hw/arm/sbsa-ref: Do not open-code ahci_ide_create_devs()
[qemu/ar7.git] / accel / tcg / cputlb.c
blob047cd2cc0ae87b54f2649b201b74e80131c8d501
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/tb-flush.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto-common.h"
34 #include "qemu/atomic.h"
35 #include "qemu/atomic128.h"
36 #include "exec/translate-all.h"
37 #include "trace.h"
38 #include "tb-hash.h"
39 #include "internal-common.h"
40 #include "internal-target.h"
41 #ifdef CONFIG_PLUGIN
42 #include "qemu/plugin-memory.h"
43 #endif
44 #include "tcg/tcg-ldst.h"
45 #include "tcg/oversized-guest.h"
47 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
48 /* #define DEBUG_TLB */
49 /* #define DEBUG_TLB_LOG */
51 #ifdef DEBUG_TLB
52 # define DEBUG_TLB_GATE 1
53 # ifdef DEBUG_TLB_LOG
54 # define DEBUG_TLB_LOG_GATE 1
55 # else
56 # define DEBUG_TLB_LOG_GATE 0
57 # endif
58 #else
59 # define DEBUG_TLB_GATE 0
60 # define DEBUG_TLB_LOG_GATE 0
61 #endif
63 #define tlb_debug(fmt, ...) do { \
64 if (DEBUG_TLB_LOG_GATE) { \
65 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
66 ## __VA_ARGS__); \
67 } else if (DEBUG_TLB_GATE) { \
68 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
69 } \
70 } while (0)
72 #define assert_cpu_is_self(cpu) do { \
73 if (DEBUG_TLB_GATE) { \
74 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
75 } \
76 } while (0)
78 /* run_on_cpu_data.target_ptr should always be big enough for a
79 * vaddr even on 32 bit builds
81 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
83 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
85 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
86 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
88 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
90 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
93 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
95 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
98 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
99 size_t max_entries)
101 desc->window_begin_ns = ns;
102 desc->window_max_entries = max_entries;
105 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
107 CPUJumpCache *jc = cpu->tb_jmp_cache;
108 int i, i0;
110 if (unlikely(!jc)) {
111 return;
114 i0 = tb_jmp_cache_hash_page(page_addr);
115 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
116 qatomic_set(&jc->array[i0 + i].tb, NULL);
121 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
122 * @desc: The CPUTLBDesc portion of the TLB
123 * @fast: The CPUTLBDescFast portion of the same TLB
125 * Called with tlb_lock_held.
127 * We have two main constraints when resizing a TLB: (1) we only resize it
128 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
129 * the array or unnecessarily flushing it), which means we do not control how
130 * frequently the resizing can occur; (2) we don't have access to the guest's
131 * future scheduling decisions, and therefore have to decide the magnitude of
132 * the resize based on past observations.
134 * In general, a memory-hungry process can benefit greatly from an appropriately
135 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
136 * we just have to make the TLB as large as possible; while an oversized TLB
137 * results in minimal TLB miss rates, it also takes longer to be flushed
138 * (flushes can be _very_ frequent), and the reduced locality can also hurt
139 * performance.
141 * To achieve near-optimal performance for all kinds of workloads, we:
143 * 1. Aggressively increase the size of the TLB when the use rate of the
144 * TLB being flushed is high, since it is likely that in the near future this
145 * memory-hungry process will execute again, and its memory hungriness will
146 * probably be similar.
148 * 2. Slowly reduce the size of the TLB as the use rate declines over a
149 * reasonably large time window. The rationale is that if in such a time window
150 * we have not observed a high TLB use rate, it is likely that we won't observe
151 * it in the near future. In that case, once a time window expires we downsize
152 * the TLB to match the maximum use rate observed in the window.
154 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
155 * since in that range performance is likely near-optimal. Recall that the TLB
156 * is direct mapped, so we want the use rate to be low (or at least not too
157 * high), since otherwise we are likely to have a significant amount of
158 * conflict misses.
160 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
161 int64_t now)
163 size_t old_size = tlb_n_entries(fast);
164 size_t rate;
165 size_t new_size = old_size;
166 int64_t window_len_ms = 100;
167 int64_t window_len_ns = window_len_ms * 1000 * 1000;
168 bool window_expired = now > desc->window_begin_ns + window_len_ns;
170 if (desc->n_used_entries > desc->window_max_entries) {
171 desc->window_max_entries = desc->n_used_entries;
173 rate = desc->window_max_entries * 100 / old_size;
175 if (rate > 70) {
176 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
177 } else if (rate < 30 && window_expired) {
178 size_t ceil = pow2ceil(desc->window_max_entries);
179 size_t expected_rate = desc->window_max_entries * 100 / ceil;
182 * Avoid undersizing when the max number of entries seen is just below
183 * a pow2. For instance, if max_entries == 1025, the expected use rate
184 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
185 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
186 * later. Thus, make sure that the expected use rate remains below 70%.
187 * (and since we double the size, that means the lowest rate we'd
188 * expect to get is 35%, which is still in the 30-70% range where
189 * we consider that the size is appropriate.)
191 if (expected_rate > 70) {
192 ceil *= 2;
194 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
197 if (new_size == old_size) {
198 if (window_expired) {
199 tlb_window_reset(desc, now, desc->n_used_entries);
201 return;
204 g_free(fast->table);
205 g_free(desc->fulltlb);
207 tlb_window_reset(desc, now, 0);
208 /* desc->n_used_entries is cleared by the caller */
209 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
210 fast->table = g_try_new(CPUTLBEntry, new_size);
211 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
214 * If the allocations fail, try smaller sizes. We just freed some
215 * memory, so going back to half of new_size has a good chance of working.
216 * Increased memory pressure elsewhere in the system might cause the
217 * allocations to fail though, so we progressively reduce the allocation
218 * size, aborting if we cannot even allocate the smallest TLB we support.
220 while (fast->table == NULL || desc->fulltlb == NULL) {
221 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
222 error_report("%s: %s", __func__, strerror(errno));
223 abort();
225 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
226 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
228 g_free(fast->table);
229 g_free(desc->fulltlb);
230 fast->table = g_try_new(CPUTLBEntry, new_size);
231 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
235 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
237 desc->n_used_entries = 0;
238 desc->large_page_addr = -1;
239 desc->large_page_mask = -1;
240 desc->vindex = 0;
241 memset(fast->table, -1, sizeof_tlb(fast));
242 memset(desc->vtable, -1, sizeof(desc->vtable));
245 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
246 int64_t now)
248 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
249 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
251 tlb_mmu_resize_locked(desc, fast, now);
252 tlb_mmu_flush_locked(desc, fast);
255 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
257 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
259 tlb_window_reset(desc, now, 0);
260 desc->n_used_entries = 0;
261 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
262 fast->table = g_new(CPUTLBEntry, n_entries);
263 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
264 tlb_mmu_flush_locked(desc, fast);
267 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
269 cpu->neg.tlb.d[mmu_idx].n_used_entries++;
272 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
274 cpu->neg.tlb.d[mmu_idx].n_used_entries--;
277 void tlb_init(CPUState *cpu)
279 int64_t now = get_clock_realtime();
280 int i;
282 qemu_spin_init(&cpu->neg.tlb.c.lock);
284 /* All tlbs are initialized flushed. */
285 cpu->neg.tlb.c.dirty = 0;
287 for (i = 0; i < NB_MMU_MODES; i++) {
288 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
292 void tlb_destroy(CPUState *cpu)
294 int i;
296 qemu_spin_destroy(&cpu->neg.tlb.c.lock);
297 for (i = 0; i < NB_MMU_MODES; i++) {
298 CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
299 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
301 g_free(fast->table);
302 g_free(desc->fulltlb);
306 /* flush_all_helper: run fn across all cpus
308 * If the wait flag is set then the src cpu's helper will be queued as
309 * "safe" work and the loop exited creating a synchronisation point
310 * where all queued work will be finished before execution starts
311 * again.
