replay: update documentation
[qemu/ar7.git] / linux-user / syscall.c
blobb4f7b14fbe62ebe813e19409eaf535fed78afb63
1 /*
2 * Linux syscalls
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include <elf.h>
24 #include <endian.h>
25 #include <grp.h>
26 #include <sys/ipc.h>
27 #include <sys/msg.h>
28 #include <sys/wait.h>
29 #include <sys/mount.h>
30 #include <sys/file.h>
31 #include <sys/fsuid.h>
32 #include <sys/personality.h>
33 #include <sys/prctl.h>
34 #include <sys/resource.h>
35 #include <sys/swap.h>
36 #include <linux/capability.h>
37 #include <sched.h>
38 #include <sys/timex.h>
39 #include <sys/socket.h>
40 #include <sys/un.h>
41 #include <sys/uio.h>
42 #include <poll.h>
43 #include <sys/times.h>
44 #include <sys/shm.h>
45 #include <sys/sem.h>
46 #include <sys/statfs.h>
47 #include <utime.h>
48 #include <sys/sysinfo.h>
49 #include <sys/signalfd.h>
50 //#include <sys/user.h>
51 #include <netinet/ip.h>
52 #include <netinet/tcp.h>
53 #include <linux/wireless.h>
54 #include <linux/icmp.h>
55 #include <linux/icmpv6.h>
56 #include <linux/errqueue.h>
57 #include <linux/random.h>
58 #include "qemu-common.h"
59 #ifdef CONFIG_TIMERFD
60 #include <sys/timerfd.h>
61 #endif
62 #ifdef TARGET_GPROF
63 #include <sys/gmon.h>
64 #endif
65 #ifdef CONFIG_EVENTFD
66 #include <sys/eventfd.h>
67 #endif
68 #ifdef CONFIG_EPOLL
69 #include <sys/epoll.h>
70 #endif
71 #ifdef CONFIG_ATTR
72 #include "qemu/xattr.h"
73 #endif
74 #ifdef CONFIG_SENDFILE
75 #include <sys/sendfile.h>
76 #endif
78 #define termios host_termios
79 #define winsize host_winsize
80 #define termio host_termio
81 #define sgttyb host_sgttyb /* same as target */
82 #define tchars host_tchars /* same as target */
83 #define ltchars host_ltchars /* same as target */
85 #include <linux/termios.h>
86 #include <linux/unistd.h>
87 #include <linux/cdrom.h>
88 #include <linux/hdreg.h>
89 #include <linux/soundcard.h>
90 #include <linux/kd.h>
91 #include <linux/mtio.h>
92 #include <linux/fs.h>
93 #if defined(CONFIG_FIEMAP)
94 #include <linux/fiemap.h>
95 #endif
96 #include <linux/fb.h>
97 #include <linux/vt.h>
98 #include <linux/dm-ioctl.h>
99 #include <linux/reboot.h>
100 #include <linux/route.h>
101 #include <linux/filter.h>
102 #include <linux/blkpg.h>
103 #include <netpacket/packet.h>
104 #include <linux/netlink.h>
105 #ifdef CONFIG_RTNETLINK
106 #include <linux/rtnetlink.h>
107 #include <linux/if_bridge.h>
108 #endif
109 #include <linux/audit.h>
110 #include "linux_loop.h"
111 #include "uname.h"
113 #include "qemu.h"
115 #ifndef CLONE_IO
116 #define CLONE_IO 0x80000000 /* Clone io context */
117 #endif
119 /* We can't directly call the host clone syscall, because this will
120 * badly confuse libc (breaking mutexes, for example). So we must
121 * divide clone flags into:
122 * * flag combinations that look like pthread_create()
123 * * flag combinations that look like fork()
124 * * flags we can implement within QEMU itself
125 * * flags we can't support and will return an error for
127 /* For thread creation, all these flags must be present; for
128 * fork, none must be present.
130 #define CLONE_THREAD_FLAGS \
131 (CLONE_VM | CLONE_FS | CLONE_FILES | \
132 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
134 /* These flags are ignored:
135 * CLONE_DETACHED is now ignored by the kernel;
136 * CLONE_IO is just an optimisation hint to the I/O scheduler
138 #define CLONE_IGNORED_FLAGS \
139 (CLONE_DETACHED | CLONE_IO)
141 /* Flags for fork which we can implement within QEMU itself */
142 #define CLONE_OPTIONAL_FORK_FLAGS \
143 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
144 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
146 /* Flags for thread creation which we can implement within QEMU itself */
147 #define CLONE_OPTIONAL_THREAD_FLAGS \
148 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
149 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
151 #define CLONE_INVALID_FORK_FLAGS \
152 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
154 #define CLONE_INVALID_THREAD_FLAGS \
155 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
156 CLONE_IGNORED_FLAGS))
158 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
159 * have almost all been allocated. We cannot support any of
160 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
161 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
162 * The checks against the invalid thread masks above will catch these.
163 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
166 //#define DEBUG
167 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
168 * once. This exercises the codepaths for restart.
170 //#define DEBUG_ERESTARTSYS
172 //#include <linux/msdos_fs.h>
173 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
174 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
176 #undef _syscall0
177 #undef _syscall1
178 #undef _syscall2
179 #undef _syscall3
180 #undef _syscall4
181 #undef _syscall5
182 #undef _syscall6
184 #define _syscall0(type,name) \
185 static type name (void) \
187 return syscall(__NR_##name); \
190 #define _syscall1(type,name,type1,arg1) \
191 static type name (type1 arg1) \
193 return syscall(__NR_##name, arg1); \
196 #define _syscall2(type,name,type1,arg1,type2,arg2) \
197 static type name (type1 arg1,type2 arg2) \
199 return syscall(__NR_##name, arg1, arg2); \
202 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
203 static type name (type1 arg1,type2 arg2,type3 arg3) \
205 return syscall(__NR_##name, arg1, arg2, arg3); \
208 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
209 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
211 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
214 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
215 type5,arg5) \
216 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
218 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
222 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
223 type5,arg5,type6,arg6) \
224 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
225 type6 arg6) \
227 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
231 #define __NR_sys_uname __NR_uname
232 #define __NR_sys_getcwd1 __NR_getcwd
233 #define __NR_sys_getdents __NR_getdents
234 #define __NR_sys_getdents64 __NR_getdents64
235 #define __NR_sys_getpriority __NR_getpriority
236 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
237 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
238 #define __NR_sys_syslog __NR_syslog
239 #define __NR_sys_futex __NR_futex
240 #define __NR_sys_inotify_init __NR_inotify_init
241 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
242 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
244 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
245 #define __NR__llseek __NR_lseek
246 #endif
248 /* Newer kernel ports have llseek() instead of _llseek() */
249 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
250 #define TARGET_NR__llseek TARGET_NR_llseek
251 #endif
253 #ifdef __NR_gettid
254 _syscall0(int, gettid)
255 #else
256 /* This is a replacement for the host gettid() and must return a host
257 errno. */
258 static int gettid(void) {
259 return -ENOSYS;
261 #endif
262 #if defined(TARGET_NR_getdents) && defined(__NR_getdents)
263 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
264 #endif
265 #if !defined(__NR_getdents) || \
266 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
267 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
268 #endif
269 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
270 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
271 loff_t *, res, uint, wh);
272 #endif
273 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
274 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
275 siginfo_t *, uinfo)
276 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
277 #ifdef __NR_exit_group
278 _syscall1(int,exit_group,int,error_code)
279 #endif
280 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
281 _syscall1(int,set_tid_address,int *,tidptr)
282 #endif
283 #if defined(TARGET_NR_futex) && defined(__NR_futex)
284 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
285 const struct timespec *,timeout,int *,uaddr2,int,val3)
286 #endif
287 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
288 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
289 unsigned long *, user_mask_ptr);
290 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
291 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
292 unsigned long *, user_mask_ptr);
293 #define __NR_sys_getcpu __NR_getcpu
294 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
295 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
296 void *, arg);
297 _syscall2(int, capget, struct __user_cap_header_struct *, header,
298 struct __user_cap_data_struct *, data);
299 _syscall2(int, capset, struct __user_cap_header_struct *, header,
300 struct __user_cap_data_struct *, data);
301 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
302 _syscall2(int, ioprio_get, int, which, int, who)
303 #endif
304 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
305 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
306 #endif
307 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
308 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
309 #endif
311 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
312 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
313 unsigned long, idx1, unsigned long, idx2)
314 #endif
316 static bitmask_transtbl fcntl_flags_tbl[] = {
317 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
318 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
319 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
320 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
321 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
322 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
323 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
324 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
325 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
326 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
327 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
328 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
329 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
330 #if defined(O_DIRECT)
331 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
332 #endif
333 #if defined(O_NOATIME)
334 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
335 #endif
336 #if defined(O_CLOEXEC)
337 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
338 #endif
339 #if defined(O_PATH)
340 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
341 #endif
342 #if defined(O_TMPFILE)
343 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE },
344 #endif
345 /* Don't terminate the list prematurely on 64-bit host+guest. */
346 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
347 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
348 #endif
349 { 0, 0, 0, 0 }
352 enum {
353 QEMU_IFLA_BR_UNSPEC,
354 QEMU_IFLA_BR_FORWARD_DELAY,
355 QEMU_IFLA_BR_HELLO_TIME,
356 QEMU_IFLA_BR_MAX_AGE,
357 QEMU_IFLA_BR_AGEING_TIME,
358 QEMU_IFLA_BR_STP_STATE,
359 QEMU_IFLA_BR_PRIORITY,
360 QEMU_IFLA_BR_VLAN_FILTERING,
361 QEMU_IFLA_BR_VLAN_PROTOCOL,
362 QEMU_IFLA_BR_GROUP_FWD_MASK,
363 QEMU_IFLA_BR_ROOT_ID,
364 QEMU_IFLA_BR_BRIDGE_ID,
365 QEMU_IFLA_BR_ROOT_PORT,
366 QEMU_IFLA_BR_ROOT_PATH_COST,
367 QEMU_IFLA_BR_TOPOLOGY_CHANGE,
368 QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED,
369 QEMU_IFLA_BR_HELLO_TIMER,
370 QEMU_IFLA_BR_TCN_TIMER,
371 QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER,
372 QEMU_IFLA_BR_GC_TIMER,
373 QEMU_IFLA_BR_GROUP_ADDR,
374 QEMU_IFLA_BR_FDB_FLUSH,
375 QEMU_IFLA_BR_MCAST_ROUTER,
376 QEMU_IFLA_BR_MCAST_SNOOPING,
377 QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR,
378 QEMU_IFLA_BR_MCAST_QUERIER,
379 QEMU_IFLA_BR_MCAST_HASH_ELASTICITY,
380 QEMU_IFLA_BR_MCAST_HASH_MAX,
381 QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT,
382 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT,
383 QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL,
384 QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL,
385 QEMU_IFLA_BR_MCAST_QUERIER_INTVL,
386 QEMU_IFLA_BR_MCAST_QUERY_INTVL,
387 QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL,
388 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL,
389 QEMU_IFLA_BR_NF_CALL_IPTABLES,
390 QEMU_IFLA_BR_NF_CALL_IP6TABLES,
391 QEMU_IFLA_BR_NF_CALL_ARPTABLES,
392 QEMU_IFLA_BR_VLAN_DEFAULT_PVID,
393 QEMU_IFLA_BR_PAD,
394 QEMU_IFLA_BR_VLAN_STATS_ENABLED,
395 QEMU_IFLA_BR_MCAST_STATS_ENABLED,
396 QEMU___IFLA_BR_MAX,
399 enum {
400 QEMU_IFLA_UNSPEC,
401 QEMU_IFLA_ADDRESS,
402 QEMU_IFLA_BROADCAST,
403 QEMU_IFLA_IFNAME,
404 QEMU_IFLA_MTU,
405 QEMU_IFLA_LINK,
406 QEMU_IFLA_QDISC,
407 QEMU_IFLA_STATS,
408 QEMU_IFLA_COST,
409 QEMU_IFLA_PRIORITY,
410 QEMU_IFLA_MASTER,
411 QEMU_IFLA_WIRELESS,
412 QEMU_IFLA_PROTINFO,
413 QEMU_IFLA_TXQLEN,
414 QEMU_IFLA_MAP,
415 QEMU_IFLA_WEIGHT,
416 QEMU_IFLA_OPERSTATE,
417 QEMU_IFLA_LINKMODE,
418 QEMU_IFLA_LINKINFO,
419 QEMU_IFLA_NET_NS_PID,
420 QEMU_IFLA_IFALIAS,
421 QEMU_IFLA_NUM_VF,
422 QEMU_IFLA_VFINFO_LIST,
423 QEMU_IFLA_STATS64,
424 QEMU_IFLA_VF_PORTS,
425 QEMU_IFLA_PORT_SELF,
426 QEMU_IFLA_AF_SPEC,
427 QEMU_IFLA_GROUP,
428 QEMU_IFLA_NET_NS_FD,
429 QEMU_IFLA_EXT_MASK,
430 QEMU_IFLA_PROMISCUITY,
431 QEMU_IFLA_NUM_TX_QUEUES,
432 QEMU_IFLA_NUM_RX_QUEUES,
433 QEMU_IFLA_CARRIER,
434 QEMU_IFLA_PHYS_PORT_ID,
435 QEMU_IFLA_CARRIER_CHANGES,
436 QEMU_IFLA_PHYS_SWITCH_ID,
437 QEMU_IFLA_LINK_NETNSID,
438 QEMU_IFLA_PHYS_PORT_NAME,
439 QEMU_IFLA_PROTO_DOWN,
440 QEMU_IFLA_GSO_MAX_SEGS,
441 QEMU_IFLA_GSO_MAX_SIZE,
442 QEMU_IFLA_PAD,
443 QEMU_IFLA_XDP,
444 QEMU___IFLA_MAX
447 enum {
448 QEMU_IFLA_BRPORT_UNSPEC,
449 QEMU_IFLA_BRPORT_STATE,
450 QEMU_IFLA_BRPORT_PRIORITY,
451 QEMU_IFLA_BRPORT_COST,
452 QEMU_IFLA_BRPORT_MODE,
453 QEMU_IFLA_BRPORT_GUARD,
454 QEMU_IFLA_BRPORT_PROTECT,
455 QEMU_IFLA_BRPORT_FAST_LEAVE,
456 QEMU_IFLA_BRPORT_LEARNING,
457 QEMU_IFLA_BRPORT_UNICAST_FLOOD,
458 QEMU_IFLA_BRPORT_PROXYARP,
459 QEMU_IFLA_BRPORT_LEARNING_SYNC,
460 QEMU_IFLA_BRPORT_PROXYARP_WIFI,
461 QEMU_IFLA_BRPORT_ROOT_ID,
462 QEMU_IFLA_BRPORT_BRIDGE_ID,
463 QEMU_IFLA_BRPORT_DESIGNATED_PORT,
464 QEMU_IFLA_BRPORT_DESIGNATED_COST,
465 QEMU_IFLA_BRPORT_ID,
466 QEMU_IFLA_BRPORT_NO,
467 QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK,
468 QEMU_IFLA_BRPORT_CONFIG_PENDING,
469 QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER,
470 QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER,
471 QEMU_IFLA_BRPORT_HOLD_TIMER,
472 QEMU_IFLA_BRPORT_FLUSH,
473 QEMU_IFLA_BRPORT_MULTICAST_ROUTER,
474 QEMU_IFLA_BRPORT_PAD,
475 QEMU___IFLA_BRPORT_MAX
478 enum {
479 QEMU_IFLA_INFO_UNSPEC,
480 QEMU_IFLA_INFO_KIND,
481 QEMU_IFLA_INFO_DATA,
482 QEMU_IFLA_INFO_XSTATS,
483 QEMU_IFLA_INFO_SLAVE_KIND,
484 QEMU_IFLA_INFO_SLAVE_DATA,
485 QEMU___IFLA_INFO_MAX,
488 enum {
489 QEMU_IFLA_INET_UNSPEC,
490 QEMU_IFLA_INET_CONF,
491 QEMU___IFLA_INET_MAX,
494 enum {
495 QEMU_IFLA_INET6_UNSPEC,
496 QEMU_IFLA_INET6_FLAGS,
497 QEMU_IFLA_INET6_CONF,
498 QEMU_IFLA_INET6_STATS,
499 QEMU_IFLA_INET6_MCAST,
500 QEMU_IFLA_INET6_CACHEINFO,
501 QEMU_IFLA_INET6_ICMP6STATS,
502 QEMU_IFLA_INET6_TOKEN,
503 QEMU_IFLA_INET6_ADDR_GEN_MODE,
504 QEMU___IFLA_INET6_MAX
507 typedef abi_long (*TargetFdDataFunc)(void *, size_t);
508 typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t);
509 typedef struct TargetFdTrans {
510 TargetFdDataFunc host_to_target_data;
511 TargetFdDataFunc target_to_host_data;
512 TargetFdAddrFunc target_to_host_addr;
513 } TargetFdTrans;
515 static TargetFdTrans **target_fd_trans;
517 static unsigned int target_fd_max;
519 static TargetFdDataFunc fd_trans_target_to_host_data(int fd)
521 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
522 return target_fd_trans[fd]->target_to_host_data;
524 return NULL;
527 static TargetFdDataFunc fd_trans_host_to_target_data(int fd)
529 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
530 return target_fd_trans[fd]->host_to_target_data;
532 return NULL;
535 static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd)
537 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
538 return target_fd_trans[fd]->target_to_host_addr;
540 return NULL;
543 static void fd_trans_register(int fd, TargetFdTrans *trans)
545 unsigned int oldmax;
547 if (fd >= target_fd_max) {
548 oldmax = target_fd_max;
549 target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */
550 target_fd_trans = g_renew(TargetFdTrans *,
551 target_fd_trans, target_fd_max);
552 memset((void *)(target_fd_trans + oldmax), 0,
553 (target_fd_max - oldmax) * sizeof(TargetFdTrans *));
555 target_fd_trans[fd] = trans;
558 static void fd_trans_unregister(int fd)
560 if (fd >= 0 && fd < target_fd_max) {
561 target_fd_trans[fd] = NULL;
565 static void fd_trans_dup(int oldfd, int newfd)
567 fd_trans_unregister(newfd);
568 if (oldfd < target_fd_max && target_fd_trans[oldfd]) {
569 fd_trans_register(newfd, target_fd_trans[oldfd]);
573 static int sys_getcwd1(char *buf, size_t size)
575 if (getcwd(buf, size) == NULL) {
576 /* getcwd() sets errno */
577 return (-1);
579 return strlen(buf)+1;
582 #ifdef TARGET_NR_utimensat
583 #if defined(__NR_utimensat)
584 #define __NR_sys_utimensat __NR_utimensat
585 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
586 const struct timespec *,tsp,int,flags)
587 #else
588 static int sys_utimensat(int dirfd, const char *pathname,
589 const struct timespec times[2], int flags)
591 errno = ENOSYS;
592 return -1;
594 #endif
595 #endif /* TARGET_NR_utimensat */
597 #ifdef TARGET_NR_renameat2
598 #if defined(__NR_renameat2)
599 #define __NR_sys_renameat2 __NR_renameat2
600 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
601 const char *, new, unsigned int, flags)
602 #else
603 static int sys_renameat2(int oldfd, const char *old,
604 int newfd, const char *new, int flags)
606 if (flags == 0) {
607 return renameat(oldfd, old, newfd, new);
609 errno = ENOSYS;
610 return -1;
612 #endif
613 #endif /* TARGET_NR_renameat2 */
615 #ifdef CONFIG_INOTIFY
616 #include <sys/inotify.h>
618 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
619 static int sys_inotify_init(void)
621 return (inotify_init());
623 #endif
624 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
625 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
627 return (inotify_add_watch(fd, pathname, mask));
629 #endif
630 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
631 static int sys_inotify_rm_watch(int fd, int32_t wd)
633 return (inotify_rm_watch(fd, wd));
635 #endif
636 #ifdef CONFIG_INOTIFY1
637 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
638 static int sys_inotify_init1(int flags)
640 return (inotify_init1(flags));
642 #endif
643 #endif
644 #else
645 /* Userspace can usually survive runtime without inotify */
646 #undef TARGET_NR_inotify_init
647 #undef TARGET_NR_inotify_init1
648 #undef TARGET_NR_inotify_add_watch
649 #undef TARGET_NR_inotify_rm_watch
650 #endif /* CONFIG_INOTIFY */
652 #if defined(TARGET_NR_prlimit64)
653 #ifndef __NR_prlimit64
654 # define __NR_prlimit64 -1
655 #endif
656 #define __NR_sys_prlimit64 __NR_prlimit64
657 /* The glibc rlimit structure may not be that used by the underlying syscall */
658 struct host_rlimit64 {
659 uint64_t rlim_cur;
660 uint64_t rlim_max;
662 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
663 const struct host_rlimit64 *, new_limit,
664 struct host_rlimit64 *, old_limit)
665 #endif
668 #if defined(TARGET_NR_timer_create)
669 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
670 static timer_t g_posix_timers[32] = { 0, } ;
672 static inline int next_free_host_timer(void)
674 int k ;
675 /* FIXME: Does finding the next free slot require a lock? */
676 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
677 if (g_posix_timers[k] == 0) {
678 g_posix_timers[k] = (timer_t) 1;
679 return k;
682 return -1;
684 #endif
686 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
687 #ifdef TARGET_ARM
688 static inline int regpairs_aligned(void *cpu_env, int num)
690 return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
692 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
693 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
694 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
695 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
696 * of registers which translates to the same as ARM/MIPS, because we start with
697 * r3 as arg1 */
698 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
699 #elif defined(TARGET_SH4)
700 /* SH4 doesn't align register pairs, except for p{read,write}64 */
701 static inline int regpairs_aligned(void *cpu_env, int num)
703 switch (num) {
704 case TARGET_NR_pread64:
705 case TARGET_NR_pwrite64:
706 return 1;
708 default:
709 return 0;
712 #else
713 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
714 #endif
716 #define ERRNO_TABLE_SIZE 1200
718 /* target_to_host_errno_table[] is initialized from
719 * host_to_target_errno_table[] in syscall_init(). */
720 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
724 * This list is the union of errno values overridden in asm-<arch>/errno.h
725 * minus the errnos that are not actually generic to all archs.
