");
816 add_str(qemu_hypertas, "hcall-memop1");
818 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
819 add_str(hypertas, "hcall-multi-tce");
821 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
822 hypertas->str, hypertas->len));
823 g_string_free(hypertas, TRUE);
824 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
825 qemu_hypertas->str, qemu_hypertas->len));
826 g_string_free(qemu_hypertas, TRUE);
828 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
829 refpoints, sizeof(refpoints)));
831 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
832 RTAS_ERROR_LOG_MAX));
833 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
834 RTAS_EVENT_SCAN_RATE));
836 if (msi_nonbroken) {
837 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
841 * According to PAPR, rtas ibm,os-term does not guarantee a return
842 * back to the guest cpu.
844 * While an additional ibm,extended-os-term property indicates
845 * that rtas call return will always occur. Set this property.
847 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
849 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
850 lrdr_capacity, sizeof(lrdr_capacity)));
852 spapr_dt_rtas_tokens(fdt, rtas);
855 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
856 * that the guest may request and thus the valid values for bytes 24..26 of
857 * option vector 5: */
858 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
860 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
862 char val[2 * 3] = {
863 24, 0x00, /* Hash/Radix, filled in below. */
864 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
865 26, 0x40, /* Radix options: GTSE == yes. */
868 if (kvm_enabled()) {
869 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
870 val[1] = 0x80; /* OV5_MMU_BOTH */
871 } else if (kvmppc_has_cap_mmu_radix()) {
872 val[1] = 0x40; /* OV5_MMU_RADIX_300 */
873 } else {
874 val[1] = 0x00; /* Hash */
876 } else {
877 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
878 /* V3 MMU supports both hash and radix (with dynamic switching) */
879 val[1] = 0xC0;
880 } else {
881 /* Otherwise we can only do hash */
882 val[1] = 0x00;
885 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
886 val, sizeof(val)));
889 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
891 MachineState *machine = MACHINE(spapr);
892 int chosen;
893 const char *boot_device = machine->boot_order;
894 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
895 size_t cb = 0;
896 char *bootlist = get_boot_devices_list(&cb, true);
898 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
900 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
901 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
902 spapr->initrd_base));
903 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
904 spapr->initrd_base + spapr->initrd_size));
906 if (spapr->kernel_size) {
907 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
908 cpu_to_be64(spapr->kernel_size) };
910 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
911 &kprop, sizeof(kprop)));
912 if (spapr->kernel_le) {
913 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
916 if (boot_menu) {
917 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
919 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
920 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
921 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
923 if (cb && bootlist) {
924 int i;
926 for (i = 0; i < cb; i++) {
927 if (bootlist[i] == '\n') {
928 bootlist[i] = ' ';
931 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
934 if (boot_device && strlen(boot_device)) {
935 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
938 if (!spapr->has_graphics && stdout_path) {
939 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
942 spapr_dt_ov5_platform_support(fdt, chosen);
944 g_free(stdout_path);
945 g_free(bootlist);
948 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
950 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
951 * KVM to work under pHyp with some guest co-operation */
952 int hypervisor;
953 uint8_t hypercall[16];
955 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
956 /* indicate KVM hypercall interface */
957 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
958 if (kvmppc_has_cap_fixup_hcalls()) {
960 * Older KVM versions with older guest kernels were broken
961 * with the magic page, don't allow the guest to map it.
963 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
964 sizeof(hypercall))) {
965 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
966 hypercall, sizeof(hypercall)));
971 static void *spapr_build_fdt(sPAPRMachineState *spapr,
972 hwaddr rtas_addr,
973 hwaddr rtas_size)
975 MachineState *machine = MACHINE(qdev_get_machine());
976 MachineClass *mc = MACHINE_GET_CLASS(machine);
977 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
978 int ret;
979 void *fdt;
980 sPAPRPHBState *phb;
981 char *buf;
982 int smt = kvmppc_smt_threads();
984 fdt = g_malloc0(FDT_MAX_SIZE);
985 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
987 /* Root node */
988 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
989 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
990 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
993 * Add info to guest to indentify which host is it being run on
994 * and what is the uuid of the guest
996 if (kvmppc_get_host_model(&buf)) {
997 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
998 g_free(buf);
1000 if (kvmppc_get_host_serial(&buf)) {
1001 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1002 g_free(buf);
1005 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1007 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1008 if (qemu_uuid_set) {
1009 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1011 g_free(buf);
1013 if (qemu_get_vm_name()) {
1014 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1015 qemu_get_vm_name()));
1018 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1019 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1021 /* /interrupt controller */
1022 spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP);
1024 ret = spapr_populate_memory(spapr, fdt);
1025 if (ret < 0) {
1026 error_report("couldn't setup memory nodes in fdt");
1027 exit(1);
1030 /* /vdevice */
1031 spapr_dt_vdevice(spapr->vio_bus, fdt);
1033 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1034 ret = spapr_rng_populate_dt(fdt);
1035 if (ret < 0) {
1036 error_report("could not set up rng device in the fdt");
1037 exit(1);
1041 QLIST_FOREACH(phb, &spapr->phbs, list) {
1042 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1043 if (ret < 0) {
1044 error_report("couldn't setup PCI devices in fdt");
1045 exit(1);
1049 /* cpus */
1050 spapr_populate_cpus_dt_node(fdt, spapr);
1052 if (smc->dr_lmb_enabled) {
1053 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1056 if (mc->has_hotpluggable_cpus) {
1057 int offset = fdt_path_offset(fdt, "/cpus");
1058 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1059 SPAPR_DR_CONNECTOR_TYPE_CPU);
1060 if (ret < 0) {
1061 error_report("Couldn't set up CPU DR device tree properties");
1062 exit(1);
1066 /* /event-sources */
1067 spapr_dt_events(spapr, fdt);
1069 /* /rtas */
1070 spapr_dt_rtas(spapr, fdt);
1072 /* /chosen */
1073 spapr_dt_chosen(spapr, fdt);
1075 /* /hypervisor */
1076 if (kvm_enabled()) {
1077 spapr_dt_hypervisor(spapr, fdt);
1080 /* Build memory reserve map */
1081 if (spapr->kernel_size) {
1082 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1084 if (spapr->initrd_size) {
1085 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1088 /* ibm,client-architecture-support updates */
1089 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1090 if (ret < 0) {
1091 error_report("couldn't setup CAS properties fdt");
1092 exit(1);
1095 return fdt;
1098 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1100 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1103 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1104 PowerPCCPU *cpu)
1106 CPUPPCState *env = &cpu->env;
1108 /* The TCG path should also be holding the BQL at this point */
1109 g_assert(qemu_mutex_iothread_locked());
1111 if (msr_pr) {
1112 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1113 env->gpr[3] = H_PRIVILEGE;
1114 } else {
1115 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1119 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1121 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1123 return spapr->patb_entry;
1126 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1127 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1128 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1129 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1130 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1133 * Get the fd to access the kernel htab, re-opening it if necessary
1135 static int get_htab_fd(sPAPRMachineState *spapr)
1137 if (spapr->htab_fd >= 0) {
1138 return spapr->htab_fd;
1141 spapr->htab_fd = kvmppc_get_htab_fd(false);
1142 if (spapr->htab_fd < 0) {
1143 error_report("Unable to open fd for reading hash table from KVM: %s",
1144 strerror(errno));
1147 return spapr->htab_fd;
1150 void close_htab_fd(sPAPRMachineState *spapr)
1152 if (spapr->htab_fd >= 0) {
1153 close(spapr->htab_fd);
1155 spapr->htab_fd = -1;
1158 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1160 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1162 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1165 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1166 hwaddr ptex, int n)
1168 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1169 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1171 if (!spapr->htab) {
1173 * HTAB is controlled by KVM. Fetch into temporary buffer
1175 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1176 kvmppc_read_hptes(hptes, ptex, n);
1177 return hptes;
1181 * HTAB is controlled by QEMU. Just point to the internally
1182 * accessible PTEG.