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314 run_on_cpu_data d)
316 CPUState *cpu;
318 CPU_FOREACH(cpu) {
319 if (cpu != src) {
320 async_run_on_cpu(cpu, fn, d);
325 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
327 uint16_t asked = data.host_int;
328 uint16_t all_dirty, work, to_clean;
329 int64_t now = get_clock_realtime();
331 assert_cpu_is_self(cpu);
333 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
335 qemu_spin_lock(&cpu->neg.tlb.c.lock);
337 all_dirty = cpu->neg.tlb.c.dirty;
338 to_clean = asked & all_dirty;
339 all_dirty &= ~to_clean;
340 cpu->neg.tlb.c.dirty = all_dirty;
342 for (work = to_clean; work != 0; work &= work - 1) {
343 int mmu_idx = ctz32(work);
344 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
347 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
349 tcg_flush_jmp_cache(cpu);
351 if (to_clean == ALL_MMUIDX_BITS) {
352 qatomic_set(&cpu->neg.tlb.c.full_flush_count,
353 cpu->neg.tlb.c.full_flush_count + 1);
354 } else {
355 qatomic_set(&cpu->neg.tlb.c.part_flush_count,
356 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
357 if (to_clean != asked) {
358 qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
359 cpu->neg.tlb.c.elide_flush_count +
360 ctpop16(asked & ~to_clean));
365 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
367 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
369 if (cpu->created && !qemu_cpu_is_self(cpu)) {
370 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
371 RUN_ON_CPU_HOST_INT(idxmap));
372 } else {
373 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
377 void tlb_flush(CPUState *cpu)
379 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
382 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
384 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
386 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
388 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
389 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
392 void tlb_flush_all_cpus(CPUState *src_cpu)
394 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
397 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
399 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
401 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
403 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
404 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
409 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
412 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
413 vaddr page, vaddr mask)
415 page &= mask;
416 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
418 return (page == (tlb_entry->addr_read & mask) ||
419 page == (tlb_addr_write(tlb_entry) & mask) ||
420 page == (tlb_entry->addr_code & mask));
423 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
425 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
429 * tlb_entry_is_empty - return true if the entry is not in use
430 * @te: pointer to CPUTLBEntry
432 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
434 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
437 /* Called with tlb_c.lock held */
438 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
439 vaddr page,
440 vaddr mask)
442 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
443 memset(tlb_entry, -1, sizeof(*tlb_entry));
444 return true;
446 return false;
449 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
451 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
454 /* Called with tlb_c.lock held */
455 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
456 vaddr page,
457 vaddr mask)
459 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
460 int k;
462 assert_cpu_is_self(cpu);
463 for (k = 0; k < CPU_VTLB_SIZE; k++) {
464 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
465 tlb_n_used_entries_dec(cpu, mmu_idx);
470 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
471 vaddr page)
473 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
476 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
478 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
479 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
481 /* Check if we need to flush due to large pages. */
482 if ((page & lp_mask) == lp_addr) {
483 tlb_debug("forcing full flush midx %d (%016"
484 VADDR_PRIx "/%016" VADDR_PRIx ")\n",
485 midx, lp_addr, lp_mask);
486 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
487 } else {
488 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
489 tlb_n_used_entries_dec(cpu, midx);
491 tlb_flush_vtlb_page_locked(cpu, midx, page);
496 * tlb_flush_page_by_mmuidx_async_0:
497 * @cpu: cpu on which to flush
498 * @addr: page of virtual address to flush
499 * @idxmap: set of mmu_idx to flush
501 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
502 * at @addr from the tlbs indicated by @idxmap from @cpu.
504 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
505 vaddr addr,
506 uint16_t idxmap)
508 int mmu_idx;
510 assert_cpu_is_self(cpu);
512 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
514 qemu_spin_lock(&cpu->neg.tlb.c.lock);
515 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
516 if ((idxmap >> mmu_idx) & 1) {
517 tlb_flush_page_locked(cpu, mmu_idx, addr);
520 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
523 * Discard jump cache entries for any tb which might potentially
524 * overlap the flushed page, which includes the previous.
526 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
527 tb_jmp_cache_clear_page(cpu, addr);
531 * tlb_flush_page_by_mmuidx_async_1:
532 * @cpu: cpu on which to flush
533 * @data: encoded addr + idxmap
535 * Helper for tlb_flush_page_by_mmuidx and friends, called through
536 * async_run_on_cpu. The idxmap parameter is encoded in the page
537 * offset of the target_ptr field. This limits the set of mmu_idx
538 * that can be passed via this method.
540 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
541 run_on_cpu_data data)
543 vaddr addr_and_idxmap = data.target_ptr;
544 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
545 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
547 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
550 typedef struct {
551 vaddr addr;
552 uint16_t idxmap;
553 } TLBFlushPageByMMUIdxData;
556 * tlb_flush_page_by_mmuidx_async_2:
557 * @cpu: cpu on which to flush
558 * @data: allocated addr + idxmap
560 * Helper for tlb_flush_page_by_mmuidx and friends, called through
561 * async_run_on_cpu. The addr+idxmap parameters are stored in a
562 * TLBFlushPageByMMUIdxData structure that has been allocated
563 * specifically for this helper. Free the structure when done.
565 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
566 run_on_cpu_data data)
568 TLBFlushPageByMMUIdxData *d = data.host_ptr;
570 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
571 g_free(d);
574 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
576 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
578 /* This should already be page aligned */
579 addr &= TARGET_PAGE_MASK;
581 if (qemu_cpu_is_self(cpu)) {
582 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
583 } else if (idxmap < TARGET_PAGE_SIZE) {
585 * Most targets have only a few mmu_idx. In the case where
586 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
587 * allocating memory for this operation.
589 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
590 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
591 } else {
592 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
594 /* Otherwise allocate a structure, freed by the worker. */
595 d->addr = addr;
596 d->idxmap = idxmap;
597 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
598 RUN_ON_CPU_HOST_PTR(d));
602 void tlb_flush_page(CPUState *cpu, vaddr addr)
604 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
607 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
608 uint16_t idxmap)
610 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
612 /* This should already be page aligned */
613 addr &= TARGET_PAGE_MASK;
616 * Allocate memory to hold addr+idxmap only when needed.
617 * See tlb_flush_page_by_mmuidx for details.
619 if (idxmap < TARGET_PAGE_SIZE) {
620 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
621 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
622 } else {
623 CPUState *dst_cpu;
625 /* Allocate a separate data block for each destination cpu. */
626 CPU_FOREACH(dst_cpu) {
627 if (dst_cpu != src_cpu) {
628 TLBFlushPageByMMUIdxData *d
629 = g_new(TLBFlushPageByMMUIdxData, 1);
631 d->addr = addr;
632 d->idxmap = idxmap;
633 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
634 RUN_ON_CPU_HOST_PTR(d));
639 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
642 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
644 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
647 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
648 vaddr addr,
649 uint16_t idxmap)
651 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
653 /* This should already be page aligned */
654 addr &= TARGET_PAGE_MASK;
657 * Allocate memory to hold addr+idxmap only when needed.
658 * See tlb_flush_page_by_mmuidx for details.
660 if (idxmap < TARGET_PAGE_SIZE) {
661 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
662 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
663 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
664 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
665 } else {
666 CPUState *dst_cpu;
667 TLBFlushPageByMMUIdxData *d;
669 /* Allocate a separate data block for each destination cpu. */
670 CPU_FOREACH(dst_cpu) {
671 if (dst_cpu != src_cpu) {
672 d = g_new(TLBFlushPageByMMUIdxData, 1);
673 d->addr = addr;
674 d->idxmap = idxmap;
675 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
676 RUN_ON_CPU_HOST_PTR(d));
680 d = g_new(TLBFlushPageByMMUIdxData, 1);
681 d->addr = addr;
682 d->idxmap = idxmap;
683 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
684 RUN_ON_CPU_HOST_PTR(d));
688 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
690 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
693 static void tlb_flush_range_locked(CPUState *cpu, int midx,
694 vaddr addr, vaddr len,
695 unsigned bits)
697 CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
698 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
699 vaddr mask = MAKE_64BIT_MASK(0, bits);
702 * If @bits is smaller than the tlb size, there may be multiple entries
703 * within the TLB; otherwise all addresses that match under @mask hit
704 * the same TLB entry.
705 * TODO: Perhaps allow bits to be a few bits less than the size.
706 * For now, just flush the entire TLB.
708 * If @len is larger than the tlb size, then it will take longer to
709 * test all of the entries in the TLB than it will to flush it all.
711 if (mask < f->mask || len > f->mask) {
712 tlb_debug("forcing full flush midx %d ("
713 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
714 midx, addr, mask, len);
715 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
716 return;
720 * Check if we need to flush due to large pages.
721 * Because large_page_mask contains all 1's from the msb,
722 * we only need to test the end of the range.
724 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
725 tlb_debug("forcing full flush midx %d ("
726 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
727 midx, d->large_page_addr, d->large_page_mask);
728 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
729 return;
732 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
733 vaddr page = addr + i;
734 CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
736 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
737 tlb_n_used_entries_dec(cpu, midx);
739 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
743 typedef struct {
744 vaddr addr;
745 vaddr len;
746 uint16_t idxmap;
747 uint16_t bits;
748 } TLBFlushRangeData;
750 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
751 TLBFlushRangeData d)
753 int mmu_idx;
755 assert_cpu_is_self(cpu);
757 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
758 d.addr, d.bits, d.len, d.idxmap);
760 qemu_spin_lock(&cpu->neg.tlb.c.lock);
761 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
762 if ((d.idxmap >> mmu_idx) & 1) {
763 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
766 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
769 * If the length is larger than the jump cache size, then it will take
770 * longer to clear each entry individually than it will to clear it all.
772 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
773 tcg_flush_jmp_cache(cpu);
774 return;
778 * Discard jump cache entries for any tb which might potentially
779 * overlap the flushed pages, which includes the previous.
781 d.addr -= TARGET_PAGE_SIZE;
782 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
783 tb_jmp_cache_clear_page(cpu, d.addr);
784 d.addr += TARGET_PAGE_SIZE;
788 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
789 run_on_cpu_data data)
791 TLBFlushRangeData *d = data.host_ptr;
792 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
793 g_free(d);
796 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
797 vaddr len, uint16_t idxmap,
798 unsigned bits)
800 TLBFlushRangeData d;
803 * If all bits are significant, and len is small,
804 * this devolves to tlb_flush_page.
