Merge remote-tracking branch 'remotes/huth-gitlab/tags/pull-request-2020-06-16' into...
[qemu/ar7.git] / exec.c
blob9c8f558590d2396df2bb385007a91e6feaa2d6b5
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg/tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/qtest.h"
39 #include "qemu/timer.h"
40 #include "qemu/config-file.h"
41 #include "qemu/error-report.h"
42 #include "qemu/qemu-print.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include "qemu.h"
45 #else /* !CONFIG_USER_ONLY */
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace-root.h"
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
59 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "translate-all.h"
63 #include "sysemu/replay.h"
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 #include "exec/log.h"
69 #include "qemu/pmem.h"
71 #include "migration/vmstate.h"
73 #include "qemu/range.h"
74 #ifndef _WIN32
75 #include "qemu/mmap-alloc.h"
76 #endif
78 #include "monitor/monitor.h"
80 //#define DEBUG_SUBPAGE
82 #if !defined(CONFIG_USER_ONLY)
83 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
86 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
88 static MemoryRegion *system_memory;
89 static MemoryRegion *system_io;
91 AddressSpace address_space_io;
92 AddressSpace address_space_memory;
94 static MemoryRegion io_mem_unassigned;
95 #endif
97 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
99 /* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
101 __thread CPUState *current_cpu;
103 uintptr_t qemu_host_page_size;
104 intptr_t qemu_host_page_mask;
106 #if !defined(CONFIG_USER_ONLY)
107 /* 0 = Do not count executed instructions.
108 1 = Precise instruction counting.
109 2 = Adaptive rate instruction counting. */
110 int use_icount;
112 typedef struct PhysPageEntry PhysPageEntry;
114 struct PhysPageEntry {
115 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
116 uint32_t skip : 6;
117 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
118 uint32_t ptr : 26;
121 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
123 /* Size of the L2 (and L3, etc) page tables. */
124 #define ADDR_SPACE_BITS 64
126 #define P_L2_BITS 9
127 #define P_L2_SIZE (1 << P_L2_BITS)
129 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
131 typedef PhysPageEntry Node[P_L2_SIZE];
133 typedef struct PhysPageMap {
134 struct rcu_head rcu;
136 unsigned sections_nb;
137 unsigned sections_nb_alloc;
138 unsigned nodes_nb;
139 unsigned nodes_nb_alloc;
140 Node *nodes;
141 MemoryRegionSection *sections;
142 } PhysPageMap;
144 struct AddressSpaceDispatch {
145 MemoryRegionSection *mru_section;
146 /* This is a multi-level map on the physical address space.
147 * The bottom level has pointers to MemoryRegionSections.
149 PhysPageEntry phys_map;
150 PhysPageMap map;
153 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
154 typedef struct subpage_t {
155 MemoryRegion iomem;
156 FlatView *fv;
157 hwaddr base;
158 uint16_t sub_section[];
159 } subpage_t;
161 #define PHYS_SECTION_UNASSIGNED 0
163 static void io_mem_init(void);
164 static void memory_map_init(void);
165 static void tcg_log_global_after_sync(MemoryListener *listener);
166 static void tcg_commit(MemoryListener *listener);
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
175 struct CPUAddressSpace {
176 CPUState *cpu;
177 AddressSpace *as;
178 struct AddressSpaceDispatch *memory_dispatch;
179 MemoryListener tcg_as_listener;
182 struct DirtyBitmapSnapshot {
183 ram_addr_t start;
184 ram_addr_t end;
185 unsigned long dirty[];
188 #endif
190 #if !defined(CONFIG_USER_ONLY)
192 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
194 static unsigned alloc_hint = 16;
195 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
196 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
197 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
198 alloc_hint = map->nodes_nb_alloc;
202 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
204 unsigned i;
205 uint32_t ret;
206 PhysPageEntry e;
207 PhysPageEntry *p;
209 ret = map->nodes_nb++;
210 p = map->nodes[ret];
211 assert(ret != PHYS_MAP_NODE_NIL);
212 assert(ret != map->nodes_nb_alloc);
214 e.skip = leaf ? 0 : 1;
215 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
216 for (i = 0; i < P_L2_SIZE; ++i) {
217 memcpy(&p[i], &e, sizeof(e));
219 return ret;
222 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
223 hwaddr *index, uint64_t *nb, uint16_t leaf,
224 int level)
226 PhysPageEntry *p;
227 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
229 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
230 lp->ptr = phys_map_node_alloc(map, level == 0);
232 p = map->nodes[lp->ptr];
233 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
235 while (*nb && lp < &p[P_L2_SIZE]) {
236 if ((*index & (step - 1)) == 0 && *nb >= step) {
237 lp->skip = 0;
238 lp->ptr = leaf;
239 *index += step;
240 *nb -= step;
241 } else {
242 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
244 ++lp;
248 static void phys_page_set(AddressSpaceDispatch *d,
249 hwaddr index, uint64_t nb,
250 uint16_t leaf)
252 /* Wildly overreserve - it doesn't matter much. */
253 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
255 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
258 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
259 * and update our entry so we can skip it and go directly to the destination.
261 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
263 unsigned valid_ptr = P_L2_SIZE;
264 int valid = 0;
265 PhysPageEntry *p;
266 int i;
268 if (lp->ptr == PHYS_MAP_NODE_NIL) {
269 return;
272 p = nodes[lp->ptr];
273 for (i = 0; i < P_L2_SIZE; i++) {
274 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
275 continue;
278 valid_ptr = i;
279 valid++;
280 if (p[i].skip) {
281 phys_page_compact(&p[i], nodes);
285 /* We can only compress if there's only one child. */
286 if (valid != 1) {
287 return;
290 assert(valid_ptr < P_L2_SIZE);
292 /* Don't compress if it won't fit in the # of bits we have. */
293 if (P_L2_LEVELS >= (1 << 6) &&
294 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
295 return;
298 lp->ptr = p[valid_ptr].ptr;
299 if (!p[valid_ptr].skip) {
300 /* If our only child is a leaf, make this a leaf. */
301 /* By design, we should have made this node a leaf to begin with so we
302 * should never reach here.
303 * But since it's so simple to handle this, let's do it just in case we
304 * change this rule.
306 lp->skip = 0;
307 } else {
308 lp->skip += p[valid_ptr].skip;
312 void address_space_dispatch_compact(AddressSpaceDispatch *d)
314 if (d->phys_map.skip) {
315 phys_page_compact(&d->phys_map, d->map.nodes);
319 static inline bool section_covers_addr(const MemoryRegionSection *section,
320 hwaddr addr)
322 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
323 * the section must cover the entire address space.
325 return int128_gethi(section->size) ||
326 range_covers_byte(section->offset_within_address_space,
327 int128_getlo(section->size), addr);
330 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
332 PhysPageEntry lp = d->phys_map, *p;
333 Node *nodes = d->map.nodes;
334 MemoryRegionSection *sections = d->map.sections;
335 hwaddr index = addr >> TARGET_PAGE_BITS;
336 int i;
338 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
339 if (lp.ptr == PHYS_MAP_NODE_NIL) {
340 return &sections[PHYS_SECTION_UNASSIGNED];
342 p = nodes[lp.ptr];
343 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
346 if (section_covers_addr(&sections[lp.ptr], addr)) {
347 return &sections[lp.ptr];
348 } else {
349 return &sections[PHYS_SECTION_UNASSIGNED];
353 /* Called from RCU critical section */
354 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
355 hwaddr addr,
356 bool resolve_subpage)
358 MemoryRegionSection *section = atomic_read(&d->mru_section);
359 subpage_t *subpage;
361 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
362 !section_covers_addr(section, addr)) {
363 section = phys_page_find(d, addr);
364 atomic_set(&d->mru_section, section);
366 if (resolve_subpage && section->mr->subpage) {
367 subpage = container_of(section->mr, subpage_t, iomem);
368 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
370 return section;
373 /* Called from RCU critical section */
374 static MemoryRegionSection *
375 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
376 hwaddr *plen, bool resolve_subpage)
378 MemoryRegionSection *section;
379 MemoryRegion *mr;
380 Int128 diff;
382 section = address_space_lookup_region(d, addr, resolve_subpage);
383 /* Compute offset within MemoryRegionSection */
384 addr -= section->offset_within_address_space;
386 /* Compute offset within MemoryRegion */
387 *xlat = addr + section->offset_within_region;
389 mr = section->mr;
391 /* MMIO registers can be expected to perform full-width accesses based only
392 * on their address, without considering adjacent registers that could
393 * decode to completely different MemoryRegions. When such registers
394 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
395 * regions overlap wildly. For this reason we cannot clamp the accesses
396 * here.
398 * If the length is small (as is the case for address_space_ldl/stl),
399 * everything works fine. If the incoming length is large, however,
400 * the caller really has to do the clamping through memory_access_size.
402 if (memory_region_is_ram(mr)) {
403 diff = int128_sub(section->size, int128_make64(addr));
404 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
406 return section;
410 * address_space_translate_iommu - translate an address through an IOMMU
411 * memory region and then through the target address space.
413 * @iommu_mr: the IOMMU memory region that we start the translation from
414 * @addr: the address to be translated through the MMU
415 * @xlat: the translated address offset within the destination memory region.
416 * It cannot be %NULL.
417 * @plen_out: valid read/write length of the translated address. It
418 * cannot be %NULL.
419 * @page_mask_out: page mask for the translated address. This
420 * should only be meaningful for IOMMU translated
421 * addresses, since there may be huge pages that this bit
422 * would tell. It can be %NULL if we don't care about it.
423 * @is_write: whether the translation operation is for write
424 * @is_mmio: whether this can be MMIO, set true if it can
425 * @target_as: the address space targeted by the IOMMU
426 * @attrs: transaction attributes
428 * This function is called from RCU critical section. It is the common
429 * part of flatview_do_translate and address_space_translate_cached.
431 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
432 hwaddr *xlat,
433 hwaddr *plen_out,
434 hwaddr *page_mask_out,
435 bool is_write,
436 bool is_mmio,
437 AddressSpace **target_as,
438 MemTxAttrs attrs)
440 MemoryRegionSection *section;
441 hwaddr page_mask = (hwaddr)-1;
443 do {
444 hwaddr addr = *xlat;
445 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
446 int iommu_idx = 0;
447 IOMMUTLBEntry iotlb;
449 if (imrc->attrs_to_index) {
450 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
453 iotlb = imrc->translate(iommu_mr, addr, is_write ?
454 IOMMU_WO : IOMMU_RO, iommu_idx);
456 if (!(iotlb.perm & (1 << is_write))) {
457 goto unassigned;
460 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
461 | (addr & iotlb.addr_mask));
462 page_mask &= iotlb.addr_mask;
463 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
464 *target_as = iotlb.target_as;
466 section = address_space_translate_internal(
467 address_space_to_dispatch(iotlb.target_as), addr, xlat,
468 plen_out, is_mmio);
470 iommu_mr = memory_region_get_iommu(section->mr);
471 } while (unlikely(iommu_mr));
473 if (page_mask_out) {
474 *page_mask_out = page_mask;
476 return *section;
478 unassigned:
479 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
483 * flatview_do_translate - translate an address in FlatView
485 * @fv: the flat view that we want to translate on
486 * @addr: the address to be translated in above address space
487 * @xlat: the translated address offset within memory region. It
488 * cannot be @NULL.
489 * @plen_out: valid read/write length of the translated address. It
490 * can be @NULL when we don't care about it.
491 * @page_mask_out: page mask for the translated address. This
492 * should only be meaningful for IOMMU translated
493 * addresses, since there may be huge pages that this bit
494 * would tell. It can be @NULL if we don't care about it.
495 * @is_write: whether the translation operation is for write
496 * @is_mmio: whether this can be MMIO, set true if it can
497 * @target_as: the address space targeted by the IOMMU
498 * @attrs: memory transaction attributes
500 * This function is called from RCU critical section
502 static MemoryRegionSection flatview_do_translate(FlatView *fv,
503 hwaddr addr,
504 hwaddr *xlat,
505 hwaddr *plen_out,
506 hwaddr *page_mask_out,
507 bool is_write,
508 bool is_mmio,
509 AddressSpace **target_as,
510 MemTxAttrs attrs)
512 MemoryRegionSection *section;
513 IOMMUMemoryRegion *iommu_mr;
514 hwaddr plen = (hwaddr)(-1);
516 if (!plen_out) {
517 plen_out = &plen;
520 section = address_space_translate_internal(
521 flatview_to_dispatch(fv), addr, xlat,
522 plen_out, is_mmio);
524 iommu_mr = memory_region_get_iommu(section->mr);
525 if (unlikely(iommu_mr)) {
526 return address_space_translate_iommu(iommu_mr, xlat,
527 plen_out, page_mask_out,
528 is_write, is_mmio,
529 target_as, attrs);
531 if (page_mask_out) {
532 /* Not behind an IOMMU, use default page size. */
533 *page_mask_out = ~TARGET_PAGE_MASK;
536 return *section;
539 /* Called from RCU critical section */
540 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
541 bool is_write, MemTxAttrs attrs)
543 MemoryRegionSection section;
544 hwaddr xlat, page_mask;
547 * This can never be MMIO, and we don't really care about plen,
548 * but page mask.