1184 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1187 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1188 const ppc_hash_pte64_t *hptes,
1189 hwaddr ptex, int n)
1191 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1193 if (!spapr->htab) {
1194 g_free((void *)hptes);
1197 /* Nothing to do for qemu managed HPT */
1200 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1201 uint64_t pte0, uint64_t pte1)
1203 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1204 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1206 if (!spapr->htab) {
1207 kvmppc_write_hpte(ptex, pte0, pte1);
1208 } else {
1209 stq_p(spapr->htab + offset, pte0);
1210 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1214 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1216 int shift;
1218 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1219 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1220 * that's much more than is needed for Linux guests */
1221 shift = ctz64(pow2ceil(ramsize)) - 7;
1222 shift = MAX(shift, 18); /* Minimum architected size */
1223 shift = MIN(shift, 46); /* Maximum architected size */
1224 return shift;
1227 void spapr_free_hpt(sPAPRMachineState *spapr)
1229 g_free(spapr->htab);
1230 spapr->htab = NULL;
1231 spapr->htab_shift = 0;
1232 close_htab_fd(spapr);
1235 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1236 Error **errp)
1238 long rc;
1240 /* Clean up any HPT info from a previous boot */
1241 spapr_free_hpt(spapr);
1243 rc = kvmppc_reset_htab(shift);
1244 if (rc < 0) {
1245 /* kernel-side HPT needed, but couldn't allocate one */
1246 error_setg_errno(errp, errno,
1247 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1248 shift);
1249 /* This is almost certainly fatal, but if the caller really
1250 * wants to carry on with shift == 0, it's welcome to try */
1251 } else if (rc > 0) {
1252 /* kernel-side HPT allocated */
1253 if (rc != shift) {
1254 error_setg(errp,
1255 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1256 shift, rc);
1259 spapr->htab_shift = shift;
1260 spapr->htab = NULL;
1261 } else {
1262 /* kernel-side HPT not needed, allocate in userspace instead */
1263 size_t size = 1ULL << shift;
1264 int i;
1266 spapr->htab = qemu_memalign(size, size);
1267 if (!spapr->htab) {
1268 error_setg_errno(errp, errno,
1269 "Could not allocate HPT of order %d", shift);
1270 return;
1273 memset(spapr->htab, 0, size);
1274 spapr->htab_shift = shift;
1276 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1277 DIRTY_HPTE(HPTE(spapr->htab, i));
1282 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1284 spapr_reallocate_hpt(spapr,
1285 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1286 &error_fatal);
1287 if (spapr->vrma_adjust) {
1288 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1289 spapr->htab_shift);
1291 /* We're setting up a hash table, so that means we're not radix */
1292 spapr->patb_entry = 0;
1295 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1297 bool matched = false;
1299 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1300 matched = true;
1303 if (!matched) {
1304 error_report("Device %s is not supported by this machine yet.",
1305 qdev_fw_name(DEVICE(sbdev)));
1306 exit(1);
1310 static void ppc_spapr_reset(void)
1312 MachineState *machine = MACHINE(qdev_get_machine());
1313 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1314 PowerPCCPU *first_ppc_cpu;
1315 uint32_t rtas_limit;
1316 hwaddr rtas_addr, fdt_addr;
1317 void *fdt;
1318 int rc;
1320 /* Check for unknown sysbus devices */
1321 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1323 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1324 /* If using KVM with radix mode available, VCPUs can be started
1325 * without a HPT because KVM will start them in radix mode.
1326 * Set the GR bit in PATB so that we know there is no HPT. */
1327 spapr->patb_entry = PATBE1_GR;
1328 } else {
1329 spapr->patb_entry = 0;
1330 spapr_setup_hpt_and_vrma(spapr);
1333 qemu_devices_reset();
1336 * We place the device tree and RTAS just below either the top of the RMA,
1337 * or just below 2GB, whichever is lowere, so that it can be
1338 * processed with 32-bit real mode code if necessary
1340 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1341 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1342 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1344 /* if this reset wasn't generated by CAS, we should reset our
1345 * negotiated options and start from scratch */
1346 if (!spapr->cas_reboot) {
1347 spapr_ovec_cleanup(spapr->ov5_cas);
1348 spapr->ov5_cas = spapr_ovec_new();
1351 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1353 spapr_load_rtas(spapr, fdt, rtas_addr);
1355 rc = fdt_pack(fdt);
1357 /* Should only fail if we've built a corrupted tree */
1358 assert(rc == 0);
1360 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1361 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1362 fdt_totalsize(fdt), FDT_MAX_SIZE);
1363 exit(1);
1366 /* Load the fdt */
1367 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1368 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1369 g_free(fdt);
1371 /* Set up the entry state */
1372 first_ppc_cpu = POWERPC_CPU(first_cpu);
1373 first_ppc_cpu->env.gpr[3] = fdt_addr;
1374 first_ppc_cpu->env.gpr[5] = 0;
1375 first_cpu->halted = 0;
1376 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1378 spapr->cas_reboot = false;
1381 static void spapr_create_nvram(sPAPRMachineState *spapr)
1383 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1384 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1386 if (dinfo) {
1387 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1388 &error_fatal);
1391 qdev_init_nofail(dev);
1393 spapr->nvram = (struct sPAPRNVRAM *)dev;
1396 static void spapr_rtc_create(sPAPRMachineState *spapr)
1398 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1399 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1400 &error_fatal);
1401 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1402 &error_fatal);
1403 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1404 "date", &error_fatal);
1407 /* Returns whether we want to use VGA or not */
1408 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1410 switch (vga_interface_type) {
1411 case VGA_NONE:
1412 return false;
1413 case VGA_DEVICE:
1414 return true;
1415 case VGA_STD:
1416 case VGA_VIRTIO:
1417 return pci_vga_init(pci_bus) != NULL;
1418 default:
1419 error_setg(errp,
1420 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1421 return false;
1425 static int spapr_post_load(void *opaque, int version_id)
1427 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1428 int err = 0;
1430 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1431 CPUState *cs;
1432 CPU_FOREACH(cs) {
1433 PowerPCCPU *cpu = POWERPC_CPU(cs);
1434 icp_resend(ICP(cpu->intc));
1438 /* In earlier versions, there was no separate qdev for the PAPR
1439 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1440 * So when migrating from those versions, poke the incoming offset
1441 * value into the RTC device */
1442 if (version_id < 3) {
1443 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1446 return err;
1449 static bool version_before_3(void *opaque, int version_id)
1451 return version_id < 3;
1454 static bool spapr_ov5_cas_needed(void *opaque)
1456 sPAPRMachineState *spapr = opaque;
1457 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1458 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1459 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1460 bool cas_needed;
1462 /* Prior to the introduction of sPAPROptionVector, we had two option
1463 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1464 * Both of these options encode machine topology into the device-tree
1465 * in such a way that the now-booted OS should still be able to interact
1466 * appropriately with QEMU regardless of what options were actually
1467 * negotiatied on the source side.
1469 * As such, we can avoid migrating the CAS-negotiated options if these
1470 * are the only options available on the current machine/platform.
1471 * Since these are the only options available for pseries-2.7 and
1472 * earlier, this allows us to maintain old->new/new->old migration
1473 * compatibility.
1475 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1476 * via default pseries-2.8 machines and explicit command-line parameters.
1477 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1478 * of the actual CAS-negotiated values to continue working properly. For
1479 * example, availability of memory unplug depends on knowing whether
1480 * OV5_HP_EVT was negotiated via CAS.
1482 * Thus, for any cases where the set of available CAS-negotiatable
1483 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1484 * include the CAS-negotiated options in the migration stream.
1486 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1487 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1489 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1490 * the mask itself since in the future it's possible "legacy" bits may be
1491 * removed via machine options, which could generate a false positive
1492 * that breaks migration.