806 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
807 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
808 return;
810 /* If no page bits are significant, this devolves to tlb_flush. */
811 if (bits < TARGET_PAGE_BITS) {
812 tlb_flush_by_mmuidx(cpu, idxmap);
813 return;
816 /* This should already be page aligned */
817 d.addr = addr & TARGET_PAGE_MASK;
818 d.len = len;
819 d.idxmap = idxmap;
820 d.bits = bits;
822 if (qemu_cpu_is_self(cpu)) {
823 tlb_flush_range_by_mmuidx_async_0(cpu, d);
824 } else {
825 /* Otherwise allocate a structure, freed by the worker. */
826 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
827 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
828 RUN_ON_CPU_HOST_PTR(p));
832 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
833 uint16_t idxmap, unsigned bits)
835 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
838 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
839 vaddr addr, vaddr len,
840 uint16_t idxmap, unsigned bits)
842 TLBFlushRangeData d;
843 CPUState *dst_cpu;
846 * If all bits are significant, and len is small,
847 * this devolves to tlb_flush_page.
849 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
850 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
851 return;
853 /* If no page bits are significant, this devolves to tlb_flush. */
854 if (bits < TARGET_PAGE_BITS) {
855 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
856 return;
859 /* This should already be page aligned */
860 d.addr = addr & TARGET_PAGE_MASK;
861 d.len = len;
862 d.idxmap = idxmap;
863 d.bits = bits;
865 /* Allocate a separate data block for each destination cpu. */
866 CPU_FOREACH(dst_cpu) {
867 if (dst_cpu != src_cpu) {
868 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
869 async_run_on_cpu(dst_cpu,
870 tlb_flush_range_by_mmuidx_async_1,
871 RUN_ON_CPU_HOST_PTR(p));
875 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
878 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
879 vaddr addr, uint16_t idxmap,
880 unsigned bits)
882 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
883 idxmap, bits);
886 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
887 vaddr addr,
888 vaddr len,
889 uint16_t idxmap,
890 unsigned bits)
892 TLBFlushRangeData d, *p;
893 CPUState *dst_cpu;
896 * If all bits are significant, and len is small,
897 * this devolves to tlb_flush_page.
899 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
900 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
901 return;
903 /* If no page bits are significant, this devolves to tlb_flush. */
904 if (bits < TARGET_PAGE_BITS) {
905 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
906 return;
909 /* This should already be page aligned */
910 d.addr = addr & TARGET_PAGE_MASK;
911 d.len = len;
912 d.idxmap = idxmap;
913 d.bits = bits;
915 /* Allocate a separate data block for each destination cpu. */
916 CPU_FOREACH(dst_cpu) {
917 if (dst_cpu != src_cpu) {
918 p = g_memdup(&d, sizeof(d));
919 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
920 RUN_ON_CPU_HOST_PTR(p));
924 p = g_memdup(&d, sizeof(d));
925 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
926 RUN_ON_CPU_HOST_PTR(p));
929 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
930 vaddr addr,
931 uint16_t idxmap,
932 unsigned bits)
934 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
935 idxmap, bits);
938 /* update the TLBs so that writes to code in the virtual page 'addr'
939 can be detected */
940 void tlb_protect_code(ram_addr_t ram_addr)
942 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
943 TARGET_PAGE_SIZE,
944 DIRTY_MEMORY_CODE);
947 /* update the TLB so that writes in physical page 'phys_addr' are no longer
948 tested for self modifying code */
949 void tlb_unprotect_code(ram_addr_t ram_addr)
951 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
956 * Dirty write flag handling
958 * When the TCG code writes to a location it looks up the address in
959 * the TLB and uses that data to compute the final address. If any of
960 * the lower bits of the address are set then the slow path is forced.
961 * There are a number of reasons to do this but for normal RAM the
962 * most usual is detecting writes to code regions which may invalidate
963 * generated code.
965 * Other vCPUs might be reading their TLBs during guest execution, so we update
966 * te->addr_write with qatomic_set. We don't need to worry about this for
967 * oversized guests as MTTCG is disabled for them.
969 * Called with tlb_c.lock held.
971 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
972 uintptr_t start, uintptr_t length)
974 uintptr_t addr = tlb_entry->addr_write;
976 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
977 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
978 addr &= TARGET_PAGE_MASK;
979 addr += tlb_entry->addend;
980 if ((addr - start) < length) {
981 #if TARGET_LONG_BITS == 32
982 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
983 ptr_write += HOST_BIG_ENDIAN;
984 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
985 #elif TCG_OVERSIZED_GUEST
986 tlb_entry->addr_write |= TLB_NOTDIRTY;
987 #else
988 qatomic_set(&tlb_entry->addr_write,
989 tlb_entry->addr_write | TLB_NOTDIRTY);
990 #endif
996 * Called with tlb_c.lock held.
997 * Called only from the vCPU context, i.e. the TLB's owner thread.
999 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1001 *d = *s;
1004 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1005 * the target vCPU).
1006 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1007 * thing actually updated is the target TLB entry ->addr_write flags.
1009 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1011 int mmu_idx;
1013 qemu_spin_lock(&cpu->neg.tlb.c.lock);
1014 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1015 unsigned int i;
1016 unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]);
1018 for (i = 0; i < n; i++) {
1019 tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i],
1020 start1, length);
1023 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1024 tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i],
1025 start1, length);
1028 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1031 /* Called with tlb_c.lock held */
1032 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1033 vaddr addr)
1035 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1036 tlb_entry->addr_write = addr;
1040 /* update the TLB corresponding to virtual page vaddr
1041 so that it is no longer dirty */
1042 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1044 int mmu_idx;
1046 assert_cpu_is_self(cpu);
1048 addr &= TARGET_PAGE_MASK;
1049 qemu_spin_lock(&cpu->neg.tlb.c.lock);
1050 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1051 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
1054 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1055 int k;
1056 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1057 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
1060 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1063 /* Our TLB does not support large pages, so remember the area covered by
1064 large pages and trigger a full TLB flush if these are invalidated. */
1065 static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
1066 vaddr addr, uint64_t size)
1068 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
1069 vaddr lp_mask = ~(size - 1);
1071 if (lp_addr == (vaddr)-1) {
1072 /* No previous large page. */
1073 lp_addr = addr;
1074 } else {
1075 /* Extend the existing region to include the new page.
1076 This is a compromise between unnecessary flushes and
1077 the cost of maintaining a full variable size TLB. */
1078 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
1079 while (((lp_addr ^ addr) & lp_mask) != 0) {
1080 lp_mask <<= 1;
1083 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1084 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
1087 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1088 vaddr address, int flags,
1089 MMUAccessType access_type, bool enable)
1091 if (enable) {
1092 address |= flags & TLB_FLAGS_MASK;
1093 flags &= TLB_SLOW_FLAGS_MASK;
1094 if (flags) {
1095 address |= TLB_FORCE_SLOW;
1097 } else {
1098 address = -1;
1099 flags = 0;
1101 ent->addr_idx[access_type] = address;
1102 full->slow_flags[access_type] = flags;
1106 * Add a new TLB entry. At most one entry for a given virtual address
1107 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1108 * supplied size is only used by tlb_flush_page.
1110 * Called from TCG-generated code, which is under an RCU read-side
1111 * critical section.
1113 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1114 vaddr addr, CPUTLBEntryFull *full)
1116 CPUTLB *tlb = &cpu->neg.tlb;
1117 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1118 MemoryRegionSection *section;
1119 unsigned int index, read_flags, write_flags;
1120 uintptr_t addend;
1121 CPUTLBEntry *te, tn;
1122 hwaddr iotlb, xlat, sz, paddr_page;
1123 vaddr addr_page;
1124 int asidx, wp_flags, prot;
1125 bool is_ram, is_romd;
1127 assert_cpu_is_self(cpu);
1129 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1130 sz = TARGET_PAGE_SIZE;
1131 } else {
1132 sz = (hwaddr)1 << full->lg_page_size;
1133 tlb_add_large_page(cpu, mmu_idx, addr, sz);
1135 addr_page = addr & TARGET_PAGE_MASK;
1136 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1138 prot = full->prot;
1139 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1140 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1141 &xlat, &sz, full->attrs, &prot);
1142 assert(sz >= TARGET_PAGE_SIZE);
1144 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1145 " prot=%x idx=%d\n",
1146 addr, full->phys_addr, prot, mmu_idx);
1148 read_flags = 0;
1149 if (full->lg_page_size < TARGET_PAGE_BITS) {
1150 /* Repeat the MMU check and TLB fill on every access. */
1151 read_flags |= TLB_INVALID_MASK;
1153 if (full->attrs.byte_swap) {
1154 read_flags |= TLB_BSWAP;
1157 is_ram = memory_region_is_ram(section->mr);
1158 is_romd = memory_region_is_romd(section->mr);
1160 if (is_ram || is_romd) {
1161 /* RAM and ROMD both have associated host memory. */
1162 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1163 } else {
1164 /* I/O does not; force the host address to NULL. */
1165 addend = 0;
1168 write_flags = read_flags;
1169 if (is_ram) {
1170 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1171 assert(!(iotlb & ~TARGET_PAGE_MASK));
1173 * Computing is_clean is expensive; avoid all that unless
1174 * the page is actually writable.
1176 if (prot & PAGE_WRITE) {
1177 if (section->readonly) {
1178 write_flags |= TLB_DISCARD_WRITE;
1179 } else if (cpu_physical_memory_is_clean(iotlb)) {
1180 write_flags |= TLB_NOTDIRTY;
1183 } else {
1184 /* I/O or ROMD */
1185 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1187 * Writes to romd devices must go through MMIO to enable write.
1188 * Reads to romd devices go through the ram_ptr found above,
1189 * but of course reads to I/O must go through MMIO.