727 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
728 [EAGAIN] = TARGET_EAGAIN,
729 [EIDRM] = TARGET_EIDRM,
730 [ECHRNG] = TARGET_ECHRNG,
731 [EL2NSYNC] = TARGET_EL2NSYNC,
732 [EL3HLT] = TARGET_EL3HLT,
733 [EL3RST] = TARGET_EL3RST,
734 [ELNRNG] = TARGET_ELNRNG,
735 [EUNATCH] = TARGET_EUNATCH,
736 [ENOCSI] = TARGET_ENOCSI,
737 [EL2HLT] = TARGET_EL2HLT,
738 [EDEADLK] = TARGET_EDEADLK,
739 [ENOLCK] = TARGET_ENOLCK,
740 [EBADE] = TARGET_EBADE,
741 [EBADR] = TARGET_EBADR,
742 [EXFULL] = TARGET_EXFULL,
743 [ENOANO] = TARGET_ENOANO,
744 [EBADRQC] = TARGET_EBADRQC,
745 [EBADSLT] = TARGET_EBADSLT,
746 [EBFONT] = TARGET_EBFONT,
747 [ENOSTR] = TARGET_ENOSTR,
748 [ENODATA] = TARGET_ENODATA,
749 [ETIME] = TARGET_ETIME,
750 [ENOSR] = TARGET_ENOSR,
751 [ENONET] = TARGET_ENONET,
752 [ENOPKG] = TARGET_ENOPKG,
753 [EREMOTE] = TARGET_EREMOTE,
754 [ENOLINK] = TARGET_ENOLINK,
755 [EADV] = TARGET_EADV,
756 [ESRMNT] = TARGET_ESRMNT,
757 [ECOMM] = TARGET_ECOMM,
758 [EPROTO] = TARGET_EPROTO,
759 [EDOTDOT] = TARGET_EDOTDOT,
760 [EMULTIHOP] = TARGET_EMULTIHOP,
761 [EBADMSG] = TARGET_EBADMSG,
762 [ENAMETOOLONG] = TARGET_ENAMETOOLONG,
763 [EOVERFLOW] = TARGET_EOVERFLOW,
764 [ENOTUNIQ] = TARGET_ENOTUNIQ,
765 [EBADFD] = TARGET_EBADFD,
766 [EREMCHG] = TARGET_EREMCHG,
767 [ELIBACC] = TARGET_ELIBACC,
768 [ELIBBAD] = TARGET_ELIBBAD,
769 [ELIBSCN] = TARGET_ELIBSCN,
770 [ELIBMAX] = TARGET_ELIBMAX,
771 [ELIBEXEC] = TARGET_ELIBEXEC,
772 [EILSEQ] = TARGET_EILSEQ,
773 [ENOSYS] = TARGET_ENOSYS,
774 [ELOOP] = TARGET_ELOOP,
775 [ERESTART] = TARGET_ERESTART,
776 [ESTRPIPE] = TARGET_ESTRPIPE,
777 [ENOTEMPTY] = TARGET_ENOTEMPTY,
778 [EUSERS] = TARGET_EUSERS,
779 [ENOTSOCK] = TARGET_ENOTSOCK,
780 [EDESTADDRREQ] = TARGET_EDESTADDRREQ,
781 [EMSGSIZE] = TARGET_EMSGSIZE,
782 [EPROTOTYPE] = TARGET_EPROTOTYPE,
783 [ENOPROTOOPT] = TARGET_ENOPROTOOPT,
784 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT,
785 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT,
786 [EOPNOTSUPP] = TARGET_EOPNOTSUPP,
787 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT,
788 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT,
789 [EADDRINUSE] = TARGET_EADDRINUSE,
790 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL,
791 [ENETDOWN] = TARGET_ENETDOWN,
792 [ENETUNREACH] = TARGET_ENETUNREACH,
793 [ENETRESET] = TARGET_ENETRESET,
794 [ECONNABORTED] = TARGET_ECONNABORTED,
795 [ECONNRESET] = TARGET_ECONNRESET,
796 [ENOBUFS] = TARGET_ENOBUFS,
797 [EISCONN] = TARGET_EISCONN,
798 [ENOTCONN] = TARGET_ENOTCONN,
799 [EUCLEAN] = TARGET_EUCLEAN,
800 [ENOTNAM] = TARGET_ENOTNAM,
801 [ENAVAIL] = TARGET_ENAVAIL,
802 [EISNAM] = TARGET_EISNAM,
803 [EREMOTEIO] = TARGET_EREMOTEIO,
804 [EDQUOT] = TARGET_EDQUOT,
805 [ESHUTDOWN] = TARGET_ESHUTDOWN,
806 [ETOOMANYREFS] = TARGET_ETOOMANYREFS,
807 [ETIMEDOUT] = TARGET_ETIMEDOUT,
808 [ECONNREFUSED] = TARGET_ECONNREFUSED,
809 [EHOSTDOWN] = TARGET_EHOSTDOWN,
810 [EHOSTUNREACH] = TARGET_EHOSTUNREACH,
811 [EALREADY] = TARGET_EALREADY,
812 [EINPROGRESS] = TARGET_EINPROGRESS,
813 [ESTALE] = TARGET_ESTALE,
814 [ECANCELED] = TARGET_ECANCELED,
815 [ENOMEDIUM] = TARGET_ENOMEDIUM,
816 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE,
817 #ifdef ENOKEY
818 [ENOKEY] = TARGET_ENOKEY,
819 #endif
820 #ifdef EKEYEXPIRED
821 [EKEYEXPIRED] = TARGET_EKEYEXPIRED,
822 #endif
823 #ifdef EKEYREVOKED
824 [EKEYREVOKED] = TARGET_EKEYREVOKED,
825 #endif
826 #ifdef EKEYREJECTED
827 [EKEYREJECTED] = TARGET_EKEYREJECTED,
828 #endif
829 #ifdef EOWNERDEAD
830 [EOWNERDEAD] = TARGET_EOWNERDEAD,
831 #endif
832 #ifdef ENOTRECOVERABLE
833 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE,
834 #endif
835 #ifdef ENOMSG
836 [ENOMSG] = TARGET_ENOMSG,
837 #endif
838 #ifdef ERKFILL
839 [ERFKILL] = TARGET_ERFKILL,
840 #endif
841 #ifdef EHWPOISON
842 [EHWPOISON] = TARGET_EHWPOISON,
843 #endif
846 static inline int host_to_target_errno(int err)
848 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
849 host_to_target_errno_table[err]) {
850 return host_to_target_errno_table[err];
852 return err;
855 static inline int target_to_host_errno(int err)
857 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
858 target_to_host_errno_table[err]) {
859 return target_to_host_errno_table[err];
861 return err;
864 static inline abi_long get_errno(abi_long ret)
866 if (ret == -1)
867 return -host_to_target_errno(errno);
868 else
869 return ret;
872 static inline int is_error(abi_long ret)
874 return (abi_ulong)ret >= (abi_ulong)(-4096);
877 const char *target_strerror(int err)
879 if (err == TARGET_ERESTARTSYS) {
880 return "To be restarted";
882 if (err == TARGET_QEMU_ESIGRETURN) {
883 return "Successful exit from sigreturn";
886 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
887 return NULL;
889 return strerror(target_to_host_errno(err));
892 #define safe_syscall0(type, name) \
893 static type safe_##name(void) \
895 return safe_syscall(__NR_##name); \
898 #define safe_syscall1(type, name, type1, arg1) \
899 static type safe_##name(type1 arg1) \
901 return safe_syscall(__NR_##name, arg1); \
904 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
905 static type safe_##name(type1 arg1, type2 arg2) \
907 return safe_syscall(__NR_##name, arg1, arg2); \
910 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
911 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
913 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
916 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
917 type4, arg4) \
918 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
920 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
923 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
924 type4, arg4, type5, arg5) \
925 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
926 type5 arg5) \
928 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
931 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
932 type4, arg4, type5, arg5, type6, arg6) \
933 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
934 type5 arg5, type6 arg6) \
936 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
939 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
940 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
941 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
942 int, flags, mode_t, mode)
943 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
944 struct rusage *, rusage)
945 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
946 int, options, struct rusage *, rusage)
947 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
948 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
949 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
950 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
951 struct timespec *, tsp, const sigset_t *, sigmask,
952 size_t, sigsetsize)
953 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
954 int, maxevents, int, timeout, const sigset_t *, sigmask,
955 size_t, sigsetsize)
956 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
957 const struct timespec *,timeout,int *,uaddr2,int,val3)
958 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
959 safe_syscall2(int, kill, pid_t, pid, int, sig)
960 safe_syscall2(int, tkill, int, tid, int, sig)
961 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
962 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
963 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
964 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
965 unsigned long, pos_l, unsigned long, pos_h)
966 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
967 unsigned long, pos_l, unsigned long, pos_h)
968 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
969 socklen_t, addrlen)
970 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
971 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
972 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
973 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
974 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
975 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
976 safe_syscall2(int, flock, int, fd, int, operation)
977 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
978 const struct timespec *, uts, size_t, sigsetsize)
979 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
980 int, flags)
981 safe_syscall2(int, nanosleep, const struct timespec *, req,
982 struct timespec *, rem)
983 #ifdef TARGET_NR_clock_nanosleep
984 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
985 const struct timespec *, req, struct timespec *, rem)
986 #endif
987 #ifdef __NR_msgsnd
988 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
989 int, flags)
990 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
991 long, msgtype, int, flags)
992 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
993 unsigned, nsops, const struct timespec *, timeout)
994 #else
995 /* This host kernel architecture uses a single ipc syscall; fake up
996 * wrappers for the sub-operations to hide this implementation detail.
997 * Annoyingly we can't include linux/ipc.h to get the constant definitions
998 * for the call parameter because some structs in there conflict with the
999 * sys/ipc.h ones. So we just define them here, and rely on them being
1000 * the same for all host architectures.
1002 #define Q_SEMTIMEDOP 4
1003 #define Q_MSGSND 11
1004 #define Q_MSGRCV 12
1005 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP))
1007 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
1008 void *, ptr, long, fifth)
1009 static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags)
1011 return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0);
1013 static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags)
1015 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type);
1017 static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops,
1018 const struct timespec *timeout)
1020 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops,
1021 (long)timeout);
1023 #endif
1024 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1025 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
1026 size_t, len, unsigned, prio, const struct timespec *, timeout)
1027 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
1028 size_t, len, unsigned *, prio, const struct timespec *, timeout)
1029 #endif
1030 /* We do ioctl like this rather than via safe_syscall3 to preserve the
1031 * "third argument might be integer or pointer or not present" behaviour of
1032 * the libc function.
1034 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
1035 /* Similarly for fcntl. Note that callers must always:
1036 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
1037 * use the flock64 struct rather than unsuffixed flock
1038 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
1040 #ifdef __NR_fcntl64
1041 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
1042 #else
1043 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
1044 #endif
1046 static inline int host_to_target_sock_type(int host_type)
1048 int target_type;
1050 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
1051 case SOCK_DGRAM:
1052 target_type = TARGET_SOCK_DGRAM;
1053 break;
1054 case SOCK_STREAM:
1055 target_type = TARGET_SOCK_STREAM;
1056 break;
1057 default:
1058 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
1059 break;
1062 #if defined(SOCK_CLOEXEC)
1063 if (host_type & SOCK_CLOEXEC) {
1064 target_type |= TARGET_SOCK_CLOEXEC;
1066 #endif
1068 #if defined(SOCK_NONBLOCK)
1069 if (host_type & SOCK_NONBLOCK) {
1070 target_type |= TARGET_SOCK_NONBLOCK;
1072 #endif
1074 return target_type;
1077 static abi_ulong target_brk;
1078 static abi_ulong target_original_brk;
1079 static abi_ulong brk_page;
1081 void target_set_brk(abi_ulong new_brk)
1083 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
1084 brk_page = HOST_PAGE_ALIGN(target_brk);
1087 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
1088 #define DEBUGF_BRK(message, args...)
1090 /* do_brk() must return target values and target errnos. */
1091 abi_long do_brk(abi_ulong new_brk)
1093 abi_long mapped_addr;
1094 abi_ulong new_alloc_size;
1096 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
1098 if (!new_brk) {
1099 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
1100 return target_brk;
1102 if (new_brk < target_original_brk) {
1103 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
1104 target_brk);
1105 return target_brk;
1108 /* If the new brk is less than the highest page reserved to the
1109 * target heap allocation, set it and we're almost done... */
1110 if (new_brk <= brk_page) {
1111 /* Heap contents are initialized to zero, as for anonymous
1112 * mapped pages. */
1113 if (new_brk > target_brk) {
1114 memset(g2h(target_brk), 0, new_brk - target_brk);
1116 target_brk = new_brk;
1117 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
1118 return target_brk;
1121 /* We need to allocate more memory after the brk... Note that
1122 * we don't use MAP_FIXED because that will map over the top of
1123 * any existing mapping (like the one with the host libc or qemu
1124 * itself); instead we treat "mapped but at wrong address" as
1125 * a failure and unmap again.
1127 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
1128 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
1129 PROT_READ|PROT_WRITE,
1130 MAP_ANON|MAP_PRIVATE, 0, 0));
1132 if (mapped_addr == brk_page) {
1133 /* Heap contents are initialized to zero, as for anonymous
1134 * mapped pages. Technically the new pages are already
1135 * initialized to zero since they *are* anonymous mapped
1136 * pages, however we have to take care with the contents that
1137 * come from the remaining part of the previous page: it may
1138 * contains garbage data due to a previous heap usage (grown
1139 * then shrunken). */
1140 memset(g2h(target_brk), 0, brk_page - target_brk);
1142 target_brk = new_brk;
1143 brk_page = HOST_PAGE_ALIGN(target_brk);
1144 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
1145 target_brk);
1146 return target_brk;
1147 } else if (mapped_addr != -1) {
1148 /* Mapped but at wrong address, meaning there wasn't actually
1149 * enough space for this brk.
1151 target_munmap(mapped_addr, new_alloc_size);
1152 mapped_addr = -1;
1153 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
1155 else {
1156 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
1159 #if defined(TARGET_ALPHA)
1160 /* We (partially) emulate OSF/1 on Alpha, which requires we
1161 return a proper errno, not an unchanged brk value. */
1162 return -TARGET_ENOMEM;
1163 #endif
1164 /* For everything else, return the previous break. */
1165 return target_brk;
1168 static inline abi_long copy_from_user_fdset(fd_set *fds,
1169 abi_ulong target_fds_addr,
1170 int n)
1172 int i, nw, j, k;
1173 abi_ulong b, *target_fds;
1175 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1176 if (!(target_fds = lock_user(VERIFY_READ,
1177 target_fds_addr,
1178 sizeof(abi_ulong) * nw,
1179 1)))
1180 return -TARGET_EFAULT;
1182 FD_ZERO(fds);
1183 k = 0;
1184 for (i = 0; i < nw; i++) {
1185 /* grab the abi_ulong */
1186 __get_user(b, &target_fds[i]);
1187 for (j = 0; j < TARGET_ABI_BITS; j++) {
1188 /* check the bit inside the abi_ulong */
1189 if ((b >> j) & 1)
1190 FD_SET(k, fds);
1191 k++;
1195 unlock_user(target_fds, target_fds_addr, 0);
1197 return 0;
1200 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
1201 abi_ulong target_fds_addr,
1202 int n)
1204 if (target_fds_addr) {
1205 if (copy_from_user_fdset(fds, target_fds_addr, n))
1206 return -TARGET_EFAULT;
1207 *fds_ptr = fds;
1208 } else {
1209 *fds_ptr = NULL;
1211 return 0;
1214 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
1215 const fd_set *fds,
1216 int n)
1218 int i, nw, j, k;
1219 abi_long v;
1220 abi_ulong *target_fds;
1222 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1223 if (!(target_fds = lock_user(VERIFY_WRITE,
1224 target_fds_addr,
1225 sizeof(abi_ulong) * nw,
1226 0)))
1227 return -TARGET_EFAULT;
1229 k = 0;
1230 for (i = 0; i < nw; i++) {
1231 v = 0;
1232 for (j = 0; j < TARGET_ABI_BITS; j++) {
1233 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
1234 k++;
1236 __put_user(v, &target_fds[i]);
1239 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
1241 return 0;
1244 #if defined(__alpha__)
1245 #define HOST_HZ 1024
1246 #else
1247 #define HOST_HZ 100
1248 #endif
1250 static inline abi_long host_to_target_clock_t(long ticks)
1252 #if HOST_HZ == TARGET_HZ
1253 return ticks;
1254 #else
1255 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
1256 #endif
1259 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
1260 const struct rusage *rusage)
1262 struct target_rusage *target_rusage;
1264 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
1265 return -TARGET_EFAULT;
1266 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1267 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1268 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1269 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1270 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1271 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1272 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1273 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1274 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1275 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1276 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1277 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1278 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1279 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1280 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1281 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1282 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1283 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1284 unlock_user_struct(target_rusage, target_addr, 1);
1286 return 0;
1289 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1291 abi_ulong target_rlim_swap;
1292 rlim_t result;
1294 target_rlim_swap = tswapal(target_rlim);
1295 if (target_rlim_swap == TARGET_RLIM_INFINITY)
1296 return RLIM_INFINITY;
1298 result = target_rlim_swap;
1299 if (target_rlim_swap != (rlim_t)result)
1300 return RLIM_INFINITY;
1302 return result;
1305 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1307 abi_ulong target_rlim_swap;
1308 abi_ulong result;
1310 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1311 target_rlim_swap = TARGET_RLIM_INFINITY;
1312 else
1313 target_rlim_swap = rlim;
1314 result = tswapal(target_rlim_swap);
1316 return result;
1319 static inline int target_to_host_resource(int code)
1321 switch (code) {
1322 case TARGET_RLIMIT_AS:
1323 return RLIMIT_AS;
1324 case TARGET_RLIMIT_CORE:
1325 return RLIMIT_CORE;
1326 case TARGET_RLIMIT_CPU:
1327 return RLIMIT_CPU;
1328 case TARGET_RLIMIT_DATA:
1329 return RLIMIT_DATA;
1330 case TARGET_RLIMIT_FSIZE:
1331 return RLIMIT_FSIZE;
1332 case TARGET_RLIMIT_LOCKS:
1333 return RLIMIT_LOCKS;
1334 case TARGET_RLIMIT_MEMLOCK:
1335 return RLIMIT_MEMLOCK;
1336 case TARGET_RLIMIT_MSGQUEUE:
1337 return RLIMIT_MSGQUEUE;
1338 case TARGET_RLIMIT_NICE:
1339 return RLIMIT_NICE;
1340 case TARGET_RLIMIT_NOFILE:
1341 return RLIMIT_NOFILE;
1342 case TARGET_RLIMIT_NPROC:
1343 return RLIMIT_NPROC;
1344 case TARGET_RLIMIT_RSS:
1345 return RLIMIT_RSS;
1346 case TARGET_RLIMIT_RTPRIO:
1347 return RLIMIT_RTPRIO;
1348 case TARGET_RLIMIT_SIGPENDING:
1349 return RLIMIT_SIGPENDING;
1350 case TARGET_RLIMIT_STACK:
1351 return RLIMIT_STACK;
1352 default:
1353 return code;
1357 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1358 abi_ulong target_tv_addr)
1360 struct target_timeval *target_tv;
1362 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1))
1363 return -TARGET_EFAULT;
1365 __get_user(tv->tv_sec, &target_tv->tv_sec);
1366 __get_user(tv->tv_usec, &target_tv->tv_usec);
1368 unlock_user_struct(target_tv, target_tv_addr, 0);
1370 return 0;
1373 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1374 const struct timeval *tv)
1376 struct target_timeval *target_tv;
1378 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0))
1379 return -TARGET_EFAULT;
1381 __put_user(tv->tv_sec, &target_tv->tv_sec);
1382 __put_user(tv->tv_usec, &target_tv->tv_usec);
1384 unlock_user_struct(target_tv, target_tv_addr, 1);
1386 return 0;
1389 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1390 abi_ulong target_tz_addr)
1392 struct target_timezone *target_tz;
1394 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1395 return -TARGET_EFAULT;
1398 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1399 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1401 unlock_user_struct(target_tz, target_tz_addr, 0);
1403 return 0;
1406 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1407 #include <mqueue.h>
1409 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1410 abi_ulong target_mq_attr_addr)
1412 struct target_mq_attr *target_mq_attr;
1414 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1415 target_mq_attr_addr, 1))
1416 return -TARGET_EFAULT;
1418 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1419 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1420 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1421 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1423 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1425 return 0;
1428 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1429 const struct mq_attr *attr)
1431 struct target_mq_attr *target_mq_attr;
1433 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1434 target_mq_attr_addr, 0))
1435 return -TARGET_EFAULT;
1437 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1438 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1439 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1440 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1442 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1444 return 0;
1446 #endif
1448 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1449 /* do_select() must return target values and target errnos. */
1450 static abi_long do_select(int n,
1451 abi_ulong rfd_addr, abi_ulong wfd_addr,
1452 abi_ulong efd_addr, abi_ulong target_tv_addr)
1454 fd_set rfds, wfds, efds;
1455 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1456 struct timeval tv;
1457 struct timespec ts, *ts_ptr;
1458 abi_long ret;
1460 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1461 if (ret) {
1462 return ret;
1464 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1465 if (ret) {
1466 return ret;
1468 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1469 if (ret) {
1470 return ret;
1473 if (target_tv_addr) {
1474 if (copy_from_user_timeval(&tv, target_tv_addr))
1475 return -TARGET_EFAULT;
1476 ts.tv_sec = tv.tv_sec;
1477 ts.tv_nsec = tv.tv_usec * 1000;
1478 ts_ptr = &ts;
1479 } else {
1480 ts_ptr = NULL;
1483 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1484 ts_ptr, NULL));
1486 if (!is_error(ret)) {
1487 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1488 return -TARGET_EFAULT;
1489 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1490 return -TARGET_EFAULT;
1491 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1492 return -TARGET_EFAULT;
1494 if (target_tv_addr) {
1495 tv.tv_sec = ts.tv_sec;
1496 tv.tv_usec = ts.tv_nsec / 1000;
1497 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1498 return -TARGET_EFAULT;
1503 return ret;
1506 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1507 static abi_long do_old_select(abi_ulong arg1)
1509 struct target_sel_arg_struct *sel;
1510 abi_ulong inp, outp, exp, tvp;
1511 long nsel;
1513 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1514 return -TARGET_EFAULT;
1517 nsel = tswapal(sel->n);
1518 inp = tswapal(sel->inp);
1519 outp = tswapal(sel->outp);
1520 exp = tswapal(sel->exp);
1521 tvp = tswapal(sel->tvp);
1523 unlock_user_struct(sel, arg1, 0);
1525 return do_select(nsel, inp, outp, exp, tvp);
1527 #endif
1528 #endif
1530 static abi_long do_pipe2(int host_pipe[], int flags)
1532 #ifdef CONFIG_PIPE2
1533 return pipe2(host_pipe, flags);
1534 #else
1535 return -ENOSYS;
1536 #endif
1539 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1540 int flags, int is_pipe2)
1542 int host_pipe[2];
1543 abi_long ret;
1544 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1546 if (is_error(ret))
1547 return get_errno(ret);
1549 /* Several targets have special calling conventions for the original
1550 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1551 if (!is_pipe2) {
1552 #if defined(TARGET_ALPHA)
1553 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1554 return host_pipe[0];
1555 #elif defined(TARGET_MIPS)
1556 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1557 return host_pipe[0];
1558 #elif defined(TARGET_SH4)
1559 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1560 return host_pipe[0];
1561 #elif defined(TARGET_SPARC)
1562 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1563 return host_pipe[0];
1564 #endif
1567 if (put_user_s32(host_pipe[0], pipedes)
1568 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1569 return -TARGET_EFAULT;
1570 return get_errno(ret);
1573 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1574 abi_ulong target_addr,
1575 socklen_t len)
1577 struct target_ip_mreqn *target_smreqn;
1579 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1580 if (!target_smreqn)
1581 return -TARGET_EFAULT;
1582 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1583 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1584 if (len == sizeof(struct target_ip_mreqn))
1585 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1586 unlock_user(target_smreqn, target_addr, 0);
1588 return 0;
1591 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1592 abi_ulong target_addr,
1593 socklen_t len)
1595 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1596 sa_family_t sa_family;
1597 struct target_sockaddr *target_saddr;
1599 if (fd_trans_target_to_host_addr(fd)) {
1600 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1603 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1604 if (!target_saddr)
1605 return -TARGET_EFAULT;
1607 sa_family = tswap16(target_saddr->sa_family);
1609 /* Oops. The caller might send a incomplete sun_path; sun_path
1610 * must be terminated by \0 (see the manual page), but
1611 * unfortunately it is quite common to specify sockaddr_un
1612 * length as "strlen(x->sun_path)" while it should be
1613 * "strlen(...) + 1". We'll fix that here if needed.