550 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
551 NULL, &page_mask, is_write, false, &as,
552 attrs);
554 /* Illegal translation */
555 if (section.mr == &io_mem_unassigned) {
556 goto iotlb_fail;
559 /* Convert memory region offset into address space offset */
560 xlat += section.offset_within_address_space -
561 section.offset_within_region;
563 return (IOMMUTLBEntry) {
564 .target_as = as,
565 .iova = addr & ~page_mask,
566 .translated_addr = xlat & ~page_mask,
567 .addr_mask = page_mask,
568 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
569 .perm = IOMMU_RW,
572 iotlb_fail:
573 return (IOMMUTLBEntry) {0};
576 /* Called from RCU critical section */
577 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
578 hwaddr *plen, bool is_write,
579 MemTxAttrs attrs)
581 MemoryRegion *mr;
582 MemoryRegionSection section;
583 AddressSpace *as = NULL;
585 /* This can be MMIO, so setup MMIO bit. */
586 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
587 is_write, true, &as, attrs);
588 mr = section.mr;
590 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
591 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
592 *plen = MIN(page, *plen);
595 return mr;
598 typedef struct TCGIOMMUNotifier {
599 IOMMUNotifier n;
600 MemoryRegion *mr;
601 CPUState *cpu;
602 int iommu_idx;
603 bool active;
604 } TCGIOMMUNotifier;
606 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
608 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
610 if (!notifier->active) {
611 return;
613 tlb_flush(notifier->cpu);
614 notifier->active = false;
615 /* We leave the notifier struct on the list to avoid reallocating it later.
616 * Generally the number of IOMMUs a CPU deals with will be small.
617 * In any case we can't unregister the iommu notifier from a notify
618 * callback.
622 static void tcg_register_iommu_notifier(CPUState *cpu,
623 IOMMUMemoryRegion *iommu_mr,
624 int iommu_idx)
626 /* Make sure this CPU has an IOMMU notifier registered for this
627 * IOMMU/IOMMU index combination, so that we can flush its TLB
628 * when the IOMMU tells us the mappings we've cached have changed.
630 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
631 TCGIOMMUNotifier *notifier;
632 Error *err = NULL;
633 int i, ret;
635 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
636 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
637 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
638 break;
641 if (i == cpu->iommu_notifiers->len) {
642 /* Not found, add a new entry at the end of the array */
643 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
644 notifier = g_new0(TCGIOMMUNotifier, 1);
645 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
647 notifier->mr = mr;
648 notifier->iommu_idx = iommu_idx;
649 notifier->cpu = cpu;
650 /* Rather than trying to register interest in the specific part
651 * of the iommu's address space that we've accessed and then
652 * expand it later as subsequent accesses touch more of it, we
653 * just register interest in the whole thing, on the assumption
654 * that iommu reconfiguration will be rare.
656 iommu_notifier_init(&notifier->n,
657 tcg_iommu_unmap_notify,
658 IOMMU_NOTIFIER_UNMAP,
660 HWADDR_MAX,
661 iommu_idx);
662 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
663 &err);
664 if (ret) {
665 error_report_err(err);
666 exit(1);
670 if (!notifier->active) {
671 notifier->active = true;
675 static void tcg_iommu_free_notifier_list(CPUState *cpu)
677 /* Destroy the CPU's notifier list */
678 int i;
679 TCGIOMMUNotifier *notifier;
681 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
682 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
683 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
684 g_free(notifier);
686 g_array_free(cpu->iommu_notifiers, true);
689 /* Called from RCU critical section */
690 MemoryRegionSection *
691 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
692 hwaddr *xlat, hwaddr *plen,
693 MemTxAttrs attrs, int *prot)
695 MemoryRegionSection *section;
696 IOMMUMemoryRegion *iommu_mr;
697 IOMMUMemoryRegionClass *imrc;
698 IOMMUTLBEntry iotlb;
699 int iommu_idx;
700 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
702 for (;;) {
703 section = address_space_translate_internal(d, addr, &addr, plen, false);
705 iommu_mr = memory_region_get_iommu(section->mr);
706 if (!iommu_mr) {
707 break;
710 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
712 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
713 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
714 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
715 * doesn't short-cut its translation table walk.
717 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
718 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
719 | (addr & iotlb.addr_mask));
720 /* Update the caller's prot bits to remove permissions the IOMMU
721 * is giving us a failure response for. If we get down to no
722 * permissions left at all we can give up now.
724 if (!(iotlb.perm & IOMMU_RO)) {
725 *prot &= ~(PAGE_READ | PAGE_EXEC);
727 if (!(iotlb.perm & IOMMU_WO)) {
728 *prot &= ~PAGE_WRITE;
731 if (!*prot) {
732 goto translate_fail;
735 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
738 assert(!memory_region_is_iommu(section->mr));
739 *xlat = addr;
740 return section;
742 translate_fail:
743 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
745 #endif
747 #if !defined(CONFIG_USER_ONLY)
749 static int cpu_common_post_load(void *opaque, int version_id)
751 CPUState *cpu = opaque;
753 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
754 version_id is increased. */
755 cpu->interrupt_request &= ~0x01;
756 tlb_flush(cpu);
758 /* loadvm has just updated the content of RAM, bypassing the
759 * usual mechanisms that ensure we flush TBs for writes to
760 * memory we've translated code from. So we must flush all TBs,
761 * which will now be stale.
763 tb_flush(cpu);
765 return 0;
768 static int cpu_common_pre_load(void *opaque)
770 CPUState *cpu = opaque;
772 cpu->exception_index = -1;
774 return 0;
777 static bool cpu_common_exception_index_needed(void *opaque)
779 CPUState *cpu = opaque;
781 return tcg_enabled() && cpu->exception_index != -1;
784 static const VMStateDescription vmstate_cpu_common_exception_index = {
785 .name = "cpu_common/exception_index",
786 .version_id = 1,
787 .minimum_version_id = 1,
788 .needed = cpu_common_exception_index_needed,
789 .fields = (VMStateField[]) {
790 VMSTATE_INT32(exception_index, CPUState),
791 VMSTATE_END_OF_LIST()
795 static bool cpu_common_crash_occurred_needed(void *opaque)
797 CPUState *cpu = opaque;
799 return cpu->crash_occurred;
802 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
803 .name = "cpu_common/crash_occurred",
804 .version_id = 1,
805 .minimum_version_id = 1,
806 .needed = cpu_common_crash_occurred_needed,
807 .fields = (VMStateField[]) {
808 VMSTATE_BOOL(crash_occurred, CPUState),
809 VMSTATE_END_OF_LIST()
813 const VMStateDescription vmstate_cpu_common = {
814 .name = "cpu_common",
815 .version_id = 1,
816 .minimum_version_id = 1,
817 .pre_load = cpu_common_pre_load,
818 .post_load = cpu_common_post_load,
819 .fields = (VMStateField[]) {
820 VMSTATE_UINT32(halted, CPUState),
821 VMSTATE_UINT32(interrupt_request, CPUState),
822 VMSTATE_END_OF_LIST()
824 .subsections = (const VMStateDescription*[]) {
825 &vmstate_cpu_common_exception_index,
826 &vmstate_cpu_common_crash_occurred,
827 NULL
831 #endif
833 CPUState *qemu_get_cpu(int index)
835 CPUState *cpu;
837 CPU_FOREACH(cpu) {
838 if (cpu->cpu_index == index) {
839 return cpu;
843 return NULL;
846 #if !defined(CONFIG_USER_ONLY)
847 void cpu_address_space_init(CPUState *cpu, int asidx,
848 const char *prefix, MemoryRegion *mr)
850 CPUAddressSpace *newas;
851 AddressSpace *as = g_new0(AddressSpace, 1);
852 char *as_name;
854 assert(mr);
855 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
856 address_space_init(as, mr, as_name);
857 g_free(as_name);
859 /* Target code should have set num_ases before calling us */
860 assert(asidx < cpu->num_ases);
862 if (asidx == 0) {
863 /* address space 0 gets the convenience alias */
864 cpu->as = as;
867 /* KVM cannot currently support multiple address spaces. */
868 assert(asidx == 0 || !kvm_enabled());
870 if (!cpu->cpu_ases) {
871 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
874 newas = &cpu->cpu_ases[asidx];
875 newas->cpu = cpu;
876 newas->as = as;
877 if (tcg_enabled()) {
878 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
879 newas->tcg_as_listener.commit = tcg_commit;
880 memory_listener_register(&newas->tcg_as_listener, as);
884 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
886 /* Return the AddressSpace corresponding to the specified index */
887 return cpu->cpu_ases[asidx].as;
889 #endif
891 void cpu_exec_unrealizefn(CPUState *cpu)
893 CPUClass *cc = CPU_GET_CLASS(cpu);
895 cpu_list_remove(cpu);
897 if (cc->vmsd != NULL) {
898 vmstate_unregister(NULL, cc->vmsd, cpu);
900 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
901 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
903 #ifndef CONFIG_USER_ONLY
904 tcg_iommu_free_notifier_list(cpu);
905 #endif
908 Property cpu_common_props[] = {
909 #ifndef CONFIG_USER_ONLY
910 /* Create a memory property for softmmu CPU object,
911 * so users can wire up its memory. (This can't go in hw/core/cpu.c
912 * because that file is compiled only once for both user-mode
913 * and system builds.) The default if no link is set up is to use
914 * the system address space.
916 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
917 MemoryRegion *),
918 #endif
919 DEFINE_PROP_END_OF_LIST(),
922 void cpu_exec_initfn(CPUState *cpu)
924 cpu->as = NULL;
925 cpu->num_ases = 0;
927 #ifndef CONFIG_USER_ONLY
928 cpu->thread_id = qemu_get_thread_id();
929 cpu->memory = system_memory;
930 object_ref(OBJECT(cpu->memory));
931 #endif
934 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
936 CPUClass *cc = CPU_GET_CLASS(cpu);
937 static bool tcg_target_initialized;
939 cpu_list_add(cpu);
941 if (tcg_enabled() && !tcg_target_initialized) {
942 tcg_target_initialized = true;
943 cc->tcg_initialize();
945 tlb_init(cpu);
947 qemu_plugin_vcpu_init_hook(cpu);
949 #ifdef CONFIG_USER_ONLY
950 assert(cc->vmsd == NULL);
951 #else /* !CONFIG_USER_ONLY */
952 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
953 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
955 if (cc->vmsd != NULL) {
956 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
959 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
960 #endif
963 const char *parse_cpu_option(const char *cpu_option)
965 ObjectClass *oc;
966 CPUClass *cc;
967 gchar **model_pieces;
968 const char *cpu_type;
970 model_pieces = g_strsplit(cpu_option, ",", 2);
971 if (!model_pieces[0]) {
972 error_report("-cpu option cannot be empty");
973 exit(1);
976 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
977 if (oc == NULL) {
978 error_report("unable to find CPU model '%s'", model_pieces[0]);
979 g_strfreev(model_pieces);
980 exit(EXIT_FAILURE);
983 cpu_type = object_class_get_name(oc);
984 cc = CPU_CLASS(oc);
985 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
986 g_strfreev(model_pieces);
987 return cpu_type;
990 #if defined(CONFIG_USER_ONLY)
991 void tb_invalidate_phys_addr(target_ulong addr)
993 mmap_lock();
994 tb_invalidate_phys_page_range(addr, addr + 1);
995 mmap_unlock();
998 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1000 tb_invalidate_phys_addr(pc);
1002 #else
1003 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1005 ram_addr_t ram_addr;
1006 MemoryRegion *mr;
1007 hwaddr l = 1;
1009 if (!tcg_enabled()) {
1010 return;
1013 RCU_READ_LOCK_GUARD();
1014 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1015 if (!(memory_region_is_ram(mr)
1016 || memory_region_is_romd(mr))) {
1017 return;
1019 ram_addr = memory_region_get_ram_addr(mr) + addr;
1020 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1023 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1026 * There may not be a virtual to physical translation for the pc
1027 * right now, but there may exist cached TB for this pc.
1028 * Flush the whole TB cache to force re-translation of such TBs.
1029 * This is heavyweight, but we're debugging anyway.