1494 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1495 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1497 spapr_ovec_cleanup(ov5_mask);
1498 spapr_ovec_cleanup(ov5_legacy);
1499 spapr_ovec_cleanup(ov5_removed);
1501 return cas_needed;
1504 static const VMStateDescription vmstate_spapr_ov5_cas = {
1505 .name = "spapr_option_vector_ov5_cas",
1506 .version_id = 1,
1507 .minimum_version_id = 1,
1508 .needed = spapr_ov5_cas_needed,
1509 .fields = (VMStateField[]) {
1510 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1511 vmstate_spapr_ovec, sPAPROptionVector),
1512 VMSTATE_END_OF_LIST()
1516 static bool spapr_patb_entry_needed(void *opaque)
1518 sPAPRMachineState *spapr = opaque;
1520 return !!spapr->patb_entry;
1523 static const VMStateDescription vmstate_spapr_patb_entry = {
1524 .name = "spapr_patb_entry",
1525 .version_id = 1,
1526 .minimum_version_id = 1,
1527 .needed = spapr_patb_entry_needed,
1528 .fields = (VMStateField[]) {
1529 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1530 VMSTATE_END_OF_LIST()
1534 static const VMStateDescription vmstate_spapr = {
1535 .name = "spapr",
1536 .version_id = 3,
1537 .minimum_version_id = 1,
1538 .post_load = spapr_post_load,
1539 .fields = (VMStateField[]) {
1540 /* used to be @next_irq */
1541 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1543 /* RTC offset */
1544 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1546 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1547 VMSTATE_END_OF_LIST()
1549 .subsections = (const VMStateDescription*[]) {
1550 &vmstate_spapr_ov5_cas,
1551 &vmstate_spapr_patb_entry,
1552 NULL
1556 static int htab_save_setup(QEMUFile *f, void *opaque)
1558 sPAPRMachineState *spapr = opaque;
1560 /* "Iteration" header */
1561 qemu_put_be32(f, spapr->htab_shift);
1563 if (spapr->htab) {
1564 spapr->htab_save_index = 0;
1565 spapr->htab_first_pass = true;
1566 } else {
1567 assert(kvm_enabled());
1571 return 0;
1574 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1575 int64_t max_ns)
1577 bool has_timeout = max_ns != -1;
1578 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1579 int index = spapr->htab_save_index;
1580 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1582 assert(spapr->htab_first_pass);
1584 do {
1585 int chunkstart;
1587 /* Consume invalid HPTEs */
1588 while ((index < htabslots)
1589 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1590 CLEAN_HPTE(HPTE(spapr->htab, index));
1591 index++;
1594 /* Consume valid HPTEs */
1595 chunkstart = index;
1596 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1597 && HPTE_VALID(HPTE(spapr->htab, index))) {
1598 CLEAN_HPTE(HPTE(spapr->htab, index));
1599 index++;
1602 if (index > chunkstart) {
1603 int n_valid = index - chunkstart;
1605 qemu_put_be32(f, chunkstart);
1606 qemu_put_be16(f, n_valid);
1607 qemu_put_be16(f, 0);
1608 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1609 HASH_PTE_SIZE_64 * n_valid);
1611 if (has_timeout &&
1612 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1613 break;
1616 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1618 if (index >= htabslots) {
1619 assert(index == htabslots);
1620 index = 0;
1621 spapr->htab_first_pass = false;
1623 spapr->htab_save_index = index;
1626 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1627 int64_t max_ns)
1629 bool final = max_ns < 0;
1630 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1631 int examined = 0, sent = 0;
1632 int index = spapr->htab_save_index;
1633 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1635 assert(!spapr->htab_first_pass);
1637 do {
1638 int chunkstart, invalidstart;
1640 /* Consume non-dirty HPTEs */
1641 while ((index < htabslots)
1642 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1643 index++;
1644 examined++;
1647 chunkstart = index;
1648 /* Consume valid dirty HPTEs */
1649 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1650 && HPTE_DIRTY(HPTE(spapr->htab, index))
1651 && HPTE_VALID(HPTE(spapr->htab, index))) {
1652 CLEAN_HPTE(HPTE(spapr->htab, index));
1653 index++;
1654 examined++;
1657 invalidstart = index;
1658 /* Consume invalid dirty HPTEs */
1659 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1660 && HPTE_DIRTY(HPTE(spapr->htab, index))
1661 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1662 CLEAN_HPTE(HPTE(spapr->htab, index));
1663 index++;
1664 examined++;
1667 if (index > chunkstart) {
1668 int n_valid = invalidstart - chunkstart;
1669 int n_invalid = index - invalidstart;
1671 qemu_put_be32(f, chunkstart);
1672 qemu_put_be16(f, n_valid);
1673 qemu_put_be16(f, n_invalid);
1674 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1675 HASH_PTE_SIZE_64 * n_valid);
1676 sent += index - chunkstart;
1678 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1679 break;
1683 if (examined >= htabslots) {
1684 break;
1687 if (index >= htabslots) {
1688 assert(index == htabslots);
1689 index = 0;
1691 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1693 if (index >= htabslots) {
1694 assert(index == htabslots);
1695 index = 0;
1698 spapr->htab_save_index = index;
1700 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1703 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1704 #define MAX_KVM_BUF_SIZE 2048
1706 static int htab_save_iterate(QEMUFile *f, void *opaque)
1708 sPAPRMachineState *spapr = opaque;
1709 int fd;
1710 int rc = 0;
1712 /* Iteration header */
1713 qemu_put_be32(f, 0);
1715 if (!spapr->htab) {
1716 assert(kvm_enabled());
1718 fd = get_htab_fd(spapr);
1719 if (fd < 0) {
1720 return fd;
1723 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1724 if (rc < 0) {
1725 return rc;
1727 } else if (spapr->htab_first_pass) {
1728 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1729 } else {
1730 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1733 /* End marker */
1734 qemu_put_be32(f, 0);
1735 qemu_put_be16(f, 0);
1736 qemu_put_be16(f, 0);
1738 return rc;
1741 static int htab_save_complete(QEMUFile *f, void *opaque)
1743 sPAPRMachineState *spapr = opaque;
1744 int fd;
1746 /* Iteration header */
1747 qemu_put_be32(f, 0);
1749 if (!spapr->htab) {
1750 int rc;
1752 assert(kvm_enabled());
1754 fd = get_htab_fd(spapr);
1755 if (fd < 0) {
1756 return fd;
1759 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1760 if (rc < 0) {
1761 return rc;
1763 } else {
1764 if (spapr->htab_first_pass) {
1765 htab_save_first_pass(f, spapr, -1);
1767 htab_save_later_pass(f, spapr, -1);
1770 /* End marker */
1771 qemu_put_be32(f, 0);
1772 qemu_put_be16(f, 0);
1773 qemu_put_be16(f, 0);
1775 return 0;
1778 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1780 sPAPRMachineState *spapr = opaque;
1781 uint32_t section_hdr;
1782 int fd = -1;
1784 if (version_id < 1 || version_id > 1) {
1785 error_report("htab_load() bad version");
1786 return -EINVAL;
1789 section_hdr = qemu_get_be32(f);
1791 if (section_hdr) {
1792 Error *local_err = NULL;
1794 /* First section gives the htab size */
1795 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1796 if (local_err) {
1797 error_report_err(local_err);
1798 return -EINVAL;
1800 return 0;
1803 if (!spapr->htab) {
1804 assert(kvm_enabled());
1806 fd = kvmppc_get_htab_fd(true);
1807 if (fd < 0) {
1808 error_report("Unable to open fd to restore KVM hash table: %s",
1809 strerror(errno));
1813 while (true) {
1814 uint32_t index;
1815 uint16_t n_valid, n_invalid;
1817 index = qemu_get_be32(f);
1818 n_valid = qemu_get_be16(f);
1819 n_invalid = qemu_get_be16(f);
1821 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1822 /* End of Stream */
1823 break;
1826 if ((index + n_valid + n_invalid) >
1827 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1828 /* Bad index in stream */
1829 error_report(
1830 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1831 index, n_valid, n_invalid, spapr->htab_shift);
1832 return -EINVAL;
1835 if (spapr->htab) {
1836 if (n_valid) {
1837 qemu_get_buffer(f, HPTE(spapr->htab, index),
1838 HASH_PTE_SIZE_64 * n_valid);
1840 if (n_invalid) {
1841 memset(HPTE(spapr->htab, index + n_valid), 0,
1842 HASH_PTE_SIZE_64 * n_invalid);
1844 } else {
1845 int rc;
1847 assert(fd >= 0);
1849 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1850 if (rc < 0) {
1851 return rc;
1856 if (!spapr->htab) {
1857 assert(fd >= 0);
1858 close(fd);
1861 return 0;
1864 static void htab_cleanup(void *opaque)
1866 sPAPRMachineState *spapr = opaque;
1868 close_htab_fd(spapr);
1871 static SaveVMHandlers savevm_htab_handlers = {
1872 .save_live_setup = htab_save_setup,
1873 .save_live_iterate = htab_save_iterate,
1874 .save_live_complete_precopy = htab_save_complete,
1875 .cleanup = htab_cleanup,
1876 .load_state = htab_load,
1879 static void spapr_boot_set(void *opaque, const char *boot_device,
1880 Error **errp)
1882 MachineState *machine = MACHINE(qdev_get_machine());
1883 machine->boot_order = g_strdup(boot_device);
1887 * Reset routine for LMB DR devices.
1889 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1890 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1891 * when it walks all its children devices. LMB devices reset occurs
1892 * as part of spapr_ppc_reset().