1614 * Linux kernel has a similar feature.
1617 if (sa_family == AF_UNIX) {
1618 if (len < unix_maxlen && len > 0) {
1619 char *cp = (char*)target_saddr;
1621 if ( cp[len-1] && !cp[len] )
1622 len++;
1624 if (len > unix_maxlen)
1625 len = unix_maxlen;
1628 memcpy(addr, target_saddr, len);
1629 addr->sa_family = sa_family;
1630 if (sa_family == AF_NETLINK) {
1631 struct sockaddr_nl *nladdr;
1633 nladdr = (struct sockaddr_nl *)addr;
1634 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1635 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1636 } else if (sa_family == AF_PACKET) {
1637 struct target_sockaddr_ll *lladdr;
1639 lladdr = (struct target_sockaddr_ll *)addr;
1640 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1641 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1643 unlock_user(target_saddr, target_addr, 0);
1645 return 0;
1648 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1649 struct sockaddr *addr,
1650 socklen_t len)
1652 struct target_sockaddr *target_saddr;
1654 if (len == 0) {
1655 return 0;
1657 assert(addr);
1659 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1660 if (!target_saddr)
1661 return -TARGET_EFAULT;
1662 memcpy(target_saddr, addr, len);
1663 if (len >= offsetof(struct target_sockaddr, sa_family) +
1664 sizeof(target_saddr->sa_family)) {
1665 target_saddr->sa_family = tswap16(addr->sa_family);
1667 if (addr->sa_family == AF_NETLINK && len >= sizeof(struct sockaddr_nl)) {
1668 struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr;
1669 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1670 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1671 } else if (addr->sa_family == AF_PACKET) {
1672 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1673 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1674 target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1675 } else if (addr->sa_family == AF_INET6 &&
1676 len >= sizeof(struct target_sockaddr_in6)) {
1677 struct target_sockaddr_in6 *target_in6 =
1678 (struct target_sockaddr_in6 *)target_saddr;
1679 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1681 unlock_user(target_saddr, target_addr, len);
1683 return 0;
1686 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1687 struct target_msghdr *target_msgh)
1689 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1690 abi_long msg_controllen;
1691 abi_ulong target_cmsg_addr;
1692 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1693 socklen_t space = 0;
1695 msg_controllen = tswapal(target_msgh->msg_controllen);
1696 if (msg_controllen < sizeof (struct target_cmsghdr))
1697 goto the_end;
1698 target_cmsg_addr = tswapal(target_msgh->msg_control);
1699 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1700 target_cmsg_start = target_cmsg;
1701 if (!target_cmsg)
1702 return -TARGET_EFAULT;
1704 while (cmsg && target_cmsg) {
1705 void *data = CMSG_DATA(cmsg);
1706 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1708 int len = tswapal(target_cmsg->cmsg_len)
1709 - sizeof(struct target_cmsghdr);
1711 space += CMSG_SPACE(len);
1712 if (space > msgh->msg_controllen) {
1713 space -= CMSG_SPACE(len);
1714 /* This is a QEMU bug, since we allocated the payload
1715 * area ourselves (unlike overflow in host-to-target
1716 * conversion, which is just the guest giving us a buffer
1717 * that's too small). It can't happen for the payload types
1718 * we currently support; if it becomes an issue in future
1719 * we would need to improve our allocation strategy to
1720 * something more intelligent than "twice the size of the
1721 * target buffer we're reading from".
1723 gemu_log("Host cmsg overflow\n");
1724 break;
1727 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1728 cmsg->cmsg_level = SOL_SOCKET;
1729 } else {
1730 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1732 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1733 cmsg->cmsg_len = CMSG_LEN(len);
1735 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1736 int *fd = (int *)data;
1737 int *target_fd = (int *)target_data;
1738 int i, numfds = len / sizeof(int);
1740 for (i = 0; i < numfds; i++) {
1741 __get_user(fd[i], target_fd + i);
1743 } else if (cmsg->cmsg_level == SOL_SOCKET
1744 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1745 struct ucred *cred = (struct ucred *)data;
1746 struct target_ucred *target_cred =
1747 (struct target_ucred *)target_data;
1749 __get_user(cred->pid, &target_cred->pid);
1750 __get_user(cred->uid, &target_cred->uid);
1751 __get_user(cred->gid, &target_cred->gid);
1752 } else {
1753 gemu_log("Unsupported ancillary data: %d/%d\n",
1754 cmsg->cmsg_level, cmsg->cmsg_type);
1755 memcpy(data, target_data, len);
1758 cmsg = CMSG_NXTHDR(msgh, cmsg);
1759 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1760 target_cmsg_start);
1762 unlock_user(target_cmsg, target_cmsg_addr, 0);
1763 the_end:
1764 msgh->msg_controllen = space;
1765 return 0;
1768 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1769 struct msghdr *msgh)
1771 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1772 abi_long msg_controllen;
1773 abi_ulong target_cmsg_addr;
1774 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1775 socklen_t space = 0;
1777 msg_controllen = tswapal(target_msgh->msg_controllen);
1778 if (msg_controllen < sizeof (struct target_cmsghdr))
1779 goto the_end;
1780 target_cmsg_addr = tswapal(target_msgh->msg_control);
1781 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1782 target_cmsg_start = target_cmsg;
1783 if (!target_cmsg)
1784 return -TARGET_EFAULT;
1786 while (cmsg && target_cmsg) {
1787 void *data = CMSG_DATA(cmsg);
1788 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1790 int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1791 int tgt_len, tgt_space;
1793 /* We never copy a half-header but may copy half-data;
1794 * this is Linux's behaviour in put_cmsg(). Note that
1795 * truncation here is a guest problem (which we report
1796 * to the guest via the CTRUNC bit), unlike truncation
1797 * in target_to_host_cmsg, which is a QEMU bug.
1799 if (msg_controllen < sizeof(struct target_cmsghdr)) {
1800 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1801 break;
1804 if (cmsg->cmsg_level == SOL_SOCKET) {
1805 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1806 } else {
1807 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1809 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1811 /* Payload types which need a different size of payload on
1812 * the target must adjust tgt_len here.
1814 switch (cmsg->cmsg_level) {
1815 case SOL_SOCKET:
1816 switch (cmsg->cmsg_type) {
1817 case SO_TIMESTAMP:
1818 tgt_len = sizeof(struct target_timeval);
1819 break;
1820 default:
1821 break;
1823 default:
1824 tgt_len = len;
1825 break;
1828 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1829 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1830 tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1833 /* We must now copy-and-convert len bytes of payload
1834 * into tgt_len bytes of destination space. Bear in mind
1835 * that in both source and destination we may be dealing
1836 * with a truncated value!
1838 switch (cmsg->cmsg_level) {
1839 case SOL_SOCKET:
1840 switch (cmsg->cmsg_type) {
1841 case SCM_RIGHTS:
1843 int *fd = (int *)data;
1844 int *target_fd = (int *)target_data;
1845 int i, numfds = tgt_len / sizeof(int);
1847 for (i = 0; i < numfds; i++) {
1848 __put_user(fd[i], target_fd + i);
1850 break;
1852 case SO_TIMESTAMP:
1854 struct timeval *tv = (struct timeval *)data;
1855 struct target_timeval *target_tv =
1856 (struct target_timeval *)target_data;
1858 if (len != sizeof(struct timeval) ||
1859 tgt_len != sizeof(struct target_timeval)) {
1860 goto unimplemented;
1863 /* copy struct timeval to target */
1864 __put_user(tv->tv_sec, &target_tv->tv_sec);
1865 __put_user(tv->tv_usec, &target_tv->tv_usec);
1866 break;
1868 case SCM_CREDENTIALS:
1870 struct ucred *cred = (struct ucred *)data;
1871 struct target_ucred *target_cred =
1872 (struct target_ucred *)target_data;
1874 __put_user(cred->pid, &target_cred->pid);
1875 __put_user(cred->uid, &target_cred->uid);
1876 __put_user(cred->gid, &target_cred->gid);
1877 break;
1879 default:
1880 goto unimplemented;
1882 break;
1884 case SOL_IP:
1885 switch (cmsg->cmsg_type) {
1886 case IP_TTL:
1888 uint32_t *v = (uint32_t *)data;
1889 uint32_t *t_int = (uint32_t *)target_data;
1891 if (len != sizeof(uint32_t) ||
1892 tgt_len != sizeof(uint32_t)) {
1893 goto unimplemented;
1895 __put_user(*v, t_int);
1896 break;
1898 case IP_RECVERR:
1900 struct errhdr_t {
1901 struct sock_extended_err ee;
1902 struct sockaddr_in offender;
1904 struct errhdr_t *errh = (struct errhdr_t *)data;
1905 struct errhdr_t *target_errh =
1906 (struct errhdr_t *)target_data;
1908 if (len != sizeof(struct errhdr_t) ||
1909 tgt_len != sizeof(struct errhdr_t)) {
1910 goto unimplemented;
1912 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1913 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1914 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1915 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1916 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1917 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1918 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1919 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1920 (void *) &errh->offender, sizeof(errh->offender));
1921 break;
1923 default:
1924 goto unimplemented;
1926 break;
1928 case SOL_IPV6:
1929 switch (cmsg->cmsg_type) {
1930 case IPV6_HOPLIMIT:
1932 uint32_t *v = (uint32_t *)data;
1933 uint32_t *t_int = (uint32_t *)target_data;
1935 if (len != sizeof(uint32_t) ||
1936 tgt_len != sizeof(uint32_t)) {
1937 goto unimplemented;
1939 __put_user(*v, t_int);
1940 break;
1942 case IPV6_RECVERR:
1944 struct errhdr6_t {
1945 struct sock_extended_err ee;
1946 struct sockaddr_in6 offender;
1948 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1949 struct errhdr6_t *target_errh =
1950 (struct errhdr6_t *)target_data;
1952 if (len != sizeof(struct errhdr6_t) ||
1953 tgt_len != sizeof(struct errhdr6_t)) {
1954 goto unimplemented;
1956 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1957 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1958 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1959 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1960 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1961 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1962 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1963 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1964 (void *) &errh->offender, sizeof(errh->offender));
1965 break;
1967 default:
1968 goto unimplemented;
1970 break;
1972 default:
1973 unimplemented:
1974 gemu_log("Unsupported ancillary data: %d/%d\n",
1975 cmsg->cmsg_level, cmsg->cmsg_type);
1976 memcpy(target_data, data, MIN(len, tgt_len));
1977 if (tgt_len > len) {
1978 memset(target_data + len, 0, tgt_len - len);
1982 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
1983 tgt_space = TARGET_CMSG_SPACE(tgt_len);
1984 if (msg_controllen < tgt_space) {
1985 tgt_space = msg_controllen;
1987 msg_controllen -= tgt_space;
1988 space += tgt_space;
1989 cmsg = CMSG_NXTHDR(msgh, cmsg);
1990 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1991 target_cmsg_start);
1993 unlock_user(target_cmsg, target_cmsg_addr, space);
1994 the_end:
1995 target_msgh->msg_controllen = tswapal(space);
1996 return 0;
1999 static void tswap_nlmsghdr(struct nlmsghdr *nlh)
2001 nlh->nlmsg_len = tswap32(nlh->nlmsg_len);
2002 nlh->nlmsg_type = tswap16(nlh->nlmsg_type);
2003 nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags);
2004 nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq);
2005 nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid);
2008 static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh,
2009 size_t len,
2010 abi_long (*host_to_target_nlmsg)
2011 (struct nlmsghdr *))
2013 uint32_t nlmsg_len;
2014 abi_long ret;
2016 while (len > sizeof(struct nlmsghdr)) {
2018 nlmsg_len = nlh->nlmsg_len;
2019 if (nlmsg_len < sizeof(struct nlmsghdr) ||
2020 nlmsg_len > len) {
2021 break;
2024 switch (nlh->nlmsg_type) {
2025 case NLMSG_DONE:
2026 tswap_nlmsghdr(nlh);
2027 return 0;
2028 case NLMSG_NOOP:
2029 break;
2030 case NLMSG_ERROR:
2032 struct nlmsgerr *e = NLMSG_DATA(nlh);
2033 e->error = tswap32(e->error);
2034 tswap_nlmsghdr(&e->msg);
2035 tswap_nlmsghdr(nlh);
2036 return 0;
2038 default:
2039 ret = host_to_target_nlmsg(nlh);
2040 if (ret < 0) {
2041 tswap_nlmsghdr(nlh);
2042 return ret;
2044 break;
2046 tswap_nlmsghdr(nlh);
2047 len -= NLMSG_ALIGN(nlmsg_len);
2048 nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len));
2050 return 0;
2053 static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh,
2054 size_t len,
2055 abi_long (*target_to_host_nlmsg)
2056 (struct nlmsghdr *))
2058 int ret;
2060 while (len > sizeof(struct nlmsghdr)) {
2061 if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) ||
2062 tswap32(nlh->nlmsg_len) > len) {
2063 break;
2065 tswap_nlmsghdr(nlh);
2066 switch (nlh->nlmsg_type) {
2067 case NLMSG_DONE:
2068 return 0;
2069 case NLMSG_NOOP:
2070 break;
2071 case NLMSG_ERROR:
2073 struct nlmsgerr *e = NLMSG_DATA(nlh);
2074 e->error = tswap32(e->error);
2075 tswap_nlmsghdr(&e->msg);
2076 return 0;
2078 default:
2079 ret = target_to_host_nlmsg(nlh);
2080 if (ret < 0) {
2081 return ret;
2084 len -= NLMSG_ALIGN(nlh->nlmsg_len);
2085 nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len));
2087 return 0;
2090 #ifdef CONFIG_RTNETLINK
2091 static abi_long host_to_target_for_each_nlattr(struct nlattr *nlattr,
2092 size_t len, void *context,
2093 abi_long (*host_to_target_nlattr)
2094 (struct nlattr *,
2095 void *context))
2097 unsigned short nla_len;
2098 abi_long ret;
2100 while (len > sizeof(struct nlattr)) {
2101 nla_len = nlattr->nla_len;
2102 if (nla_len < sizeof(struct nlattr) ||
2103 nla_len > len) {
2104 break;
2106 ret = host_to_target_nlattr(nlattr, context);
2107 nlattr->nla_len = tswap16(nlattr->nla_len);
2108 nlattr->nla_type = tswap16(nlattr->nla_type);
2109 if (ret < 0) {
2110 return ret;
2112 len -= NLA_ALIGN(nla_len);
2113 nlattr = (struct nlattr *)(((char *)nlattr) + NLA_ALIGN(nla_len));
2115 return 0;
2118 static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr,
2119 size_t len,
2120 abi_long (*host_to_target_rtattr)
2121 (struct rtattr *))
2123 unsigned short rta_len;
2124 abi_long ret;
2126 while (len > sizeof(struct rtattr)) {
2127 rta_len = rtattr->rta_len;
2128 if (rta_len < sizeof(struct rtattr) ||
2129 rta_len > len) {
2130 break;
2132 ret = host_to_target_rtattr(rtattr);
2133 rtattr->rta_len = tswap16(rtattr->rta_len);
2134 rtattr->rta_type = tswap16(rtattr->rta_type);
2135 if (ret < 0) {
2136 return ret;
2138 len -= RTA_ALIGN(rta_len);
2139 rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len));
2141 return 0;
2144 #define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN)
2146 static abi_long host_to_target_data_bridge_nlattr(struct nlattr *nlattr,
2147 void *context)
2149 uint16_t *u16;
2150 uint32_t *u32;
2151 uint64_t *u64;
2153 switch (nlattr->nla_type) {
2154 /* no data */
2155 case QEMU_IFLA_BR_FDB_FLUSH:
2156 break;
2157 /* binary */
2158 case QEMU_IFLA_BR_GROUP_ADDR:
2159 break;
2160 /* uint8_t */
2161 case QEMU_IFLA_BR_VLAN_FILTERING:
2162 case QEMU_IFLA_BR_TOPOLOGY_CHANGE:
2163 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED:
2164 case QEMU_IFLA_BR_MCAST_ROUTER:
2165 case QEMU_IFLA_BR_MCAST_SNOOPING:
2166 case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR:
2167 case QEMU_IFLA_BR_MCAST_QUERIER:
2168 case QEMU_IFLA_BR_NF_CALL_IPTABLES:
2169 case QEMU_IFLA_BR_NF_CALL_IP6TABLES:
2170 case QEMU_IFLA_BR_NF_CALL_ARPTABLES:
2171 break;
2172 /* uint16_t */
2173 case QEMU_IFLA_BR_PRIORITY:
2174 case QEMU_IFLA_BR_VLAN_PROTOCOL:
2175 case QEMU_IFLA_BR_GROUP_FWD_MASK:
2176 case QEMU_IFLA_BR_ROOT_PORT:
2177 case QEMU_IFLA_BR_VLAN_DEFAULT_PVID:
2178 u16 = NLA_DATA(nlattr);
2179 *u16 = tswap16(*u16);
2180 break;
2181 /* uint32_t */
2182 case QEMU_IFLA_BR_FORWARD_DELAY:
2183 case QEMU_IFLA_BR_HELLO_TIME:
2184 case QEMU_IFLA_BR_MAX_AGE:
2185 case QEMU_IFLA_BR_AGEING_TIME:
2186 case QEMU_IFLA_BR_STP_STATE:
2187 case QEMU_IFLA_BR_ROOT_PATH_COST:
2188 case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY:
2189 case QEMU_IFLA_BR_MCAST_HASH_MAX:
2190 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT:
2191 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT:
2192 u32 = NLA_DATA(nlattr);
2193 *u32 = tswap32(*u32);
2194 break;
2195 /* uint64_t */
2196 case QEMU_IFLA_BR_HELLO_TIMER:
2197 case QEMU_IFLA_BR_TCN_TIMER:
2198 case QEMU_IFLA_BR_GC_TIMER:
2199 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER:
2200 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL:
2201 case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL:
2202 case QEMU_IFLA_BR_MCAST_QUERIER_INTVL:
2203 case QEMU_IFLA_BR_MCAST_QUERY_INTVL:
2204 case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL:
2205 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL:
2206 u64 = NLA_DATA(nlattr);
2207 *u64 = tswap64(*u64);
2208 break;
2209 /* ifla_bridge_id: uin8_t[] */
2210 case QEMU_IFLA_BR_ROOT_ID:
2211 case QEMU_IFLA_BR_BRIDGE_ID:
2212 break;
2213 default:
2214 gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr->nla_type);
2215 break;
2217 return 0;
2220 static abi_long host_to_target_slave_data_bridge_nlattr(struct nlattr *nlattr,
2221 void *context)
2223 uint16_t *u16;
2224 uint32_t *u32;
2225 uint64_t *u64;
2227 switch (nlattr->nla_type) {
2228 /* uint8_t */
2229 case QEMU_IFLA_BRPORT_STATE:
2230 case QEMU_IFLA_BRPORT_MODE:
2231 case QEMU_IFLA_BRPORT_GUARD:
2232 case QEMU_IFLA_BRPORT_PROTECT:
2233 case QEMU_IFLA_BRPORT_FAST_LEAVE:
2234 case QEMU_IFLA_BRPORT_LEARNING:
2235 case QEMU_IFLA_BRPORT_UNICAST_FLOOD:
2236 case QEMU_IFLA_BRPORT_PROXYARP:
2237 case QEMU_IFLA_BRPORT_LEARNING_SYNC:
2238 case QEMU_IFLA_BRPORT_PROXYARP_WIFI:
2239 case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK:
2240 case QEMU_IFLA_BRPORT_CONFIG_PENDING:
2241 case QEMU_IFLA_BRPORT_MULTICAST_ROUTER:
2242 break;
2243 /* uint16_t */
2244 case QEMU_IFLA_BRPORT_PRIORITY:
2245 case QEMU_IFLA_BRPORT_DESIGNATED_PORT:
2246 case QEMU_IFLA_BRPORT_DESIGNATED_COST:
2247 case QEMU_IFLA_BRPORT_ID:
2248 case QEMU_IFLA_BRPORT_NO:
2249 u16 = NLA_DATA(nlattr);
2250 *u16 = tswap16(*u16);
2251 break;
2252 /* uin32_t */
2253 case QEMU_IFLA_BRPORT_COST:
2254 u32 = NLA_DATA(nlattr);
2255 *u32 = tswap32(*u32);
2256 break;
2257 /* uint64_t */
2258 case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER:
2259 case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER:
2260 case QEMU_IFLA_BRPORT_HOLD_TIMER:
2261 u64 = NLA_DATA(nlattr);
2262 *u64 = tswap64(*u64);
2263 break;
2264 /* ifla_bridge_id: uint8_t[] */
2265 case QEMU_IFLA_BRPORT_ROOT_ID:
2266 case QEMU_IFLA_BRPORT_BRIDGE_ID:
2267 break;
2268 default:
2269 gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr->nla_type);
2270 break;
2272 return 0;
2275 struct linkinfo_context {
2276 int len;
2277 char *name;
2278 int slave_len;
2279 char *slave_name;
2282 static abi_long host_to_target_data_linkinfo_nlattr(struct nlattr *nlattr,
2283 void *context)
2285 struct linkinfo_context *li_context = context;
2287 switch (nlattr->nla_type) {
2288 /* string */
2289 case QEMU_IFLA_INFO_KIND:
2290 li_context->name = NLA_DATA(nlattr);
2291 li_context->len = nlattr->nla_len - NLA_HDRLEN;
2292 break;
2293 case QEMU_IFLA_INFO_SLAVE_KIND:
2294 li_context->slave_name = NLA_DATA(nlattr);
2295 li_context->slave_len = nlattr->nla_len - NLA_HDRLEN;
2296 break;
2297 /* stats */
2298 case QEMU_IFLA_INFO_XSTATS:
2299 /* FIXME: only used by CAN */
2300 break;
2301 /* nested */
2302 case QEMU_IFLA_INFO_DATA:
2303 if (strncmp(li_context->name, "bridge",
2304 li_context->len) == 0) {
2305 return host_to_target_for_each_nlattr(NLA_DATA(nlattr),
2306 nlattr->nla_len,
2307 NULL,
2308 host_to_target_data_bridge_nlattr);
2309 } else {
2310 gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context->name);
2312 break;
2313 case QEMU_IFLA_INFO_SLAVE_DATA:
2314 if (strncmp(li_context->slave_name, "bridge",
2315 li_context->slave_len) == 0) {
2316 return host_to_target_for_each_nlattr(NLA_DATA(nlattr),
2317 nlattr->nla_len,
2318 NULL,
2319 host_to_target_slave_data_bridge_nlattr);
2320 } else {
2321 gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n",
2322 li_context->slave_name);
2324 break;
2325 default:
2326 gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr->nla_type);
2327 break;
2330 return 0;
2333 static abi_long host_to_target_data_inet_nlattr(struct nlattr *nlattr,
2334 void *context)
2336 uint32_t *u32;
2337 int i;
2339 switch (nlattr->nla_type) {
2340 case QEMU_IFLA_INET_CONF:
2341 u32 = NLA_DATA(nlattr);
2342 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32);
2343 i++) {
2344 u32[i] = tswap32(u32[i]);
2346 break;
2347 default:
2348 gemu_log("Unknown host AF_INET type: %d\n", nlattr->nla_type);
2350 return 0;
2353 static abi_long host_to_target_data_inet6_nlattr(struct nlattr *nlattr,
2354 void *context)
2356 uint32_t *u32;
2357 uint64_t *u64;
2358 struct ifla_cacheinfo *ci;
2359 int i;
2361 switch (nlattr->nla_type) {
2362 /* binaries */
2363 case QEMU_IFLA_INET6_TOKEN:
2364 break;
2365 /* uint8_t */
2366 case QEMU_IFLA_INET6_ADDR_GEN_MODE:
2367 break;
2368 /* uint32_t */
2369 case QEMU_IFLA_INET6_FLAGS:
2370 u32 = NLA_DATA(nlattr);
2371 *u32 = tswap32(*u32);
2372 break;
2373 /* uint32_t[] */
2374 case QEMU_IFLA_INET6_CONF:
2375 u32 = NLA_DATA(nlattr);
2376 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32);
2377 i++) {
2378 u32[i] = tswap32(u32[i]);
2380 break;
2381 /* ifla_cacheinfo */
2382 case QEMU_IFLA_INET6_CACHEINFO:
2383 ci = NLA_DATA(nlattr);
2384 ci->max_reasm_len = tswap32(ci->max_reasm_len);
2385 ci->tstamp = tswap32(ci->tstamp);
2386 ci->reachable_time = tswap32(ci->reachable_time);
2387 ci->retrans_time = tswap32(ci->retrans_time);
2388 break;
2389 /* uint64_t[] */
2390 case QEMU_IFLA_INET6_STATS:
2391 case QEMU_IFLA_INET6_ICMP6STATS:
2392 u64 = NLA_DATA(nlattr);
2393 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u64);
2394 i++) {
2395 u64[i] = tswap64(u64[i]);
2397 break;
2398 default:
2399 gemu_log("Unknown host AF_INET6 type: %d\n", nlattr->nla_type);
2401 return 0;
2404 static abi_long host_to_target_data_spec_nlattr(struct nlattr *nlattr,
2405 void *context)
2407 switch (nlattr->nla_type) {
2408 case AF_INET:
2409 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len,
2410 NULL,
2411 host_to_target_data_inet_nlattr);
2412 case AF_INET6:
2413 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len,
2414 NULL,
2415 host_to_target_data_inet6_nlattr);
2416 default:
2417 gemu_log("Unknown host AF_SPEC type: %d\n", nlattr->nla_type);
2418 break;
2420 return 0;
2423 static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr)
2425 uint32_t *u32;
2426 struct rtnl_link_stats *st;
2427 struct rtnl_link_stats64 *st64;
2428 struct rtnl_link_ifmap *map;
2429 struct linkinfo_context li_context;
2431 switch (rtattr->rta_type) {
2432 /* binary stream */
2433 case QEMU_IFLA_ADDRESS:
2434 case QEMU_IFLA_BROADCAST:
2435 /* string */
2436 case QEMU_IFLA_IFNAME:
2437 case QEMU_IFLA_QDISC:
2438 break;
2439 /* uin8_t */
2440 case QEMU_IFLA_OPERSTATE:
2441 case QEMU_IFLA_LINKMODE:
2442 case QEMU_IFLA_CARRIER:
2443 case QEMU_IFLA_PROTO_DOWN:
2444 break;
2445 /* uint32_t */
2446 case QEMU_IFLA_MTU:
2447 case QEMU_IFLA_LINK:
2448 case QEMU_IFLA_WEIGHT:
2449 case QEMU_IFLA_TXQLEN:
2450 case QEMU_IFLA_CARRIER_CHANGES:
2451 case QEMU_IFLA_NUM_RX_QUEUES:
2452 case QEMU_IFLA_NUM_TX_QUEUES:
2453 case QEMU_IFLA_PROMISCUITY:
2454 case QEMU_IFLA_EXT_MASK:
2455 case QEMU_IFLA_LINK_NETNSID:
2456 case QEMU_IFLA_GROUP:
2457 case QEMU_IFLA_MASTER:
2458 case QEMU_IFLA_NUM_VF:
2459 case QEMU_IFLA_GSO_MAX_SEGS:
2460 case QEMU_IFLA_GSO_MAX_SIZE:
2461 u32 = RTA_DATA(rtattr);
2462 *u32 = tswap32(*u32);
2463 break;
2464 /* struct rtnl_link_stats */
2465 case QEMU_IFLA_STATS:
2466 st = RTA_DATA(rtattr);
2467 st->rx_packets = tswap32(st->rx_packets);
2468 st->tx_packets = tswap32(st->tx_packets);
2469 st->rx_bytes = tswap32(st->rx_bytes);
2470 st->tx_bytes = tswap32(st->tx_bytes);
2471 st->rx_errors = tswap32(st->rx_errors);
2472 st->tx_errors = tswap32(st->tx_errors);
2473 st->rx_dropped = tswap32(st->rx_dropped);
2474 st->tx_dropped = tswap32(st->tx_dropped);
2475 st->multicast = tswap32(st->multicast);
2476 st->collisions = tswap32(st->collisions);
2478 /* detailed rx_errors: */
2479 st->rx_length_errors = tswap32(st->rx_length_errors);
2480 st->rx_over_errors = tswap32(st->rx_over_errors);
2481 st->rx_crc_errors = tswap32(st->rx_crc_errors);
2482 st->rx_frame_errors = tswap32(st->rx_frame_errors);
2483 st->rx_fifo_errors = tswap32(st->rx_fifo_errors);
2484 st->rx_missed_errors = tswap32(st->rx_missed_errors);
2486 /* detailed tx_errors */
2487 st->tx_aborted_errors = tswap32(st->tx_aborted_errors);
2488 st->tx_carrier_errors = tswap32(st->tx_carrier_errors);
2489 st->tx_fifo_errors = tswap32(st->tx_fifo_errors);
2490 st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors);
2491 st->tx_window_errors = tswap32(st->tx_window_errors);
2493 /* for cslip etc */
2494 st->rx_compressed = tswap32(st->rx_compressed);
2495 st->tx_compressed = tswap32(st->tx_compressed);
2496 break;
2497 /* struct rtnl_link_stats64 */
2498 case QEMU_IFLA_STATS64:
2499 st64 = RTA_DATA(rtattr);
2500 st64->rx_packets = tswap64(st64->rx_packets);
2501 st64->tx_packets = tswap64(st64->tx_packets);
2502 st64->rx_bytes = tswap64(st64->rx_bytes);
2503 st64->tx_bytes = tswap64(st64->tx_bytes);
2504 st64->rx_errors = tswap64(st64->rx_errors);
2505 st64->tx_errors = tswap64(st64->tx_errors);
2506 st64->rx_dropped = tswap64(st64->rx_dropped);
2507 st64->tx_dropped = tswap64(st64->tx_dropped);
2508 st64->multicast = tswap64(st64->multicast);
2509 st64->collisions = tswap64(st64->collisions);
2511 /* detailed rx_errors: */
2512 st64->rx_length_errors = tswap64(st64->rx_length_errors);
2513 st64->rx_over_errors = tswap64(st64->rx_over_errors);
2514 st64->rx_crc_errors = tswap64(st64->rx_crc_errors);
2515 st64->rx_frame_errors = tswap64(st64->rx_frame_errors);
2516 st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors);
2517 st64->rx_missed_errors = tswap64(st64->rx_missed_errors);
2519 /* detailed tx_errors */
2520 st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors);
2521 st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors);
2522 st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors);
2523 st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors);
2524 st64->tx_window_errors = tswap64(st64->tx_window_errors);
2526 /* for cslip etc */
2527 st64->rx_compressed = tswap64(st64->rx_compressed);
2528 st64->tx_compressed = tswap64(st64->tx_compressed);
2529 break;
2530 /* struct rtnl_link_ifmap */
2531 case QEMU_IFLA_MAP:
2532 map = RTA_DATA(rtattr);
2533 map->mem_start = tswap64(map->mem_start);
2534 map->mem_end = tswap64(map->mem_end);
2535 map->base_addr = tswap64(map->base_addr);
2536 map->irq = tswap16(map->irq);
2537 break;
2538 /* nested */
2539 case QEMU_IFLA_LINKINFO:
2540 memset(&li_context, 0, sizeof(li_context));
2541 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len,
2542 &li_context,
2543 host_to_target_data_linkinfo_nlattr);
2544 case QEMU_IFLA_AF_SPEC:
2545 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len,
2546 NULL,
2547 host_to_target_data_spec_nlattr);
2548 default:
2549 gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr->rta_type);
2550 break;
2552 return 0;
2555 static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr)
2557 uint32_t *u32;
2558 struct ifa_cacheinfo *ci;
2560 switch (rtattr->rta_type) {
2561 /* binary: depends on family type */
2562 case IFA_ADDRESS:
2563 case IFA_LOCAL:
2564 break;
2565 /* string */
2566 case IFA_LABEL:
2567 break;
2568 /* u32 */
2569 case IFA_FLAGS:
2570 case IFA_BROADCAST:
2571 u32 = RTA_DATA(rtattr);
2572 *u32 = tswap32(*u32);
2573 break;
2574 /* struct ifa_cacheinfo */
2575 case IFA_CACHEINFO:
2576 ci = RTA_DATA(rtattr);
2577 ci->ifa_prefered = tswap32(ci->ifa_prefered);
2578 ci->ifa_valid = tswap32(ci->ifa_valid);
2579 ci->cstamp = tswap32(ci->cstamp);
2580 ci->tstamp = tswap32(ci->tstamp);
2581 break;
2582 default:
2583 gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type);
2584 break;
2586 return 0;
2589 static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr)
2591 uint32_t *u32;
2592 switch (rtattr->rta_type) {
2593 /* binary: depends on family type */
2594 case RTA_GATEWAY:
2595 case RTA_DST:
2596 case RTA_PREFSRC:
2597 break;
2598 /* u32 */
2599 case RTA_PRIORITY:
2600 case RTA_TABLE:
2601 case RTA_OIF:
2602 u32 = RTA_DATA(rtattr);
2603 *u32 = tswap32(*u32);
2604 break;
2605 default:
2606 gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type);
2607 break;
2609 return 0;
2612 static abi_long host_to_target_link_rtattr(struct rtattr *rtattr,
2613 uint32_t rtattr_len)
2615 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2616 host_to_target_data_link_rtattr);
2619 static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr,
2620 uint32_t rtattr_len)
2622 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2623 host_to_target_data_addr_rtattr);
2626 static abi_long host_to_target_route_rtattr(struct rtattr *rtattr,
2627 uint32_t rtattr_len)
2629 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2630 host_to_target_data_route_rtattr);
2633 static abi_long host_to_target_data_route(struct nlmsghdr *nlh)
2635 uint32_t nlmsg_len;
2636 struct ifinfomsg *ifi;
2637 struct ifaddrmsg *ifa;
2638 struct rtmsg *rtm;
2640 nlmsg_len = nlh->nlmsg_len;
2641 switch (nlh->nlmsg_type) {
2642 case RTM_NEWLINK:
2643 case RTM_DELLINK:
2644 case RTM_GETLINK:
2645 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
2646 ifi = NLMSG_DATA(nlh);
2647 ifi->ifi_type = tswap16(ifi->ifi_type);
2648 ifi->ifi_index = tswap32(ifi->ifi_index);
2649 ifi->ifi_flags = tswap32(ifi->ifi_flags);
2650 ifi->ifi_change = tswap32(ifi->ifi_change);
2651 host_to_target_link_rtattr(IFLA_RTA(ifi),
2652 nlmsg_len - NLMSG_LENGTH(sizeof(*ifi)));
2654 break;
2655 case RTM_NEWADDR:
2656 case RTM_DELADDR:
2657 case RTM_GETADDR:
2658 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
2659 ifa = NLMSG_DATA(nlh);
2660 ifa->ifa_index = tswap32(ifa->ifa_index);
2661 host_to_target_addr_rtattr(IFA_RTA(ifa),
2662 nlmsg_len - NLMSG_LENGTH(sizeof(*ifa)));
2664 break;
2665 case RTM_NEWROUTE:
2666 case RTM_DELROUTE:
2667 case RTM_GETROUTE:
2668 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
2669 rtm = NLMSG_DATA(nlh);
2670 rtm->rtm_flags = tswap32(rtm->rtm_flags);
2671 host_to_target_route_rtattr(RTM_RTA(rtm),
2672 nlmsg_len - NLMSG_LENGTH(sizeof(*rtm)));
2674 break;
2675 default:
2676 return -TARGET_EINVAL;
2678 return 0;
2681 static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh,
2682 size_t len)
2684 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route);
2687 static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr,
2688 size_t len,
2689 abi_long (*target_to_host_rtattr)
2690 (struct rtattr *))
2692 abi_long ret;
2694 while (len >= sizeof(struct rtattr)) {
2695 if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) ||
2696 tswap16(rtattr->rta_len) > len) {
2697 break;
2699 rtattr->rta_len = tswap16(rtattr->rta_len);
2700 rtattr->rta_type = tswap16(rtattr->rta_type);
2701 ret = target_to_host_rtattr(rtattr);
2702 if (ret < 0) {
2703 return ret;
2705 len -= RTA_ALIGN(rtattr->rta_len);
2706 rtattr = (struct rtattr *)(((char *)rtattr) +
2707 RTA_ALIGN(rtattr->rta_len));
2709 return 0;
2712 static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr)
2714 switch (rtattr->rta_type) {
2715 default:
2716 gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr->rta_type);
2717 break;
2719 return 0;
2722 static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr)
2724 switch (rtattr->rta_type) {
2725 /* binary: depends on family type */
2726 case IFA_LOCAL:
2727 case IFA_ADDRESS:
2728 break;
2729 default:
2730 gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type);
2731 break;
2733 return 0;
2736 static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr)
2738 uint32_t *u32;
2739 switch (rtattr->rta_type) {
2740 /* binary: depends on family type */
2741 case RTA_DST:
2742 case RTA_SRC:
2743 case RTA_GATEWAY:
2744 break;
2745 /* u32 */
2746 case RTA_PRIORITY:
2747 case RTA_OIF:
2748 u32 = RTA_DATA(rtattr);
2749 *u32 = tswap32(*u32);
2750 break;
2751 default:
2752 gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type);
2753 break;
2755 return 0;
2758 static void target_to_host_link_rtattr(struct rtattr *rtattr,
2759 uint32_t rtattr_len)
2761 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2762 target_to_host_data_link_rtattr);
2765 static void target_to_host_addr_rtattr(struct rtattr *rtattr,
2766 uint32_t rtattr_len)
2768 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2769 target_to_host_data_addr_rtattr);
2772 static void target_to_host_route_rtattr(struct rtattr *rtattr,
2773 uint32_t rtattr_len)
2775 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2776 target_to_host_data_route_rtattr);
2779 static abi_long target_to_host_data_route(struct nlmsghdr *nlh)
2781 struct ifinfomsg *ifi;
2782 struct ifaddrmsg *ifa;
2783 struct rtmsg *rtm;
2785 switch (nlh->nlmsg_type) {
2786 case RTM_GETLINK:
2787 break;
2788 case RTM_NEWLINK:
2789 case RTM_DELLINK:
2790 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
2791 ifi = NLMSG_DATA(nlh);
2792 ifi->ifi_type = tswap16(ifi->ifi_type);
2793 ifi->ifi_index = tswap32(ifi->ifi_index);
2794 ifi->ifi_flags = tswap32(ifi->ifi_flags);
2795 ifi->ifi_change = tswap32(ifi->ifi_change);
2796 target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len -
2797 NLMSG_LENGTH(sizeof(*ifi)));
2799 break;
2800 case RTM_GETADDR:
2801 case RTM_NEWADDR:
2802 case RTM_DELADDR:
2803 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
2804 ifa = NLMSG_DATA(nlh);
2805 ifa->ifa_index = tswap32(ifa->ifa_index);
2806 target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len -
2807 NLMSG_LENGTH(sizeof(*ifa)));
2809 break;
2810 case RTM_GETROUTE:
2811 break;
2812 case RTM_NEWROUTE:
2813 case RTM_DELROUTE:
2814 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
2815 rtm = NLMSG_DATA(nlh);
2816 rtm->rtm_flags = tswap32(rtm->rtm_flags);
2817 target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len -
2818 NLMSG_LENGTH(sizeof(*rtm)));
2820 break;
2821 default:
2822 return -TARGET_EOPNOTSUPP;
2824 return 0;
2827 static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len)
2829 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route);
2831 #endif /* CONFIG_RTNETLINK */
2833 static abi_long host_to_target_data_audit(struct nlmsghdr *nlh)
2835 switch (nlh->nlmsg_type) {
2836 default:
2837 gemu_log("Unknown host audit message type %d\n",
2838 nlh->nlmsg_type);
2839 return -TARGET_EINVAL;
2841 return 0;
2844 static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh,
2845 size_t len)
2847 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit);
2850 static abi_long target_to_host_data_audit(struct nlmsghdr *nlh)
2852 switch (nlh->nlmsg_type) {
2853 case AUDIT_USER:
2854 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
2855 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
2856 break;
2857 default:
2858 gemu_log("Unknown target audit message type %d\n",
2859 nlh->nlmsg_type);
2860 return -TARGET_EINVAL;
2863 return 0;
2866 static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len)
2868 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit);
2871 /* do_setsockopt() Must return target values and target errnos. */
2872 static abi_long do_setsockopt(int sockfd, int level, int optname,
2873 abi_ulong optval_addr, socklen_t optlen)
2875 abi_long ret;
2876 int val;
2877 struct ip_mreqn *ip_mreq;
2878 struct ip_mreq_source *ip_mreq_source;
2880 switch(level) {
2881 case SOL_TCP:
2882 /* TCP options all take an 'int' value. */
2883 if (optlen < sizeof(uint32_t))
2884 return -TARGET_EINVAL;
2886 if (get_user_u32(val, optval_addr))
2887 return -TARGET_EFAULT;
2888 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2889 break;
2890 case SOL_IP:
2891 switch(optname) {
2892 case IP_TOS:
2893 case IP_TTL:
2894 case IP_HDRINCL:
2895 case IP_ROUTER_ALERT:
2896 case IP_RECVOPTS:
2897 case IP_RETOPTS:
2898 case IP_PKTINFO:
2899 case IP_MTU_DISCOVER:
2900 case IP_RECVERR:
2901 case IP_RECVTTL:
2902 case IP_RECVTOS:
2903 #ifdef IP_FREEBIND
2904 case IP_FREEBIND:
2905 #endif
2906 case IP_MULTICAST_TTL:
2907 case IP_MULTICAST_LOOP:
2908 val = 0;
2909 if (optlen >= sizeof(uint32_t)) {
2910 if (get_user_u32(val, optval_addr))
2911 return -TARGET_EFAULT;
2912 } else if (optlen >= 1) {
2913 if (get_user_u8(val, optval_addr))
2914 return -TARGET_EFAULT;
2916 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2917 break;
2918 case IP_ADD_MEMBERSHIP:
2919 case IP_DROP_MEMBERSHIP:
2920 if (optlen < sizeof (struct target_ip_mreq) ||
2921 optlen > sizeof (struct target_ip_mreqn))
2922 return -TARGET_EINVAL;
2924 ip_mreq = (struct ip_mreqn *) alloca(optlen);
2925 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2926 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2927 break;
2929 case IP_BLOCK_SOURCE:
2930 case IP_UNBLOCK_SOURCE:
2931 case IP_ADD_SOURCE_MEMBERSHIP:
2932 case IP_DROP_SOURCE_MEMBERSHIP:
2933 if (optlen != sizeof (struct target_ip_mreq_source))
2934 return -TARGET_EINVAL;
2936 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2937 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2938 unlock_user (ip_mreq_source, optval_addr, 0);
2939 break;
2941 default:
2942 goto unimplemented;