1031 tb_flush(cpu);
1033 #endif
1035 #ifndef CONFIG_USER_ONLY
1036 /* Add a watchpoint. */
1037 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1038 int flags, CPUWatchpoint **watchpoint)
1040 CPUWatchpoint *wp;
1041 vaddr in_page;
1043 /* forbid ranges which are empty or run off the end of the address space */
1044 if (len == 0 || (addr + len - 1) < addr) {
1045 error_report("tried to set invalid watchpoint at %"
1046 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1047 return -EINVAL;
1049 wp = g_malloc(sizeof(*wp));
1051 wp->vaddr = addr;
1052 wp->len = len;
1053 wp->flags = flags;
1055 /* keep all GDB-injected watchpoints in front */
1056 if (flags & BP_GDB) {
1057 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1058 } else {
1059 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1062 in_page = -(addr | TARGET_PAGE_MASK);
1063 if (len <= in_page) {
1064 tlb_flush_page(cpu, addr);
1065 } else {
1066 tlb_flush(cpu);
1069 if (watchpoint)
1070 *watchpoint = wp;
1071 return 0;
1074 /* Remove a specific watchpoint. */
1075 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1076 int flags)
1078 CPUWatchpoint *wp;
1080 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1081 if (addr == wp->vaddr && len == wp->len
1082 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1083 cpu_watchpoint_remove_by_ref(cpu, wp);
1084 return 0;
1087 return -ENOENT;
1090 /* Remove a specific watchpoint by reference. */
1091 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1093 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1095 tlb_flush_page(cpu, watchpoint->vaddr);
1097 g_free(watchpoint);
1100 /* Remove all matching watchpoints. */
1101 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1103 CPUWatchpoint *wp, *next;
1105 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1106 if (wp->flags & mask) {
1107 cpu_watchpoint_remove_by_ref(cpu, wp);
1112 /* Return true if this watchpoint address matches the specified
1113 * access (ie the address range covered by the watchpoint overlaps
1114 * partially or completely with the address range covered by the
1115 * access).
1117 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1118 vaddr addr, vaddr len)
1120 /* We know the lengths are non-zero, but a little caution is
1121 * required to avoid errors in the case where the range ends
1122 * exactly at the top of the address space and so addr + len
1123 * wraps round to zero.
1125 vaddr wpend = wp->vaddr + wp->len - 1;
1126 vaddr addrend = addr + len - 1;
1128 return !(addr > wpend || wp->vaddr > addrend);
1131 /* Return flags for watchpoints that match addr + prot. */
1132 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1134 CPUWatchpoint *wp;
1135 int ret = 0;
1137 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1138 if (watchpoint_address_matches(wp, addr, len)) {
1139 ret |= wp->flags;
1142 return ret;
1144 #endif /* !CONFIG_USER_ONLY */
1146 /* Add a breakpoint. */
1147 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1148 CPUBreakpoint **breakpoint)
1150 CPUBreakpoint *bp;
1152 bp = g_malloc(sizeof(*bp));
1154 bp->pc = pc;
1155 bp->flags = flags;
1157 /* keep all GDB-injected breakpoints in front */
1158 if (flags & BP_GDB) {
1159 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1160 } else {
1161 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1164 breakpoint_invalidate(cpu, pc);
1166 if (breakpoint) {
1167 *breakpoint = bp;
1169 return 0;
1172 /* Remove a specific breakpoint. */
1173 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1175 CPUBreakpoint *bp;
1177 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1178 if (bp->pc == pc && bp->flags == flags) {
1179 cpu_breakpoint_remove_by_ref(cpu, bp);
1180 return 0;
1183 return -ENOENT;
1186 /* Remove a specific breakpoint by reference. */
1187 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1189 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1191 breakpoint_invalidate(cpu, breakpoint->pc);
1193 g_free(breakpoint);
1196 /* Remove all matching breakpoints. */
1197 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1199 CPUBreakpoint *bp, *next;
1201 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1202 if (bp->flags & mask) {
1203 cpu_breakpoint_remove_by_ref(cpu, bp);
1208 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1209 CPU loop after each instruction */
1210 void cpu_single_step(CPUState *cpu, int enabled)
1212 if (cpu->singlestep_enabled != enabled) {
1213 cpu->singlestep_enabled = enabled;
1214 if (kvm_enabled()) {
1215 kvm_update_guest_debug(cpu, 0);
1216 } else {
1217 /* must flush all the translated code to avoid inconsistencies */
1218 /* XXX: only flush what is necessary */
1219 tb_flush(cpu);
1224 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1226 va_list ap;
1227 va_list ap2;
1229 va_start(ap, fmt);
1230 va_copy(ap2, ap);
1231 fprintf(stderr, "qemu: fatal: ");
1232 vfprintf(stderr, fmt, ap);
1233 fprintf(stderr, "\n");
1234 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1235 if (qemu_log_separate()) {
1236 FILE *logfile = qemu_log_lock();
1237 qemu_log("qemu: fatal: ");
1238 qemu_log_vprintf(fmt, ap2);
1239 qemu_log("\n");
1240 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1241 qemu_log_flush();
1242 qemu_log_unlock(logfile);
1243 qemu_log_close();
1245 va_end(ap2);
1246 va_end(ap);
1247 replay_finish();
1248 #if defined(CONFIG_USER_ONLY)
1250 struct sigaction act;
1251 sigfillset(&act.sa_mask);
1252 act.sa_handler = SIG_DFL;
1253 act.sa_flags = 0;
1254 sigaction(SIGABRT, &act, NULL);
1256 #endif
1257 abort();
1260 #if !defined(CONFIG_USER_ONLY)
1261 /* Called from RCU critical section */
1262 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1264 RAMBlock *block;
1266 block = atomic_rcu_read(&ram_list.mru_block);
1267 if (block && addr - block->offset < block->max_length) {
1268 return block;
1270 RAMBLOCK_FOREACH(block) {
1271 if (addr - block->offset < block->max_length) {
1272 goto found;
1276 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1277 abort();
1279 found:
1280 /* It is safe to write mru_block outside the iothread lock. This
1281 * is what happens:
1283 * mru_block = xxx
1284 * rcu_read_unlock()
1285 * xxx removed from list
1286 * rcu_read_lock()
1287 * read mru_block
1288 * mru_block = NULL;
1289 * call_rcu(reclaim_ramblock, xxx);
1290 * rcu_read_unlock()
1292 * atomic_rcu_set is not needed here. The block was already published
1293 * when it was placed into the list. Here we're just making an extra
1294 * copy of the pointer.
1296 ram_list.mru_block = block;
1297 return block;
1300 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1302 CPUState *cpu;
1303 ram_addr_t start1;
1304 RAMBlock *block;
1305 ram_addr_t end;
1307 assert(tcg_enabled());
1308 end = TARGET_PAGE_ALIGN(start + length);
1309 start &= TARGET_PAGE_MASK;
1311 RCU_READ_LOCK_GUARD();
1312 block = qemu_get_ram_block(start);
1313 assert(block == qemu_get_ram_block(end - 1));
1314 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1315 CPU_FOREACH(cpu) {
1316 tlb_reset_dirty(cpu, start1, length);
1320 /* Note: start and end must be within the same ram block. */
1321 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1322 ram_addr_t length,
1323 unsigned client)
1325 DirtyMemoryBlocks *blocks;
1326 unsigned long end, page, start_page;
1327 bool dirty = false;
1328 RAMBlock *ramblock;
1329 uint64_t mr_offset, mr_size;
1331 if (length == 0) {
1332 return false;
1335 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1336 start_page = start >> TARGET_PAGE_BITS;
1337 page = start_page;
1339 WITH_RCU_READ_LOCK_GUARD() {
1340 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1341 ramblock = qemu_get_ram_block(start);
1342 /* Range sanity check on the ramblock */
1343 assert(start >= ramblock->offset &&
1344 start + length <= ramblock->offset + ramblock->used_length);
1346 while (page < end) {
1347 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1348 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1349 unsigned long num = MIN(end - page,
1350 DIRTY_MEMORY_BLOCK_SIZE - offset);
1352 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1353 offset, num);
1354 page += num;
1357 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1358 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1359 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1362 if (dirty && tcg_enabled()) {
1363 tlb_reset_dirty_range_all(start, length);
1366 return dirty;
1369 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1370 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1372 DirtyMemoryBlocks *blocks;
1373 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1374 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1375 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1376 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1377 DirtyBitmapSnapshot *snap;
1378 unsigned long page, end, dest;
1380 snap = g_malloc0(sizeof(*snap) +
1381 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1382 snap->start = first;
1383 snap->end = last;
1385 page = first >> TARGET_PAGE_BITS;
1386 end = last >> TARGET_PAGE_BITS;
1387 dest = 0;
1389 WITH_RCU_READ_LOCK_GUARD() {
1390 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1392 while (page < end) {
1393 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1394 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1395 unsigned long num = MIN(end - page,
1396 DIRTY_MEMORY_BLOCK_SIZE - offset);
1398 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1399 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1400 offset >>= BITS_PER_LEVEL;
1402 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1403 blocks->blocks[idx] + offset,
1404 num);
1405 page += num;
1406 dest += num >> BITS_PER_LEVEL;
1410 if (tcg_enabled()) {
1411 tlb_reset_dirty_range_all(start, length);
1414 memory_region_clear_dirty_bitmap(mr, offset, length);
1416 return snap;
1419 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1420 ram_addr_t start,
1421 ram_addr_t length)
1423 unsigned long page, end;
1425 assert(start >= snap->start);
1426 assert(start + length <= snap->end);
1428 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1429 page = (start - snap->start) >> TARGET_PAGE_BITS;
1431 while (page < end) {
1432 if (test_bit(page, snap->dirty)) {
1433 return true;
1435 page++;
1437 return false;
1440 /* Called from RCU critical section */
1441 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1442 MemoryRegionSection *section)
1444 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1445 return section - d->map.sections;
1447 #endif /* defined(CONFIG_USER_ONLY) */
1449 #if !defined(CONFIG_USER_ONLY)
1451 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1452 uint16_t section);
1453 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1455 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1456 qemu_anon_ram_alloc;
1459 * Set a custom physical guest memory alloator.
1460 * Accelerators with unusual needs may need this. Hopefully, we can
1461 * get rid of it eventually.
1463 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1465 phys_mem_alloc = alloc;
1468 static uint16_t phys_section_add(PhysPageMap *map,
1469 MemoryRegionSection *section)
1471 /* The physical section number is ORed with a page-aligned
1472 * pointer to produce the iotlb entries. Thus it should
1473 * never overflow into the page-aligned value.
1475 assert(map->sections_nb < TARGET_PAGE_SIZE);
1477 if (map->sections_nb == map->sections_nb_alloc) {
1478 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1479 map->sections = g_renew(MemoryRegionSection, map->sections,
1480 map->sections_nb_alloc);
1482 map->sections[map->sections_nb] = *section;
1483 memory_region_ref(section->mr);
1484 return map->sections_nb++;
1487 static void phys_section_destroy(MemoryRegion *mr)
1489 bool have_sub_page = mr->subpage;
1491 memory_region_unref(mr);
1493 if (have_sub_page) {
1494 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1495 object_unref(OBJECT(&subpage->iomem));
1496 g_free(subpage);
1500 static void phys_sections_free(PhysPageMap *map)
1502 while (map->sections_nb > 0) {
1503 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1504 phys_section_destroy(section->mr);
1506 g_free(map->sections);
1507 g_free(map->nodes);
1510 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1512 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1513 subpage_t *subpage;
1514 hwaddr base = section->offset_within_address_space
1515 & TARGET_PAGE_MASK;
1516 MemoryRegionSection *existing = phys_page_find(d, base);
1517 MemoryRegionSection subsection = {
1518 .offset_within_address_space = base,
1519 .size = int128_make64(TARGET_PAGE_SIZE),
1521 hwaddr start, end;
1523 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1525 if (!(existing->mr->subpage)) {
1526 subpage = subpage_init(fv, base);
1527 subsection.fv = fv;
1528 subsection.mr = &subpage->iomem;
1529 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1530 phys_section_add(&d->map, &subsection));
1531 } else {
1532 subpage = container_of(existing->mr, subpage_t, iomem);
1534 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1535 end = start + int128_get64(section->size) - 1;
1536 subpage_register(subpage, start, end,
1537 phys_section_add(&d->map, section));
1541 static void register_multipage(FlatView *fv,
1542 MemoryRegionSection *section)
1544 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1545 hwaddr start_addr = section->offset_within_address_space;
1546 uint16_t section_index = phys_section_add(&d->map, section);
1547 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1548 TARGET_PAGE_BITS));
1550 assert(num_pages);
1551 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1555 * The range in *section* may look like this:
1557 * |s|PPPPPPP|s|
1559 * where s stands for subpage and P for page.