1191 write_flags |= TLB_MMIO;
1192 if (!is_romd) {
1193 read_flags = write_flags;
1197 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1198 TARGET_PAGE_SIZE);
1200 index = tlb_index(cpu, mmu_idx, addr_page);
1201 te = tlb_entry(cpu, mmu_idx, addr_page);
1204 * Hold the TLB lock for the rest of the function. We could acquire/release
1205 * the lock several times in the function, but it is faster to amortize the
1206 * acquisition cost by acquiring it just once. Note that this leads to
1207 * a longer critical section, but this is not a concern since the TLB lock
1208 * is unlikely to be contended.
1210 qemu_spin_lock(&tlb->c.lock);
1212 /* Note that the tlb is no longer clean. */
1213 tlb->c.dirty |= 1 << mmu_idx;
1215 /* Make sure there's no cached translation for the new page. */
1216 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
1219 * Only evict the old entry to the victim tlb if it's for a
1220 * different page; otherwise just overwrite the stale data.
1222 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1223 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1224 CPUTLBEntry *tv = &desc->vtable[vidx];
1226 /* Evict the old entry into the victim tlb. */
1227 copy_tlb_helper_locked(tv, te);
1228 desc->vfulltlb[vidx] = desc->fulltlb[index];
1229 tlb_n_used_entries_dec(cpu, mmu_idx);
1232 /* refill the tlb */
1234 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1235 * aligned ram_addr_t of the page base of the target RAM.
1236 * Otherwise, iotlb contains
1237 * - a physical section number in the lower TARGET_PAGE_BITS
1238 * - the offset within section->mr of the page base (I/O, ROMD) with the
1239 * TARGET_PAGE_BITS masked off.
1240 * We subtract addr_page (which is page aligned and thus won't
1241 * disturb the low bits) to give an offset which can be added to the
1242 * (non-page-aligned) vaddr of the eventual memory access to get
1243 * the MemoryRegion offset for the access. Note that the vaddr we
1244 * subtract here is that of the page base, and not the same as the
1245 * vaddr we add back in io_prepare()/get_page_addr_code().
1247 desc->fulltlb[index] = *full;
1248 full = &desc->fulltlb[index];
1249 full->xlat_section = iotlb - addr_page;
1250 full->phys_addr = paddr_page;
1252 /* Now calculate the new entry */
1253 tn.addend = addend - addr_page;
1255 tlb_set_compare(full, &tn, addr_page, read_flags,
1256 MMU_INST_FETCH, prot & PAGE_EXEC);
1258 if (wp_flags & BP_MEM_READ) {
1259 read_flags |= TLB_WATCHPOINT;
1261 tlb_set_compare(full, &tn, addr_page, read_flags,
1262 MMU_DATA_LOAD, prot & PAGE_READ);
1264 if (prot & PAGE_WRITE_INV) {
1265 write_flags |= TLB_INVALID_MASK;
1267 if (wp_flags & BP_MEM_WRITE) {
1268 write_flags |= TLB_WATCHPOINT;
1270 tlb_set_compare(full, &tn, addr_page, write_flags,
1271 MMU_DATA_STORE, prot & PAGE_WRITE);
1273 copy_tlb_helper_locked(te, &tn);
1274 tlb_n_used_entries_inc(cpu, mmu_idx);
1275 qemu_spin_unlock(&tlb->c.lock);
1278 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1279 hwaddr paddr, MemTxAttrs attrs, int prot,
1280 int mmu_idx, uint64_t size)
1282 CPUTLBEntryFull full = {
1283 .phys_addr = paddr,
1284 .attrs = attrs,
1285 .prot = prot,
1286 .lg_page_size = ctz64(size)
1289 assert(is_power_of_2(size));
1290 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1293 void tlb_set_page(CPUState *cpu, vaddr addr,
1294 hwaddr paddr, int prot,
1295 int mmu_idx, uint64_t size)
1297 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1298 prot, mmu_idx, size);
1302 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1303 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1304 * be discarded and looked up again (e.g. via tlb_entry()).
1306 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1307 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1309 bool ok;
1312 * This is not a probe, so only valid return is success; failure
1313 * should result in exception + longjmp to the cpu loop.
1315 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1316 access_type, mmu_idx, false, retaddr);
1317 assert(ok);
1320 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1321 MMUAccessType access_type,
1322 int mmu_idx, uintptr_t retaddr)
1324 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1325 mmu_idx, retaddr);
1328 static MemoryRegionSection *
1329 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
1330 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1332 MemoryRegionSection *section;
1333 hwaddr mr_offset;
1335 section = iotlb_to_section(cpu, xlat, attrs);
1336 mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1337 cpu->mem_io_pc = retaddr;
1338 if (!cpu->neg.can_do_io) {
1339 cpu_io_recompile(cpu, retaddr);
1342 *out_offset = mr_offset;
1343 return section;
1346 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
1347 unsigned size, MMUAccessType access_type, int mmu_idx,
1348 MemTxResult response, uintptr_t retaddr)
1350 if (!cpu->ignore_memory_transaction_failures
1351 && cpu->cc->tcg_ops->do_transaction_failed) {
1352 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1354 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1355 access_type, mmu_idx,
1356 full->attrs, response, retaddr);
1360 /* Return true if ADDR is present in the victim tlb, and has been copied
1361 back to the main tlb. */
1362 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
1363 MMUAccessType access_type, vaddr page)
1365 size_t vidx;
1367 assert_cpu_is_self(cpu);
1368 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1369 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
1370 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1372 if (cmp == page) {
1373 /* Found entry in victim tlb, swap tlb and iotlb. */
1374 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
1376 qemu_spin_lock(&cpu->neg.tlb.c.lock);
1377 copy_tlb_helper_locked(&tmptlb, tlb);
1378 copy_tlb_helper_locked(tlb, vtlb);
1379 copy_tlb_helper_locked(vtlb, &tmptlb);
1380 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1382 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1383 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
1384 CPUTLBEntryFull tmpf;
1385 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1386 return true;
1389 return false;
1392 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1393 CPUTLBEntryFull *full, uintptr_t retaddr)
1395 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1397 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1399 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1400 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1404 * Set both VGA and migration bits for simplicity and to remove
1405 * the notdirty callback faster.
1407 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1409 /* We remove the notdirty callback only if the code has been flushed. */
1410 if (!cpu_physical_memory_is_clean(ram_addr)) {
1411 trace_memory_notdirty_set_dirty(mem_vaddr);
1412 tlb_set_dirty(cpu, mem_vaddr);
1416 static int probe_access_internal(CPUState *cpu, vaddr addr,
1417 int fault_size, MMUAccessType access_type,
1418 int mmu_idx, bool nonfault,
1419 void **phost, CPUTLBEntryFull **pfull,
1420 uintptr_t retaddr, bool check_mem_cbs)
1422 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1423 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1424 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1425 vaddr page_addr = addr & TARGET_PAGE_MASK;
1426 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1427 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
1428 CPUTLBEntryFull *full;
1430 if (!tlb_hit_page(tlb_addr, page_addr)) {
1431 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
1432 if (!cpu->cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type,
1433 mmu_idx, nonfault, retaddr)) {
1434 /* Non-faulting page table read failed. */
1435 *phost = NULL;
1436 *pfull = NULL;
1437 return TLB_INVALID_MASK;
1440 /* TLB resize via tlb_fill may have moved the entry. */
1441 index = tlb_index(cpu, mmu_idx, addr);
1442 entry = tlb_entry(cpu, mmu_idx, addr);
1445 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1446 * to force the next access through tlb_fill. We've just
1447 * called tlb_fill, so we know that this entry *is* valid.
1449 flags &= ~TLB_INVALID_MASK;
1451 tlb_addr = tlb_read_idx(entry, access_type);
1453 flags &= tlb_addr;
1455 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1456 flags |= full->slow_flags[access_type];
1458 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1459 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
1461 (access_type != MMU_INST_FETCH && force_mmio)) {
1462 *phost = NULL;
1463 return TLB_MMIO;
1466 /* Everything else is RAM. */
1467 *phost = (void *)((uintptr_t)addr + entry->addend);
1468 return flags;
1471 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1472 MMUAccessType access_type, int mmu_idx,
1473 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1474 uintptr_t retaddr)
1476 int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1477 mmu_idx, nonfault, phost, pfull, retaddr,
1478 true);
1480 /* Handle clean RAM pages. */
1481 if (unlikely(flags & TLB_NOTDIRTY)) {
1482 int dirtysize = size == 0 ? 1 : size;
1483 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr);
1484 flags &= ~TLB_NOTDIRTY;
1487 return flags;
1490 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1491 MMUAccessType access_type, int mmu_idx,
1492 void **phost, CPUTLBEntryFull **pfull)
1494 void *discard_phost;
1495 CPUTLBEntryFull *discard_tlb;
1497 /* privately handle users that don't need full results */
1498 phost = phost ? phost : &discard_phost;
1499 pfull = pfull ? pfull : &discard_tlb;
1501 int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1502 mmu_idx, true, phost, pfull, 0, false);
1504 /* Handle clean RAM pages. */
1505 if (unlikely(flags & TLB_NOTDIRTY)) {
1506 int dirtysize = size == 0 ? 1 : size;
1507 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0);
1508 flags &= ~TLB_NOTDIRTY;
1511 return flags;
1514 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1515 MMUAccessType access_type, int mmu_idx,
1516 bool nonfault, void **phost, uintptr_t retaddr)
1518 CPUTLBEntryFull *full;
1519 int flags;
1521 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1523 flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1524 mmu_idx, nonfault, phost, &full, retaddr,
1525 true);
1527 /* Handle clean RAM pages. */
1528 if (unlikely(flags & TLB_NOTDIRTY)) {
1529 int dirtysize = size == 0 ? 1 : size;
1530 notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr);
1531 flags &= ~TLB_NOTDIRTY;
1534 return flags;
1537 void *probe_access(CPUArchState *env, vaddr addr, int size,
1538 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1540 CPUTLBEntryFull *full;
1541 void *host;
1542 int flags;
1544 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1546 flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1547 mmu_idx, false, &host, &full, retaddr,
1548 true);
1550 /* Per the interface, size == 0 merely faults the access. */
1551 if (size == 0) {
1552 return NULL;
1555 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1556 /* Handle watchpoints. */
1557 if (flags & TLB_WATCHPOINT) {
1558 int wp_access = (access_type == MMU_DATA_STORE
1559 ? BP_MEM_WRITE : BP_MEM_READ);
1560 cpu_check_watchpoint(env_cpu(env), addr, size,
1561 full->attrs, wp_access, retaddr);
1564 /* Handle clean RAM pages. */
1565 if (flags & TLB_NOTDIRTY) {
1566 notdirty_write(env_cpu(env), addr, size, full, retaddr);
1570 return host;
1573 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1574 MMUAccessType access_type, int mmu_idx)
1576 CPUTLBEntryFull *full;
1577 void *host;
1578 int flags;
1580 flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
1581 mmu_idx, true, &host, &full, 0, false);
1583 /* No combination of flags are expected by the caller. */
1584 return flags ? NULL : host;
1588 * Return a ram_addr_t for the virtual address for execution.