2944 break;
2945 case SOL_IPV6:
2946 switch (optname) {
2947 case IPV6_MTU_DISCOVER:
2948 case IPV6_MTU:
2949 case IPV6_V6ONLY:
2950 case IPV6_RECVPKTINFO:
2951 case IPV6_UNICAST_HOPS:
2952 case IPV6_RECVERR:
2953 case IPV6_RECVHOPLIMIT:
2954 case IPV6_2292HOPLIMIT:
2955 case IPV6_CHECKSUM:
2956 val = 0;
2957 if (optlen < sizeof(uint32_t)) {
2958 return -TARGET_EINVAL;
2960 if (get_user_u32(val, optval_addr)) {
2961 return -TARGET_EFAULT;
2963 ret = get_errno(setsockopt(sockfd, level, optname,
2964 &val, sizeof(val)));
2965 break;
2966 case IPV6_PKTINFO:
2968 struct in6_pktinfo pki;
2970 if (optlen < sizeof(pki)) {
2971 return -TARGET_EINVAL;
2974 if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2975 return -TARGET_EFAULT;
2978 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2980 ret = get_errno(setsockopt(sockfd, level, optname,
2981 &pki, sizeof(pki)));
2982 break;
2984 default:
2985 goto unimplemented;
2987 break;
2988 case SOL_ICMPV6:
2989 switch (optname) {
2990 case ICMPV6_FILTER:
2992 struct icmp6_filter icmp6f;
2994 if (optlen > sizeof(icmp6f)) {
2995 optlen = sizeof(icmp6f);
2998 if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2999 return -TARGET_EFAULT;
3002 for (val = 0; val < 8; val++) {
3003 icmp6f.data[val] = tswap32(icmp6f.data[val]);
3006 ret = get_errno(setsockopt(sockfd, level, optname,
3007 &icmp6f, optlen));
3008 break;
3010 default:
3011 goto unimplemented;
3013 break;
3014 case SOL_RAW:
3015 switch (optname) {
3016 case ICMP_FILTER:
3017 case IPV6_CHECKSUM:
3018 /* those take an u32 value */
3019 if (optlen < sizeof(uint32_t)) {
3020 return -TARGET_EINVAL;
3023 if (get_user_u32(val, optval_addr)) {
3024 return -TARGET_EFAULT;
3026 ret = get_errno(setsockopt(sockfd, level, optname,
3027 &val, sizeof(val)));
3028 break;
3030 default:
3031 goto unimplemented;
3033 break;
3034 case TARGET_SOL_SOCKET:
3035 switch (optname) {
3036 case TARGET_SO_RCVTIMEO:
3038 struct timeval tv;
3040 optname = SO_RCVTIMEO;
3042 set_timeout:
3043 if (optlen != sizeof(struct target_timeval)) {
3044 return -TARGET_EINVAL;
3047 if (copy_from_user_timeval(&tv, optval_addr)) {
3048 return -TARGET_EFAULT;
3051 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
3052 &tv, sizeof(tv)));
3053 return ret;
3055 case TARGET_SO_SNDTIMEO:
3056 optname = SO_SNDTIMEO;
3057 goto set_timeout;
3058 case TARGET_SO_ATTACH_FILTER:
3060 struct target_sock_fprog *tfprog;
3061 struct target_sock_filter *tfilter;
3062 struct sock_fprog fprog;
3063 struct sock_filter *filter;
3064 int i;
3066 if (optlen != sizeof(*tfprog)) {
3067 return -TARGET_EINVAL;
3069 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
3070 return -TARGET_EFAULT;
3072 if (!lock_user_struct(VERIFY_READ, tfilter,
3073 tswapal(tfprog->filter), 0)) {
3074 unlock_user_struct(tfprog, optval_addr, 1);
3075 return -TARGET_EFAULT;
3078 fprog.len = tswap16(tfprog->len);
3079 filter = g_try_new(struct sock_filter, fprog.len);
3080 if (filter == NULL) {
3081 unlock_user_struct(tfilter, tfprog->filter, 1);
3082 unlock_user_struct(tfprog, optval_addr, 1);
3083 return -TARGET_ENOMEM;
3085 for (i = 0; i < fprog.len; i++) {
3086 filter[i].code = tswap16(tfilter[i].code);
3087 filter[i].jt = tfilter[i].jt;
3088 filter[i].jf = tfilter[i].jf;
3089 filter[i].k = tswap32(tfilter[i].k);
3091 fprog.filter = filter;
3093 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
3094 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
3095 g_free(filter);
3097 unlock_user_struct(tfilter, tfprog->filter, 1);
3098 unlock_user_struct(tfprog, optval_addr, 1);
3099 return ret;
3101 case TARGET_SO_BINDTODEVICE:
3103 char *dev_ifname, *addr_ifname;
3105 if (optlen > IFNAMSIZ - 1) {
3106 optlen = IFNAMSIZ - 1;
3108 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
3109 if (!dev_ifname) {
3110 return -TARGET_EFAULT;
3112 optname = SO_BINDTODEVICE;
3113 addr_ifname = alloca(IFNAMSIZ);
3114 memcpy(addr_ifname, dev_ifname, optlen);
3115 addr_ifname[optlen] = 0;
3116 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
3117 addr_ifname, optlen));
3118 unlock_user (dev_ifname, optval_addr, 0);
3119 return ret;
3121 /* Options with 'int' argument. */
3122 case TARGET_SO_DEBUG:
3123 optname = SO_DEBUG;
3124 break;
3125 case TARGET_SO_REUSEADDR:
3126 optname = SO_REUSEADDR;
3127 break;
3128 case TARGET_SO_TYPE:
3129 optname = SO_TYPE;
3130 break;
3131 case TARGET_SO_ERROR:
3132 optname = SO_ERROR;
3133 break;
3134 case TARGET_SO_DONTROUTE:
3135 optname = SO_DONTROUTE;
3136 break;
3137 case TARGET_SO_BROADCAST:
3138 optname = SO_BROADCAST;
3139 break;
3140 case TARGET_SO_SNDBUF:
3141 optname = SO_SNDBUF;
3142 break;
3143 case TARGET_SO_SNDBUFFORCE:
3144 optname = SO_SNDBUFFORCE;
3145 break;
3146 case TARGET_SO_RCVBUF:
3147 optname = SO_RCVBUF;
3148 break;
3149 case TARGET_SO_RCVBUFFORCE:
3150 optname = SO_RCVBUFFORCE;
3151 break;
3152 case TARGET_SO_KEEPALIVE:
3153 optname = SO_KEEPALIVE;
3154 break;
3155 case TARGET_SO_OOBINLINE:
3156 optname = SO_OOBINLINE;
3157 break;
3158 case TARGET_SO_NO_CHECK:
3159 optname = SO_NO_CHECK;
3160 break;
3161 case TARGET_SO_PRIORITY:
3162 optname = SO_PRIORITY;
3163 break;
3164 #ifdef SO_BSDCOMPAT
3165 case TARGET_SO_BSDCOMPAT:
3166 optname = SO_BSDCOMPAT;
3167 break;
3168 #endif
3169 case TARGET_SO_PASSCRED:
3170 optname = SO_PASSCRED;
3171 break;
3172 case TARGET_SO_PASSSEC:
3173 optname = SO_PASSSEC;
3174 break;
3175 case TARGET_SO_TIMESTAMP:
3176 optname = SO_TIMESTAMP;
3177 break;
3178 case TARGET_SO_RCVLOWAT:
3179 optname = SO_RCVLOWAT;
3180 break;
3181 default:
3182 goto unimplemented;
3184 if (optlen < sizeof(uint32_t))
3185 return -TARGET_EINVAL;
3187 if (get_user_u32(val, optval_addr))
3188 return -TARGET_EFAULT;
3189 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
3190 break;
3191 default:
3192 unimplemented:
3193 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname);
3194 ret = -TARGET_ENOPROTOOPT;
3196 return ret;
3199 /* do_getsockopt() Must return target values and target errnos. */
3200 static abi_long do_getsockopt(int sockfd, int level, int optname,
3201 abi_ulong optval_addr, abi_ulong optlen)
3203 abi_long ret;
3204 int len, val;
3205 socklen_t lv;
3207 switch(level) {
3208 case TARGET_SOL_SOCKET:
3209 level = SOL_SOCKET;
3210 switch (optname) {
3211 /* These don't just return a single integer */
3212 case TARGET_SO_LINGER:
3213 case TARGET_SO_RCVTIMEO:
3214 case TARGET_SO_SNDTIMEO:
3215 case TARGET_SO_PEERNAME:
3216 goto unimplemented;
3217 case TARGET_SO_PEERCRED: {
3218 struct ucred cr;
3219 socklen_t crlen;
3220 struct target_ucred *tcr;
3222 if (get_user_u32(len, optlen)) {
3223 return -TARGET_EFAULT;
3225 if (len < 0) {
3226 return -TARGET_EINVAL;
3229 crlen = sizeof(cr);
3230 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
3231 &cr, &crlen));
3232 if (ret < 0) {
3233 return ret;
3235 if (len > crlen) {
3236 len = crlen;
3238 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
3239 return -TARGET_EFAULT;
3241 __put_user(cr.pid, &tcr->pid);
3242 __put_user(cr.uid, &tcr->uid);
3243 __put_user(cr.gid, &tcr->gid);
3244 unlock_user_struct(tcr, optval_addr, 1);
3245 if (put_user_u32(len, optlen)) {
3246 return -TARGET_EFAULT;
3248 break;
3250 /* Options with 'int' argument. */
3251 case TARGET_SO_DEBUG:
3252 optname = SO_DEBUG;
3253 goto int_case;
3254 case TARGET_SO_REUSEADDR:
3255 optname = SO_REUSEADDR;
3256 goto int_case;
3257 case TARGET_SO_TYPE:
3258 optname = SO_TYPE;
3259 goto int_case;
3260 case TARGET_SO_ERROR:
3261 optname = SO_ERROR;
3262 goto int_case;
3263 case TARGET_SO_DONTROUTE:
3264 optname = SO_DONTROUTE;
3265 goto int_case;
3266 case TARGET_SO_BROADCAST:
3267 optname = SO_BROADCAST;
3268 goto int_case;
3269 case TARGET_SO_SNDBUF:
3270 optname = SO_SNDBUF;
3271 goto int_case;
3272 case TARGET_SO_RCVBUF:
3273 optname = SO_RCVBUF;
3274 goto int_case;
3275 case TARGET_SO_KEEPALIVE:
3276 optname = SO_KEEPALIVE;
3277 goto int_case;
3278 case TARGET_SO_OOBINLINE:
3279 optname = SO_OOBINLINE;
3280 goto int_case;
3281 case TARGET_SO_NO_CHECK:
3282 optname = SO_NO_CHECK;
3283 goto int_case;
3284 case TARGET_SO_PRIORITY:
3285 optname = SO_PRIORITY;
3286 goto int_case;
3287 #ifdef SO_BSDCOMPAT
3288 case TARGET_SO_BSDCOMPAT:
3289 optname = SO_BSDCOMPAT;
3290 goto int_case;
3291 #endif
3292 case TARGET_SO_PASSCRED:
3293 optname = SO_PASSCRED;
3294 goto int_case;
3295 case TARGET_SO_TIMESTAMP:
3296 optname = SO_TIMESTAMP;
3297 goto int_case;
3298 case TARGET_SO_RCVLOWAT:
3299 optname = SO_RCVLOWAT;
3300 goto int_case;
3301 case TARGET_SO_ACCEPTCONN:
3302 optname = SO_ACCEPTCONN;
3303 goto int_case;
3304 default:
3305 goto int_case;
3307 break;
3308 case SOL_TCP:
3309 /* TCP options all take an 'int' value. */
3310 int_case:
3311 if (get_user_u32(len, optlen))
3312 return -TARGET_EFAULT;
3313 if (len < 0)
3314 return -TARGET_EINVAL;
3315 lv = sizeof(lv);
3316 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
3317 if (ret < 0)
3318 return ret;
3319 if (optname == SO_TYPE) {
3320 val = host_to_target_sock_type(val);
3322 if (len > lv)
3323 len = lv;
3324 if (len == 4) {
3325 if (put_user_u32(val, optval_addr))
3326 return -TARGET_EFAULT;
3327 } else {
3328 if (put_user_u8(val, optval_addr))
3329 return -TARGET_EFAULT;
3331 if (put_user_u32(len, optlen))
3332 return -TARGET_EFAULT;
3333 break;
3334 case SOL_IP:
3335 switch(optname) {
3336 case IP_TOS:
3337 case IP_TTL:
3338 case IP_HDRINCL:
3339 case IP_ROUTER_ALERT:
3340 case IP_RECVOPTS:
3341 case IP_RETOPTS:
3342 case IP_PKTINFO:
3343 case IP_MTU_DISCOVER:
3344 case IP_RECVERR:
3345 case IP_RECVTOS:
3346 #ifdef IP_FREEBIND
3347 case IP_FREEBIND:
3348 #endif
3349 case IP_MULTICAST_TTL:
3350 case IP_MULTICAST_LOOP:
3351 if (get_user_u32(len, optlen))
3352 return -TARGET_EFAULT;
3353 if (len < 0)
3354 return -TARGET_EINVAL;
3355 lv = sizeof(lv);
3356 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
3357 if (ret < 0)
3358 return ret;
3359 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
3360 len = 1;
3361 if (put_user_u32(len, optlen)
3362 || put_user_u8(val, optval_addr))
3363 return -TARGET_EFAULT;
3364 } else {
3365 if (len > sizeof(int))
3366 len = sizeof(int);
3367 if (put_user_u32(len, optlen)
3368 || put_user_u32(val, optval_addr))
3369 return -TARGET_EFAULT;
3371 break;
3372 default:
3373 ret = -TARGET_ENOPROTOOPT;
3374 break;
3376 break;
3377 default:
3378 unimplemented:
3379 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
3380 level, optname);
3381 ret = -TARGET_EOPNOTSUPP;
3382 break;
3384 return ret;
3387 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
3388 abi_ulong count, int copy)
3390 struct target_iovec *target_vec;
3391 struct iovec *vec;
3392 abi_ulong total_len, max_len;
3393 int i;
3394 int err = 0;
3395 bool bad_address = false;
3397 if (count == 0) {
3398 errno = 0;
3399 return NULL;
3401 if (count > IOV_MAX) {
3402 errno = EINVAL;
3403 return NULL;
3406 vec = g_try_new0(struct iovec, count);
3407 if (vec == NULL) {
3408 errno = ENOMEM;
3409 return NULL;
3412 target_vec = lock_user(VERIFY_READ, target_addr,
3413 count * sizeof(struct target_iovec), 1);
3414 if (target_vec == NULL) {
3415 err = EFAULT;
3416 goto fail2;
3419 /* ??? If host page size > target page size, this will result in a
3420 value larger than what we can actually support. */
3421 max_len = 0x7fffffff & TARGET_PAGE_MASK;
3422 total_len = 0;
3424 for (i = 0; i < count; i++) {
3425 abi_ulong base = tswapal(target_vec[i].iov_base);
3426 abi_long len = tswapal(target_vec[i].iov_len);
3428 if (len < 0) {
3429 err = EINVAL;
3430 goto fail;
3431 } else if (len == 0) {
3432 /* Zero length pointer is ignored. */
3433 vec[i].iov_base = 0;
3434 } else {
3435 vec[i].iov_base = lock_user(type, base, len, copy);
3436 /* If the first buffer pointer is bad, this is a fault. But
3437 * subsequent bad buffers will result in a partial write; this
3438 * is realized by filling the vector with null pointers and
3439 * zero lengths. */
3440 if (!vec[i].iov_base) {
3441 if (i == 0) {
3442 err = EFAULT;
3443 goto fail;
3444 } else {
3445 bad_address = true;
3448 if (bad_address) {
3449 len = 0;
3451 if (len > max_len - total_len) {
3452 len = max_len - total_len;
3455 vec[i].iov_len = len;
3456 total_len += len;
3459 unlock_user(target_vec, target_addr, 0);
3460 return vec;
3462 fail:
3463 while (--i >= 0) {
3464 if (tswapal(target_vec[i].iov_len) > 0) {
3465 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3468 unlock_user(target_vec, target_addr, 0);
3469 fail2:
3470 g_free(vec);
3471 errno = err;
3472 return NULL;
3475 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3476 abi_ulong count, int copy)
3478 struct target_iovec *target_vec;
3479 int i;
3481 target_vec = lock_user(VERIFY_READ, target_addr,
3482 count * sizeof(struct target_iovec), 1);
3483 if (target_vec) {
3484 for (i = 0; i < count; i++) {
3485 abi_ulong base = tswapal(target_vec[i].iov_base);
3486 abi_long len = tswapal(target_vec[i].iov_len);
3487 if (len < 0) {
3488 break;
3490 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3492 unlock_user(target_vec, target_addr, 0);
3495 g_free(vec);
3498 static inline int target_to_host_sock_type(int *type)
3500 int host_type = 0;
3501 int target_type = *type;
3503 switch (target_type & TARGET_SOCK_TYPE_MASK) {
3504 case TARGET_SOCK_DGRAM:
3505 host_type = SOCK_DGRAM;
3506 break;
3507 case TARGET_SOCK_STREAM:
3508 host_type = SOCK_STREAM;
3509 break;
3510 default:
3511 host_type = target_type & TARGET_SOCK_TYPE_MASK;
3512 break;
3514 if (target_type & TARGET_SOCK_CLOEXEC) {
3515 #if defined(SOCK_CLOEXEC)
3516 host_type |= SOCK_CLOEXEC;
3517 #else
3518 return -TARGET_EINVAL;
3519 #endif
3521 if (target_type & TARGET_SOCK_NONBLOCK) {
3522 #if defined(SOCK_NONBLOCK)
3523 host_type |= SOCK_NONBLOCK;
3524 #elif !defined(O_NONBLOCK)
3525 return -TARGET_EINVAL;
3526 #endif
3528 *type = host_type;
3529 return 0;
3532 /* Try to emulate socket type flags after socket creation. */
3533 static int sock_flags_fixup(int fd, int target_type)
3535 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3536 if (target_type & TARGET_SOCK_NONBLOCK) {
3537 int flags = fcntl(fd, F_GETFL);
3538 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3539 close(fd);
3540 return -TARGET_EINVAL;
3543 #endif
3544 return fd;
3547 static abi_long packet_target_to_host_sockaddr(void *host_addr,
3548 abi_ulong target_addr,
3549 socklen_t len)
3551 struct sockaddr *addr = host_addr;
3552 struct target_sockaddr *target_saddr;
3554 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
3555 if (!target_saddr) {
3556 return -TARGET_EFAULT;
3559 memcpy(addr, target_saddr, len);
3560 addr->sa_family = tswap16(target_saddr->sa_family);
3561 /* spkt_protocol is big-endian */
3563 unlock_user(target_saddr, target_addr, 0);
3564 return 0;
3567 static TargetFdTrans target_packet_trans = {
3568 .target_to_host_addr = packet_target_to_host_sockaddr,
3571 #ifdef CONFIG_RTNETLINK
3572 static abi_long netlink_route_target_to_host(void *buf, size_t len)
3574 abi_long ret;
3576 ret = target_to_host_nlmsg_route(buf, len);
3577 if (ret < 0) {
3578 return ret;
3581 return len;
3584 static abi_long netlink_route_host_to_target(void *buf, size_t len)
3586 abi_long ret;
3588 ret = host_to_target_nlmsg_route(buf, len);
3589 if (ret < 0) {
3590 return ret;
3593 return len;
3596 static TargetFdTrans target_netlink_route_trans = {
3597 .target_to_host_data = netlink_route_target_to_host,
3598 .host_to_target_data = netlink_route_host_to_target,
3600 #endif /* CONFIG_RTNETLINK */
3602 static abi_long netlink_audit_target_to_host(void *buf, size_t len)
3604 abi_long ret;
3606 ret = target_to_host_nlmsg_audit(buf, len);
3607 if (ret < 0) {
3608 return ret;
3611 return len;
3614 static abi_long netlink_audit_host_to_target(void *buf, size_t len)
3616 abi_long ret;
3618 ret = host_to_target_nlmsg_audit(buf, len);
3619 if (ret < 0) {
3620 return ret;
3623 return len;
3626 static TargetFdTrans target_netlink_audit_trans = {
3627 .target_to_host_data = netlink_audit_target_to_host,
3628 .host_to_target_data = netlink_audit_host_to_target,
3631 /* do_socket() Must return target values and target errnos. */
3632 static abi_long do_socket(int domain, int type, int protocol)
3634 int target_type = type;
3635 int ret;
3637 ret = target_to_host_sock_type(&type);
3638 if (ret) {
3639 return ret;
3642 if (domain == PF_NETLINK && !(
3643 #ifdef CONFIG_RTNETLINK
3644 protocol == NETLINK_ROUTE ||
3645 #endif
3646 protocol == NETLINK_KOBJECT_UEVENT ||
3647 protocol == NETLINK_AUDIT)) {
3648 return -EPFNOSUPPORT;
3651 if (domain == AF_PACKET ||
3652 (domain == AF_INET && type == SOCK_PACKET)) {
3653 protocol = tswap16(protocol);
3656 ret = get_errno(socket(domain, type, protocol));
3657 if (ret >= 0) {
3658 ret = sock_flags_fixup(ret, target_type);
3659 if (type == SOCK_PACKET) {
3660 /* Manage an obsolete case :
3661 * if socket type is SOCK_PACKET, bind by name
3663 fd_trans_register(ret, &target_packet_trans);
3664 } else if (domain == PF_NETLINK) {
3665 switch (protocol) {
3666 #ifdef CONFIG_RTNETLINK
3667 case NETLINK_ROUTE:
3668 fd_trans_register(ret, &target_netlink_route_trans);
3669 break;
3670 #endif
3671 case NETLINK_KOBJECT_UEVENT:
3672 /* nothing to do: messages are strings */
3673 break;
3674 case NETLINK_AUDIT:
3675 fd_trans_register(ret, &target_netlink_audit_trans);
3676 break;
3677 default:
3678 g_assert_not_reached();
3682 return ret;
3685 /* do_bind() Must return target values and target errnos. */
3686 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3687 socklen_t addrlen)
3689 void *addr;
3690 abi_long ret;
3692 if ((int)addrlen < 0) {
3693 return -TARGET_EINVAL;
3696 addr = alloca(addrlen+1);
3698 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3699 if (ret)
3700 return ret;
3702 return get_errno(bind(sockfd, addr, addrlen));
3705 /* do_connect() Must return target values and target errnos. */
3706 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3707 socklen_t addrlen)
3709 void *addr;
3710 abi_long ret;
3712 if ((int)addrlen < 0) {
3713 return -TARGET_EINVAL;
3716 addr = alloca(addrlen+1);
3718 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3719 if (ret)
3720 return ret;
3722 return get_errno(safe_connect(sockfd, addr, addrlen));
3725 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3726 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3727 int flags, int send)
3729 abi_long ret, len;
3730 struct msghdr msg;
3731 abi_ulong count;
3732 struct iovec *vec;
3733 abi_ulong target_vec;
3735 if (msgp->msg_name) {
3736 msg.msg_namelen = tswap32(msgp->msg_namelen);
3737 msg.msg_name = alloca(msg.msg_namelen+1);
3738 ret = target_to_host_sockaddr(fd, msg.msg_name,
3739 tswapal(msgp->msg_name),
3740 msg.msg_namelen);
3741 if (ret == -TARGET_EFAULT) {
3742 /* For connected sockets msg_name and msg_namelen must
3743 * be ignored, so returning EFAULT immediately is wrong.