1561 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1563 MemoryRegionSection remain = *section;
1564 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1566 /* register first subpage */
1567 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1568 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1569 - remain.offset_within_address_space;
1571 MemoryRegionSection now = remain;
1572 now.size = int128_min(int128_make64(left), now.size);
1573 register_subpage(fv, &now);
1574 if (int128_eq(remain.size, now.size)) {
1575 return;
1577 remain.size = int128_sub(remain.size, now.size);
1578 remain.offset_within_address_space += int128_get64(now.size);
1579 remain.offset_within_region += int128_get64(now.size);
1582 /* register whole pages */
1583 if (int128_ge(remain.size, page_size)) {
1584 MemoryRegionSection now = remain;
1585 now.size = int128_and(now.size, int128_neg(page_size));
1586 register_multipage(fv, &now);
1587 if (int128_eq(remain.size, now.size)) {
1588 return;
1590 remain.size = int128_sub(remain.size, now.size);
1591 remain.offset_within_address_space += int128_get64(now.size);
1592 remain.offset_within_region += int128_get64(now.size);
1595 /* register last subpage */
1596 register_subpage(fv, &remain);
1599 void qemu_flush_coalesced_mmio_buffer(void)
1601 if (kvm_enabled())
1602 kvm_flush_coalesced_mmio_buffer();
1605 void qemu_mutex_lock_ramlist(void)
1607 qemu_mutex_lock(&ram_list.mutex);
1610 void qemu_mutex_unlock_ramlist(void)
1612 qemu_mutex_unlock(&ram_list.mutex);
1615 void ram_block_dump(Monitor *mon)
1617 RAMBlock *block;
1618 char *psize;
1620 RCU_READ_LOCK_GUARD();
1621 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1622 "Block Name", "PSize", "Offset", "Used", "Total");
1623 RAMBLOCK_FOREACH(block) {
1624 psize = size_to_str(block->page_size);
1625 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1626 " 0x%016" PRIx64 "\n", block->idstr, psize,
1627 (uint64_t)block->offset,
1628 (uint64_t)block->used_length,
1629 (uint64_t)block->max_length);
1630 g_free(psize);
1634 #ifdef __linux__
1636 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1637 * may or may not name the same files / on the same filesystem now as
1638 * when we actually open and map them. Iterate over the file
1639 * descriptors instead, and use qemu_fd_getpagesize().
1641 static int find_min_backend_pagesize(Object *obj, void *opaque)
1643 long *hpsize_min = opaque;
1645 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1646 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1647 long hpsize = host_memory_backend_pagesize(backend);
1649 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1650 *hpsize_min = hpsize;
1654 return 0;
1657 static int find_max_backend_pagesize(Object *obj, void *opaque)
1659 long *hpsize_max = opaque;
1661 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1662 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1663 long hpsize = host_memory_backend_pagesize(backend);
1665 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1666 *hpsize_max = hpsize;
1670 return 0;
1674 * TODO: We assume right now that all mapped host memory backends are
1675 * used as RAM, however some might be used for different purposes.
1677 long qemu_minrampagesize(void)
1679 long hpsize = LONG_MAX;
1680 Object *memdev_root = object_resolve_path("/objects", NULL);
1682 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1683 return hpsize;
1686 long qemu_maxrampagesize(void)
1688 long pagesize = 0;
1689 Object *memdev_root = object_resolve_path("/objects", NULL);
1691 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1692 return pagesize;
1694 #else
1695 long qemu_minrampagesize(void)
1697 return qemu_real_host_page_size;
1699 long qemu_maxrampagesize(void)
1701 return qemu_real_host_page_size;
1703 #endif
1705 #ifdef CONFIG_POSIX
1706 static int64_t get_file_size(int fd)
1708 int64_t size;
1709 #if defined(__linux__)
1710 struct stat st;
1712 if (fstat(fd, &st) < 0) {
1713 return -errno;
1716 /* Special handling for devdax character devices */
1717 if (S_ISCHR(st.st_mode)) {
1718 g_autofree char *subsystem_path = NULL;
1719 g_autofree char *subsystem = NULL;
1721 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1722 major(st.st_rdev), minor(st.st_rdev));
1723 subsystem = g_file_read_link(subsystem_path, NULL);
1725 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1726 g_autofree char *size_path = NULL;
1727 g_autofree char *size_str = NULL;
1729 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1730 major(st.st_rdev), minor(st.st_rdev));
1732 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1733 return g_ascii_strtoll(size_str, NULL, 0);
1737 #endif /* defined(__linux__) */
1739 /* st.st_size may be zero for special files yet lseek(2) works */
1740 size = lseek(fd, 0, SEEK_END);
1741 if (size < 0) {
1742 return -errno;
1744 return size;
1747 static int file_ram_open(const char *path,
1748 const char *region_name,
1749 bool *created,
1750 Error **errp)
1752 char *filename;
1753 char *sanitized_name;
1754 char *c;
1755 int fd = -1;
1757 *created = false;
1758 for (;;) {
1759 fd = open(path, O_RDWR);
1760 if (fd >= 0) {
1761 /* @path names an existing file, use it */
1762 break;
1764 if (errno == ENOENT) {
1765 /* @path names a file that doesn't exist, create it */
1766 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1767 if (fd >= 0) {
1768 *created = true;
1769 break;
1771 } else if (errno == EISDIR) {
1772 /* @path names a directory, create a file there */
1773 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1774 sanitized_name = g_strdup(region_name);
1775 for (c = sanitized_name; *c != '\0'; c++) {
1776 if (*c == '/') {
1777 *c = '_';
1781 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1782 sanitized_name);
1783 g_free(sanitized_name);
1785 fd = mkstemp(filename);
1786 if (fd >= 0) {
1787 unlink(filename);
1788 g_free(filename);
1789 break;
1791 g_free(filename);
1793 if (errno != EEXIST && errno != EINTR) {
1794 error_setg_errno(errp, errno,
1795 "can't open backing store %s for guest RAM",
1796 path);
1797 return -1;
1800 * Try again on EINTR and EEXIST. The latter happens when
1801 * something else creates the file between our two open().
1805 return fd;
1808 static void *file_ram_alloc(RAMBlock *block,
1809 ram_addr_t memory,
1810 int fd,
1811 bool truncate,
1812 Error **errp)
1814 void *area;
1816 block->page_size = qemu_fd_getpagesize(fd);
1817 if (block->mr->align % block->page_size) {
1818 error_setg(errp, "alignment 0x%" PRIx64
1819 " must be multiples of page size 0x%zx",
1820 block->mr->align, block->page_size);
1821 return NULL;
1822 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1823 error_setg(errp, "alignment 0x%" PRIx64
1824 " must be a power of two", block->mr->align);
1825 return NULL;
1827 block->mr->align = MAX(block->page_size, block->mr->align);
1828 #if defined(__s390x__)
1829 if (kvm_enabled()) {
1830 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1832 #endif
1834 if (memory < block->page_size) {
1835 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1836 "or larger than page size 0x%zx",
1837 memory, block->page_size);
1838 return NULL;
1841 memory = ROUND_UP(memory, block->page_size);
1844 * ftruncate is not supported by hugetlbfs in older
1845 * hosts, so don't bother bailing out on errors.
1846 * If anything goes wrong with it under other filesystems,
1847 * mmap will fail.
1849 * Do not truncate the non-empty backend file to avoid corrupting
1850 * the existing data in the file. Disabling shrinking is not
1851 * enough. For example, the current vNVDIMM implementation stores
1852 * the guest NVDIMM labels at the end of the backend file. If the
1853 * backend file is later extended, QEMU will not be able to find
1854 * those labels. Therefore, extending the non-empty backend file
1855 * is disabled as well.
1857 if (truncate && ftruncate(fd, memory)) {
1858 perror("ftruncate");
1861 area = qemu_ram_mmap(fd, memory, block->mr->align,
1862 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1863 if (area == MAP_FAILED) {
1864 error_setg_errno(errp, errno,
1865 "unable to map backing store for guest RAM");
1866 return NULL;
1869 block->fd = fd;
1870 return area;
1872 #endif
1874 /* Allocate space within the ram_addr_t space that governs the
1875 * dirty bitmaps.
1876 * Called with the ramlist lock held.
1878 static ram_addr_t find_ram_offset(ram_addr_t size)
1880 RAMBlock *block, *next_block;
1881 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1883 assert(size != 0); /* it would hand out same offset multiple times */
1885 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1886 return 0;
1889 RAMBLOCK_FOREACH(block) {
1890 ram_addr_t candidate, next = RAM_ADDR_MAX;
1892 /* Align blocks to start on a 'long' in the bitmap
1893 * which makes the bitmap sync'ing take the fast path.
1895 candidate = block->offset + block->max_length;
1896 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1898 /* Search for the closest following block
1899 * and find the gap.
1901 RAMBLOCK_FOREACH(next_block) {
1902 if (next_block->offset >= candidate) {
1903 next = MIN(next, next_block->offset);
1907 /* If it fits remember our place and remember the size
1908 * of gap, but keep going so that we might find a smaller
1909 * gap to fill so avoiding fragmentation.
1911 if (next - candidate >= size && next - candidate < mingap) {
1912 offset = candidate;
1913 mingap = next - candidate;
1916 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1919 if (offset == RAM_ADDR_MAX) {
1920 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1921 (uint64_t)size);
1922 abort();
1925 trace_find_ram_offset(size, offset);
1927 return offset;
1930 static unsigned long last_ram_page(void)
1932 RAMBlock *block;
1933 ram_addr_t last = 0;
1935 RCU_READ_LOCK_GUARD();
1936 RAMBLOCK_FOREACH(block) {
1937 last = MAX(last, block->offset + block->max_length);
1939 return last >> TARGET_PAGE_BITS;
1942 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1944 int ret;
1946 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1947 if (!machine_dump_guest_core(current_machine)) {
1948 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1949 if (ret) {
1950 perror("qemu_madvise");
1951 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1952 "but dump_guest_core=off specified\n");
1957 const char *qemu_ram_get_idstr(RAMBlock *rb)
1959 return rb->idstr;
1962 void *qemu_ram_get_host_addr(RAMBlock *rb)
1964 return rb->host;
1967 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1969 return rb->offset;
1972 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1974 return rb->used_length;
1977 bool qemu_ram_is_shared(RAMBlock *rb)
1979 return rb->flags & RAM_SHARED;
1982 /* Note: Only set at the start of postcopy */
1983 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1985 return rb->flags & RAM_UF_ZEROPAGE;
1988 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1990 rb->flags |= RAM_UF_ZEROPAGE;
1993 bool qemu_ram_is_migratable(RAMBlock *rb)
1995 return rb->flags & RAM_MIGRATABLE;
1998 void qemu_ram_set_migratable(RAMBlock *rb)
2000 rb->flags |= RAM_MIGRATABLE;
2003 void qemu_ram_unset_migratable(RAMBlock *rb)
2005 rb->flags &= ~RAM_MIGRATABLE;
2008 /* Called with iothread lock held. */
2009 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2011 RAMBlock *block;
2013 assert(new_block);
2014 assert(!new_block->idstr[0]);
2016 if (dev) {
2017 char *id = qdev_get_dev_path(dev);
2018 if (id) {
2019 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2020 g_free(id);
2023 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2025 RCU_READ_LOCK_GUARD();
2026 RAMBLOCK_FOREACH(block) {
2027 if (block != new_block &&
2028 !strcmp(block->idstr, new_block->idstr)) {
2029 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2030 new_block->idstr);
2031 abort();
2036 /* Called with iothread lock held. */
2037 void qemu_ram_unset_idstr(RAMBlock *block)
2039 /* FIXME: arch_init.c assumes that this is not called throughout
2040 * migration. Ignore the problem since hot-unplug during migration
2041 * does not work anyway.
2043 if (block) {
2044 memset(block->idstr, 0, sizeof(block->idstr));
2048 size_t qemu_ram_pagesize(RAMBlock *rb)
2050 return rb->page_size;
2053 /* Returns the largest size of page in use */
2054 size_t qemu_ram_pagesize_largest(void)
2056 RAMBlock *block;
2057 size_t largest = 0;
2059 RAMBLOCK_FOREACH(block) {
2060 largest = MAX(largest, qemu_ram_pagesize(block));
2063 return largest;
2066 static int memory_try_enable_merging(void *addr, size_t len)
2068 if (!machine_mem_merge(current_machine)) {
2069 /* disabled by the user */
2070 return 0;
2073 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2076 /* Only legal before guest might have detected the memory size: e.g. on
2077 * incoming migration, or right after reset.
2079 * As memory core doesn't know how is memory accessed, it is up to
2080 * resize callback to update device state and/or add assertions to detect
2081 * misuse, if necessary.
2083 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2085 const ram_addr_t unaligned_size = newsize;
2087 assert(block);
2089 newsize = HOST_PAGE_ALIGN(newsize);
2091 if (block->used_length == newsize) {
2093 * We don't have to resize the ram block (which only knows aligned
2094 * sizes), however, we have to notify if the unaligned size changed.