1590 * Return -1 if we can't translate and execute from an entire page
1591 * of RAM. This will force us to execute by loading and translating
1592 * one insn at a time, without caching.
1594 * NOTE: This function will trigger an exception if the page is
1595 * not executable.
1597 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1598 void **hostp)
1600 CPUTLBEntryFull *full;
1601 void *p;
1603 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
1604 cpu_mmu_index(env_cpu(env), true), false,
1605 &p, &full, 0, false);
1606 if (p == NULL) {
1607 return -1;
1610 if (full->lg_page_size < TARGET_PAGE_BITS) {
1611 return -1;
1614 if (hostp) {
1615 *hostp = p;
1617 return qemu_ram_addr_from_host_nofail(p);
1620 /* Load/store with atomicity primitives. */
1621 #include "ldst_atomicity.c.inc"
1623 #ifdef CONFIG_PLUGIN
1625 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1626 * This should be a hot path as we will have just looked this path up
1627 * in the softmmu lookup code (or helper). We don't handle re-fills or
1628 * checking the victim table. This is purely informational.
1630 * The one corner case is i/o write, which can cause changes to the
1631 * address space. Those changes, and the corresponding tlb flush,
1632 * should be delayed until the next TB, so even then this ought not fail.
1633 * But check, Just in Case.
1635 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1636 bool is_store, struct qemu_plugin_hwaddr *data)
1638 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
1639 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1640 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1641 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1642 CPUTLBEntryFull *full;
1644 if (unlikely(!tlb_hit(tlb_addr, addr))) {
1645 return false;
1648 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1649 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1651 /* We must have an iotlb entry for MMIO */
1652 if (tlb_addr & TLB_MMIO) {
1653 MemoryRegionSection *section =
1654 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1655 full->attrs);
1656 data->is_io = true;
1657 data->mr = section->mr;
1658 } else {
1659 data->is_io = false;
1660 data->mr = NULL;
1662 return true;
1664 #endif
1667 * Probe for a load/store operation.
1668 * Return the host address and into @flags.
1671 typedef struct MMULookupPageData {
1672 CPUTLBEntryFull *full;
1673 void *haddr;
1674 vaddr addr;
1675 int flags;
1676 int size;
1677 } MMULookupPageData;
1679 typedef struct MMULookupLocals {
1680 MMULookupPageData page[2];
1681 MemOp memop;
1682 int mmu_idx;
1683 } MMULookupLocals;
1686 * mmu_lookup1: translate one page
1687 * @cpu: generic cpu state
1688 * @data: lookup parameters
1689 * @mmu_idx: virtual address context
1690 * @access_type: load/store/code
1691 * @ra: return address into tcg generated code, or 0
1693 * Resolve the translation for the one page at @data.addr, filling in
1694 * the rest of @data with the results. If the translation fails,
1695 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1696 * @mmu_idx may have resized.
1698 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data,
1699 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1701 vaddr addr = data->addr;
1702 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1703 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1704 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1705 bool maybe_resized = false;
1706 CPUTLBEntryFull *full;
1707 int flags;
1709 /* If the TLB entry is for a different page, reload and try again. */
1710 if (!tlb_hit(tlb_addr, addr)) {
1711 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
1712 addr & TARGET_PAGE_MASK)) {
1713 tlb_fill(cpu, addr, data->size, access_type, mmu_idx, ra);
1714 maybe_resized = true;
1715 index = tlb_index(cpu, mmu_idx, addr);
1716 entry = tlb_entry(cpu, mmu_idx, addr);
1718 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1721 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1722 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1723 flags |= full->slow_flags[access_type];
1725 data->full = full;
1726 data->flags = flags;
1727 /* Compute haddr speculatively; depending on flags it might be invalid. */
1728 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1730 return maybe_resized;
1734 * mmu_watch_or_dirty
1735 * @cpu: generic cpu state
1736 * @data: lookup parameters
1737 * @access_type: load/store/code
1738 * @ra: return address into tcg generated code, or 0
1740 * Trigger watchpoints for @data.addr:@data.size;
1741 * record writes to protected clean pages.
1743 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
1744 MMUAccessType access_type, uintptr_t ra)
1746 CPUTLBEntryFull *full = data->full;
1747 vaddr addr = data->addr;
1748 int flags = data->flags;
1749 int size = data->size;
1751 /* On watchpoint hit, this will longjmp out. */
1752 if (flags & TLB_WATCHPOINT) {
1753 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1754 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
1755 flags &= ~TLB_WATCHPOINT;
1758 /* Note that notdirty is only set for writes. */
1759 if (flags & TLB_NOTDIRTY) {
1760 notdirty_write(cpu, addr, size, full, ra);
1761 flags &= ~TLB_NOTDIRTY;
1763 data->flags = flags;
1767 * mmu_lookup: translate page(s)
1768 * @cpu: generic cpu state
1769 * @addr: virtual address
1770 * @oi: combined mmu_idx and MemOp
1771 * @ra: return address into tcg generated code, or 0
1772 * @access_type: load/store/code
1773 * @l: output result
1775 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1776 * bytes. Return true if the lookup crosses a page boundary.
1778 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1779 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1781 unsigned a_bits;
1782 bool crosspage;
1783 int flags;
1785 l->memop = get_memop(oi);
1786 l->mmu_idx = get_mmuidx(oi);
1788 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1790 /* Handle CPU specific unaligned behaviour */
1791 a_bits = get_alignment_bits(l->memop);
1792 if (addr & ((1 << a_bits) - 1)) {
1793 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra);
1796 l->page[0].addr = addr;
1797 l->page[0].size = memop_size(l->memop);
1798 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1799 l->page[1].size = 0;
1800 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1802 if (likely(!crosspage)) {
1803 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
1805 flags = l->page[0].flags;
1806 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1807 mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1809 if (unlikely(flags & TLB_BSWAP)) {
1810 l->memop ^= MO_BSWAP;
1812 } else {
1813 /* Finish compute of page crossing. */
1814 int size0 = l->page[1].addr - addr;
1815 l->page[1].size = l->page[0].size - size0;
1816 l->page[0].size = size0;
1819 * Lookup both pages, recognizing exceptions from either. If the
1820 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1822 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
1823 if (mmu_lookup1(cpu, &l->page[1], l->mmu_idx, type, ra)) {
1824 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
1825 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
1828 flags = l->page[0].flags | l->page[1].flags;
1829 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1830 mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1831 mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
1835 * Since target/sparc is the only user of TLB_BSWAP, and all
1836 * Sparc accesses are aligned, any treatment across two pages
1837 * would be arbitrary. Refuse it until there's a use.
1839 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1842 return crosspage;
1846 * Probe for an atomic operation. Do not allow unaligned operations,
1847 * or io operations to proceed. Return the host address.
1849 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1850 int size, uintptr_t retaddr)
1852 uintptr_t mmu_idx = get_mmuidx(oi);
1853 MemOp mop = get_memop(oi);
1854 int a_bits = get_alignment_bits(mop);
1855 uintptr_t index;
1856 CPUTLBEntry *tlbe;
1857 vaddr tlb_addr;
1858 void *hostaddr;
1859 CPUTLBEntryFull *full;
1861 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1863 /* Adjust the given return address. */
1864 retaddr -= GETPC_ADJ;
1866 /* Enforce guest required alignment. */
1867 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1868 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1869 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE,
1870 mmu_idx, retaddr);
1873 /* Enforce qemu required alignment. */
1874 if (unlikely(addr & (size - 1))) {
1875 /* We get here if guest alignment was not requested,
1876 or was not enforced by cpu_unaligned_access above.