3744 * Instead, pass a bad msg_name to the host kernel, and
3745 * let it decide whether to return EFAULT or not.
3747 msg.msg_name = (void *)-1;
3748 } else if (ret) {
3749 goto out2;
3751 } else {
3752 msg.msg_name = NULL;
3753 msg.msg_namelen = 0;
3755 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3756 msg.msg_control = alloca(msg.msg_controllen);
3757 msg.msg_flags = tswap32(msgp->msg_flags);
3759 count = tswapal(msgp->msg_iovlen);
3760 target_vec = tswapal(msgp->msg_iov);
3762 if (count > IOV_MAX) {
3763 /* sendrcvmsg returns a different errno for this condition than
3764 * readv/writev, so we must catch it here before lock_iovec() does.
3766 ret = -TARGET_EMSGSIZE;
3767 goto out2;
3770 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3771 target_vec, count, send);
3772 if (vec == NULL) {
3773 ret = -host_to_target_errno(errno);
3774 goto out2;
3776 msg.msg_iovlen = count;
3777 msg.msg_iov = vec;
3779 if (send) {
3780 if (fd_trans_target_to_host_data(fd)) {
3781 void *host_msg;
3783 host_msg = g_malloc(msg.msg_iov->iov_len);
3784 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3785 ret = fd_trans_target_to_host_data(fd)(host_msg,
3786 msg.msg_iov->iov_len);
3787 if (ret >= 0) {
3788 msg.msg_iov->iov_base = host_msg;
3789 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3791 g_free(host_msg);
3792 } else {
3793 ret = target_to_host_cmsg(&msg, msgp);
3794 if (ret == 0) {
3795 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3798 } else {
3799 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3800 if (!is_error(ret)) {
3801 len = ret;
3802 if (fd_trans_host_to_target_data(fd)) {
3803 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3804 len);
3805 } else {
3806 ret = host_to_target_cmsg(msgp, &msg);
3808 if (!is_error(ret)) {
3809 msgp->msg_namelen = tswap32(msg.msg_namelen);
3810 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3811 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3812 msg.msg_name, msg.msg_namelen);
3813 if (ret) {
3814 goto out;
3818 ret = len;
3823 out:
3824 unlock_iovec(vec, target_vec, count, !send);
3825 out2:
3826 return ret;
3829 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3830 int flags, int send)
3832 abi_long ret;
3833 struct target_msghdr *msgp;
3835 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3836 msgp,
3837 target_msg,
3838 send ? 1 : 0)) {
3839 return -TARGET_EFAULT;
3841 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3842 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3843 return ret;
3846 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3847 * so it might not have this *mmsg-specific flag either.
3849 #ifndef MSG_WAITFORONE
3850 #define MSG_WAITFORONE 0x10000
3851 #endif
3853 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3854 unsigned int vlen, unsigned int flags,
3855 int send)
3857 struct target_mmsghdr *mmsgp;
3858 abi_long ret = 0;
3859 int i;
3861 if (vlen > UIO_MAXIOV) {
3862 vlen = UIO_MAXIOV;
3865 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3866 if (!mmsgp) {
3867 return -TARGET_EFAULT;
3870 for (i = 0; i < vlen; i++) {
3871 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3872 if (is_error(ret)) {
3873 break;
3875 mmsgp[i].msg_len = tswap32(ret);
3876 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3877 if (flags & MSG_WAITFORONE) {
3878 flags |= MSG_DONTWAIT;
3882 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3884 /* Return number of datagrams sent if we sent any at all;
3885 * otherwise return the error.
3887 if (i) {
3888 return i;
3890 return ret;
3893 /* do_accept4() Must return target values and target errnos. */
3894 static abi_long do_accept4(int fd, abi_ulong target_addr,
3895 abi_ulong target_addrlen_addr, int flags)
3897 socklen_t addrlen;
3898 void *addr;
3899 abi_long ret;
3900 int host_flags;
3902 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3904 if (target_addr == 0) {
3905 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3908 /* linux returns EINVAL if addrlen pointer is invalid */
3909 if (get_user_u32(addrlen, target_addrlen_addr))
3910 return -TARGET_EINVAL;
3912 if ((int)addrlen < 0) {
3913 return -TARGET_EINVAL;
3916 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3917 return -TARGET_EINVAL;
3919 addr = alloca(addrlen);
3921 ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags));
3922 if (!is_error(ret)) {
3923 host_to_target_sockaddr(target_addr, addr, addrlen);
3924 if (put_user_u32(addrlen, target_addrlen_addr))
3925 ret = -TARGET_EFAULT;
3927 return ret;
3930 /* do_getpeername() Must return target values and target errnos. */
3931 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3932 abi_ulong target_addrlen_addr)
3934 socklen_t addrlen;
3935 void *addr;
3936 abi_long ret;
3938 if (get_user_u32(addrlen, target_addrlen_addr))
3939 return -TARGET_EFAULT;
3941 if ((int)addrlen < 0) {
3942 return -TARGET_EINVAL;
3945 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3946 return -TARGET_EFAULT;
3948 addr = alloca(addrlen);
3950 ret = get_errno(getpeername(fd, addr, &addrlen));
3951 if (!is_error(ret)) {
3952 host_to_target_sockaddr(target_addr, addr, addrlen);
3953 if (put_user_u32(addrlen, target_addrlen_addr))
3954 ret = -TARGET_EFAULT;
3956 return ret;
3959 /* do_getsockname() Must return target values and target errnos. */
3960 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3961 abi_ulong target_addrlen_addr)
3963 socklen_t addrlen;
3964 void *addr;
3965 abi_long ret;
3967 if (get_user_u32(addrlen, target_addrlen_addr))
3968 return -TARGET_EFAULT;
3970 if ((int)addrlen < 0) {
3971 return -TARGET_EINVAL;
3974 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3975 return -TARGET_EFAULT;
3977 addr = alloca(addrlen);
3979 ret = get_errno(getsockname(fd, addr, &addrlen));
3980 if (!is_error(ret)) {
3981 host_to_target_sockaddr(target_addr, addr, addrlen);
3982 if (put_user_u32(addrlen, target_addrlen_addr))
3983 ret = -TARGET_EFAULT;
3985 return ret;
3988 /* do_socketpair() Must return target values and target errnos. */
3989 static abi_long do_socketpair(int domain, int type, int protocol,
3990 abi_ulong target_tab_addr)
3992 int tab[2];
3993 abi_long ret;
3995 target_to_host_sock_type(&type);
3997 ret = get_errno(socketpair(domain, type, protocol, tab));
3998 if (!is_error(ret)) {
3999 if (put_user_s32(tab[0], target_tab_addr)
4000 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
4001 ret = -TARGET_EFAULT;
4003 return ret;
4006 /* do_sendto() Must return target values and target errnos. */
4007 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
4008 abi_ulong target_addr, socklen_t addrlen)
4010 void *addr;
4011 void *host_msg;
4012 void *copy_msg = NULL;
4013 abi_long ret;
4015 if ((int)addrlen < 0) {
4016 return -TARGET_EINVAL;
4019 host_msg = lock_user(VERIFY_READ, msg, len, 1);
4020 if (!host_msg)
4021 return -TARGET_EFAULT;
4022 if (fd_trans_target_to_host_data(fd)) {
4023 copy_msg = host_msg;
4024 host_msg = g_malloc(len);
4025 memcpy(host_msg, copy_msg, len);
4026 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
4027 if (ret < 0) {
4028 goto fail;
4031 if (target_addr) {
4032 addr = alloca(addrlen+1);
4033 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
4034 if (ret) {
4035 goto fail;
4037 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
4038 } else {
4039 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
4041 fail:
4042 if (copy_msg) {
4043 g_free(host_msg);
4044 host_msg = copy_msg;
4046 unlock_user(host_msg, msg, 0);
4047 return ret;
4050 /* do_recvfrom() Must return target values and target errnos. */
4051 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
4052 abi_ulong target_addr,
4053 abi_ulong target_addrlen)
4055 socklen_t addrlen;
4056 void *addr;
4057 void *host_msg;
4058 abi_long ret;
4060 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
4061 if (!host_msg)
4062 return -TARGET_EFAULT;
4063 if (target_addr) {
4064 if (get_user_u32(addrlen, target_addrlen)) {
4065 ret = -TARGET_EFAULT;
4066 goto fail;
4068 if ((int)addrlen < 0) {
4069 ret = -TARGET_EINVAL;
4070 goto fail;
4072 addr = alloca(addrlen);
4073 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
4074 addr, &addrlen));
4075 } else {
4076 addr = NULL; /* To keep compiler quiet. */
4077 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
4079 if (!is_error(ret)) {
4080 if (fd_trans_host_to_target_data(fd)) {
4081 ret = fd_trans_host_to_target_data(fd)(host_msg, ret);
4083 if (target_addr) {
4084 host_to_target_sockaddr(target_addr, addr, addrlen);
4085 if (put_user_u32(addrlen, target_addrlen)) {
4086 ret = -TARGET_EFAULT;
4087 goto fail;
4090 unlock_user(host_msg, msg, len);
4091 } else {
4092 fail:
4093 unlock_user(host_msg, msg, 0);
4095 return ret;
4098 #ifdef TARGET_NR_socketcall
4099 /* do_socketcall() must return target values and target errnos. */
4100 static abi_long do_socketcall(int num, abi_ulong vptr)
4102 static const unsigned nargs[] = { /* number of arguments per operation */
4103 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */
4104 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */
4105 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */
4106 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */
4107 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */
4108 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
4109 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
4110 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */
4111 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */
4112 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */
4113 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */
4114 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */
4115 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */
4116 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
4117 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
4118 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */
4119 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */
4120 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */
4121 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */
4122 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */
4124 abi_long a[6]; /* max 6 args */
4125 unsigned i;
4127 /* check the range of the first argument num */
4128 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
4129 if (num < 1 || num > TARGET_SYS_SENDMMSG) {
4130 return -TARGET_EINVAL;
4132 /* ensure we have space for args */
4133 if (nargs[num] > ARRAY_SIZE(a)) {
4134 return -TARGET_EINVAL;
4136 /* collect the arguments in a[] according to nargs[] */
4137 for (i = 0; i < nargs[num]; ++i) {
4138 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
4139 return -TARGET_EFAULT;
4142 /* now when we have the args, invoke the appropriate underlying function */
4143 switch (num) {
4144 case TARGET_SYS_SOCKET: /* domain, type, protocol */
4145 return do_socket(a[0], a[1], a[2]);
4146 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
4147 return do_bind(a[0], a[1], a[2]);
4148 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
4149 return do_connect(a[0], a[1], a[2]);
4150 case TARGET_SYS_LISTEN: /* sockfd, backlog */
4151 return get_errno(listen(a[0], a[1]));
4152 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
4153 return do_accept4(a[0], a[1], a[2], 0);
4154 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
4155 return do_getsockname(a[0], a[1], a[2]);
4156 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
4157 return do_getpeername(a[0], a[1], a[2]);
4158 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
4159 return do_socketpair(a[0], a[1], a[2], a[3]);
4160 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
4161 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
4162 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
4163 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
4164 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
4165 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
4166 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
4167 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
4168 case TARGET_SYS_SHUTDOWN: /* sockfd, how */
4169 return get_errno(shutdown(a[0], a[1]));
4170 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
4171 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
4172 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
4173 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
4174 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
4175 return do_sendrecvmsg(a[0], a[1], a[2], 1);
4176 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
4177 return do_sendrecvmsg(a[0], a[1], a[2], 0);
4178 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
4179 return do_accept4(a[0], a[1], a[2], a[3]);
4180 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
4181 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
4182 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
4183 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
4184 default:
4185 gemu_log("Unsupported socketcall: %d\n", num);
4186 return -TARGET_EINVAL;
4189 #endif
4191 #define N_SHM_REGIONS 32
4193 static struct shm_region {
4194 abi_ulong start;
4195 abi_ulong size;
4196 bool in_use;
4197 } shm_regions[N_SHM_REGIONS];
4199 #ifndef TARGET_SEMID64_DS
4200 /* asm-generic version of this struct */
4201 struct target_semid64_ds
4203 struct target_ipc_perm sem_perm;
4204 abi_ulong sem_otime;
4205 #if TARGET_ABI_BITS == 32
4206 abi_ulong __unused1;
4207 #endif
4208 abi_ulong sem_ctime;
4209 #if TARGET_ABI_BITS == 32
4210 abi_ulong __unused2;
4211 #endif
4212 abi_ulong sem_nsems;
4213 abi_ulong __unused3;
4214 abi_ulong __unused4;
4216 #endif
4218 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
4219 abi_ulong target_addr)
4221 struct target_ipc_perm *target_ip;
4222 struct target_semid64_ds *target_sd;
4224 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4225 return -TARGET_EFAULT;
4226 target_ip = &(target_sd->sem_perm);
4227 host_ip->__key = tswap32(target_ip->__key);
4228 host_ip->uid = tswap32(target_ip->uid);
4229 host_ip->gid = tswap32(target_ip->gid);
4230 host_ip->cuid = tswap32(target_ip->cuid);
4231 host_ip->cgid = tswap32(target_ip->cgid);
4232 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4233 host_ip->mode = tswap32(target_ip->mode);
4234 #else
4235 host_ip->mode = tswap16(target_ip->mode);
4236 #endif
4237 #if defined(TARGET_PPC)
4238 host_ip->__seq = tswap32(target_ip->__seq);
4239 #else
4240 host_ip->__seq = tswap16(target_ip->__seq);
4241 #endif
4242 unlock_user_struct(target_sd, target_addr, 0);
4243 return 0;
4246 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
4247 struct ipc_perm *host_ip)
4249 struct target_ipc_perm *target_ip;
4250 struct target_semid64_ds *target_sd;
4252 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4253 return -TARGET_EFAULT;
4254 target_ip = &(target_sd->sem_perm);
4255 target_ip->__key = tswap32(host_ip->__key);
4256 target_ip->uid = tswap32(host_ip->uid);
4257 target_ip->gid = tswap32(host_ip->gid);
4258 target_ip->cuid = tswap32(host_ip->cuid);
4259 target_ip->cgid = tswap32(host_ip->cgid);
4260 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4261 target_ip->mode = tswap32(host_ip->mode);
4262 #else
4263 target_ip->mode = tswap16(host_ip->mode);
4264 #endif
4265 #if defined(TARGET_PPC)
4266 target_ip->__seq = tswap32(host_ip->__seq);
4267 #else
4268 target_ip->__seq = tswap16(host_ip->__seq);
4269 #endif
4270 unlock_user_struct(target_sd, target_addr, 1);
4271 return 0;
4274 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
4275 abi_ulong target_addr)
4277 struct target_semid64_ds *target_sd;
4279 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4280 return -TARGET_EFAULT;
4281 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
4282 return -TARGET_EFAULT;
4283 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
4284 host_sd->sem_otime = tswapal(target_sd->sem_otime);
4285 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
4286 unlock_user_struct(target_sd, target_addr, 0);
4287 return 0;
4290 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
4291 struct semid_ds *host_sd)
4293 struct target_semid64_ds *target_sd;
4295 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4296 return -TARGET_EFAULT;
4297 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
4298 return -TARGET_EFAULT;
4299 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
4300 target_sd->sem_otime = tswapal(host_sd->sem_otime);
4301 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
4302 unlock_user_struct(target_sd, target_addr, 1);
4303 return 0;
4306 struct target_seminfo {
4307 int semmap;
4308 int semmni;
4309 int semmns;
4310 int semmnu;
4311 int semmsl;
4312 int semopm;
4313 int semume;
4314 int semusz;
4315 int semvmx;
4316 int semaem;
4319 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
4320 struct seminfo *host_seminfo)
4322 struct target_seminfo *target_seminfo;
4323 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
4324 return -TARGET_EFAULT;
4325 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
4326 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
4327 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
4328 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
4329 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
4330 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
4331 __put_user(host_seminfo->semume, &target_seminfo->semume);
4332 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
4333 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
4334 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
4335 unlock_user_struct(target_seminfo, target_addr, 1);
4336 return 0;
4339 union semun {
4340 int val;
4341 struct semid_ds *buf;
4342 unsigned short *array;
4343 struct seminfo *__buf;
4346 union target_semun {
4347 int val;
4348 abi_ulong buf;
4349 abi_ulong array;
4350 abi_ulong __buf;
4353 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
4354 abi_ulong target_addr)
4356 int nsems;
4357 unsigned short *array;
4358 union semun semun;
4359 struct semid_ds semid_ds;
4360 int i, ret;
4362 semun.buf = &semid_ds;
4364 ret = semctl(semid, 0, IPC_STAT, semun);
4365 if (ret == -1)
4366 return get_errno(ret);
4368 nsems = semid_ds.sem_nsems;
4370 *host_array = g_try_new(unsigned short, nsems);
4371 if (!*host_array) {
4372 return -TARGET_ENOMEM;
4374 array = lock_user(VERIFY_READ, target_addr,
4375 nsems*sizeof(unsigned short), 1);
4376 if (!array) {
4377 g_free(*host_array);
4378 return -TARGET_EFAULT;
4381 for(i=0; i<nsems; i++) {
4382 __get_user((*host_array)[i], &array[i]);
4384 unlock_user(array, target_addr, 0);
4386 return 0;
4389 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
4390 unsigned short **host_array)
4392 int nsems;
4393 unsigned short *array;
4394 union semun semun;
4395 struct semid_ds semid_ds;
4396 int i, ret;
4398 semun.buf = &semid_ds;
4400 ret = semctl(semid, 0, IPC_STAT, semun);
4401 if (ret == -1)
4402 return get_errno(ret);
4404 nsems = semid_ds.sem_nsems;
4406 array = lock_user(VERIFY_WRITE, target_addr,
4407 nsems*sizeof(unsigned short), 0);
4408 if (!array)
4409 return -TARGET_EFAULT;
4411 for(i=0; i<nsems; i++) {
4412 __put_user((*host_array)[i], &array[i]);
4414 g_free(*host_array);
4415 unlock_user(array, target_addr, 1);
4417 return 0;
4420 static inline abi_long do_semctl(int semid, int semnum, int cmd,
4421 abi_ulong target_arg)
4423 union target_semun target_su = { .buf = target_arg };
4424 union semun arg;
4425 struct semid_ds dsarg;
4426 unsigned short *array = NULL;
4427 struct seminfo seminfo;
4428 abi_long ret = -TARGET_EINVAL;
4429 abi_long err;
4430 cmd &= 0xff;
4432 switch( cmd ) {
4433 case GETVAL:
4434 case SETVAL:
4435 /* In 64 bit cross-endian situations, we will erroneously pick up
4436 * the wrong half of the union for the "val" element. To rectify
4437 * this, the entire 8-byte structure is byteswapped, followed by
4438 * a swap of the 4 byte val field. In other cases, the data is
4439 * already in proper host byte order. */
4440 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
4441 target_su.buf = tswapal(target_su.buf);
4442 arg.val = tswap32(target_su.val);
4443 } else {
4444 arg.val = target_su.val;
4446 ret = get_errno(semctl(semid, semnum, cmd, arg));
4447 break;
4448 case GETALL:
4449 case SETALL:
4450 err = target_to_host_semarray(semid, &array, target_su.array);
4451 if (err)
4452 return err;
4453 arg.array = array;
4454 ret = get_errno(semctl(semid, semnum, cmd, arg));
4455 err = host_to_target_semarray(semid, target_su.array, &array);
4456 if (err)
4457 return err;
4458 break;
4459 case IPC_STAT:
4460 case IPC_SET:
4461 case SEM_STAT:
4462 err = target_to_host_semid_ds(&dsarg, target_su.buf);
4463 if (err)
4464 return err;
4465 arg.buf = &dsarg;
4466 ret = get_errno(semctl(semid, semnum, cmd, arg));
4467 err = host_to_target_semid_ds(target_su.buf, &dsarg);
4468 if (err)
4469 return err;
4470 break;