2096 if (unaligned_size != memory_region_size(block->mr)) {
2097 memory_region_set_size(block->mr, unaligned_size);
2098 if (block->resized) {
2099 block->resized(block->idstr, unaligned_size, block->host);
2102 return 0;
2105 if (!(block->flags & RAM_RESIZEABLE)) {
2106 error_setg_errno(errp, EINVAL,
2107 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2108 " in != 0x" RAM_ADDR_FMT, block->idstr,
2109 newsize, block->used_length);
2110 return -EINVAL;
2113 if (block->max_length < newsize) {
2114 error_setg_errno(errp, EINVAL,
2115 "Length too large: %s: 0x" RAM_ADDR_FMT
2116 " > 0x" RAM_ADDR_FMT, block->idstr,
2117 newsize, block->max_length);
2118 return -EINVAL;
2121 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2122 block->used_length = newsize;
2123 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2124 DIRTY_CLIENTS_ALL);
2125 memory_region_set_size(block->mr, unaligned_size);
2126 if (block->resized) {
2127 block->resized(block->idstr, unaligned_size, block->host);
2129 return 0;
2133 * Trigger sync on the given ram block for range [start, start + length]
2134 * with the backing store if one is available.
2135 * Otherwise no-op.
2136 * @Note: this is supposed to be a synchronous op.
2138 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2140 /* The requested range should fit in within the block range */
2141 g_assert((start + length) <= block->used_length);
2143 #ifdef CONFIG_LIBPMEM
2144 /* The lack of support for pmem should not block the sync */
2145 if (ramblock_is_pmem(block)) {
2146 void *addr = ramblock_ptr(block, start);
2147 pmem_persist(addr, length);
2148 return;
2150 #endif
2151 if (block->fd >= 0) {
2153 * Case there is no support for PMEM or the memory has not been
2154 * specified as persistent (or is not one) - use the msync.
2155 * Less optimal but still achieves the same goal
2157 void *addr = ramblock_ptr(block, start);
2158 if (qemu_msync(addr, length, block->fd)) {
2159 warn_report("%s: failed to sync memory range: start: "
2160 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2161 __func__, start, length);
2166 /* Called with ram_list.mutex held */
2167 static void dirty_memory_extend(ram_addr_t old_ram_size,
2168 ram_addr_t new_ram_size)
2170 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2171 DIRTY_MEMORY_BLOCK_SIZE);
2172 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2173 DIRTY_MEMORY_BLOCK_SIZE);
2174 int i;
2176 /* Only need to extend if block count increased */
2177 if (new_num_blocks <= old_num_blocks) {
2178 return;
2181 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2182 DirtyMemoryBlocks *old_blocks;
2183 DirtyMemoryBlocks *new_blocks;
2184 int j;
2186 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2187 new_blocks = g_malloc(sizeof(*new_blocks) +
2188 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2190 if (old_num_blocks) {
2191 memcpy(new_blocks->blocks, old_blocks->blocks,
2192 old_num_blocks * sizeof(old_blocks->blocks[0]));
2195 for (j = old_num_blocks; j < new_num_blocks; j++) {
2196 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2199 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2201 if (old_blocks) {
2202 g_free_rcu(old_blocks, rcu);
2207 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2209 RAMBlock *block;
2210 RAMBlock *last_block = NULL;
2211 ram_addr_t old_ram_size, new_ram_size;
2212 Error *err = NULL;
2214 old_ram_size = last_ram_page();
2216 qemu_mutex_lock_ramlist();
2217 new_block->offset = find_ram_offset(new_block->max_length);
2219 if (!new_block->host) {
2220 if (xen_enabled()) {
2221 xen_ram_alloc(new_block->offset, new_block->max_length,
2222 new_block->mr, &err);
2223 if (err) {
2224 error_propagate(errp, err);
2225 qemu_mutex_unlock_ramlist();
2226 return;
2228 } else {
2229 new_block->host = phys_mem_alloc(new_block->max_length,
2230 &new_block->mr->align, shared);
2231 if (!new_block->host) {
2232 error_setg_errno(errp, errno,
2233 "cannot set up guest memory '%s'",
2234 memory_region_name(new_block->mr));
2235 qemu_mutex_unlock_ramlist();
2236 return;
2238 memory_try_enable_merging(new_block->host, new_block->max_length);
2242 new_ram_size = MAX(old_ram_size,
2243 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2244 if (new_ram_size > old_ram_size) {
2245 dirty_memory_extend(old_ram_size, new_ram_size);
2247 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2248 * QLIST (which has an RCU-friendly variant) does not have insertion at
2249 * tail, so save the last element in last_block.
2251 RAMBLOCK_FOREACH(block) {
2252 last_block = block;
2253 if (block->max_length < new_block->max_length) {
2254 break;
2257 if (block) {
2258 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2259 } else if (last_block) {
2260 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2261 } else { /* list is empty */
2262 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2264 ram_list.mru_block = NULL;
2266 /* Write list before version */
2267 smp_wmb();
2268 ram_list.version++;
2269 qemu_mutex_unlock_ramlist();
2271 cpu_physical_memory_set_dirty_range(new_block->offset,
2272 new_block->used_length,
2273 DIRTY_CLIENTS_ALL);
2275 if (new_block->host) {
2276 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2277 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2279 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2280 * Configure it unless the machine is a qtest server, in which case
2281 * KVM is not used and it may be forked (eg for fuzzing purposes).
2283 if (!qtest_enabled()) {
2284 qemu_madvise(new_block->host, new_block->max_length,
2285 QEMU_MADV_DONTFORK);
2287 ram_block_notify_add(new_block->host, new_block->max_length);
2291 #ifdef CONFIG_POSIX
2292 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2293 uint32_t ram_flags, int fd,
2294 Error **errp)
2296 RAMBlock *new_block;
2297 Error *local_err = NULL;
2298 int64_t file_size;
2300 /* Just support these ram flags by now. */
2301 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2303 if (xen_enabled()) {
2304 error_setg(errp, "-mem-path not supported with Xen");
2305 return NULL;
2308 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2309 error_setg(errp,
2310 "host lacks kvm mmu notifiers, -mem-path unsupported");
2311 return NULL;
2314 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2316 * file_ram_alloc() needs to allocate just like
2317 * phys_mem_alloc, but we haven't bothered to provide
2318 * a hook there.
2320 error_setg(errp,
2321 "-mem-path not supported with this accelerator");
2322 return NULL;
2325 size = HOST_PAGE_ALIGN(size);
2326 file_size = get_file_size(fd);
2327 if (file_size > 0 && file_size < size) {
2328 error_setg(errp, "backing store size 0x%" PRIx64
2329 " does not match 'size' option 0x" RAM_ADDR_FMT,
2330 file_size, size);
2331 return NULL;
2334 new_block = g_malloc0(sizeof(*new_block));
2335 new_block->mr = mr;
2336 new_block->used_length = size;
2337 new_block->max_length = size;
2338 new_block->flags = ram_flags;
2339 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2340 if (!new_block->host) {
2341 g_free(new_block);
2342 return NULL;
2345 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2346 if (local_err) {
2347 g_free(new_block);
2348 error_propagate(errp, local_err);
2349 return NULL;
2351 return new_block;
2356 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2357 uint32_t ram_flags, const char *mem_path,
2358 Error **errp)
2360 int fd;
2361 bool created;
2362 RAMBlock *block;
2364 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2365 if (fd < 0) {
2366 return NULL;
2369 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2370 if (!block) {
2371 if (created) {
2372 unlink(mem_path);
2374 close(fd);
2375 return NULL;
2378 return block;
2380 #endif
2382 static
2383 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2384 void (*resized)(const char*,
2385 uint64_t length,
2386 void *host),
2387 void *host, bool resizeable, bool share,
2388 MemoryRegion *mr, Error **errp)
2390 RAMBlock *new_block;
2391 Error *local_err = NULL;
2393 size = HOST_PAGE_ALIGN(size);
2394 max_size = HOST_PAGE_ALIGN(max_size);
2395 new_block = g_malloc0(sizeof(*new_block));
2396 new_block->mr = mr;
2397 new_block->resized = resized;
2398 new_block->used_length = size;
2399 new_block->max_length = max_size;
2400 assert(max_size >= size);
2401 new_block->fd = -1;
2402 new_block->page_size = qemu_real_host_page_size;
2403 new_block->host = host;
2404 if (host) {
2405 new_block->flags |= RAM_PREALLOC;
2407 if (resizeable) {
2408 new_block->flags |= RAM_RESIZEABLE;
2410 ram_block_add(new_block, &local_err, share);
2411 if (local_err) {
2412 g_free(new_block);
2413 error_propagate(errp, local_err);
2414 return NULL;
2416 return new_block;
2419 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2420 MemoryRegion *mr, Error **errp)
2422 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2423 false, mr, errp);
2426 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2427 MemoryRegion *mr, Error **errp)
2429 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2430 share, mr, errp);
2433 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2434 void (*resized)(const char*,
2435 uint64_t length,
2436 void *host),
2437 MemoryRegion *mr, Error **errp)
2439 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2440 false, mr, errp);
2443 static void reclaim_ramblock(RAMBlock *block)
2445 if (block->flags & RAM_PREALLOC) {
2447 } else if (xen_enabled()) {
2448 xen_invalidate_map_cache_entry(block->host);
2449 #ifndef _WIN32
2450 } else if (block->fd >= 0) {
2451 qemu_ram_munmap(block->fd, block->host, block->max_length);
2452 close(block->fd);
2453 #endif
2454 } else {
2455 qemu_anon_ram_free(block->host, block->max_length);
2457 g_free(block);
2460 void qemu_ram_free(RAMBlock *block)
2462 if (!block) {
2463 return;
2466 if (block->host) {
2467 ram_block_notify_remove(block->host, block->max_length);
2470 qemu_mutex_lock_ramlist();
2471 QLIST_REMOVE_RCU(block, next);
2472 ram_list.mru_block = NULL;
2473 /* Write list before version */
2474 smp_wmb();
2475 ram_list.version++;
2476 call_rcu(block, reclaim_ramblock, rcu);
2477 qemu_mutex_unlock_ramlist();
2480 #ifndef _WIN32
2481 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2483 RAMBlock *block;
2484 ram_addr_t offset;
2485 int flags;
2486 void *area, *vaddr;
2488 RAMBLOCK_FOREACH(block) {
2489 offset = addr - block->offset;
2490 if (offset < block->max_length) {
2491 vaddr = ramblock_ptr(block, offset);
2492 if (block->flags & RAM_PREALLOC) {
2494 } else if (xen_enabled()) {
2495 abort();
2496 } else {
2497 flags = MAP_FIXED;
2498 if (block->fd >= 0) {
2499 flags |= (block->flags & RAM_SHARED ?
2500 MAP_SHARED : MAP_PRIVATE);
2501 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2502 flags, block->fd, offset);
2503 } else {
2505 * Remap needs to match alloc. Accelerators that
2506 * set phys_mem_alloc never remap. If they did,
2507 * we'd need a remap hook here.
2509 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2511 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2512 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2513 flags, -1, 0);
2515 if (area != vaddr) {
2516 error_report("Could not remap addr: "
2517 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2518 length, addr);
2519 exit(1);
2521 memory_try_enable_merging(vaddr, length);
2522 qemu_ram_setup_dump(vaddr, length);
2527 #endif /* !_WIN32 */
2529 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2530 * This should not be used for general purpose DMA. Use address_space_map
2531 * or address_space_rw instead. For local memory (e.g. video ram) that the
2532 * device owns, use memory_region_get_ram_ptr.
2534 * Called within RCU critical section.
2536 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2538 RAMBlock *block = ram_block;
2540 if (block == NULL) {
2541 block = qemu_get_ram_block(addr);
2542 addr -= block->offset;
2545 if (xen_enabled() && block->host == NULL) {
2546 /* We need to check if the requested address is in the RAM
2547 * because we don't want to map the entire memory in QEMU.
2548 * In that case just map until the end of the page.
2550 if (block->offset == 0) {
2551 return xen_map_cache(addr, 0, 0, false);
2554 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2556 return ramblock_ptr(block, addr);
2559 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2560 * but takes a size argument.
2562 * Called within RCU critical section.
2564 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2565 hwaddr *size, bool lock)
2567 RAMBlock *block = ram_block;
2568 if (*size == 0) {
2569 return NULL;
2572 if (block == NULL) {
2573 block = qemu_get_ram_block(addr);
2574 addr -= block->offset;
2576 *size = MIN(*size, block->max_length - addr);
2578 if (xen_enabled() && block->host == NULL) {
2579 /* We need to check if the requested address is in the RAM
2580 * because we don't want to map the entire memory in QEMU.
2581 * In that case just map the requested area.