1894 static void spapr_drc_reset(void *opaque)
1896 sPAPRDRConnector *drc = opaque;
1897 DeviceState *d = DEVICE(drc);
1899 if (d) {
1900 device_reset(d);
1904 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1906 MachineState *machine = MACHINE(spapr);
1907 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1908 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1909 int i;
1911 for (i = 0; i < nr_lmbs; i++) {
1912 sPAPRDRConnector *drc;
1913 uint64_t addr;
1915 addr = i * lmb_size + spapr->hotplug_memory.base;
1916 drc = spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
1917 addr/lmb_size);
1918 qemu_register_reset(spapr_drc_reset, drc);
1923 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1924 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1925 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1927 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1929 int i;
1931 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1932 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1933 " is not aligned to %llu MiB",
1934 machine->ram_size,
1935 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1936 return;
1939 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1940 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1941 " is not aligned to %llu MiB",
1942 machine->ram_size,
1943 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1944 return;
1947 for (i = 0; i < nb_numa_nodes; i++) {
1948 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1949 error_setg(errp,
1950 "Node %d memory size 0x%" PRIx64
1951 " is not aligned to %llu MiB",
1952 i, numa_info[i].node_mem,
1953 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1954 return;
1959 /* find cpu slot in machine->possible_cpus by core_id */
1960 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1962 int index = id / smp_threads;
1964 if (index >= ms->possible_cpus->len) {
1965 return NULL;
1967 if (idx) {
1968 *idx = index;
1970 return &ms->possible_cpus->cpus[index];
1973 static void spapr_init_cpus(sPAPRMachineState *spapr)
1975 MachineState *machine = MACHINE(spapr);
1976 MachineClass *mc = MACHINE_GET_CLASS(machine);
1977 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1978 int smt = kvmppc_smt_threads();
1979 const CPUArchIdList *possible_cpus;
1980 int boot_cores_nr = smp_cpus / smp_threads;
1981 int i;
1983 if (!type) {
1984 error_report("Unable to find sPAPR CPU Core definition");
1985 exit(1);
1988 possible_cpus = mc->possible_cpu_arch_ids(machine);
1989 if (mc->has_hotpluggable_cpus) {
1990 if (smp_cpus % smp_threads) {
1991 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1992 smp_cpus, smp_threads);
1993 exit(1);
1995 if (max_cpus % smp_threads) {
1996 error_report("max_cpus (%u) must be multiple of threads (%u)",
1997 max_cpus, smp_threads);
1998 exit(1);
2000 } else {
2001 if (max_cpus != smp_cpus) {
2002 error_report("This machine version does not support CPU hotplug");
2003 exit(1);
2005 boot_cores_nr = possible_cpus->len;
2008 for (i = 0; i < possible_cpus->len; i++) {
2009 int core_id = i * smp_threads;
2011 if (mc->has_hotpluggable_cpus) {
2012 sPAPRDRConnector *drc =
2013 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2014 (core_id / smp_threads) * smt);
2016 qemu_register_reset(spapr_drc_reset, drc);
2019 if (i < boot_cores_nr) {
2020 Object *core = object_new(type);
2021 int nr_threads = smp_threads;
2023 /* Handle the partially filled core for older machine types */
2024 if ((i + 1) * smp_threads >= smp_cpus) {
2025 nr_threads = smp_cpus - i * smp_threads;
2028 object_property_set_int(core, nr_threads, "nr-threads",
2029 &error_fatal);
2030 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2031 &error_fatal);
2032 object_property_set_bool(core, true, "realized", &error_fatal);
2035 g_free(type);
2038 /* pSeries LPAR / sPAPR hardware init */
2039 static void ppc_spapr_init(MachineState *machine)
2041 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2042 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2043 const char *kernel_filename = machine->kernel_filename;
2044 const char *initrd_filename = machine->initrd_filename;
2045 PCIHostState *phb;
2046 int i;
2047 MemoryRegion *sysmem = get_system_memory();
2048 MemoryRegion *ram = g_new(MemoryRegion, 1);
2049 MemoryRegion *rma_region;
2050 void *rma = NULL;
2051 hwaddr rma_alloc_size;
2052 hwaddr node0_size = spapr_node0_size();
2053 long load_limit, fw_size;
2054 char *filename;
2056 msi_nonbroken = true;
2058 QLIST_INIT(&spapr->phbs);
2059 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2061 /* Allocate RMA if necessary */
2062 rma_alloc_size = kvmppc_alloc_rma(&rma);
2064 if (rma_alloc_size == -1) {
2065 error_report("Unable to create RMA");
2066 exit(1);
2069 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2070 spapr->rma_size = rma_alloc_size;
2071 } else {
2072 spapr->rma_size = node0_size;
2074 /* With KVM, we don't actually know whether KVM supports an
2075 * unbounded RMA (PR KVM) or is limited by the hash table size
2076 * (HV KVM using VRMA), so we always assume the latter
2078 * In that case, we also limit the initial allocations for RTAS
2079 * etc... to 256M since we have no way to know what the VRMA size
2080 * is going to be as it depends on the size of the hash table
2081 * isn't determined yet.
2083 if (kvm_enabled()) {
2084 spapr->vrma_adjust = 1;
2085 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2088 /* Actually we don't support unbounded RMA anymore since we
2089 * added proper emulation of HV mode. The max we can get is
2090 * 16G which also happens to be what we configure for PAPR
2091 * mode so make sure we don't do anything bigger than that
2093 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2096 if (spapr->rma_size > node0_size) {
2097 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2098 spapr->rma_size);
2099 exit(1);
2102 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2103 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2105 /* Set up Interrupt Controller before we create the VCPUs */
2106 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2108 /* Set up containers for ibm,client-set-architecture negotiated options */
2109 spapr->ov5 = spapr_ovec_new();
2110 spapr->ov5_cas = spapr_ovec_new();
2112 if (smc->dr_lmb_enabled) {
2113 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2114 spapr_validate_node_memory(machine, &error_fatal);
2117 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2118 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2119 /* KVM and TCG always allow GTSE with radix... */
2120 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2122 /* ... but not with hash (currently). */
2124 /* advertise support for dedicated HP event source to guests */
2125 if (spapr->use_hotplug_event_source) {
2126 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2129 /* init CPUs */
2130 if (machine->cpu_model == NULL) {
2131 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2134 ppc_cpu_parse_features(machine->cpu_model);
2136 spapr_init_cpus(spapr);
2138 if (kvm_enabled()) {
2139 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2140 kvmppc_enable_logical_ci_hcalls();
2141 kvmppc_enable_set_mode_hcall();
2143 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2144 kvmppc_enable_clear_ref_mod_hcalls();
2147 /* allocate RAM */
2148 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2149 machine->ram_size);
2150 memory_region_add_subregion(sysmem, 0, ram);
2152 if (rma_alloc_size && rma) {
2153 rma_region = g_new(MemoryRegion, 1);
2154 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2155 rma_alloc_size, rma);
2156 vmstate_register_ram_global(rma_region);
2157 memory_region_add_subregion(sysmem, 0, rma_region);
2160 /* initialize hotplug memory address space */
2161 if (machine->ram_size < machine->maxram_size) {
2162 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2164 * Limit the number of hotpluggable memory slots to half the number
2165 * slots that KVM supports, leaving the other half for PCI and other
2166 * devices. However ensure that number of slots doesn't drop below 32.