4471 case IPC_INFO:
4472 case SEM_INFO:
4473 arg.__buf = &seminfo;
4474 ret = get_errno(semctl(semid, semnum, cmd, arg));
4475 err = host_to_target_seminfo(target_su.__buf, &seminfo);
4476 if (err)
4477 return err;
4478 break;
4479 case IPC_RMID:
4480 case GETPID:
4481 case GETNCNT:
4482 case GETZCNT:
4483 ret = get_errno(semctl(semid, semnum, cmd, NULL));
4484 break;
4487 return ret;
4490 struct target_sembuf {
4491 unsigned short sem_num;
4492 short sem_op;
4493 short sem_flg;
4496 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4497 abi_ulong target_addr,
4498 unsigned nsops)
4500 struct target_sembuf *target_sembuf;
4501 int i;
4503 target_sembuf = lock_user(VERIFY_READ, target_addr,
4504 nsops*sizeof(struct target_sembuf), 1);
4505 if (!target_sembuf)
4506 return -TARGET_EFAULT;
4508 for(i=0; i<nsops; i++) {
4509 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4510 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4511 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4514 unlock_user(target_sembuf, target_addr, 0);
4516 return 0;
4519 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
4521 struct sembuf sops[nsops];
4523 if (target_to_host_sembuf(sops, ptr, nsops))
4524 return -TARGET_EFAULT;
4526 return get_errno(safe_semtimedop(semid, sops, nsops, NULL));
4529 struct target_msqid_ds
4531 struct target_ipc_perm msg_perm;
4532 abi_ulong msg_stime;
4533 #if TARGET_ABI_BITS == 32
4534 abi_ulong __unused1;
4535 #endif
4536 abi_ulong msg_rtime;
4537 #if TARGET_ABI_BITS == 32
4538 abi_ulong __unused2;
4539 #endif
4540 abi_ulong msg_ctime;
4541 #if TARGET_ABI_BITS == 32
4542 abi_ulong __unused3;
4543 #endif
4544 abi_ulong __msg_cbytes;
4545 abi_ulong msg_qnum;
4546 abi_ulong msg_qbytes;
4547 abi_ulong msg_lspid;
4548 abi_ulong msg_lrpid;
4549 abi_ulong __unused4;
4550 abi_ulong __unused5;
4553 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4554 abi_ulong target_addr)
4556 struct target_msqid_ds *target_md;
4558 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4559 return -TARGET_EFAULT;
4560 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4561 return -TARGET_EFAULT;
4562 host_md->msg_stime = tswapal(target_md->msg_stime);
4563 host_md->msg_rtime = tswapal(target_md->msg_rtime);
4564 host_md->msg_ctime = tswapal(target_md->msg_ctime);
4565 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4566 host_md->msg_qnum = tswapal(target_md->msg_qnum);
4567 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4568 host_md->msg_lspid = tswapal(target_md->msg_lspid);
4569 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4570 unlock_user_struct(target_md, target_addr, 0);
4571 return 0;
4574 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4575 struct msqid_ds *host_md)
4577 struct target_msqid_ds *target_md;
4579 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4580 return -TARGET_EFAULT;
4581 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4582 return -TARGET_EFAULT;
4583 target_md->msg_stime = tswapal(host_md->msg_stime);
4584 target_md->msg_rtime = tswapal(host_md->msg_rtime);
4585 target_md->msg_ctime = tswapal(host_md->msg_ctime);
4586 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4587 target_md->msg_qnum = tswapal(host_md->msg_qnum);
4588 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4589 target_md->msg_lspid = tswapal(host_md->msg_lspid);
4590 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4591 unlock_user_struct(target_md, target_addr, 1);
4592 return 0;
4595 struct target_msginfo {
4596 int msgpool;
4597 int msgmap;
4598 int msgmax;
4599 int msgmnb;
4600 int msgmni;
4601 int msgssz;
4602 int msgtql;
4603 unsigned short int msgseg;
4606 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4607 struct msginfo *host_msginfo)
4609 struct target_msginfo *target_msginfo;
4610 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4611 return -TARGET_EFAULT;
4612 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4613 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4614 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4615 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4616 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4617 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4618 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4619 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4620 unlock_user_struct(target_msginfo, target_addr, 1);
4621 return 0;
4624 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4626 struct msqid_ds dsarg;
4627 struct msginfo msginfo;
4628 abi_long ret = -TARGET_EINVAL;
4630 cmd &= 0xff;
4632 switch (cmd) {
4633 case IPC_STAT:
4634 case IPC_SET:
4635 case MSG_STAT:
4636 if (target_to_host_msqid_ds(&dsarg,ptr))
4637 return -TARGET_EFAULT;
4638 ret = get_errno(msgctl(msgid, cmd, &dsarg));
4639 if (host_to_target_msqid_ds(ptr,&dsarg))
4640 return -TARGET_EFAULT;
4641 break;
4642 case IPC_RMID:
4643 ret = get_errno(msgctl(msgid, cmd, NULL));
4644 break;
4645 case IPC_INFO:
4646 case MSG_INFO:
4647 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4648 if (host_to_target_msginfo(ptr, &msginfo))
4649 return -TARGET_EFAULT;
4650 break;
4653 return ret;
4656 struct target_msgbuf {
4657 abi_long mtype;
4658 char mtext[1];
4661 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4662 ssize_t msgsz, int msgflg)
4664 struct target_msgbuf *target_mb;
4665 struct msgbuf *host_mb;
4666 abi_long ret = 0;
4668 if (msgsz < 0) {
4669 return -TARGET_EINVAL;
4672 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4673 return -TARGET_EFAULT;
4674 host_mb = g_try_malloc(msgsz + sizeof(long));
4675 if (!host_mb) {
4676 unlock_user_struct(target_mb, msgp, 0);
4677 return -TARGET_ENOMEM;
4679 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4680 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4681 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4682 g_free(host_mb);
4683 unlock_user_struct(target_mb, msgp, 0);
4685 return ret;
4688 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4689 ssize_t msgsz, abi_long msgtyp,
4690 int msgflg)
4692 struct target_msgbuf *target_mb;
4693 char *target_mtext;
4694 struct msgbuf *host_mb;
4695 abi_long ret = 0;
4697 if (msgsz < 0) {
4698 return -TARGET_EINVAL;
4701 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4702 return -TARGET_EFAULT;
4704 host_mb = g_try_malloc(msgsz + sizeof(long));
4705 if (!host_mb) {
4706 ret = -TARGET_ENOMEM;
4707 goto end;
4709 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4711 if (ret > 0) {
4712 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4713 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4714 if (!target_mtext) {
4715 ret = -TARGET_EFAULT;
4716 goto end;
4718 memcpy(target_mb->mtext, host_mb->mtext, ret);
4719 unlock_user(target_mtext, target_mtext_addr, ret);
4722 target_mb->mtype = tswapal(host_mb->mtype);
4724 end:
4725 if (target_mb)
4726 unlock_user_struct(target_mb, msgp, 1);
4727 g_free(host_mb);
4728 return ret;
4731 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4732 abi_ulong target_addr)
4734 struct target_shmid_ds *target_sd;
4736 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4737 return -TARGET_EFAULT;
4738 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4739 return -TARGET_EFAULT;
4740 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4741 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4742 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4743 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4744 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4745 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4746 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4747 unlock_user_struct(target_sd, target_addr, 0);
4748 return 0;
4751 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4752 struct shmid_ds *host_sd)
4754 struct target_shmid_ds *target_sd;
4756 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4757 return -TARGET_EFAULT;
4758 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4759 return -TARGET_EFAULT;
4760 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4761 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4762 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4763 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4764 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4765 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4766 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4767 unlock_user_struct(target_sd, target_addr, 1);
4768 return 0;
4771 struct target_shminfo {
4772 abi_ulong shmmax;
4773 abi_ulong shmmin;
4774 abi_ulong shmmni;
4775 abi_ulong shmseg;
4776 abi_ulong shmall;
4779 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4780 struct shminfo *host_shminfo)
4782 struct target_shminfo *target_shminfo;
4783 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4784 return -TARGET_EFAULT;
4785 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4786 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4787 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4788 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4789 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4790 unlock_user_struct(target_shminfo, target_addr, 1);
4791 return 0;
4794 struct target_shm_info {
4795 int used_ids;
4796 abi_ulong shm_tot;
4797 abi_ulong shm_rss;
4798 abi_ulong shm_swp;
4799 abi_ulong swap_attempts;
4800 abi_ulong swap_successes;
4803 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4804 struct shm_info *host_shm_info)
4806 struct target_shm_info *target_shm_info;
4807 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4808 return -TARGET_EFAULT;
4809 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4810 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4811 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4812 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4813 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4814 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4815 unlock_user_struct(target_shm_info, target_addr, 1);
4816 return 0;
4819 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4821 struct shmid_ds dsarg;
4822 struct shminfo shminfo;
4823 struct shm_info shm_info;
4824 abi_long ret = -TARGET_EINVAL;
4826 cmd &= 0xff;
4828 switch(cmd) {
4829 case IPC_STAT:
4830 case IPC_SET:
4831 case SHM_STAT:
4832 if (target_to_host_shmid_ds(&dsarg, buf))
4833 return -TARGET_EFAULT;
4834 ret = get_errno(shmctl(shmid, cmd, &dsarg));
4835 if (host_to_target_shmid_ds(buf, &dsarg))
4836 return -TARGET_EFAULT;
4837 break;
4838 case IPC_INFO:
4839 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4840 if (host_to_target_shminfo(buf, &shminfo))
4841 return -TARGET_EFAULT;
4842 break;
4843 case SHM_INFO:
4844 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4845 if (host_to_target_shm_info(buf, &shm_info))
4846 return -TARGET_EFAULT;
4847 break;
4848 case IPC_RMID:
4849 case SHM_LOCK:
4850 case SHM_UNLOCK:
4851 ret = get_errno(shmctl(shmid, cmd, NULL));
4852 break;
4855 return ret;
4858 #ifndef TARGET_FORCE_SHMLBA
4859 /* For most architectures, SHMLBA is the same as the page size;
4860 * some architectures have larger values, in which case they should
4861 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4862 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4863 * and defining its own value for SHMLBA.
4865 * The kernel also permits SHMLBA to be set by the architecture to a
4866 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4867 * this means that addresses are rounded to the large size if
4868 * SHM_RND is set but addresses not aligned to that size are not rejected
4869 * as long as they are at least page-aligned. Since the only architecture
4870 * which uses this is ia64 this code doesn't provide for that oddity.
4872 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4874 return TARGET_PAGE_SIZE;
4876 #endif
4878 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4879 int shmid, abi_ulong shmaddr, int shmflg)
4881 abi_long raddr;
4882 void *host_raddr;
4883 struct shmid_ds shm_info;
4884 int i,ret;
4885 abi_ulong shmlba;
4887 /* find out the length of the shared memory segment */
4888 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4889 if (is_error(ret)) {
4890 /* can't get length, bail out */
4891 return ret;
4894 shmlba = target_shmlba(cpu_env);
4896 if (shmaddr & (shmlba - 1)) {
4897 if (shmflg & SHM_RND) {
4898 shmaddr &= ~(shmlba - 1);
4899 } else {
4900 return -TARGET_EINVAL;
4904 mmap_lock();
4906 if (shmaddr)
4907 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
4908 else {
4909 abi_ulong mmap_start;
4911 mmap_start = mmap_find_vma(0, shm_info.shm_segsz);
4913 if (mmap_start == -1) {
4914 errno = ENOMEM;
4915 host_raddr = (void *)-1;
4916 } else
4917 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
4920 if (host_raddr == (void *)-1) {
4921 mmap_unlock();
4922 return get_errno((long)host_raddr);
4924 raddr=h2g((unsigned long)host_raddr);
4926 page_set_flags(raddr, raddr + shm_info.shm_segsz,
4927 PAGE_VALID | PAGE_READ |
4928 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
4930 for (i = 0; i < N_SHM_REGIONS; i++) {
4931 if (!shm_regions[i].in_use) {
4932 shm_regions[i].in_use = true;
4933 shm_regions[i].start = raddr;
4934 shm_regions[i].size = shm_info.shm_segsz;
4935 break;
4939 mmap_unlock();
4940 return raddr;
4944 static inline abi_long do_shmdt(abi_ulong shmaddr)
4946 int i;
4948 for (i = 0; i < N_SHM_REGIONS; ++i) {
4949 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4950 shm_regions[i].in_use = false;
4951 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4952 break;
4956 return get_errno(shmdt(g2h(shmaddr)));
4959 #ifdef TARGET_NR_ipc
4960 /* ??? This only works with linear mappings. */
4961 /* do_ipc() must return target values and target errnos. */
4962 static abi_long do_ipc(CPUArchState *cpu_env,
4963 unsigned int call, abi_long first,
4964 abi_long second, abi_long third,
4965 abi_long ptr, abi_long fifth)
4967 int version;
4968 abi_long ret = 0;
4970 version = call >> 16;
4971 call &= 0xffff;
4973 switch (call) {
4974 case IPCOP_semop:
4975 ret = do_semop(first, ptr, second);
4976 break;
4978 case IPCOP_semget:
4979 ret = get_errno(semget(first, second, third));
4980 break;
4982 case IPCOP_semctl: {
4983 /* The semun argument to semctl is passed by value, so dereference the
4984 * ptr argument. */
4985 abi_ulong atptr;
4986 get_user_ual(atptr, ptr);
4987 ret = do_semctl(first, second, third, atptr);
4988 break;
4991 case IPCOP_msgget:
4992 ret = get_errno(msgget(first, second));
4993 break;
4995 case IPCOP_msgsnd:
4996 ret = do_msgsnd(first, ptr, second, third);
4997 break;
4999 case IPCOP_msgctl:
5000 ret = do_msgctl(first, second, ptr);
5001 break;
5003 case IPCOP_msgrcv:
5004 switch (version) {
5005 case 0:
5007 struct target_ipc_kludge {
5008 abi_long msgp;
5009 abi_long msgtyp;
5010 } *tmp;
5012 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
5013 ret = -TARGET_EFAULT;
5014 break;
5017 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
5019 unlock_user_struct(tmp, ptr, 0);
5020 break;
5022 default:
5023 ret = do_msgrcv(first, ptr, second, fifth, third);
5025 break;
5027 case IPCOP_shmat:
5028 switch (version) {
5029 default:
5031 abi_ulong raddr;
5032 raddr = do_shmat(cpu_env, first, ptr, second);
5033 if (is_error(raddr))
5034 return get_errno(raddr);
5035 if (put_user_ual(raddr, third))
5036 return -TARGET_EFAULT;
5037 break;
5039 case 1:
5040 ret = -TARGET_EINVAL;
5041 break;
5043 break;
5044 case IPCOP_shmdt:
5045 ret = do_shmdt(ptr);
5046 break;
5048 case IPCOP_shmget:
5049 /* IPC_* flag values are the same on all linux platforms */
5050 ret = get_errno(shmget(first, second, third));
5051 break;
5053 /* IPC_* and SHM_* command values are the same on all linux platforms */
5054 case IPCOP_shmctl:
5055 ret = do_shmctl(first, second, ptr);
5056 break;
5057 default:
5058 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version);
5059 ret = -TARGET_ENOSYS;
5060 break;
5062 return ret;
5064 #endif
5066 /* kernel structure types definitions */
5068 #define STRUCT(name, ...) STRUCT_ ## name,
5069 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
5070 enum {
5071 #include "syscall_types.h"
5072 STRUCT_MAX
5074 #undef STRUCT
5075 #undef STRUCT_SPECIAL
5077 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
5078 #define STRUCT_SPECIAL(name)
5079 #include "syscall_types.h"
5080 #undef STRUCT
5081 #undef STRUCT_SPECIAL
5083 typedef struct IOCTLEntry IOCTLEntry;
5085 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
5086 int fd, int cmd, abi_long arg);
5088 struct IOCTLEntry {
5089 int target_cmd;
5090 unsigned int host_cmd;
5091 const char *name;
5092 int access;
5093 do_ioctl_fn *do_ioctl;
5094 const argtype arg_type[5];
5097 #define IOC_R 0x0001
5098 #define IOC_W 0x0002
5099 #define IOC_RW (IOC_R | IOC_W)
5101 #define MAX_STRUCT_SIZE 4096
5103 #ifdef CONFIG_FIEMAP
5104 /* So fiemap access checks don't overflow on 32 bit systems.
5105 * This is very slightly smaller than the limit imposed by
5106 * the underlying kernel.
5108 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
5109 / sizeof(struct fiemap_extent))
5111 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
5112 int fd, int cmd, abi_long arg)
5114 /* The parameter for this ioctl is a struct fiemap followed
5115 * by an array of struct fiemap_extent whose size is set
5116 * in fiemap->fm_extent_count. The array is filled in by the
5117 * ioctl.
5119 int target_size_in, target_size_out;
5120 struct fiemap *fm;
5121 const argtype *arg_type = ie->arg_type;
5122 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
5123 void *argptr, *p;
5124 abi_long ret;
5125 int i, extent_size = thunk_type_size(extent_arg_type, 0);
5126 uint32_t outbufsz;
5127 int free_fm = 0;
5129 assert(arg_type[0] == TYPE_PTR);
5130 assert(ie->access == IOC_RW);
5131 arg_type++;
5132 target_size_in = thunk_type_size(arg_type, 0);
5133 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
5134 if (!argptr) {
5135 return -TARGET_EFAULT;
5137 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5138 unlock_user(argptr, arg, 0);
5139 fm = (struct fiemap *)buf_temp;
5140 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
5141 return -TARGET_EINVAL;
5144 outbufsz = sizeof (*fm) +
5145 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
5147 if (outbufsz > MAX_STRUCT_SIZE) {
5148 /* We can't fit all the extents into the fixed size buffer.
5149 * Allocate one that is large enough and use it instead.
5151 fm = g_try_malloc(outbufsz);
5152 if (!fm) {
5153 return -TARGET_ENOMEM;
5155 memcpy(fm, buf_temp, sizeof(struct fiemap));
5156 free_fm = 1;
5158 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
5159 if (!is_error(ret)) {
5160 target_size_out = target_size_in;
5161 /* An extent_count of 0 means we were only counting the extents
5162 * so there are no structs to copy
5164 if (fm->fm_extent_count != 0) {
5165 target_size_out += fm->fm_mapped_extents * extent_size;
5167 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
5168 if (!argptr) {
5169 ret = -TARGET_EFAULT;
5170 } else {
5171 /* Convert the struct fiemap */
5172 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
5173 if (fm->fm_extent_count != 0) {
5174 p = argptr + target_size_in;
5175 /* ...and then all the struct fiemap_extents */
5176 for (i = 0; i < fm->fm_mapped_extents; i++) {
5177 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
5178 THUNK_TARGET);
5179 p += extent_size;
5182 unlock_user(argptr, arg, target_size_out);
5185 if (free_fm) {
5186 g_free(fm);
5188 return ret;
5190 #endif
5192 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
5193 int fd, int cmd, abi_long arg)
5195 const argtype *arg_type = ie->arg_type;
5196 int target_size;
5197 void *argptr;
5198 int ret;
5199 struct ifconf *host_ifconf;
5200 uint32_t outbufsz;
5201 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
5202 int target_ifreq_size;
5203 int nb_ifreq;
5204 int free_buf = 0;
5205 int i;
5206 int target_ifc_len;
5207 abi_long target_ifc_buf;
5208 int host_ifc_len;
5209 char *host_ifc_buf;
5211 assert(arg_type[0] == TYPE_PTR);
5212 assert(ie->access == IOC_RW);
5214 arg_type++;
5215 target_size = thunk_type_size(arg_type, 0);
5217 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5218 if (!argptr)
5219 return -TARGET_EFAULT;
5220 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5221 unlock_user(argptr, arg, 0);
5223 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
5224 target_ifc_len = host_ifconf->ifc_len;
5225 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
5227 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
5228 nb_ifreq = target_ifc_len / target_ifreq_size;
5229 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
5231 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
5232 if (outbufsz > MAX_STRUCT_SIZE) {
5233 /* We can't fit all the extents into the fixed size buffer.
5234 * Allocate one that is large enough and use it instead.