2583 if (block->offset == 0) {
2584 return xen_map_cache(addr, *size, lock, lock);
2587 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2590 return ramblock_ptr(block, addr);
2593 /* Return the offset of a hostpointer within a ramblock */
2594 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2596 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2597 assert((uintptr_t)host >= (uintptr_t)rb->host);
2598 assert(res < rb->max_length);
2600 return res;
2604 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2605 * in that RAMBlock.
2607 * ptr: Host pointer to look up
2608 * round_offset: If true round the result offset down to a page boundary
2609 * *ram_addr: set to result ram_addr
2610 * *offset: set to result offset within the RAMBlock
2612 * Returns: RAMBlock (or NULL if not found)
2614 * By the time this function returns, the returned pointer is not protected
2615 * by RCU anymore. If the caller is not within an RCU critical section and
2616 * does not hold the iothread lock, it must have other means of protecting the
2617 * pointer, such as a reference to the region that includes the incoming
2618 * ram_addr_t.
2620 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2621 ram_addr_t *offset)
2623 RAMBlock *block;
2624 uint8_t *host = ptr;
2626 if (xen_enabled()) {
2627 ram_addr_t ram_addr;
2628 RCU_READ_LOCK_GUARD();
2629 ram_addr = xen_ram_addr_from_mapcache(ptr);
2630 block = qemu_get_ram_block(ram_addr);
2631 if (block) {
2632 *offset = ram_addr - block->offset;
2634 return block;
2637 RCU_READ_LOCK_GUARD();
2638 block = atomic_rcu_read(&ram_list.mru_block);
2639 if (block && block->host && host - block->host < block->max_length) {
2640 goto found;
2643 RAMBLOCK_FOREACH(block) {
2644 /* This case append when the block is not mapped. */
2645 if (block->host == NULL) {
2646 continue;
2648 if (host - block->host < block->max_length) {
2649 goto found;
2653 return NULL;
2655 found:
2656 *offset = (host - block->host);
2657 if (round_offset) {
2658 *offset &= TARGET_PAGE_MASK;
2660 return block;
2664 * Finds the named RAMBlock
2666 * name: The name of RAMBlock to find
2668 * Returns: RAMBlock (or NULL if not found)
2670 RAMBlock *qemu_ram_block_by_name(const char *name)
2672 RAMBlock *block;
2674 RAMBLOCK_FOREACH(block) {
2675 if (!strcmp(name, block->idstr)) {
2676 return block;
2680 return NULL;
2683 /* Some of the softmmu routines need to translate from a host pointer
2684 (typically a TLB entry) back to a ram offset. */
2685 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2687 RAMBlock *block;
2688 ram_addr_t offset;
2690 block = qemu_ram_block_from_host(ptr, false, &offset);
2691 if (!block) {
2692 return RAM_ADDR_INVALID;
2695 return block->offset + offset;
2698 /* Generate a debug exception if a watchpoint has been hit. */
2699 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2700 MemTxAttrs attrs, int flags, uintptr_t ra)
2702 CPUClass *cc = CPU_GET_CLASS(cpu);
2703 CPUWatchpoint *wp;
2705 assert(tcg_enabled());
2706 if (cpu->watchpoint_hit) {
2708 * We re-entered the check after replacing the TB.
2709 * Now raise the debug interrupt so that it will
2710 * trigger after the current instruction.
2712 qemu_mutex_lock_iothread();
2713 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2714 qemu_mutex_unlock_iothread();
2715 return;
2718 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2719 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2720 if (watchpoint_address_matches(wp, addr, len)
2721 && (wp->flags & flags)) {
2722 if (flags == BP_MEM_READ) {
2723 wp->flags |= BP_WATCHPOINT_HIT_READ;
2724 } else {
2725 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2727 wp->hitaddr = MAX(addr, wp->vaddr);
2728 wp->hitattrs = attrs;
2729 if (!cpu->watchpoint_hit) {
2730 if (wp->flags & BP_CPU &&
2731 !cc->debug_check_watchpoint(cpu, wp)) {
2732 wp->flags &= ~BP_WATCHPOINT_HIT;
2733 continue;
2735 cpu->watchpoint_hit = wp;
2737 mmap_lock();
2738 tb_check_watchpoint(cpu, ra);
2739 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2740 cpu->exception_index = EXCP_DEBUG;
2741 mmap_unlock();
2742 cpu_loop_exit_restore(cpu, ra);
2743 } else {
2744 /* Force execution of one insn next time. */
2745 cpu->cflags_next_tb = 1 | curr_cflags();
2746 mmap_unlock();
2747 if (ra) {
2748 cpu_restore_state(cpu, ra, true);
2750 cpu_loop_exit_noexc(cpu);
2753 } else {
2754 wp->flags &= ~BP_WATCHPOINT_HIT;
2759 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2760 MemTxAttrs attrs, void *buf, hwaddr len);
2761 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2762 const void *buf, hwaddr len);
2763 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2764 bool is_write, MemTxAttrs attrs);
2766 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2767 unsigned len, MemTxAttrs attrs)
2769 subpage_t *subpage = opaque;
2770 uint8_t buf[8];
2771 MemTxResult res;
2773 #if defined(DEBUG_SUBPAGE)
2774 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2775 subpage, len, addr);
2776 #endif
2777 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2778 if (res) {
2779 return res;
2781 *data = ldn_p(buf, len);
2782 return MEMTX_OK;
2785 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2786 uint64_t value, unsigned len, MemTxAttrs attrs)
2788 subpage_t *subpage = opaque;
2789 uint8_t buf[8];
2791 #if defined(DEBUG_SUBPAGE)
2792 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2793 " value %"PRIx64"\n",
2794 __func__, subpage, len, addr, value);
2795 #endif
2796 stn_p(buf, len, value);
2797 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2800 static bool subpage_accepts(void *opaque, hwaddr addr,
2801 unsigned len, bool is_write,
2802 MemTxAttrs attrs)
2804 subpage_t *subpage = opaque;
2805 #if defined(DEBUG_SUBPAGE)
2806 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2807 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2808 #endif
2810 return flatview_access_valid(subpage->fv, addr + subpage->base,
2811 len, is_write, attrs);
2814 static const MemoryRegionOps subpage_ops = {
2815 .read_with_attrs = subpage_read,
2816 .write_with_attrs = subpage_write,
2817 .impl.min_access_size = 1,
2818 .impl.max_access_size = 8,
2819 .valid.min_access_size = 1,
2820 .valid.max_access_size = 8,
2821 .valid.accepts = subpage_accepts,
2822 .endianness = DEVICE_NATIVE_ENDIAN,
2825 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2826 uint16_t section)
2828 int idx, eidx;
2830 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2831 return -1;
2832 idx = SUBPAGE_IDX(start);
2833 eidx = SUBPAGE_IDX(end);
2834 #if defined(DEBUG_SUBPAGE)
2835 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2836 __func__, mmio, start, end, idx, eidx, section);
2837 #endif
2838 for (; idx <= eidx; idx++) {
2839 mmio->sub_section[idx] = section;
2842 return 0;
2845 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2847 subpage_t *mmio;
2849 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2850 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2851 mmio->fv = fv;
2852 mmio->base = base;
2853 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2854 NULL, TARGET_PAGE_SIZE);
2855 mmio->iomem.subpage = true;
2856 #if defined(DEBUG_SUBPAGE)
2857 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2858 mmio, base, TARGET_PAGE_SIZE);
2859 #endif
2861 return mmio;
2864 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2866 assert(fv);
2867 MemoryRegionSection section = {
2868 .fv = fv,
2869 .mr = mr,
2870 .offset_within_address_space = 0,
2871 .offset_within_region = 0,
2872 .size = int128_2_64(),
2875 return phys_section_add(map, &section);
2878 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2879 hwaddr index, MemTxAttrs attrs)
2881 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2882 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2883 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2884 MemoryRegionSection *sections = d->map.sections;
2886 return &sections[index & ~TARGET_PAGE_MASK];
2889 static void io_mem_init(void)
2891 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2892 NULL, UINT64_MAX);
2895 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2897 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2898 uint16_t n;
2900 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2901 assert(n == PHYS_SECTION_UNASSIGNED);
2903 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2905 return d;
2908 void address_space_dispatch_free(AddressSpaceDispatch *d)
2910 phys_sections_free(&d->map);
2911 g_free(d);
2914 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2918 static void tcg_log_global_after_sync(MemoryListener *listener)
2920 CPUAddressSpace *cpuas;
2922 /* Wait for the CPU to end the current TB. This avoids the following
2923 * incorrect race:
2925 * vCPU migration
2926 * ---------------------- -------------------------
2927 * TLB check -> slow path
2928 * notdirty_mem_write
2929 * write to RAM
2930 * mark dirty
2931 * clear dirty flag
2932 * TLB check -> fast path
2933 * read memory
2934 * write to RAM
2936 * by pushing the migration thread's memory read after the vCPU thread has
2937 * written the memory.
2939 if (replay_mode == REPLAY_MODE_NONE) {
2941 * VGA can make calls to this function while updating the screen.
2942 * In record/replay mode this causes a deadlock, because
2943 * run_on_cpu waits for rr mutex. Therefore no races are possible
2944 * in this case and no need for making run_on_cpu when
2945 * record/replay is not enabled.
2947 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2948 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2952 static void tcg_commit(MemoryListener *listener)
2954 CPUAddressSpace *cpuas;
2955 AddressSpaceDispatch *d;
2957 assert(tcg_enabled());
2958 /* since each CPU stores ram addresses in its TLB cache, we must
2959 reset the modified entries */
2960 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2961 cpu_reloading_memory_map();
2962 /* The CPU and TLB are protected by the iothread lock.
2963 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2964 * may have split the RCU critical section.
2966 d = address_space_to_dispatch(cpuas->as);
2967 atomic_rcu_set(&cpuas->memory_dispatch, d);
2968 tlb_flush(cpuas->cpu);
2971 static void memory_map_init(void)
2973 system_memory = g_malloc(sizeof(*system_memory));
2975 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2976 address_space_init(&address_space_memory, system_memory, "memory");
2978 system_io = g_malloc(sizeof(*system_io));
2979 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2980 65536);
2981 address_space_init(&address_space_io, system_io, "I/O");
2984 MemoryRegion *get_system_memory(void)
2986 return system_memory;
2989 MemoryRegion *get_system_io(void)
2991 return system_io;
2994 #endif /* !defined(CONFIG_USER_ONLY) */
2996 /* physical memory access (slow version, mainly for debug) */
2997 #if defined(CONFIG_USER_ONLY)
2998 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2999 void *ptr, target_ulong len, bool is_write)
3001 int flags;
3002 target_ulong l, page;
3003 void * p;
3004 uint8_t *buf = ptr;
3006 while (len > 0) {
3007 page = addr & TARGET_PAGE_MASK;
3008 l = (page + TARGET_PAGE_SIZE) - addr;
3009 if (l > len)
3010 l = len;
3011 flags = page_get_flags(page);
3012 if (!(flags & PAGE_VALID))
3013 return -1;
3014 if (is_write) {
3015 if (!(flags & PAGE_WRITE))
3016 return -1;
3017 /* XXX: this code should not depend on lock_user */
3018 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3019 return -1;
3020 memcpy(p, buf, l);
3021 unlock_user(p, addr, l);
3022 } else {
3023 if (!(flags & PAGE_READ))
3024 return -1;
3025 /* XXX: this code should not depend on lock_user */
3026 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3027 return -1;
3028 memcpy(buf, p, l);
3029 unlock_user(p, addr, 0);
3031 len -= l;
3032 buf += l;
3033 addr += l;
3035 return 0;
3038 #else
3040 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3041 hwaddr length)
3043 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3044 addr += memory_region_get_ram_addr(mr);
3046 /* No early return if dirty_log_mask is or becomes 0, because
3047 * cpu_physical_memory_set_dirty_range will still call
3048 * xen_modified_memory.
3050 if (dirty_log_mask) {
3051 dirty_log_mask =
3052 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3054 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3055 assert(tcg_enabled());
3056 tb_invalidate_phys_range(addr, addr + length);
3057 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3059 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3062 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3065 * In principle this function would work on other memory region types too,
3066 * but the ROM device use case is the only one where this operation is
3067 * necessary. Other memory regions should use the
3068 * address_space_read/write() APIs.