2168 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2169 SPAPR_MAX_RAM_SLOTS;
2171 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2172 max_memslots = SPAPR_MAX_RAM_SLOTS;
2174 if (machine->ram_slots > max_memslots) {
2175 error_report("Specified number of memory slots %"
2176 PRIu64" exceeds max supported %d",
2177 machine->ram_slots, max_memslots);
2178 exit(1);
2181 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2182 SPAPR_HOTPLUG_MEM_ALIGN);
2183 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2184 "hotplug-memory", hotplug_mem_size);
2185 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2186 &spapr->hotplug_memory.mr);
2189 if (smc->dr_lmb_enabled) {
2190 spapr_create_lmb_dr_connectors(spapr);
2193 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2194 if (!filename) {
2195 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2196 exit(1);
2198 spapr->rtas_size = get_image_size(filename);
2199 if (spapr->rtas_size < 0) {
2200 error_report("Could not get size of LPAR rtas '%s'", filename);
2201 exit(1);
2203 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2204 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2205 error_report("Could not load LPAR rtas '%s'", filename);
2206 exit(1);
2208 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2209 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2210 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2211 exit(1);
2213 g_free(filename);
2215 /* Set up RTAS event infrastructure */
2216 spapr_events_init(spapr);
2218 /* Set up the RTC RTAS interfaces */
2219 spapr_rtc_create(spapr);
2221 /* Set up VIO bus */
2222 spapr->vio_bus = spapr_vio_bus_init();
2224 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2225 if (serial_hds[i]) {
2226 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2230 /* We always have at least the nvram device on VIO */
2231 spapr_create_nvram(spapr);
2233 /* Set up PCI */
2234 spapr_pci_rtas_init();
2236 phb = spapr_create_phb(spapr, 0);
2238 for (i = 0; i < nb_nics; i++) {
2239 NICInfo *nd = &nd_table[i];
2241 if (!nd->model) {
2242 nd->model = g_strdup("ibmveth");
2245 if (strcmp(nd->model, "ibmveth") == 0) {
2246 spapr_vlan_create(spapr->vio_bus, nd);
2247 } else {
2248 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2252 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2253 spapr_vscsi_create(spapr->vio_bus);
2256 /* Graphics */
2257 if (spapr_vga_init(phb->bus, &error_fatal)) {
2258 spapr->has_graphics = true;
2259 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2262 if (machine->usb) {
2263 if (smc->use_ohci_by_default) {
2264 pci_create_simple(phb->bus, -1, "pci-ohci");
2265 } else {
2266 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2269 if (spapr->has_graphics) {
2270 USBBus *usb_bus = usb_bus_find(-1);
2272 usb_create_simple(usb_bus, "usb-kbd");
2273 usb_create_simple(usb_bus, "usb-mouse");
2277 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2278 error_report(
2279 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2280 MIN_RMA_SLOF);
2281 exit(1);
2284 if (kernel_filename) {
2285 uint64_t lowaddr = 0;
2287 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2288 NULL, NULL, &lowaddr, NULL, 1,
2289 PPC_ELF_MACHINE, 0, 0);
2290 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2291 spapr->kernel_size = load_elf(kernel_filename,
2292 translate_kernel_address, NULL, NULL,
2293 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2294 0, 0);
2295 spapr->kernel_le = spapr->kernel_size > 0;
2297 if (spapr->kernel_size < 0) {
2298 error_report("error loading %s: %s", kernel_filename,
2299 load_elf_strerror(spapr->kernel_size));
2300 exit(1);
2303 /* load initrd */
2304 if (initrd_filename) {
2305 /* Try to locate the initrd in the gap between the kernel
2306 * and the firmware. Add a bit of space just in case
2308 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2309 + 0x1ffff) & ~0xffff;
2310 spapr->initrd_size = load_image_targphys(initrd_filename,
2311 spapr->initrd_base,
2312 load_limit
2313 - spapr->initrd_base);
2314 if (spapr->initrd_size < 0) {
2315 error_report("could not load initial ram disk '%s'",
2316 initrd_filename);
2317 exit(1);
2322 if (bios_name == NULL) {
2323 bios_name = FW_FILE_NAME;
2325 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2326 if (!filename) {
2327 error_report("Could not find LPAR firmware '%s'", bios_name);
2328 exit(1);
2330 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2331 if (fw_size <= 0) {
2332 error_report("Could not load LPAR firmware '%s'", filename);
2333 exit(1);
2335 g_free(filename);
2337 /* FIXME: Should register things through the MachineState's qdev
2338 * interface, this is a legacy from the sPAPREnvironment structure
2339 * which predated MachineState but had a similar function */
2340 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2341 register_savevm_live(NULL, "spapr/htab", -1, 1,
2342 &savevm_htab_handlers, spapr);
2344 qemu_register_boot_set(spapr_boot_set, spapr);
2346 if (kvm_enabled()) {
2347 /* to stop and start vmclock */
2348 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2349 &spapr->tb);
2351 kvmppc_spapr_enable_inkernel_multitce();
2355 static int spapr_kvm_type(const char *vm_type)
2357 if (!vm_type) {
2358 return 0;
2361 if (!strcmp(vm_type, "HV")) {
2362 return 1;
2365 if (!strcmp(vm_type, "PR")) {
2366 return 2;
2369 error_report("Unknown kvm-type specified '%s'", vm_type);
2370 exit(1);
2374 * Implementation of an interface to adjust firmware path
2375 * for the bootindex property handling.
2377 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2378 DeviceState *dev)
2380 #define CAST(type, obj, name) \
2381 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2382 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2383 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2384 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2386 if (d) {
2387 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2388 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2389 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2391 if (spapr) {
2393 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2394 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2395 * in the top 16 bits of the 64-bit LUN
2397 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2398 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2399 (uint64_t)id << 48);
2400 } else if (virtio) {
2402 * We use SRP luns of the form 01000000 | (target << 8) | lun
2403 * in the top 32 bits of the 64-bit LUN
2404 * Note: the quote above is from SLOF and it is wrong,
2405 * the actual binding is:
2406 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2408 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2409 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2410 (uint64_t)id << 32);
2411 } else if (usb) {
2413 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2414 * in the top 32 bits of the 64-bit LUN
2416 unsigned usb_port = atoi(usb->port->path);
2417 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2418 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2419 (uint64_t)id << 32);
2424 * SLOF probes the USB devices, and if it recognizes that the device is a
2425 * storage device, it changes its name to "storage" instead of "usb-host",
2426 * and additionally adds a child node for the SCSI LUN, so the correct
2427 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2429 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2430 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2431 if (usb_host_dev_is_scsi_storage(usbdev)) {
2432 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2436 if (phb) {
2437 /* Replace "pci" with "pci@800000020000000" */
2438 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2441 if (vsc) {
2442 /* Same logic as virtio above */
2443 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2444 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2447 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2448 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2449 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2450 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2453 return NULL;
2456 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2458 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2460 return g_strdup(spapr->kvm_type);
2463 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2465 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2467 g_free(spapr->kvm_type);
2468 spapr->kvm_type = g_strdup(value);
2471 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2473 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2475 return spapr->use_hotplug_event_source;
2478 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2479 Error **errp)
2481 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2483 spapr->use_hotplug_event_source = value;
2486 static void spapr_machine_initfn(Object *obj)
2488 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2490 spapr->htab_fd = -1;
2491 spapr->use_hotplug_event_source = true;
2492 object_property_add_str(obj, "kvm-type",
2493 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2494 object_property_set_description(obj, "kvm-type",
2495 "Specifies the KVM virtualization mode (HV, PR)",
2496 NULL);
2497 object_property_add_bool(obj, "modern-hotplug-events",
2498 spapr_get_modern_hotplug_events,
2499 spapr_set_modern_hotplug_events,
2500 NULL);
2501 object_property_set_description(obj, "modern-hotplug-events",
2502 "Use dedicated hotplug event mechanism in"
2503 " place of standard EPOW events when possible"
2504 " (required for memory hot-unplug support)",
2505 NULL);
2508 static void spapr_machine_finalizefn(Object *obj)
2510 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2512 g_free(spapr->kvm_type);
2515 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2517 cpu_synchronize_state(cs);
2518 ppc_cpu_do_system_reset(cs);
2521 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2523 CPUState *cs;
2525 CPU_FOREACH(cs) {
2526 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2530 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2531 uint32_t node, bool dedicated_hp_event_source,
2532 Error **errp)
2534 sPAPRDRConnector *drc;
2535 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2536 int i, fdt_offset, fdt_size;
2537 void *fdt;
2538 uint64_t addr = addr_start;
2540 for (i = 0; i < nr_lmbs; i++) {
2541 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2542 addr / SPAPR_MEMORY_BLOCK_SIZE);
2543 g_assert(drc);
2545 fdt = create_device_tree(&fdt_size);
2546 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2547 SPAPR_MEMORY_BLOCK_SIZE);
2549 spapr_drc_attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2550 addr += SPAPR_MEMORY_BLOCK_SIZE;
2551 if (!dev->hotplugged) {
2552 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2553 /* guests expect coldplugged LMBs to be pre-allocated */