1877 We might widen the access and emulate, but for now
1878 mark an exception and exit the cpu loop. */
1879 goto stop_the_world;
1882 index = tlb_index(cpu, mmu_idx, addr);
1883 tlbe = tlb_entry(cpu, mmu_idx, addr);
1885 /* Check TLB entry and enforce page permissions. */
1886 tlb_addr = tlb_addr_write(tlbe);
1887 if (!tlb_hit(tlb_addr, addr)) {
1888 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
1889 addr & TARGET_PAGE_MASK)) {
1890 tlb_fill(cpu, addr, size,
1891 MMU_DATA_STORE, mmu_idx, retaddr);
1892 index = tlb_index(cpu, mmu_idx, addr);
1893 tlbe = tlb_entry(cpu, mmu_idx, addr);
1895 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1899 * Let the guest notice RMW on a write-only page.
1900 * We have just verified that the page is writable.
1901 * Subpage lookups may have left TLB_INVALID_MASK set,
1902 * but addr_read will only be -1 if PAGE_READ was unset.
1904 if (unlikely(tlbe->addr_read == -1)) {
1905 tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1907 * Since we don't support reads and writes to different
1908 * addresses, and we do have the proper page loaded for
1909 * write, this shouldn't ever return. But just in case,
1910 * handle via stop-the-world.
1912 goto stop_the_world;
1914 /* Collect tlb flags for read. */
1915 tlb_addr |= tlbe->addr_read;
1917 /* Notice an IO access or a needs-MMU-lookup access */
1918 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1919 /* There's really nothing that can be done to
1920 support this apart from stop-the-world. */
1921 goto stop_the_world;
1924 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1925 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1927 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1928 notdirty_write(cpu, addr, size, full, retaddr);
1931 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
1932 int wp_flags = 0;
1934 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1935 wp_flags |= BP_MEM_WRITE;
1937 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1938 wp_flags |= BP_MEM_READ;
1940 if (wp_flags) {
1941 cpu_check_watchpoint(cpu, addr, size,
1942 full->attrs, wp_flags, retaddr);
1946 return hostaddr;
1948 stop_the_world:
1949 cpu_loop_exit_atomic(cpu, retaddr);
1953 * Load Helpers
1955 * We support two different access types. SOFTMMU_CODE_ACCESS is
1956 * specifically for reading instructions from system memory. It is
1957 * called by the translation loop and in some helpers where the code
1958 * is disassembled. It shouldn't be called directly by guest code.
1960 * For the benefit of TCG generated code, we want to avoid the
1961 * complication of ABI-specific return type promotion and always
1962 * return a value extended to the register size of the host. This is
1963 * tcg_target_long, except in the case of a 32-bit host and 64-bit
1964 * data, and for that we always have uint64_t.
1966 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1970 * do_ld_mmio_beN:
1971 * @cpu: generic cpu state
1972 * @full: page parameters
1973 * @ret_be: accumulated data
1974 * @addr: virtual address
1975 * @size: number of bytes
1976 * @mmu_idx: virtual address context
1977 * @ra: return address into tcg generated code, or 0
1978 * Context: BQL held
1980 * Load @size bytes from @addr, which is memory-mapped i/o.
1981 * The bytes are concatenated in big-endian order with @ret_be.
1983 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1984 uint64_t ret_be, vaddr addr, int size,
1985 int mmu_idx, MMUAccessType type, uintptr_t ra,
1986 MemoryRegion *mr, hwaddr mr_offset)
1988 do {
1989 MemOp this_mop;
1990 unsigned this_size;
1991 uint64_t val;
1992 MemTxResult r;
1994 /* Read aligned pieces up to 8 bytes. */
1995 this_mop = ctz32(size | (int)addr | 8);
1996 this_size = 1 << this_mop;
1997 this_mop |= MO_BE;
1999 r = memory_region_dispatch_read(mr, mr_offset, &val,
2000 this_mop, full->attrs);
2001 if (unlikely(r != MEMTX_OK)) {
2002 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
2004 if (this_size == 8) {
2005 return val;
2008 ret_be = (ret_be << (this_size * 8)) | val;
2009 addr += this_size;
2010 mr_offset += this_size;
2011 size -= this_size;
2012 } while (size);
2014 return ret_be;
2017 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
2018 uint64_t ret_be, vaddr addr, int size,
2019 int mmu_idx, MMUAccessType type, uintptr_t ra)
2021 MemoryRegionSection *section;
2022 MemoryRegion *mr;
2023 hwaddr mr_offset;
2024 MemTxAttrs attrs;
2025 uint64_t ret;
2027 tcg_debug_assert(size > 0 && size <= 8);
2029 attrs = full->attrs;
2030 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2031 mr = section->mr;
2033 bql_lock();
2034 ret = int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
2035 type, ra, mr, mr_offset);
2036 bql_unlock();
2038 return ret;
2041 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
2042 uint64_t ret_be, vaddr addr, int size,
2043 int mmu_idx, uintptr_t ra)
2045 MemoryRegionSection *section;
2046 MemoryRegion *mr;
2047 hwaddr mr_offset;
2048 MemTxAttrs attrs;
2049 uint64_t a, b;
2051 tcg_debug_assert(size > 8 && size <= 16);
2053 attrs = full->attrs;
2054 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2055 mr = section->mr;
2057 bql_lock();
2058 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
2059 MMU_DATA_LOAD, ra, mr, mr_offset);
2060 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
2061 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
2062 bql_unlock();
2064 return int128_make128(b, a);
2068 * do_ld_bytes_beN
2069 * @p: translation parameters
2070 * @ret_be: accumulated data
2072 * Load @p->size bytes from @p->haddr, which is RAM.
2073 * The bytes to concatenated in big-endian order with @ret_be.
2075 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2077 uint8_t *haddr = p->haddr;
2078 int i, size = p->size;
2080 for (i = 0; i < size; i++) {
2081 ret_be = (ret_be << 8) | haddr[i];
2083 return ret_be;
2087 * do_ld_parts_beN
2088 * @p: translation parameters
2089 * @ret_be: accumulated data
2091 * As do_ld_bytes_beN, but atomically on each aligned part.
2093 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2095 void *haddr = p->haddr;
2096 int size = p->size;
2098 do {
2099 uint64_t x;
2100 int n;
2103 * Find minimum of alignment and size.
2104 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2105 * would have only checked the low bits of addr|size once at the start,
2106 * but is just as easy.
2108 switch (((uintptr_t)haddr | size) & 7) {
2109 case 4:
2110 x = cpu_to_be32(load_atomic4(haddr));
2111 ret_be = (ret_be << 32) | x;
2112 n = 4;
2113 break;
2114 case 2:
2115 case 6:
2116 x = cpu_to_be16(load_atomic2(haddr));
2117 ret_be = (ret_be << 16) | x;
2118 n = 2;
2119 break;
2120 default:
2121 x = *(uint8_t *)haddr;
2122 ret_be = (ret_be << 8) | x;
2123 n = 1;
2124 break;
2125 case 0:
2126 g_assert_not_reached();
2128 haddr += n;
2129 size -= n;
2130 } while (size != 0);
2131 return ret_be;
2135 * do_ld_parts_be4
2136 * @p: translation parameters
2137 * @ret_be: accumulated data
2139 * As do_ld_bytes_beN, but with one atomic load.
2140 * Four aligned bytes are guaranteed to cover the load.
2142 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2144 int o = p->addr & 3;
2145 uint32_t x = load_atomic4(p->haddr - o);
2147 x = cpu_to_be32(x);
2148 x <<= o * 8;
2149 x >>= (4 - p->size) * 8;
2150 return (ret_be << (p->size * 8)) | x;
2154 * do_ld_parts_be8
2155 * @p: translation parameters
2156 * @ret_be: accumulated data
2158 * As do_ld_bytes_beN, but with one atomic load.
2159 * Eight aligned bytes are guaranteed to cover the load.
2161 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
2162 MMULookupPageData *p, uint64_t ret_be)
2164 int o = p->addr & 7;
2165 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
2167 x = cpu_to_be64(x);
2168 x <<= o * 8;
2169 x >>= (8 - p->size) * 8;
2170 return (ret_be << (p->size * 8)) | x;
2174 * do_ld_parts_be16
2175 * @p: translation parameters
2176 * @ret_be: accumulated data
2178 * As do_ld_bytes_beN, but with one atomic load.
2179 * 16 aligned bytes are guaranteed to cover the load.
2181 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
2182 MMULookupPageData *p, uint64_t ret_be)
2184 int o = p->addr & 15;
2185 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
2186 int size = p->size;
2188 if (!HOST_BIG_ENDIAN) {
2189 y = bswap128(y);
2191 y = int128_lshift(y, o * 8);
2192 y = int128_urshift(y, (16 - size) * 8);
2193 x = int128_make64(ret_be);
2194 x = int128_lshift(x, size * 8);
2195 return int128_or(x, y);
2199 * Wrapper for the above.
2201 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
2202 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2203 MemOp mop, uintptr_t ra)
2205 MemOp atom;
2206 unsigned tmp, half_size;
2208 if (unlikely(p->flags & TLB_MMIO)) {
2209 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
2210 mmu_idx, type, ra);
2214 * It is a given that we cross a page and therefore there is no
2215 * atomicity for the load as a whole, but subobjects may need attention.