3070 assert(memory_region_is_romd(mr));
3072 invalidate_and_set_dirty(mr, addr, size);
3075 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3077 unsigned access_size_max = mr->ops->valid.max_access_size;
3079 /* Regions are assumed to support 1-4 byte accesses unless
3080 otherwise specified. */
3081 if (access_size_max == 0) {
3082 access_size_max = 4;
3085 /* Bound the maximum access by the alignment of the address. */
3086 if (!mr->ops->impl.unaligned) {
3087 unsigned align_size_max = addr & -addr;
3088 if (align_size_max != 0 && align_size_max < access_size_max) {
3089 access_size_max = align_size_max;
3093 /* Don't attempt accesses larger than the maximum. */
3094 if (l > access_size_max) {
3095 l = access_size_max;
3097 l = pow2floor(l);
3099 return l;
3102 static bool prepare_mmio_access(MemoryRegion *mr)
3104 bool unlocked = !qemu_mutex_iothread_locked();
3105 bool release_lock = false;
3107 if (unlocked && mr->global_locking) {
3108 qemu_mutex_lock_iothread();
3109 unlocked = false;
3110 release_lock = true;
3112 if (mr->flush_coalesced_mmio) {
3113 if (unlocked) {
3114 qemu_mutex_lock_iothread();
3116 qemu_flush_coalesced_mmio_buffer();
3117 if (unlocked) {
3118 qemu_mutex_unlock_iothread();
3122 return release_lock;
3125 /* Called within RCU critical section. */
3126 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3127 MemTxAttrs attrs,
3128 const void *ptr,
3129 hwaddr len, hwaddr addr1,
3130 hwaddr l, MemoryRegion *mr)
3132 uint8_t *ram_ptr;
3133 uint64_t val;
3134 MemTxResult result = MEMTX_OK;
3135 bool release_lock = false;
3136 const uint8_t *buf = ptr;
3138 for (;;) {
3139 if (!memory_access_is_direct(mr, true)) {
3140 release_lock |= prepare_mmio_access(mr);
3141 l = memory_access_size(mr, l, addr1);
3142 /* XXX: could force current_cpu to NULL to avoid
3143 potential bugs */
3144 val = ldn_he_p(buf, l);
3145 result |= memory_region_dispatch_write(mr, addr1, val,
3146 size_memop(l), attrs);
3147 } else {
3148 /* RAM case */
3149 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3150 memcpy(ram_ptr, buf, l);
3151 invalidate_and_set_dirty(mr, addr1, l);
3154 if (release_lock) {
3155 qemu_mutex_unlock_iothread();
3156 release_lock = false;
3159 len -= l;
3160 buf += l;
3161 addr += l;
3163 if (!len) {
3164 break;
3167 l = len;
3168 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3171 return result;
3174 /* Called from RCU critical section. */
3175 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3176 const void *buf, hwaddr len)
3178 hwaddr l;
3179 hwaddr addr1;
3180 MemoryRegion *mr;
3181 MemTxResult result = MEMTX_OK;
3183 l = len;
3184 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3185 result = flatview_write_continue(fv, addr, attrs, buf, len,
3186 addr1, l, mr);
3188 return result;
3191 /* Called within RCU critical section. */
3192 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3193 MemTxAttrs attrs, void *ptr,
3194 hwaddr len, hwaddr addr1, hwaddr l,
3195 MemoryRegion *mr)
3197 uint8_t *ram_ptr;
3198 uint64_t val;
3199 MemTxResult result = MEMTX_OK;
3200 bool release_lock = false;
3201 uint8_t *buf = ptr;
3203 for (;;) {
3204 if (!memory_access_is_direct(mr, false)) {
3205 /* I/O case */
3206 release_lock |= prepare_mmio_access(mr);
3207 l = memory_access_size(mr, l, addr1);
3208 result |= memory_region_dispatch_read(mr, addr1, &val,
3209 size_memop(l), attrs);
3210 stn_he_p(buf, l, val);
3211 } else {
3212 /* RAM case */
3213 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3214 memcpy(buf, ram_ptr, l);
3217 if (release_lock) {
3218 qemu_mutex_unlock_iothread();
3219 release_lock = false;
3222 len -= l;
3223 buf += l;
3224 addr += l;
3226 if (!len) {
3227 break;
3230 l = len;
3231 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3234 return result;
3237 /* Called from RCU critical section. */
3238 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3239 MemTxAttrs attrs, void *buf, hwaddr len)
3241 hwaddr l;
3242 hwaddr addr1;
3243 MemoryRegion *mr;
3245 l = len;
3246 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3247 return flatview_read_continue(fv, addr, attrs, buf, len,
3248 addr1, l, mr);
3251 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3252 MemTxAttrs attrs, void *buf, hwaddr len)
3254 MemTxResult result = MEMTX_OK;
3255 FlatView *fv;
3257 if (len > 0) {
3258 RCU_READ_LOCK_GUARD();
3259 fv = address_space_to_flatview(as);
3260 result = flatview_read(fv, addr, attrs, buf, len);
3263 return result;
3266 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3267 MemTxAttrs attrs,
3268 const void *buf, hwaddr len)
3270 MemTxResult result = MEMTX_OK;
3271 FlatView *fv;
3273 if (len > 0) {
3274 RCU_READ_LOCK_GUARD();
3275 fv = address_space_to_flatview(as);
3276 result = flatview_write(fv, addr, attrs, buf, len);
3279 return result;
3282 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3283 void *buf, hwaddr len, bool is_write)
3285 if (is_write) {
3286 return address_space_write(as, addr, attrs, buf, len);
3287 } else {
3288 return address_space_read_full(as, addr, attrs, buf, len);
3292 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3293 hwaddr len, bool is_write)
3295 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3296 buf, len, is_write);
3299 enum write_rom_type {
3300 WRITE_DATA,
3301 FLUSH_CACHE,
3304 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3305 hwaddr addr,
3306 MemTxAttrs attrs,
3307 const void *ptr,
3308 hwaddr len,
3309 enum write_rom_type type)
3311 hwaddr l;
3312 uint8_t *ram_ptr;
3313 hwaddr addr1;
3314 MemoryRegion *mr;
3315 const uint8_t *buf = ptr;
3317 RCU_READ_LOCK_GUARD();
3318 while (len > 0) {
3319 l = len;
3320 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3322 if (!(memory_region_is_ram(mr) ||
3323 memory_region_is_romd(mr))) {
3324 l = memory_access_size(mr, l, addr1);
3325 } else {
3326 /* ROM/RAM case */
3327 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3328 switch (type) {
3329 case WRITE_DATA:
3330 memcpy(ram_ptr, buf, l);
3331 invalidate_and_set_dirty(mr, addr1, l);
3332 break;
3333 case FLUSH_CACHE:
3334 flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
3335 break;
3338 len -= l;
3339 buf += l;
3340 addr += l;
3342 return MEMTX_OK;
3345 /* used for ROM loading : can write in RAM and ROM */
3346 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3347 MemTxAttrs attrs,
3348 const void *buf, hwaddr len)
3350 return address_space_write_rom_internal(as, addr, attrs,
3351 buf, len, WRITE_DATA);
3354 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3357 * This function should do the same thing as an icache flush that was
3358 * triggered from within the guest. For TCG we are always cache coherent,
3359 * so there is no need to flush anything. For KVM / Xen we need to flush
3360 * the host's instruction cache at least.
3362 if (tcg_enabled()) {
3363 return;
3366 address_space_write_rom_internal(&address_space_memory,
3367 start, MEMTXATTRS_UNSPECIFIED,
3368 NULL, len, FLUSH_CACHE);
3371 typedef struct {
3372 MemoryRegion *mr;
3373 void *buffer;
3374 hwaddr addr;
3375 hwaddr len;
3376 bool in_use;
3377 } BounceBuffer;
3379 static BounceBuffer bounce;
3381 typedef struct MapClient {
3382 QEMUBH *bh;
3383 QLIST_ENTRY(MapClient) link;
3384 } MapClient;
3386 QemuMutex map_client_list_lock;
3387 static QLIST_HEAD(, MapClient) map_client_list
3388 = QLIST_HEAD_INITIALIZER(map_client_list);
3390 static void cpu_unregister_map_client_do(MapClient *client)
3392 QLIST_REMOVE(client, link);
3393 g_free(client);
3396 static void cpu_notify_map_clients_locked(void)
3398 MapClient *client;
3400 while (!QLIST_EMPTY(&map_client_list)) {
3401 client = QLIST_FIRST(&map_client_list);
3402 qemu_bh_schedule(client->bh);
3403 cpu_unregister_map_client_do(client);
3407 void cpu_register_map_client(QEMUBH *bh)
3409 MapClient *client = g_malloc(sizeof(*client));
3411 qemu_mutex_lock(&map_client_list_lock);
3412 client->bh = bh;
3413 QLIST_INSERT_HEAD(&map_client_list, client, link);
3414 if (!atomic_read(&bounce.in_use)) {
3415 cpu_notify_map_clients_locked();
3417 qemu_mutex_unlock(&map_client_list_lock);
3420 void cpu_exec_init_all(void)
3422 qemu_mutex_init(&ram_list.mutex);
3423 /* The data structures we set up here depend on knowing the page size,
3424 * so no more changes can be made after this point.
3425 * In an ideal world, nothing we did before we had finished the
3426 * machine setup would care about the target page size, and we could
3427 * do this much later, rather than requiring board models to state
3428 * up front what their requirements are.
3430 finalize_target_page_bits();
3431 io_mem_init();
3432 memory_map_init();
3433 qemu_mutex_init(&map_client_list_lock);
3436 void cpu_unregister_map_client(QEMUBH *bh)
3438 MapClient *client;
3440 qemu_mutex_lock(&map_client_list_lock);
3441 QLIST_FOREACH(client, &map_client_list, link) {
3442 if (client->bh == bh) {
3443 cpu_unregister_map_client_do(client);
3444 break;
3447 qemu_mutex_unlock(&map_client_list_lock);
3450 static void cpu_notify_map_clients(void)
3452 qemu_mutex_lock(&map_client_list_lock);
3453 cpu_notify_map_clients_locked();
3454 qemu_mutex_unlock(&map_client_list_lock);
3457 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3458 bool is_write, MemTxAttrs attrs)
3460 MemoryRegion *mr;
3461 hwaddr l, xlat;
3463 while (len > 0) {
3464 l = len;
3465 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3466 if (!memory_access_is_direct(mr, is_write)) {
3467 l = memory_access_size(mr, l, addr);
3468 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3469 return false;
3473 len -= l;
3474 addr += l;
3476 return true;
3479 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3480 hwaddr len, bool is_write,
3481 MemTxAttrs attrs)
3483 FlatView *fv;
3484 bool result;
3486 RCU_READ_LOCK_GUARD();
3487 fv = address_space_to_flatview(as);
3488 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3489 return result;
3492 static hwaddr
3493 flatview_extend_translation(FlatView *fv, hwaddr addr,
3494 hwaddr target_len,
3495 MemoryRegion *mr, hwaddr base, hwaddr len,
3496 bool is_write, MemTxAttrs attrs)
3498 hwaddr done = 0;
3499 hwaddr xlat;
3500 MemoryRegion *this_mr;
3502 for (;;) {
3503 target_len -= len;
3504 addr += len;
3505 done += len;
3506 if (target_len == 0) {
3507 return done;
3510 len = target_len;
3511 this_mr = flatview_translate(fv, addr, &xlat,
3512 &len, is_write, attrs);
3513 if (this_mr != mr || xlat != base + done) {
3514 return done;
3519 /* Map a physical memory region into a host virtual address.
3520 * May map a subset of the requested range, given by and returned in *plen.
3521 * May return NULL if resources needed to perform the mapping are exhausted.
3522 * Use only for reads OR writes - not for read-modify-write operations.
3523 * Use cpu_register_map_client() to know when retrying the map operation is
3524 * likely to succeed.
3526 void *address_space_map(AddressSpace *as,
3527 hwaddr addr,
3528 hwaddr *plen,
3529 bool is_write,
3530 MemTxAttrs attrs)
3532 hwaddr len = *plen;
3533 hwaddr l, xlat;
3534 MemoryRegion *mr;
3535 void *ptr;
3536 FlatView *fv;
3538 if (len == 0) {
3539 return NULL;
3542 l = len;
3543 RCU_READ_LOCK_GUARD();
3544 fv = address_space_to_flatview(as);
3545 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3547 if (!memory_access_is_direct(mr, is_write)) {
3548 if (atomic_xchg(&bounce.in_use, true)) {
3549 *plen = 0;
3550 return NULL;
3552 /* Avoid unbounded allocations */
3553 l = MIN(l, TARGET_PAGE_SIZE);
3554 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3555 bounce.addr = addr;
3556 bounce.len = l;
3558 memory_region_ref(mr);
3559 bounce.mr = mr;
3560 if (!is_write) {
3561 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3562 bounce.buffer, l);
3565 *plen = l;
3566 return bounce.buffer;
3570 memory_region_ref(mr);
3571 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3572 l, is_write, attrs);
3573 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3575 return ptr;
3578 /* Unmaps a memory region previously mapped by address_space_map().
3579 * Will also mark the memory as dirty if is_write is true. access_len gives
3580 * the amount of memory that was actually read or written by the caller.