2554 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2555 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2558 /* send hotplug notification to the
2559 * guest only in case of hotplugged memory
2561 if (dev->hotplugged) {
2562 if (dedicated_hp_event_source) {
2563 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2564 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2565 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2566 nr_lmbs,
2567 spapr_drc_index(drc));
2568 } else {
2569 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2570 nr_lmbs);
2575 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2576 uint32_t node, Error **errp)
2578 Error *local_err = NULL;
2579 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2580 PCDIMMDevice *dimm = PC_DIMM(dev);
2581 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2582 MemoryRegion *mr = ddc->get_memory_region(dimm);
2583 uint64_t align = memory_region_get_alignment(mr);
2584 uint64_t size = memory_region_size(mr);
2585 uint64_t addr;
2587 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2588 if (local_err) {
2589 goto out;
2592 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2593 if (local_err) {
2594 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2595 goto out;
2598 spapr_add_lmbs(dev, addr, size, node,
2599 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2600 &error_abort);
2602 out:
2603 error_propagate(errp, local_err);
2606 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2607 Error **errp)
2609 PCDIMMDevice *dimm = PC_DIMM(dev);
2610 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2611 MemoryRegion *mr = ddc->get_memory_region(dimm);
2612 uint64_t size = memory_region_size(mr);
2613 char *mem_dev;
2615 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2616 error_setg(errp, "Hotplugged memory size must be a multiple of "
2617 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2618 return;
2621 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2622 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2623 error_setg(errp, "Memory backend has bad page size. "
2624 "Use 'memory-backend-file' with correct mem-path.");
2625 goto out;
2628 out:
2629 g_free(mem_dev);
2632 struct sPAPRDIMMState {
2633 PCDIMMDevice *dimm;
2634 uint32_t nr_lmbs;
2635 QTAILQ_ENTRY(sPAPRDIMMState) next;
2638 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2639 PCDIMMDevice *dimm)
2641 sPAPRDIMMState *dimm_state = NULL;
2643 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2644 if (dimm_state->dimm == dimm) {
2645 break;
2648 return dimm_state;
2651 static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2652 sPAPRDIMMState *dimm_state)
2654 g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm));
2655 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next);
2658 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2659 sPAPRDIMMState *dimm_state)
2661 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2662 g_free(dimm_state);
2665 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2666 PCDIMMDevice *dimm)
2668 sPAPRDRConnector *drc;
2669 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2670 MemoryRegion *mr = ddc->get_memory_region(dimm);
2671 uint64_t size = memory_region_size(mr);
2672 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2673 uint32_t avail_lmbs = 0;
2674 uint64_t addr_start, addr;
2675 int i;
2676 sPAPRDIMMState *ds;
2678 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2679 &error_abort);
2681 addr = addr_start;
2682 for (i = 0; i < nr_lmbs; i++) {
2683 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2684 addr / SPAPR_MEMORY_BLOCK_SIZE);
2685 g_assert(drc);
2686 if (drc->dev) {
2687 avail_lmbs++;
2689 addr += SPAPR_MEMORY_BLOCK_SIZE;
2692 ds = g_malloc0(sizeof(sPAPRDIMMState));
2693 ds->nr_lmbs = avail_lmbs;
2694 ds->dimm = dimm;
2695 spapr_pending_dimm_unplugs_add(ms, ds);
2696 return ds;
2699 /* Callback to be called during DRC release. */
2700 void spapr_lmb_release(DeviceState *dev)
2702 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
2703 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
2704 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
2706 /* This information will get lost if a migration occurs
2707 * during the unplug process. In this case recover it. */
2708 if (ds == NULL) {
2709 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
2710 /* The DRC being examined by the caller at least must be counted */
2711 g_assert(ds->nr_lmbs);
2714 if (--ds->nr_lmbs) {
2715 return;
2718 spapr_pending_dimm_unplugs_remove(spapr, ds);
2721 * Now that all the LMBs have been removed by the guest, call the
2722 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2724 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2727 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2728 Error **errp)
2730 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2731 PCDIMMDevice *dimm = PC_DIMM(dev);
2732 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2733 MemoryRegion *mr = ddc->get_memory_region(dimm);
2735 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2736 object_unparent(OBJECT(dev));
2739 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2740 DeviceState *dev, Error **errp)
2742 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
2743 Error *local_err = NULL;
2744 PCDIMMDevice *dimm = PC_DIMM(dev);
2745 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2746 MemoryRegion *mr = ddc->get_memory_region(dimm);
2747 uint64_t size = memory_region_size(mr);
2748 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2749 uint64_t addr_start, addr;
2750 int i;
2751 sPAPRDRConnector *drc;
2752 sPAPRDIMMState *ds;
2754 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2755 &local_err);
2756 if (local_err) {
2757 goto out;
2760 ds = g_malloc0(sizeof(sPAPRDIMMState));
2761 ds->nr_lmbs = nr_lmbs;
2762 ds->dimm = dimm;
2763 spapr_pending_dimm_unplugs_add(spapr, ds);
2765 addr = addr_start;
2766 for (i = 0; i < nr_lmbs; i++) {
2767 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2768 addr / SPAPR_MEMORY_BLOCK_SIZE);
2769 g_assert(drc);
2771 spapr_drc_detach(drc, dev, errp);
2772 addr += SPAPR_MEMORY_BLOCK_SIZE;
2775 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2776 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2777 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2778 nr_lmbs, spapr_drc_index(drc));
2779 out:
2780 error_propagate(errp, local_err);
2783 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2784 sPAPRMachineState *spapr)
2786 PowerPCCPU *cpu = POWERPC_CPU(cs);
2787 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2788 int id = ppc_get_vcpu_dt_id(cpu);
2789 void *fdt;
2790 int offset, fdt_size;
2791 char *nodename;
2793 fdt = create_device_tree(&fdt_size);
2794 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2795 offset = fdt_add_subnode(fdt, 0, nodename);
2797 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2798 g_free(nodename);
2800 *fdt_offset = offset;
2801 return fdt;
2804 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2805 Error **errp)
2807 MachineState *ms = MACHINE(qdev_get_machine());
2808 CPUCore *cc = CPU_CORE(dev);
2809 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2811 assert(core_slot);
2812 core_slot->cpu = NULL;
2813 object_unparent(OBJECT(dev));
2816 /* Callback to be called during DRC release. */
2817 void spapr_core_release(DeviceState *dev)
2819 HotplugHandler *hotplug_ctrl;
2821 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2822 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2825 static
2826 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2827 Error **errp)
2829 int index;
2830 sPAPRDRConnector *drc;
2831 Error *local_err = NULL;
2832 CPUCore *cc = CPU_CORE(dev);
2833 int smt = kvmppc_smt_threads();
2835 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2836 error_setg(errp, "Unable to find CPU core with core-id: %d",
2837 cc->core_id);
2838 return;
2840 if (index == 0) {
2841 error_setg(errp, "Boot CPU core may not be unplugged");
2842 return;
2845 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
2846 g_assert(drc);
2848 spapr_drc_detach(drc, dev, &local_err);
2849 if (local_err) {
2850 error_propagate(errp, local_err);
2851 return;
2854 spapr_hotplug_req_remove_by_index(drc);
2857 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2858 Error **errp)
2860 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2861 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2862 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2863 CPUCore *cc = CPU_CORE(dev);
2864 CPUState *cs = CPU(core->threads);
2865 sPAPRDRConnector *drc;
2866 Error *local_err = NULL;
2867 void *fdt = NULL;
2868 int fdt_offset = 0;
2869 int smt = kvmppc_smt_threads();
2870 CPUArchId *core_slot;
2871 int index;
2873 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2874 if (!core_slot) {
2875 error_setg(errp, "Unable to find CPU core with core-id: %d",
2876 cc->core_id);
2877 return;
2879 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
2881 g_assert(drc || !mc->has_hotpluggable_cpus);
2884 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2885 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2887 if (dev->hotplugged) {
2888 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2891 if (drc) {
2892 spapr_drc_attach(drc, dev, fdt, fdt_offset, !dev->hotplugged,
2893 &local_err);
2894 if (local_err) {
2895 g_free(fdt);
2896 error_propagate(errp, local_err);
2897 return;
2901 if (dev->hotplugged) {
2903 * Send hotplug notification interrupt to the guest only in case
2904 * of hotplugged CPUs.
2906 spapr_hotplug_req_add_by_index(drc);
2907 } else {
2909 * Set the right DRC states for cold plugged CPU.
2911 if (drc) {
2912 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2913 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2914 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2917 core_slot->cpu = OBJECT(dev);
2920 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2921 Error **errp)
2923 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2924 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2925 Error *local_err = NULL;
2926 CPUCore *cc = CPU_CORE(dev);
2927 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2928 const char *type = object_get_typename(OBJECT(dev));
2929 CPUArchId *core_slot;
2930 int index;
2932 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2933 error_setg(&local_err, "CPU hotplug not supported for this machine");
2934 goto out;
2937 if (strcmp(base_core_type, type)) {
2938 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2939 goto out;
2942 if (cc->core_id % smp_threads) {
2943 error_setg(&local_err, "invalid core id %d", cc->core_id);
2944 goto out;
2948 * In general we should have homogeneous threads-per-core, but old
2949 * (pre hotplug support) machine types allow the last core to have
2950 * reduced threads as a compatibility hack for when we allowed
2951 * total vcpus not a multiple of threads-per-core.