2217 atom = mop & MO_ATOM_MASK;
2218 switch (atom) {
2219 case MO_ATOM_SUBALIGN:
2220 return do_ld_parts_beN(p, ret_be);
2222 case MO_ATOM_IFALIGN_PAIR:
2223 case MO_ATOM_WITHIN16_PAIR:
2224 tmp = mop & MO_SIZE;
2225 tmp = tmp ? tmp - 1 : 0;
2226 half_size = 1 << tmp;
2227 if (atom == MO_ATOM_IFALIGN_PAIR
2228 ? p->size == half_size
2229 : p->size >= half_size) {
2230 if (!HAVE_al8_fast && p->size < 4) {
2231 return do_ld_whole_be4(p, ret_be);
2232 } else {
2233 return do_ld_whole_be8(cpu, ra, p, ret_be);
2236 /* fall through */
2238 case MO_ATOM_IFALIGN:
2239 case MO_ATOM_WITHIN16:
2240 case MO_ATOM_NONE:
2241 return do_ld_bytes_beN(p, ret_be);
2243 default:
2244 g_assert_not_reached();
2249 * Wrapper for the above, for 8 < size < 16.
2251 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
2252 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2254 int size = p->size;
2255 uint64_t b;
2256 MemOp atom;
2258 if (unlikely(p->flags & TLB_MMIO)) {
2259 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
2263 * It is a given that we cross a page and therefore there is no
2264 * atomicity for the load as a whole, but subobjects may need attention.
2266 atom = mop & MO_ATOM_MASK;
2267 switch (atom) {
2268 case MO_ATOM_SUBALIGN:
2269 p->size = size - 8;
2270 a = do_ld_parts_beN(p, a);
2271 p->haddr += size - 8;
2272 p->size = 8;
2273 b = do_ld_parts_beN(p, 0);
2274 break;
2276 case MO_ATOM_WITHIN16_PAIR:
2277 /* Since size > 8, this is the half that must be atomic. */
2278 return do_ld_whole_be16(cpu, ra, p, a);
2280 case MO_ATOM_IFALIGN_PAIR:
2282 * Since size > 8, both halves are misaligned,
2283 * and so neither is atomic.
2285 case MO_ATOM_IFALIGN:
2286 case MO_ATOM_WITHIN16:
2287 case MO_ATOM_NONE:
2288 p->size = size - 8;
2289 a = do_ld_bytes_beN(p, a);
2290 b = ldq_be_p(p->haddr + size - 8);
2291 break;
2293 default:
2294 g_assert_not_reached();
2297 return int128_make128(b, a);
2300 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2301 MMUAccessType type, uintptr_t ra)
2303 if (unlikely(p->flags & TLB_MMIO)) {
2304 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2305 } else {
2306 return *(uint8_t *)p->haddr;
2310 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2311 MMUAccessType type, MemOp memop, uintptr_t ra)
2313 uint16_t ret;
2315 if (unlikely(p->flags & TLB_MMIO)) {
2316 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2317 if ((memop & MO_BSWAP) == MO_LE) {
2318 ret = bswap16(ret);
2320 } else {
2321 /* Perform the load host endian, then swap if necessary. */
2322 ret = load_atom_2(cpu, ra, p->haddr, memop);
2323 if (memop & MO_BSWAP) {
2324 ret = bswap16(ret);
2327 return ret;
2330 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2331 MMUAccessType type, MemOp memop, uintptr_t ra)
2333 uint32_t ret;
2335 if (unlikely(p->flags & TLB_MMIO)) {
2336 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2337 if ((memop & MO_BSWAP) == MO_LE) {
2338 ret = bswap32(ret);
2340 } else {
2341 /* Perform the load host endian. */
2342 ret = load_atom_4(cpu, ra, p->haddr, memop);
2343 if (memop & MO_BSWAP) {
2344 ret = bswap32(ret);
2347 return ret;
2350 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2351 MMUAccessType type, MemOp memop, uintptr_t ra)
2353 uint64_t ret;
2355 if (unlikely(p->flags & TLB_MMIO)) {
2356 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2357 if ((memop & MO_BSWAP) == MO_LE) {
2358 ret = bswap64(ret);
2360 } else {
2361 /* Perform the load host endian. */
2362 ret = load_atom_8(cpu, ra, p->haddr, memop);
2363 if (memop & MO_BSWAP) {
2364 ret = bswap64(ret);
2367 return ret;
2370 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2371 uintptr_t ra, MMUAccessType access_type)
2373 MMULookupLocals l;
2374 bool crosspage;
2376 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2377 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2378 tcg_debug_assert(!crosspage);
2380 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2383 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2384 uintptr_t ra, MMUAccessType access_type)
2386 MMULookupLocals l;
2387 bool crosspage;
2388 uint16_t ret;
2389 uint8_t a, b;
2391 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2392 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2393 if (likely(!crosspage)) {
2394 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2397 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2398 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
2400 if ((l.memop & MO_BSWAP) == MO_LE) {
2401 ret = a | (b << 8);
2402 } else {
2403 ret = b | (a << 8);
2405 return ret;
2408 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2409 uintptr_t ra, MMUAccessType access_type)
2411 MMULookupLocals l;
2412 bool crosspage;
2413 uint32_t ret;
2415 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2416 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2417 if (likely(!crosspage)) {
2418 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2421 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2422 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2423 if ((l.memop & MO_BSWAP) == MO_LE) {
2424 ret = bswap32(ret);
2426 return ret;
2429 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2430 uintptr_t ra, MMUAccessType access_type)
2432 MMULookupLocals l;
2433 bool crosspage;
2434 uint64_t ret;
2436 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2437 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2438 if (likely(!crosspage)) {
2439 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2442 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2443 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2444 if ((l.memop & MO_BSWAP) == MO_LE) {
2445 ret = bswap64(ret);
2447 return ret;
2450 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
2451 MemOpIdx oi, uintptr_t ra)
2453 MMULookupLocals l;
2454 bool crosspage;
2455 uint64_t a, b;
2456 Int128 ret;
2457 int first;
2459 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2460 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
2461 if (likely(!crosspage)) {
2462 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2463 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
2464 l.mmu_idx, ra);
2465 if ((l.memop & MO_BSWAP) == MO_LE) {
2466 ret = bswap128(ret);
2468 } else {
2469 /* Perform the load host endian. */
2470 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
2471 if (l.memop & MO_BSWAP) {
2472 ret = bswap128(ret);
2475 return ret;
2478 first = l.page[0].size;
2479 if (first == 8) {
2480 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2482 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2483 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2484 if ((mop8 & MO_BSWAP) == MO_LE) {
2485 ret = int128_make128(a, b);
2486 } else {
2487 ret = int128_make128(b, a);
2489 return ret;
2492 if (first < 8) {
2493 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
2494 MMU_DATA_LOAD, l.memop, ra);
2495 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
2496 } else {
2497 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2498 b = int128_getlo(ret);
2499 ret = int128_lshift(ret, l.page[1].size * 8);
2500 a = int128_gethi(ret);
2501 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
2502 MMU_DATA_LOAD, l.memop, ra);
2503 ret = int128_make128(b, a);
2505 if ((l.memop & MO_BSWAP) == MO_LE) {
2506 ret = bswap128(ret);
2508 return ret;
2512 * Store Helpers
2516 * do_st_mmio_leN:
2517 * @cpu: generic cpu state
2518 * @full: page parameters
2519 * @val_le: data to store
2520 * @addr: virtual address
2521 * @size: number of bytes
2522 * @mmu_idx: virtual address context
2523 * @ra: return address into tcg generated code, or 0
2524 * Context: BQL held
2526 * Store @size bytes at @addr, which is memory-mapped i/o.
2527 * The bytes to store are extracted in little-endian order from @val_le;
2528 * return the bytes of @val_le beyond @p->size that have not been stored.
2530 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2531 uint64_t val_le, vaddr addr, int size,
2532 int mmu_idx, uintptr_t ra,
2533 MemoryRegion *mr, hwaddr mr_offset)
2535 do {
2536 MemOp this_mop;
2537 unsigned this_size;
2538 MemTxResult r;
2540 /* Store aligned pieces up to 8 bytes. */
2541 this_mop = ctz32(size | (int)addr | 8);
2542 this_size = 1 << this_mop;
2543 this_mop |= MO_LE;
2545 r = memory_region_dispatch_write(mr, mr_offset, val_le,
2546 this_mop, full->attrs);
2547 if (unlikely(r != MEMTX_OK)) {
2548 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
2549 mmu_idx, r, ra);
2551 if (this_size == 8) {
2552 return 0;
2555 val_le >>= this_size * 8;
2556 addr += this_size;
2557 mr_offset += this_size;
2558 size -= this_size;
2559 } while (size);
2561 return val_le;
2564 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2565 uint64_t val_le, vaddr addr, int size,
2566 int mmu_idx, uintptr_t ra)
2568 MemoryRegionSection *section;
2569 hwaddr mr_offset;
2570 MemoryRegion *mr;
2571 MemTxAttrs attrs;
2572 uint64_t ret;
2574 tcg_debug_assert(size > 0 && size <= 8);
2576 attrs = full->attrs;
2577 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2578 mr = section->mr;
2580 bql_lock();
2581 ret = int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
2582 ra, mr, mr_offset);
2583 bql_unlock();
2585 return ret;
2588 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2589 Int128 val_le, vaddr addr, int size,
2590 int mmu_idx, uintptr_t ra)
2592 MemoryRegionSection *section;
2593 MemoryRegion *mr;
2594 hwaddr mr_offset;
2595 MemTxAttrs attrs;
2596 uint64_t ret;
2598 tcg_debug_assert(size > 8 && size <= 16);
2600 attrs = full->attrs;
2601 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2602 mr = section->mr;
2604 bql_lock();
2605 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
2606 mmu_idx, ra, mr, mr_offset);
2607 ret = int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
2608 size - 8, mmu_idx, ra, mr, mr_offset + 8);
2609 bql_unlock();
2611 return ret;
2615 * Wrapper for the above.