3582 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3583 bool is_write, hwaddr access_len)
3585 if (buffer != bounce.buffer) {
3586 MemoryRegion *mr;
3587 ram_addr_t addr1;
3589 mr = memory_region_from_host(buffer, &addr1);
3590 assert(mr != NULL);
3591 if (is_write) {
3592 invalidate_and_set_dirty(mr, addr1, access_len);
3594 if (xen_enabled()) {
3595 xen_invalidate_map_cache_entry(buffer);
3597 memory_region_unref(mr);
3598 return;
3600 if (is_write) {
3601 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3602 bounce.buffer, access_len);
3604 qemu_vfree(bounce.buffer);
3605 bounce.buffer = NULL;
3606 memory_region_unref(bounce.mr);
3607 atomic_mb_set(&bounce.in_use, false);
3608 cpu_notify_map_clients();
3611 void *cpu_physical_memory_map(hwaddr addr,
3612 hwaddr *plen,
3613 bool is_write)
3615 return address_space_map(&address_space_memory, addr, plen, is_write,
3616 MEMTXATTRS_UNSPECIFIED);
3619 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3620 bool is_write, hwaddr access_len)
3622 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3625 #define ARG1_DECL AddressSpace *as
3626 #define ARG1 as
3627 #define SUFFIX
3628 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3629 #define RCU_READ_LOCK(...) rcu_read_lock()
3630 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3631 #include "memory_ldst.inc.c"
3633 int64_t address_space_cache_init(MemoryRegionCache *cache,
3634 AddressSpace *as,
3635 hwaddr addr,
3636 hwaddr len,
3637 bool is_write)
3639 AddressSpaceDispatch *d;
3640 hwaddr l;
3641 MemoryRegion *mr;
3643 assert(len > 0);
3645 l = len;
3646 cache->fv = address_space_get_flatview(as);
3647 d = flatview_to_dispatch(cache->fv);
3648 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3650 mr = cache->mrs.mr;
3651 memory_region_ref(mr);
3652 if (memory_access_is_direct(mr, is_write)) {
3653 /* We don't care about the memory attributes here as we're only
3654 * doing this if we found actual RAM, which behaves the same
3655 * regardless of attributes; so UNSPECIFIED is fine.
3657 l = flatview_extend_translation(cache->fv, addr, len, mr,
3658 cache->xlat, l, is_write,
3659 MEMTXATTRS_UNSPECIFIED);
3660 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3661 } else {
3662 cache->ptr = NULL;
3665 cache->len = l;
3666 cache->is_write = is_write;
3667 return l;
3670 void address_space_cache_invalidate(MemoryRegionCache *cache,
3671 hwaddr addr,
3672 hwaddr access_len)
3674 assert(cache->is_write);
3675 if (likely(cache->ptr)) {
3676 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3680 void address_space_cache_destroy(MemoryRegionCache *cache)
3682 if (!cache->mrs.mr) {
3683 return;
3686 if (xen_enabled()) {
3687 xen_invalidate_map_cache_entry(cache->ptr);
3689 memory_region_unref(cache->mrs.mr);
3690 flatview_unref(cache->fv);
3691 cache->mrs.mr = NULL;
3692 cache->fv = NULL;
3695 /* Called from RCU critical section. This function has the same
3696 * semantics as address_space_translate, but it only works on a
3697 * predefined range of a MemoryRegion that was mapped with
3698 * address_space_cache_init.
3700 static inline MemoryRegion *address_space_translate_cached(
3701 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3702 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3704 MemoryRegionSection section;
3705 MemoryRegion *mr;
3706 IOMMUMemoryRegion *iommu_mr;
3707 AddressSpace *target_as;
3709 assert(!cache->ptr);
3710 *xlat = addr + cache->xlat;
3712 mr = cache->mrs.mr;
3713 iommu_mr = memory_region_get_iommu(mr);
3714 if (!iommu_mr) {
3715 /* MMIO region. */
3716 return mr;
3719 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3720 NULL, is_write, true,
3721 &target_as, attrs);
3722 return section.mr;
3725 /* Called from RCU critical section. address_space_read_cached uses this
3726 * out of line function when the target is an MMIO or IOMMU region.
3728 MemTxResult
3729 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3730 void *buf, hwaddr len)
3732 hwaddr addr1, l;
3733 MemoryRegion *mr;
3735 l = len;
3736 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3737 MEMTXATTRS_UNSPECIFIED);
3738 return flatview_read_continue(cache->fv,
3739 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3740 addr1, l, mr);
3743 /* Called from RCU critical section. address_space_write_cached uses this
3744 * out of line function when the target is an MMIO or IOMMU region.
3746 MemTxResult
3747 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3748 const void *buf, hwaddr len)
3750 hwaddr addr1, l;
3751 MemoryRegion *mr;
3753 l = len;
3754 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3755 MEMTXATTRS_UNSPECIFIED);
3756 return flatview_write_continue(cache->fv,
3757 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3758 addr1, l, mr);
3761 #define ARG1_DECL MemoryRegionCache *cache
3762 #define ARG1 cache
3763 #define SUFFIX _cached_slow
3764 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3765 #define RCU_READ_LOCK() ((void)0)
3766 #define RCU_READ_UNLOCK() ((void)0)
3767 #include "memory_ldst.inc.c"
3769 /* virtual memory access for debug (includes writing to ROM) */
3770 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3771 void *ptr, target_ulong len, bool is_write)
3773 hwaddr phys_addr;
3774 target_ulong l, page;
3775 uint8_t *buf = ptr;
3777 cpu_synchronize_state(cpu);
3778 while (len > 0) {
3779 int asidx;
3780 MemTxAttrs attrs;
3781 MemTxResult res;
3783 page = addr & TARGET_PAGE_MASK;
3784 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3785 asidx = cpu_asidx_from_attrs(cpu, attrs);
3786 /* if no physical page mapped, return an error */
3787 if (phys_addr == -1)
3788 return -1;
3789 l = (page + TARGET_PAGE_SIZE) - addr;
3790 if (l > len)
3791 l = len;
3792 phys_addr += (addr & ~TARGET_PAGE_MASK);
3793 if (is_write) {
3794 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3795 attrs, buf, l);
3796 } else {
3797 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3798 attrs, buf, l);
3800 if (res != MEMTX_OK) {
3801 return -1;
3803 len -= l;
3804 buf += l;
3805 addr += l;
3807 return 0;
3811 * Allows code that needs to deal with migration bitmaps etc to still be built
3812 * target independent.
3814 size_t qemu_target_page_size(void)
3816 return TARGET_PAGE_SIZE;
3819 int qemu_target_page_bits(void)
3821 return TARGET_PAGE_BITS;
3824 int qemu_target_page_bits_min(void)
3826 return TARGET_PAGE_BITS_MIN;
3828 #endif
3830 bool target_words_bigendian(void)
3832 #if defined(TARGET_WORDS_BIGENDIAN)
3833 return true;
3834 #else
3835 return false;
3836 #endif
3839 #ifndef CONFIG_USER_ONLY
3840 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3842 MemoryRegion*mr;
3843 hwaddr l = 1;
3844 bool res;
3846 RCU_READ_LOCK_GUARD();
3847 mr = address_space_translate(&address_space_memory,
3848 phys_addr, &phys_addr, &l, false,
3849 MEMTXATTRS_UNSPECIFIED);
3851 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3852 return res;
3855 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3857 RAMBlock *block;
3858 int ret = 0;
3860 RCU_READ_LOCK_GUARD();
3861 RAMBLOCK_FOREACH(block) {
3862 ret = func(block, opaque);
3863 if (ret) {
3864 break;
3867 return ret;
3871 * Unmap pages of memory from start to start+length such that
3872 * they a) read as 0, b) Trigger whatever fault mechanism
3873 * the OS provides for postcopy.
3874 * The pages must be unmapped by the end of the function.
3875 * Returns: 0 on success, none-0 on failure
3878 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3880 int ret = -1;
3882 uint8_t *host_startaddr = rb->host + start;
3884 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3885 error_report("ram_block_discard_range: Unaligned start address: %p",
3886 host_startaddr);
3887 goto err;
3890 if ((start + length) <= rb->used_length) {
3891 bool need_madvise, need_fallocate;
3892 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3893 error_report("ram_block_discard_range: Unaligned length: %zx",
3894 length);
3895 goto err;
3898 errno = ENOTSUP; /* If we are missing MADVISE etc */
3900 /* The logic here is messy;
3901 * madvise DONTNEED fails for hugepages
3902 * fallocate works on hugepages and shmem
3904 need_madvise = (rb->page_size == qemu_host_page_size);
3905 need_fallocate = rb->fd != -1;
3906 if (need_fallocate) {
3907 /* For a file, this causes the area of the file to be zero'd
3908 * if read, and for hugetlbfs also causes it to be unmapped
3909 * so a userfault will trigger.
3911 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3912 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3913 start, length);
3914 if (ret) {
3915 ret = -errno;
3916 error_report("ram_block_discard_range: Failed to fallocate "
3917 "%s:%" PRIx64 " +%zx (%d)",
3918 rb->idstr, start, length, ret);
3919 goto err;
3921 #else
3922 ret = -ENOSYS;
3923 error_report("ram_block_discard_range: fallocate not available/file"
3924 "%s:%" PRIx64 " +%zx (%d)",
3925 rb->idstr, start, length, ret);
3926 goto err;
3927 #endif
3929 if (need_madvise) {
3930 /* For normal RAM this causes it to be unmapped,
3931 * for shared memory it causes the local mapping to disappear
3932 * and to fall back on the file contents (which we just
3933 * fallocate'd away).
3935 #if defined(CONFIG_MADVISE)
3936 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3937 if (ret) {
3938 ret = -errno;
3939 error_report("ram_block_discard_range: Failed to discard range "
3940 "%s:%" PRIx64 " +%zx (%d)",
3941 rb->idstr, start, length, ret);
3942 goto err;
3944 #else
3945 ret = -ENOSYS;
3946 error_report("ram_block_discard_range: MADVISE not available"
3947 "%s:%" PRIx64 " +%zx (%d)",
3948 rb->idstr, start, length, ret);
3949 goto err;
3950 #endif
3952 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3953 need_madvise, need_fallocate, ret);
3954 } else {
3955 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3956 "/%zx/" RAM_ADDR_FMT")",
3957 rb->idstr, start, length, rb->used_length);
3960 err:
3961 return ret;
3964 bool ramblock_is_pmem(RAMBlock *rb)
3966 return rb->flags & RAM_PMEM;
3969 #endif
3971 void page_size_init(void)
3973 /* NOTE: we can always suppose that qemu_host_page_size >=
3974 TARGET_PAGE_SIZE */
3975 if (qemu_host_page_size == 0) {
3976 qemu_host_page_size = qemu_real_host_page_size;
3978 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3979 qemu_host_page_size = TARGET_PAGE_SIZE;
3981 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3984 #if !defined(CONFIG_USER_ONLY)
3986 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3988 if (start == end - 1) {
3989 qemu_printf("\t%3d ", start);
3990 } else {
3991 qemu_printf("\t%3d..%-3d ", start, end - 1);
3993 qemu_printf(" skip=%d ", skip);
3994 if (ptr == PHYS_MAP_NODE_NIL) {
3995 qemu_printf(" ptr=NIL");
3996 } else if (!skip) {
3997 qemu_printf(" ptr=#%d", ptr);
3998 } else {
3999 qemu_printf(" ptr=[%d]", ptr);
4001 qemu_printf("\n");
4004 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4005 int128_sub((size), int128_one())) : 0)
4007 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4009 int i;
4011 qemu_printf(" Dispatch\n");
4012 qemu_printf(" Physical sections\n");
4014 for (i = 0; i < d->map.sections_nb; ++i) {
4015 MemoryRegionSection *s = d->map.sections + i;
4016 const char *names[] = { " [unassigned]", " [not dirty]",
4017 " [ROM]", " [watch]" };
4019 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4020 " %s%s%s%s%s",
4022 s->offset_within_address_space,
4023 s->offset_within_address_space + MR_SIZE(s->mr->size),
4024 s->mr->name ? s->mr->name : "(noname)",
4025 i < ARRAY_SIZE(names) ? names[i] : "",
4026 s->mr == root ? " [ROOT]" : "",
4027 s == d->mru_section ? " [MRU]" : "",
4028 s->mr->is_iommu ? " [iommu]" : "");
4030 if (s->mr->alias) {
4031 qemu_printf(" alias=%s", s->mr->alias->name ?
4032 s->mr->alias->name : "noname");
4034 qemu_printf("\n");
4037 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4038 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4039 for (i = 0; i < d->map.nodes_nb; ++i) {
4040 int j, jprev;
4041 PhysPageEntry prev;
4042 Node *n = d->map.nodes + i;
4044 qemu_printf(" [%d]\n", i);
4046 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4047 PhysPageEntry *pe = *n + j;
4049 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4050 continue;
4053 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4055 jprev = j;
4056 prev = *pe;
4059 if (jprev != ARRAY_SIZE(*n)) {
4060 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4065 #endif