2953 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
2954 error_setg(errp, "invalid nr-threads %d, must be %d",
2955 cc->nr_threads, smp_threads);
2956 return;
2959 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2960 if (!core_slot) {
2961 error_setg(&local_err, "core id %d out of range", cc->core_id);
2962 goto out;
2965 if (core_slot->cpu) {
2966 error_setg(&local_err, "core %d already populated", cc->core_id);
2967 goto out;
2970 numa_cpu_pre_plug(core_slot, dev, &local_err);
2972 out:
2973 g_free(base_core_type);
2974 error_propagate(errp, local_err);
2977 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2978 DeviceState *dev, Error **errp)
2980 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2982 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2983 int node;
2985 if (!smc->dr_lmb_enabled) {
2986 error_setg(errp, "Memory hotplug not supported for this machine");
2987 return;
2989 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2990 if (*errp) {
2991 return;
2993 if (node < 0 || node >= MAX_NODES) {
2994 error_setg(errp, "Invaild node %d", node);
2995 return;
2999 * Currently PowerPC kernel doesn't allow hot-adding memory to
3000 * memory-less node, but instead will silently add the memory
3001 * to the first node that has some memory. This causes two
3002 * unexpected behaviours for the user.
3004 * - Memory gets hotplugged to a different node than what the user
3005 * specified.
3006 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3007 * to memory-less node, a reboot will set things accordingly
3008 * and the previously hotplugged memory now ends in the right node.
3009 * This appears as if some memory moved from one node to another.
3011 * So until kernel starts supporting memory hotplug to memory-less
3012 * nodes, just prevent such attempts upfront in QEMU.
3014 if (nb_numa_nodes && !numa_info[node].node_mem) {
3015 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3016 node);
3017 return;
3020 spapr_memory_plug(hotplug_dev, dev, node, errp);
3021 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3022 spapr_core_plug(hotplug_dev, dev, errp);
3026 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3027 DeviceState *dev, Error **errp)
3029 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3030 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3032 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3033 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3034 spapr_memory_unplug(hotplug_dev, dev, errp);
3035 } else {
3036 error_setg(errp, "Memory hot unplug not supported for this guest");
3038 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3039 if (!mc->has_hotpluggable_cpus) {
3040 error_setg(errp, "CPU hot unplug not supported on this machine");
3041 return;
3043 spapr_core_unplug(hotplug_dev, dev, errp);
3047 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3048 DeviceState *dev, Error **errp)
3050 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3051 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3053 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3054 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3055 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3056 } else {
3057 /* NOTE: this means there is a window after guest reset, prior to
3058 * CAS negotiation, where unplug requests will fail due to the
3059 * capability not being detected yet. This is a bit different than
3060 * the case with PCI unplug, where the events will be queued and
3061 * eventually handled by the guest after boot
3063 error_setg(errp, "Memory hot unplug not supported for this guest");
3065 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3066 if (!mc->has_hotpluggable_cpus) {
3067 error_setg(errp, "CPU hot unplug not supported on this machine");
3068 return;
3070 spapr_core_unplug_request(hotplug_dev, dev, errp);
3074 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3075 DeviceState *dev, Error **errp)
3077 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3078 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3079 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3080 spapr_core_pre_plug(hotplug_dev, dev, errp);
3084 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3085 DeviceState *dev)
3087 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3088 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3089 return HOTPLUG_HANDLER(machine);
3091 return NULL;
3094 static CpuInstanceProperties
3095 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3097 CPUArchId *core_slot;
3098 MachineClass *mc = MACHINE_GET_CLASS(machine);
3100 /* make sure possible_cpu are intialized */
3101 mc->possible_cpu_arch_ids(machine);
3102 /* get CPU core slot containing thread that matches cpu_index */
3103 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3104 assert(core_slot);
3105 return core_slot->props;
3108 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3110 int i;
3111 int spapr_max_cores = max_cpus / smp_threads;
3112 MachineClass *mc = MACHINE_GET_CLASS(machine);
3114 if (!mc->has_hotpluggable_cpus) {
3115 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3117 if (machine->possible_cpus) {
3118 assert(machine->possible_cpus->len == spapr_max_cores);
3119 return machine->possible_cpus;
3122 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3123 sizeof(CPUArchId) * spapr_max_cores);
3124 machine->possible_cpus->len = spapr_max_cores;
3125 for (i = 0; i < machine->possible_cpus->len; i++) {
3126 int core_id = i * smp_threads;
3128 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3129 machine->possible_cpus->cpus[i].arch_id = core_id;
3130 machine->possible_cpus->cpus[i].props.has_core_id = true;
3131 machine->possible_cpus->cpus[i].props.core_id = core_id;
3133 /* default distribution of CPUs over NUMA nodes */
3134 if (nb_numa_nodes) {
3135 /* preset values but do not enable them i.e. 'has_node_id = false',
3136 * numa init code will enable them later if manual mapping wasn't
3137 * present on CLI */
3138 machine->possible_cpus->cpus[i].props.node_id =
3139 core_id / smp_threads / smp_cores % nb_numa_nodes;
3142 return machine->possible_cpus;
3145 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3146 uint64_t *buid, hwaddr *pio,
3147 hwaddr *mmio32, hwaddr *mmio64,
3148 unsigned n_dma, uint32_t *liobns, Error **errp)
3151 * New-style PHB window placement.
3153 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3154 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3155 * windows.
3157 * Some guest kernels can't work with MMIO windows above 1<<46
3158 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3160 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3161 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3162 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3163 * 1TiB 64-bit MMIO windows for each PHB.
3165 const uint64_t base_buid = 0x800000020000000ULL;
3166 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3167 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3168 int i;
3170 /* Sanity check natural alignments */
3171 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3172 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3173 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3174 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3175 /* Sanity check bounds */
3176 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3177 SPAPR_PCI_MEM32_WIN_SIZE);
3178 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3179 SPAPR_PCI_MEM64_WIN_SIZE);
3181 if (index >= SPAPR_MAX_PHBS) {
3182 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3183 SPAPR_MAX_PHBS - 1);
3184 return;
3187 *buid = base_buid + index;
3188 for (i = 0; i < n_dma; ++i) {
3189 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3192 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3193 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3194 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3197 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3199 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3201 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3204 static void spapr_ics_resend(XICSFabric *dev)
3206 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3208 ics_resend(spapr->ics);
3211 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3213 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3215 return cpu ? ICP(cpu->intc) : NULL;
3218 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3219 Monitor *mon)
3221 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3222 CPUState *cs;
3224 CPU_FOREACH(cs) {
3225 PowerPCCPU *cpu = POWERPC_CPU(cs);
3227 icp_pic_print_info(ICP(cpu->intc), mon);
3230 ics_pic_print_info(spapr->ics, mon);
3233 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3235 MachineClass *mc = MACHINE_CLASS(oc);
3236 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3237 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3238 NMIClass *nc = NMI_CLASS(oc);
3239 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3240 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3241 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3242 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3244 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3247 * We set up the default / latest behaviour here. The class_init
3248 * functions for the specific versioned machine types can override
3249 * these details for backwards compatibility
3251 mc->init = ppc_spapr_init;
3252 mc->reset = ppc_spapr_reset;
3253 mc->block_default_type = IF_SCSI;
3254 mc->max_cpus = 1024;
3255 mc->no_parallel = 1;
3256 mc->default_boot_order = "";
3257 mc->default_ram_size = 512 * M_BYTE;
3258 mc->kvm_type = spapr_kvm_type;
3259 mc->has_dynamic_sysbus = true;
3260 mc->pci_allow_0_address = true;
3261 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3262 hc->pre_plug = spapr_machine_device_pre_plug;
3263 hc->plug = spapr_machine_device_plug;
3264 hc->unplug = spapr_machine_device_unplug;
3265 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3266 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3267 hc->unplug_request = spapr_machine_device_unplug_request;