2617 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
2618 uint64_t val_le, int mmu_idx,
2619 MemOp mop, uintptr_t ra)
2621 MemOp atom;
2622 unsigned tmp, half_size;
2624 if (unlikely(p->flags & TLB_MMIO)) {
2625 return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
2626 p->size, mmu_idx, ra);
2627 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2628 return val_le >> (p->size * 8);
2632 * It is a given that we cross a page and therefore there is no atomicity
2633 * for the store as a whole, but subobjects may need attention.
2635 atom = mop & MO_ATOM_MASK;
2636 switch (atom) {
2637 case MO_ATOM_SUBALIGN:
2638 return store_parts_leN(p->haddr, p->size, val_le);
2640 case MO_ATOM_IFALIGN_PAIR:
2641 case MO_ATOM_WITHIN16_PAIR:
2642 tmp = mop & MO_SIZE;
2643 tmp = tmp ? tmp - 1 : 0;
2644 half_size = 1 << tmp;
2645 if (atom == MO_ATOM_IFALIGN_PAIR
2646 ? p->size == half_size
2647 : p->size >= half_size) {
2648 if (!HAVE_al8_fast && p->size <= 4) {
2649 return store_whole_le4(p->haddr, p->size, val_le);
2650 } else if (HAVE_al8) {
2651 return store_whole_le8(p->haddr, p->size, val_le);
2652 } else {
2653 cpu_loop_exit_atomic(cpu, ra);
2656 /* fall through */
2658 case MO_ATOM_IFALIGN:
2659 case MO_ATOM_WITHIN16:
2660 case MO_ATOM_NONE:
2661 return store_bytes_leN(p->haddr, p->size, val_le);
2663 default:
2664 g_assert_not_reached();
2669 * Wrapper for the above, for 8 < size < 16.
2671 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
2672 Int128 val_le, int mmu_idx,
2673 MemOp mop, uintptr_t ra)
2675 int size = p->size;
2676 MemOp atom;
2678 if (unlikely(p->flags & TLB_MMIO)) {
2679 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
2680 size, mmu_idx, ra);
2681 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2682 return int128_gethi(val_le) >> ((size - 8) * 8);
2686 * It is a given that we cross a page and therefore there is no atomicity
2687 * for the store as a whole, but subobjects may need attention.
2689 atom = mop & MO_ATOM_MASK;
2690 switch (atom) {
2691 case MO_ATOM_SUBALIGN:
2692 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2693 return store_parts_leN(p->haddr + 8, p->size - 8,
2694 int128_gethi(val_le));
2696 case MO_ATOM_WITHIN16_PAIR:
2697 /* Since size > 8, this is the half that must be atomic. */
2698 if (!HAVE_CMPXCHG128) {
2699 cpu_loop_exit_atomic(cpu, ra);
2701 return store_whole_le16(p->haddr, p->size, val_le);
2703 case MO_ATOM_IFALIGN_PAIR:
2705 * Since size > 8, both halves are misaligned,
2706 * and so neither is atomic.
2708 case MO_ATOM_IFALIGN:
2709 case MO_ATOM_WITHIN16:
2710 case MO_ATOM_NONE:
2711 stq_le_p(p->haddr, int128_getlo(val_le));
2712 return store_bytes_leN(p->haddr + 8, p->size - 8,
2713 int128_gethi(val_le));
2715 default:
2716 g_assert_not_reached();
2720 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
2721 int mmu_idx, uintptr_t ra)
2723 if (unlikely(p->flags & TLB_MMIO)) {
2724 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
2725 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2726 /* nothing */
2727 } else {
2728 *(uint8_t *)p->haddr = val;
2732 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
2733 int mmu_idx, MemOp memop, uintptr_t ra)
2735 if (unlikely(p->flags & TLB_MMIO)) {
2736 if ((memop & MO_BSWAP) != MO_LE) {
2737 val = bswap16(val);
2739 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
2740 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2741 /* nothing */
2742 } else {
2743 /* Swap to host endian if necessary, then store. */
2744 if (memop & MO_BSWAP) {
2745 val = bswap16(val);
2747 store_atom_2(cpu, ra, p->haddr, memop, val);
2751 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
2752 int mmu_idx, MemOp memop, uintptr_t ra)
2754 if (unlikely(p->flags & TLB_MMIO)) {
2755 if ((memop & MO_BSWAP) != MO_LE) {
2756 val = bswap32(val);
2758 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
2759 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2760 /* nothing */
2761 } else {
2762 /* Swap to host endian if necessary, then store. */
2763 if (memop & MO_BSWAP) {
2764 val = bswap32(val);
2766 store_atom_4(cpu, ra, p->haddr, memop, val);
2770 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
2771 int mmu_idx, MemOp memop, uintptr_t ra)
2773 if (unlikely(p->flags & TLB_MMIO)) {
2774 if ((memop & MO_BSWAP) != MO_LE) {
2775 val = bswap64(val);
2777 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
2778 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2779 /* nothing */
2780 } else {
2781 /* Swap to host endian if necessary, then store. */
2782 if (memop & MO_BSWAP) {
2783 val = bswap64(val);
2785 store_atom_8(cpu, ra, p->haddr, memop, val);
2789 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
2790 MemOpIdx oi, uintptr_t ra)
2792 MMULookupLocals l;
2793 bool crosspage;
2795 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2796 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2797 tcg_debug_assert(!crosspage);
2799 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
2802 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
2803 MemOpIdx oi, uintptr_t ra)
2805 MMULookupLocals l;
2806 bool crosspage;
2807 uint8_t a, b;
2809 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2810 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2811 if (likely(!crosspage)) {
2812 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2813 return;
2816 if ((l.memop & MO_BSWAP) == MO_LE) {
2817 a = val, b = val >> 8;
2818 } else {
2819 b = val, a = val >> 8;
2821 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
2822 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
2825 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
2826 MemOpIdx oi, uintptr_t ra)
2828 MMULookupLocals l;
2829 bool crosspage;
2831 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2832 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2833 if (likely(!crosspage)) {
2834 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2835 return;
2838 /* Swap to little endian for simplicity, then store by bytes. */
2839 if ((l.memop & MO_BSWAP) != MO_LE) {
2840 val = bswap32(val);
2842 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2843 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2846 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
2847 MemOpIdx oi, uintptr_t ra)
2849 MMULookupLocals l;
2850 bool crosspage;
2852 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2853 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2854 if (likely(!crosspage)) {
2855 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2856 return;
2859 /* Swap to little endian for simplicity, then store by bytes. */
2860 if ((l.memop & MO_BSWAP) != MO_LE) {
2861 val = bswap64(val);
2863 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2864 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2867 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
2868 MemOpIdx oi, uintptr_t ra)
2870 MMULookupLocals l;
2871 bool crosspage;
2872 uint64_t a, b;
2873 int first;
2875 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2876 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2877 if (likely(!crosspage)) {
2878 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2879 if ((l.memop & MO_BSWAP) != MO_LE) {
2880 val = bswap128(val);
2882 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
2883 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2884 /* nothing */
2885 } else {
2886 /* Swap to host endian if necessary, then store. */
2887 if (l.memop & MO_BSWAP) {
2888 val = bswap128(val);
2890 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
2892 return;
2895 first = l.page[0].size;
2896 if (first == 8) {
2897 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2899 if (l.memop & MO_BSWAP) {
2900 val = bswap128(val);
2902 if (HOST_BIG_ENDIAN) {
2903 b = int128_getlo(val), a = int128_gethi(val);
2904 } else {
2905 a = int128_getlo(val), b = int128_gethi(val);
2907 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
2908 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
2909 return;
2912 if ((l.memop & MO_BSWAP) != MO_LE) {
2913 val = bswap128(val);
2915 if (first < 8) {
2916 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2917 val = int128_urshift(val, first * 8);
2918 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2919 } else {
2920 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2921 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
2925 #include "ldst_common.c.inc"
2928 * First set of functions passes in OI and RETADDR.
2929 * This makes them callable from other helpers.
2932 #define ATOMIC_NAME(X) \
2933 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2935 #define ATOMIC_MMU_CLEANUP
2937 #include "atomic_common.c.inc"
2939 #define DATA_SIZE 1
2940 #include "atomic_template.h"
2942 #define DATA_SIZE 2
2943 #include "atomic_template.h"
2945 #define DATA_SIZE 4
2946 #include "atomic_template.h"
2948 #ifdef CONFIG_ATOMIC64
2949 #define DATA_SIZE 8
2950 #include "atomic_template.h"
2951 #endif
2953 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
2954 #define DATA_SIZE 16
2955 #include "atomic_template.h"
2956 #endif
2958 /* Code access functions. */
2960 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2962 CPUState *cs = env_cpu(env);
2963 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true));
2964 return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2967 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2969 CPUState *cs = env_cpu(env);
2970 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true));
2971 return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2974 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2976 CPUState *cs = env_cpu(env);
2977 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true));
2978 return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2981 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2983 CPUState *cs = env_cpu(env);
2984 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true));
2985 return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH);
2988 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
2989 MemOpIdx oi, uintptr_t retaddr)
2991 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2994 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
2995 MemOpIdx oi, uintptr_t retaddr)
2997 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
3000 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3001 MemOpIdx oi, uintptr_t retaddr)
3003 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
3006 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3007 MemOpIdx oi, uintptr_t retaddr)
3009 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);