3269 smc->dr_lmb_enabled = true;
3270 smc->tcg_default_cpu = "POWER8";
3271 mc->has_hotpluggable_cpus = true;
3272 fwc->get_dev_path = spapr_get_fw_dev_path;
3273 nc->nmi_monitor_handler = spapr_nmi;
3274 smc->phb_placement = spapr_phb_placement;
3275 vhc->hypercall = emulate_spapr_hypercall;
3276 vhc->hpt_mask = spapr_hpt_mask;
3277 vhc->map_hptes = spapr_map_hptes;
3278 vhc->unmap_hptes = spapr_unmap_hptes;
3279 vhc->store_hpte = spapr_store_hpte;
3280 vhc->get_patbe = spapr_get_patbe;
3281 xic->ics_get = spapr_ics_get;
3282 xic->ics_resend = spapr_ics_resend;
3283 xic->icp_get = spapr_icp_get;
3284 ispc->print_info = spapr_pic_print_info;
3285 /* Force NUMA node memory size to be a multiple of
3286 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3287 * in which LMBs are represented and hot-added
3289 mc->numa_mem_align_shift = 28;
3292 static const TypeInfo spapr_machine_info = {
3293 .name = TYPE_SPAPR_MACHINE,
3294 .parent = TYPE_MACHINE,
3295 .abstract = true,
3296 .instance_size = sizeof(sPAPRMachineState),
3297 .instance_init = spapr_machine_initfn,
3298 .instance_finalize = spapr_machine_finalizefn,
3299 .class_size = sizeof(sPAPRMachineClass),
3300 .class_init = spapr_machine_class_init,
3301 .interfaces = (InterfaceInfo[]) {
3302 { TYPE_FW_PATH_PROVIDER },
3303 { TYPE_NMI },
3304 { TYPE_HOTPLUG_HANDLER },
3305 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3306 { TYPE_XICS_FABRIC },
3307 { TYPE_INTERRUPT_STATS_PROVIDER },
3312 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3313 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3314 void *data) \
3316 MachineClass *mc = MACHINE_CLASS(oc); \
3317 spapr_machine_##suffix##_class_options(mc); \
3318 if (latest) { \
3319 mc->alias = "pseries"; \
3320 mc->is_default = 1; \
3323 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3325 MachineState *machine = MACHINE(obj); \
3326 spapr_machine_##suffix##_instance_options(machine); \
3328 static const TypeInfo spapr_machine_##suffix##_info = { \
3329 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3330 .parent = TYPE_SPAPR_MACHINE, \
3331 .class_init = spapr_machine_##suffix##_class_init, \
3332 .instance_init = spapr_machine_##suffix##_instance_init, \
3333 }; \
3334 static void spapr_machine_register_##suffix(void) \
3336 type_register(&spapr_machine_##suffix##_info); \
3338 type_init(spapr_machine_register_##suffix)
3341 * pseries-2.10
3343 static void spapr_machine_2_10_instance_options(MachineState *machine)
3347 static void spapr_machine_2_10_class_options(MachineClass *mc)
3349 /* Defaults for the latest behaviour inherited from the base class */
3352 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3355 * pseries-2.9
3357 #define SPAPR_COMPAT_2_9 \
3358 HW_COMPAT_2_9
3360 static void spapr_machine_2_9_instance_options(MachineState *machine)
3362 spapr_machine_2_10_instance_options(machine);
3365 static void spapr_machine_2_9_class_options(MachineClass *mc)
3367 spapr_machine_2_10_class_options(mc);
3368 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3369 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3372 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3375 * pseries-2.8
3377 #define SPAPR_COMPAT_2_8 \
3378 HW_COMPAT_2_8 \
3380 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3381 .property = "pcie-extended-configuration-space", \
3382 .value = "off", \
3385 static void spapr_machine_2_8_instance_options(MachineState *machine)
3387 spapr_machine_2_9_instance_options(machine);
3390 static void spapr_machine_2_8_class_options(MachineClass *mc)
3392 spapr_machine_2_9_class_options(mc);
3393 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3394 mc->numa_mem_align_shift = 23;
3397 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3400 * pseries-2.7
3402 #define SPAPR_COMPAT_2_7 \
3403 HW_COMPAT_2_7 \
3405 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3406 .property = "mem_win_size", \
3407 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3408 }, \
3410 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3411 .property = "mem64_win_size", \
3412 .value = "0", \
3413 }, \
3415 .driver = TYPE_POWERPC_CPU, \
3416 .property = "pre-2.8-migration", \
3417 .value = "on", \
3418 }, \
3420 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3421 .property = "pre-2.8-migration", \
3422 .value = "on", \
3425 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3426 uint64_t *buid, hwaddr *pio,
3427 hwaddr *mmio32, hwaddr *mmio64,
3428 unsigned n_dma, uint32_t *liobns, Error **errp)
3430 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3431 const uint64_t base_buid = 0x800000020000000ULL;
3432 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3433 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3434 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3435 const uint32_t max_index = 255;
3436 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3438 uint64_t ram_top = MACHINE(spapr)->ram_size;
3439 hwaddr phb0_base, phb_base;
3440 int i;
3442 /* Do we have hotpluggable memory? */
3443 if (MACHINE(spapr)->maxram_size > ram_top) {
3444 /* Can't just use maxram_size, because there may be an
3445 * alignment gap between normal and hotpluggable memory
3446 * regions */
3447 ram_top = spapr->hotplug_memory.base +
3448 memory_region_size(&spapr->hotplug_memory.mr);
3451 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3453 if (index > max_index) {
3454 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3455 max_index);
3456 return;
3459 *buid = base_buid + index;
3460 for (i = 0; i < n_dma; ++i) {
3461 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3464 phb_base = phb0_base + index * phb_spacing;
3465 *pio = phb_base + pio_offset;
3466 *mmio32 = phb_base + mmio_offset;
3468 * We don't set the 64-bit MMIO window, relying on the PHB's
3469 * fallback behaviour of automatically splitting a large "32-bit"
3470 * window into contiguous 32-bit and 64-bit windows
3474 static void spapr_machine_2_7_instance_options(MachineState *machine)
3476 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3478 spapr_machine_2_8_instance_options(machine);
3479 spapr->use_hotplug_event_source = false;
3482 static void spapr_machine_2_7_class_options(MachineClass *mc)
3484 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3486 spapr_machine_2_8_class_options(mc);
3487 smc->tcg_default_cpu = "POWER7";
3488 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3489 smc->phb_placement = phb_placement_2_7;
3492 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3495 * pseries-2.6
3497 #define SPAPR_COMPAT_2_6 \
3498 HW_COMPAT_2_6 \
3500 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3501 .property = "ddw",\
3502 .value = stringify(off),\
3505 static void spapr_machine_2_6_instance_options(MachineState *machine)
3507 spapr_machine_2_7_instance_options(machine);
3510 static void spapr_machine_2_6_class_options(MachineClass *mc)
3512 spapr_machine_2_7_class_options(mc);
3513 mc->has_hotpluggable_cpus = false;
3514 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3517 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3520 * pseries-2.5
3522 #define SPAPR_COMPAT_2_5 \
3523 HW_COMPAT_2_5 \
3525 .driver = "spapr-vlan", \
3526 .property = "use-rx-buffer-pools", \
3527 .value = "off", \
3530 static void spapr_machine_2_5_instance_options(MachineState *machine)
3532 spapr_machine_2_6_instance_options(machine);
3535 static void spapr_machine_2_5_class_options(MachineClass *mc)
3537 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3539 spapr_machine_2_6_class_options(mc);
3540 smc->use_ohci_by_default = true;
3541 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3544 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3547 * pseries-2.4
3549 #define SPAPR_COMPAT_2_4 \
3550 HW_COMPAT_2_4
3552 static void spapr_machine_2_4_instance_options(MachineState *machine)
3554 spapr_machine_2_5_instance_options(machine);
3557 static void spapr_machine_2_4_class_options(MachineClass *mc)
3559 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3561 spapr_machine_2_5_class_options(mc);
3562 smc->dr_lmb_enabled = false;
3563 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3566 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3569 * pseries-2.3
3571 #define SPAPR_COMPAT_2_3 \
3572 HW_COMPAT_2_3 \
3574 .driver = "spapr-pci-host-bridge",\
3575 .property = "dynamic-reconfiguration",\
3576 .value = "off",\
3579 static void spapr_machine_2_3_instance_options(MachineState *machine)
3581 spapr_machine_2_4_instance_options(machine);
3582 savevm_skip_section_footers();
3583 global_state_set_optional();
3584 savevm_skip_configuration();
3587 static void spapr_machine_2_3_class_options(MachineClass *mc)
3589 spapr_machine_2_4_class_options(mc);
3590 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3592 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3595 * pseries-2.2
3598 #define SPAPR_COMPAT_2_2 \
3599 HW_COMPAT_2_2 \
3601 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3602 .property = "mem_win_size",\
3603 .value = "0x20000000",\
3606 static void spapr_machine_2_2_instance_options(MachineState *machine)
3608 spapr_machine_2_3_instance_options(machine);
3609 machine->suppress_vmdesc = true;
3612 static void spapr_machine_2_2_class_options(MachineClass *mc)
3614 spapr_machine_2_3_class_options(mc);
3615 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3617 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3620 * pseries-2.1
3622 #define SPAPR_COMPAT_2_1 \
3623 HW_COMPAT_2_1
3625 static void spapr_machine_2_1_instance_options(MachineState *machine)
3627 spapr_machine_2_2_instance_options(machine);
3630 static void spapr_machine_2_1_class_options(MachineClass *mc)
3632 spapr_machine_2_2_class_options(mc);
3633 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3635 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3637 static void spapr_machine_register_types(void)
3639 type_register_static(&spapr_machine_info);
3642 type_init(spapr_machine_register_types)