5236 host_ifconf = malloc(outbufsz);
5237 if (!host_ifconf) {
5238 return -TARGET_ENOMEM;
5240 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
5241 free_buf = 1;
5243 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf);
5245 host_ifconf->ifc_len = host_ifc_len;
5246 host_ifconf->ifc_buf = host_ifc_buf;
5248 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
5249 if (!is_error(ret)) {
5250 /* convert host ifc_len to target ifc_len */
5252 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
5253 target_ifc_len = nb_ifreq * target_ifreq_size;
5254 host_ifconf->ifc_len = target_ifc_len;
5256 /* restore target ifc_buf */
5258 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
5260 /* copy struct ifconf to target user */
5262 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5263 if (!argptr)
5264 return -TARGET_EFAULT;
5265 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
5266 unlock_user(argptr, arg, target_size);
5268 /* copy ifreq[] to target user */
5270 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
5271 for (i = 0; i < nb_ifreq ; i++) {
5272 thunk_convert(argptr + i * target_ifreq_size,
5273 host_ifc_buf + i * sizeof(struct ifreq),
5274 ifreq_arg_type, THUNK_TARGET);
5276 unlock_user(argptr, target_ifc_buf, target_ifc_len);
5279 if (free_buf) {
5280 free(host_ifconf);
5283 return ret;
5286 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5287 int cmd, abi_long arg)
5289 void *argptr;
5290 struct dm_ioctl *host_dm;
5291 abi_long guest_data;
5292 uint32_t guest_data_size;
5293 int target_size;
5294 const argtype *arg_type = ie->arg_type;
5295 abi_long ret;
5296 void *big_buf = NULL;
5297 char *host_data;
5299 arg_type++;
5300 target_size = thunk_type_size(arg_type, 0);
5301 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5302 if (!argptr) {
5303 ret = -TARGET_EFAULT;
5304 goto out;
5306 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5307 unlock_user(argptr, arg, 0);
5309 /* buf_temp is too small, so fetch things into a bigger buffer */
5310 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5311 memcpy(big_buf, buf_temp, target_size);
5312 buf_temp = big_buf;
5313 host_dm = big_buf;
5315 guest_data = arg + host_dm->data_start;
5316 if ((guest_data - arg) < 0) {
5317 ret = -TARGET_EINVAL;
5318 goto out;
5320 guest_data_size = host_dm->data_size - host_dm->data_start;
5321 host_data = (char*)host_dm + host_dm->data_start;
5323 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5324 if (!argptr) {
5325 ret = -TARGET_EFAULT;
5326 goto out;
5329 switch (ie->host_cmd) {
5330 case DM_REMOVE_ALL:
5331 case DM_LIST_DEVICES:
5332 case DM_DEV_CREATE:
5333 case DM_DEV_REMOVE:
5334 case DM_DEV_SUSPEND:
5335 case DM_DEV_STATUS:
5336 case DM_DEV_WAIT:
5337 case DM_TABLE_STATUS:
5338 case DM_TABLE_CLEAR:
5339 case DM_TABLE_DEPS:
5340 case DM_LIST_VERSIONS:
5341 /* no input data */
5342 break;
5343 case DM_DEV_RENAME:
5344 case DM_DEV_SET_GEOMETRY:
5345 /* data contains only strings */
5346 memcpy(host_data, argptr, guest_data_size);
5347 break;
5348 case DM_TARGET_MSG:
5349 memcpy(host_data, argptr, guest_data_size);
5350 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5351 break;
5352 case DM_TABLE_LOAD:
5354 void *gspec = argptr;
5355 void *cur_data = host_data;
5356 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5357 int spec_size = thunk_type_size(arg_type, 0);
5358 int i;
5360 for (i = 0; i < host_dm->target_count; i++) {
5361 struct dm_target_spec *spec = cur_data;
5362 uint32_t next;
5363 int slen;
5365 thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5366 slen = strlen((char*)gspec + spec_size) + 1;
5367 next = spec->next;
5368 spec->next = sizeof(*spec) + slen;
5369 strcpy((char*)&spec[1], gspec + spec_size);
5370 gspec += next;
5371 cur_data += spec->next;
5373 break;
5375 default:
5376 ret = -TARGET_EINVAL;
5377 unlock_user(argptr, guest_data, 0);
5378 goto out;
5380 unlock_user(argptr, guest_data, 0);
5382 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5383 if (!is_error(ret)) {
5384 guest_data = arg + host_dm->data_start;
5385 guest_data_size = host_dm->data_size - host_dm->data_start;
5386 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5387 switch (ie->host_cmd) {
5388 case DM_REMOVE_ALL:
5389 case DM_DEV_CREATE:
5390 case DM_DEV_REMOVE:
5391 case DM_DEV_RENAME:
5392 case DM_DEV_SUSPEND:
5393 case DM_DEV_STATUS:
5394 case DM_TABLE_LOAD:
5395 case DM_TABLE_CLEAR:
5396 case DM_TARGET_MSG:
5397 case DM_DEV_SET_GEOMETRY:
5398 /* no return data */
5399 break;
5400 case DM_LIST_DEVICES:
5402 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5403 uint32_t remaining_data = guest_data_size;
5404 void *cur_data = argptr;
5405 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5406 int nl_size = 12; /* can't use thunk_size due to alignment */
5408 while (1) {
5409 uint32_t next = nl->next;
5410 if (next) {
5411 nl->next = nl_size + (strlen(nl->name) + 1);
5413 if (remaining_data < nl->next) {
5414 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5415 break;
5417 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5418 strcpy(cur_data + nl_size, nl->name);
5419 cur_data += nl->next;
5420 remaining_data -= nl->next;
5421 if (!next) {
5422 break;
5424 nl = (void*)nl + next;
5426 break;
5428 case DM_DEV_WAIT:
5429 case DM_TABLE_STATUS:
5431 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5432 void *cur_data = argptr;
5433 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5434 int spec_size = thunk_type_size(arg_type, 0);
5435 int i;
5437 for (i = 0; i < host_dm->target_count; i++) {
5438 uint32_t next = spec->next;
5439 int slen = strlen((char*)&spec[1]) + 1;
5440 spec->next = (cur_data - argptr) + spec_size + slen;
5441 if (guest_data_size < spec->next) {
5442 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5443 break;
5445 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5446 strcpy(cur_data + spec_size, (char*)&spec[1]);
5447 cur_data = argptr + spec->next;
5448 spec = (void*)host_dm + host_dm->data_start + next;
5450 break;
5452 case DM_TABLE_DEPS:
5454 void *hdata = (void*)host_dm + host_dm->data_start;
5455 int count = *(uint32_t*)hdata;
5456 uint64_t *hdev = hdata + 8;
5457 uint64_t *gdev = argptr + 8;
5458 int i;
5460 *(uint32_t*)argptr = tswap32(count);
5461 for (i = 0; i < count; i++) {
5462 *gdev = tswap64(*hdev);
5463 gdev++;
5464 hdev++;
5466 break;
5468 case DM_LIST_VERSIONS:
5470 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5471 uint32_t remaining_data = guest_data_size;
5472 void *cur_data = argptr;
5473 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5474 int vers_size = thunk_type_size(arg_type, 0);
5476 while (1) {
5477 uint32_t next = vers->next;
5478 if (next) {
5479 vers->next = vers_size + (strlen(vers->name) + 1);
5481 if (remaining_data < vers->next) {
5482 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5483 break;
5485 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5486 strcpy(cur_data + vers_size, vers->name);
5487 cur_data += vers->next;
5488 remaining_data -= vers->next;
5489 if (!next) {
5490 break;
5492 vers = (void*)vers + next;
5494 break;
5496 default:
5497 unlock_user(argptr, guest_data, 0);
5498 ret = -TARGET_EINVAL;
5499 goto out;
5501 unlock_user(argptr, guest_data, guest_data_size);
5503 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5504 if (!argptr) {
5505 ret = -TARGET_EFAULT;
5506 goto out;
5508 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5509 unlock_user(argptr, arg, target_size);
5511 out:
5512 g_free(big_buf);
5513 return ret;
5516 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5517 int cmd, abi_long arg)
5519 void *argptr;
5520 int target_size;
5521 const argtype *arg_type = ie->arg_type;
5522 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5523 abi_long ret;
5525 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5526 struct blkpg_partition host_part;
5528 /* Read and convert blkpg */
5529 arg_type++;
5530 target_size = thunk_type_size(arg_type, 0);
5531 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5532 if (!argptr) {
5533 ret = -TARGET_EFAULT;
5534 goto out;
5536 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5537 unlock_user(argptr, arg, 0);
5539 switch (host_blkpg->op) {
5540 case BLKPG_ADD_PARTITION:
5541 case BLKPG_DEL_PARTITION:
5542 /* payload is struct blkpg_partition */
5543 break;
5544 default:
5545 /* Unknown opcode */
5546 ret = -TARGET_EINVAL;
5547 goto out;
5550 /* Read and convert blkpg->data */
5551 arg = (abi_long)(uintptr_t)host_blkpg->data;
5552 target_size = thunk_type_size(part_arg_type, 0);
5553 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5554 if (!argptr) {
5555 ret = -TARGET_EFAULT;
5556 goto out;
5558 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5559 unlock_user(argptr, arg, 0);
5561 /* Swizzle the data pointer to our local copy and call! */
5562 host_blkpg->data = &host_part;
5563 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5565 out:
5566 return ret;
5569 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5570 int fd, int cmd, abi_long arg)
5572 const argtype *arg_type = ie->arg_type;
5573 const StructEntry *se;
5574 const argtype *field_types;
5575 const int *dst_offsets, *src_offsets;
5576 int target_size;
5577 void *argptr;
5578 abi_ulong *target_rt_dev_ptr;
5579 unsigned long *host_rt_dev_ptr;
5580 abi_long ret;
5581 int i;
5583 assert(ie->access == IOC_W);
5584 assert(*arg_type == TYPE_PTR);
5585 arg_type++;
5586 assert(*arg_type == TYPE_STRUCT);
5587 target_size = thunk_type_size(arg_type, 0);
5588 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5589 if (!argptr) {
5590 return -TARGET_EFAULT;
5592 arg_type++;
5593 assert(*arg_type == (int)STRUCT_rtentry);
5594 se = struct_entries + *arg_type++;
5595 assert(se->convert[0] == NULL);
5596 /* convert struct here to be able to catch rt_dev string */
5597 field_types = se->field_types;
5598 dst_offsets = se->field_offsets[THUNK_HOST];
5599 src_offsets = se->field_offsets[THUNK_TARGET];
5600 for (i = 0; i < se->nb_fields; i++) {
5601 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5602 assert(*field_types == TYPE_PTRVOID);
5603 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5604 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5605 if (*target_rt_dev_ptr != 0) {
5606 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5607 tswapal(*target_rt_dev_ptr));
5608 if (!*host_rt_dev_ptr) {
5609 unlock_user(argptr, arg, 0);
5610 return -TARGET_EFAULT;
5612 } else {
5613 *host_rt_dev_ptr = 0;
5615 field_types++;
5616 continue;
5618 field_types = thunk_convert(buf_temp + dst_offsets[i],
5619 argptr + src_offsets[i],
5620 field_types, THUNK_HOST);
5622 unlock_user(argptr, arg, 0);
5624 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5625 if (*host_rt_dev_ptr != 0) {
5626 unlock_user((void *)*host_rt_dev_ptr,
5627 *target_rt_dev_ptr, 0);
5629 return ret;
5632 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5633 int fd, int cmd, abi_long arg)
5635 int sig = target_to_host_signal(arg);
5636 return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5639 #ifdef TIOCGPTPEER
5640 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5641 int fd, int cmd, abi_long arg)
5643 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5644 return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5646 #endif
5648 static IOCTLEntry ioctl_entries[] = {
5649 #define IOCTL(cmd, access, ...) \
5650 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5651 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5652 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5653 #define IOCTL_IGNORE(cmd) \
5654 { TARGET_ ## cmd, 0, #cmd },
5655 #include "ioctls.h"
5656 { 0, 0, },
5659 /* ??? Implement proper locking for ioctls. */
5660 /* do_ioctl() Must return target values and target errnos. */
5661 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5663 const IOCTLEntry *ie;
5664 const argtype *arg_type;
5665 abi_long ret;
5666 uint8_t buf_temp[MAX_STRUCT_SIZE];
5667 int target_size;
5668 void *argptr;
5670 ie = ioctl_entries;
5671 for(;;) {
5672 if (ie->target_cmd == 0) {
5673 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5674 return -TARGET_ENOSYS;
5676 if (ie->target_cmd == cmd)
5677 break;
5678 ie++;
5680 arg_type = ie->arg_type;
5681 #if defined(DEBUG)
5682 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name);
5683 #endif
5684 if (ie->do_ioctl) {
5685 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5686 } else if (!ie->host_cmd) {
5687 /* Some architectures define BSD ioctls in their headers
5688 that are not implemented in Linux. */
5689 return -TARGET_ENOSYS;
5692 switch(arg_type[0]) {
5693 case TYPE_NULL:
5694 /* no argument */
5695 ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5696 break;
5697 case TYPE_PTRVOID:
5698 case TYPE_INT:
5699 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5700 break;
5701 case TYPE_PTR:
5702 arg_type++;
5703 target_size = thunk_type_size(arg_type, 0);
5704 switch(ie->access) {
5705 case IOC_R:
5706 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5707 if (!is_error(ret)) {
5708 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5709 if (!argptr)
5710 return -TARGET_EFAULT;
5711 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5712 unlock_user(argptr, arg, target_size);
5714 break;
5715 case IOC_W:
5716 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5717 if (!argptr)
5718 return -TARGET_EFAULT;
5719 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5720 unlock_user(argptr, arg, 0);
5721 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5722 break;
5723 default:
5724 case IOC_RW:
5725 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5726 if (!argptr)
5727 return -TARGET_EFAULT;
5728 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5729 unlock_user(argptr, arg, 0);
5730 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5731 if (!is_error(ret)) {
5732 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5733 if (!argptr)
5734 return -TARGET_EFAULT;
5735 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5736 unlock_user(argptr, arg, target_size);
5738 break;
5740 break;
5741 default:
5742 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5743 (long)cmd, arg_type[0]);
5744 ret = -TARGET_ENOSYS;
5745 break;
5747 return ret;
5750 static const bitmask_transtbl iflag_tbl[] = {
5751 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5752 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5753 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5754 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5755 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5756 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5757 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5758 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5759 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5760 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5761 { TARGET_IXON, TARGET_IXON, IXON, IXON },
5762 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5763 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5764 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5765 { 0, 0, 0, 0 }
5768 static const bitmask_transtbl oflag_tbl[] = {
5769 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5770 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5771 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5772 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5773 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5774 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5775 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5776 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5777 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5778 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5779 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5780 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5781 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5782 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5783 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5784 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5785 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5786 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5787 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5788 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5789 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5790 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5791 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5792 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5793 { 0, 0, 0, 0 }
5796 static const bitmask_transtbl cflag_tbl[] = {
5797 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5798 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5799 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5800 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5801 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5802 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5803 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5804 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5805 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5806 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5807 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5808 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5809 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5810 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5811 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5812 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5813 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5814 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5815 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5816 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5817 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5818 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5819 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5820 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5821 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5822 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5823 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5824 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5825 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5826 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5827 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5828 { 0, 0, 0, 0 }
5831 static const bitmask_transtbl lflag_tbl[] = {
5832 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5833 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5834 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5835 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5836 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5837 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5838 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5839 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5840 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5841 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5842 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5843 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5844 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5845 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5846 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5847 { 0, 0, 0, 0 }
5850 static void target_to_host_termios (void *dst, const void *src)
5852 struct host_termios *host = dst;
5853 const struct target_termios *target = src;
5855 host->c_iflag =
5856 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5857 host->c_oflag =
5858 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5859 host->c_cflag =
5860 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5861 host->c_lflag =
5862 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5863 host->c_line = target->c_line;
5865 memset(host->c_cc, 0, sizeof(host->c_cc));
5866 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5867 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5868 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5869 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5870 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5871 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5872 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5873 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5874 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5875 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5876 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5877 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5878 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5879 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5880 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5881 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5882 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5885 static void host_to_target_termios (void *dst, const void *src)
5887 struct target_termios *target = dst;
5888 const struct host_termios *host = src;
5890 target->c_iflag =
5891 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5892 target->c_oflag =
5893 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5894 target->c_cflag =
5895 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5896 target->c_lflag =
5897 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5898 target->c_line = host->c_line;
5900 memset(target->c_cc, 0, sizeof(target->c_cc));
5901 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5902 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5903 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5904 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5905 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5906 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5907 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5908 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5909 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5910 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5911 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5912 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5913 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5914 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5915 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5916 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5917 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5920 static const StructEntry struct_termios_def = {
5921 .convert = { host_to_target_termios, target_to_host_termios },
5922 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5923 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5926 static bitmask_transtbl mmap_flags_tbl[] = {
5927 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
5928 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
5929 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5930 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5931 MAP_ANONYMOUS, MAP_ANONYMOUS },
5932 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5933 MAP_GROWSDOWN, MAP_GROWSDOWN },
5934 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5935 MAP_DENYWRITE, MAP_DENYWRITE },
5936 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5937 MAP_EXECUTABLE, MAP_EXECUTABLE },
5938 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5939 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5940 MAP_NORESERVE, MAP_NORESERVE },
5941 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5942 /* MAP_STACK had been ignored by the kernel for quite some time.
5943 Recognize it for the target insofar as we do not want to pass
5944 it through to the host. */
5945 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5946 { 0, 0, 0, 0 }
5949 #if defined(TARGET_I386)
5951 /* NOTE: there is really one LDT for all the threads */
5952 static uint8_t *ldt_table;
5954 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5956 int size;
5957 void *p;
5959 if (!ldt_table)
5960 return 0;
5961 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5962 if (size > bytecount)
5963 size = bytecount;
5964 p = lock_user(VERIFY_WRITE, ptr, size, 0);
5965 if (!p)
5966 return -TARGET_EFAULT;
5967 /* ??? Should this by byteswapped? */
5968 memcpy(p, ldt_table, size);
5969 unlock_user(p, ptr, size);
5970 return size;
5973 /* XXX: add locking support */
5974 static abi_long write_ldt(CPUX86State *env,
5975 abi_ulong ptr, unsigned long bytecount, int oldmode)
5977 struct target_modify_ldt_ldt_s ldt_info;
5978 struct target_modify_ldt_ldt_s *target_ldt_info;
5979 int seg_32bit, contents, read_exec_only, limit_in_pages;
5980 int seg_not_present, useable, lm;
5981 uint32_t *lp, entry_1, entry_2;
5983 if (bytecount != sizeof(ldt_info))
5984 return -TARGET_EINVAL;
5985 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5986 return -TARGET_EFAULT;
5987 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5988 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5989 ldt_info.limit = tswap32(target_ldt_info->limit);
5990 ldt_info.flags = tswap32(target_ldt_info->flags);
5991 unlock_user_struct(target_ldt_info, ptr, 0);
5993 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5994 return -TARGET_EINVAL;
5995 seg_32bit = ldt_info.flags & 1;
5996 contents = (ldt_info.flags >> 1) & 3;
5997 read_exec_only = (ldt_info.flags >> 3) & 1;
5998 limit_in_pages = (ldt_info.flags >> 4) & 1;
5999 seg_not_present = (ldt_info.flags >> 5) & 1;
6000 useable = (ldt_info.flags >> 6) & 1;
6001 #ifdef TARGET_ABI32
6002 lm = 0;
6003 #else
6004 lm = (ldt_info.flags >> 7) & 1;
6005 #endif
6006 if (contents == 3) {
6007 if (oldmode)
6008 return -TARGET_EINVAL;
6009 if (seg_not_present == 0)
6010 return -TARGET_EINVAL;
6012 /* allocate the LDT */
6013 if (!ldt_table) {
6014 env->ldt.base = target_mmap(0,
6015 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6016 PROT_READ|PROT_WRITE,
6017 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6018 if (env->ldt.base == -1)
6019 return -TARGET_ENOMEM;
6020 memset(g2h(env->ldt.base), 0,
6021 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6022 env->ldt.limit = 0xffff;
6023 ldt_table = g2h(env->ldt.base);
6026 /* NOTE: same code as Linux kernel */
6027 /* Allow LDTs to be cleared by the user. */
6028 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6029 if (oldmode ||
6030 (contents == 0 &&
6031 read_exec_only == 1 &&
6032 seg_32bit == 0 &&
6033 limit_in_pages == 0 &&
6034 seg_not_present == 1 &&
6035 useable == 0 )) {
6036 entry_1 = 0;
6037 entry_2 = 0;
6038 goto install;
6042 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6043 (ldt_info.limit & 0x0ffff);
6044 entry_2 = (ldt_info.base_addr & 0xff000000) |
6045 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6046 (ldt_info.limit & 0xf0000) |
6047 ((read_exec_only ^ 1) << 9) |
6048 (contents << 10) |
6049 ((seg_not_present ^ 1) << 15) |
6050 (seg_32bit << 22) |
6051 (limit_in_pages << 23) |
6052 (lm << 21) |
6053 0x7000;
6054 if (!oldmode)
6055 entry_2 |= (useable << 20);
6057 /* Install the new entry ... */
6058 install:
6059 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6060 lp[0] = tswap32(entry_1);
6061 lp[1] = tswap32(entry_2);
6062 return 0;
6065 /* specific and weird i386 syscalls */
6066 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6067 unsigned long bytecount)
6069 abi_long ret;
6071 switch (func) {
6072 case 0:
6073 ret = read_ldt(ptr, bytecount);
6074 break;
6075 case 1:
6076 ret = write_ldt(env, ptr, bytecount, 1);
6077 break;
6078 case 0x11:
6079 ret = write_ldt(env, ptr, bytecount, 0);
6080 break;
6081 default:
6082 ret = -TARGET_ENOSYS;
6083 break;
6085 return ret;
6088 #if defined(TARGET_I386) && defined(TARGET_ABI32)
6089 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6091 uint64_t *gdt_table = g2h(env->gdt.base);
6092 struct target_modify_ldt_ldt_s ldt_info;
6093 struct target_modify_ldt_ldt_s *target_ldt_info;
6094 int seg_32bit, contents, read_exec_only, limit_in_pages;
6095 int seg_not_present, useable, lm;
6096 uint32_t *lp, entry_1, entry_2;
6097 int i;
6099 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6100 if (!target_ldt_info)
6101 return -TARGET_EFAULT;
6102 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6103 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6104 ldt_info.limit = tswap32(target_ldt_info->limit);
6105 ldt_info.flags = tswap32(target_ldt_info->flags);
6106 if (ldt_info.entry_number == -1) {
6107 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6108 if (gdt_table[i] == 0) {
6109 ldt_info.entry_number = i;
6110 target_ldt_info->entry_number = tswap32(i);
6111 break;
6115 unlock_user_struct(target_ldt_info, ptr, 1);
6117 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6118 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6119 return -TARGET_EINVAL;
6120 seg_32bit = ldt_info.flags & 1;
6121 contents = (ldt_info.flags >> 1) & 3;
6122 read_exec_only = (ldt_info.flags >> 3) & 1;
6123 limit_in_pages = (ldt_info.flags >> 4) & 1;
6124 seg_not_present = (ldt_info.flags >> 5) & 1;
6125 useable = (ldt_info.flags >> 6) & 1;
6126 #ifdef TARGET_ABI32
6127 lm = 0;
6128 #else
6129 lm = (ldt_info.flags >> 7) & 1;
6130 #endif
6132 if (contents == 3) {
6133 if (seg_not_present == 0)
6134 return -TARGET_EINVAL;
6137 /* NOTE: same code as Linux kernel */
6138 /* Allow LDTs to be cleared by the user. */
6139 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6140 if ((contents == 0 &&
6141 read_exec_only == 1 &&
6142 seg_32bit == 0 &&
6143 limit_in_pages == 0 &&
6144 seg_not_present == 1 &&
6145 useable == 0 )) {
6146 entry_1 = 0;
6147 entry_2 = 0;
6148 goto install;
6152 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6153 (ldt_info.limit & 0x0ffff);
6154 entry_2 = (ldt_info.base_addr & 0xff000000) |
6155 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6156 (ldt_info.limit & 0xf0000) |
6157 ((read_exec_only ^ 1) << 9) |
6158 (contents << 10) |
6159 ((seg_not_present ^ 1) << 15) |
6160 (seg_32bit << 22) |
6161 (limit_in_pages << 23) |
6162 (useable << 20) |
6163 (lm << 21) |
6164 0x7000;
6166 /* Install the new entry ... */
6167 install:
6168 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6169 lp[0] = tswap32(entry_1);
6170 lp[1] = tswap32(entry_2);
6171 return 0;
6174 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6176 struct target_modify_ldt_ldt_s *target_ldt_info;
6177 uint64_t *gdt_table = g2h(env->gdt.base);
6178 uint32_t base_addr, limit, flags;
6179 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6180 int seg_not_present, useable, lm;
6181 uint32_t *lp, entry_1, entry_2;
6183 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6184 if (!target_ldt_info)
6185 return -TARGET_EFAULT;
6186 idx = tswap32(target_ldt_info->entry_number);
6187 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6188 idx > TARGET_GDT_ENTRY_TLS_MAX) {
6189 unlock_user_struct(target_ldt_info, ptr, 1);
6190 return -TARGET_EINVAL;
6192 lp = (uint32_t *)(gdt_table + idx);
6193 entry_1 = tswap32(lp[0]);
6194 entry_2 = tswap32(lp[1]);
6196 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6197 contents = (entry_2 >> 10) & 3;
6198 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6199 seg_32bit = (entry_2 >> 22) & 1;
6200 limit_in_pages = (entry_2 >> 23) & 1;
6201 useable = (entry_2 >> 20) & 1;
6202 #ifdef TARGET_ABI32
6203 lm = 0;
6204 #else
6205 lm = (entry_2 >> 21) & 1;
6206 #endif
6207 flags = (seg_32bit << 0) | (contents << 1) |
6208 (read_exec_only << 3) | (limit_in_pages << 4) |
6209 (seg_not_present << 5) | (useable << 6) | (lm << 7);
6210 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
6211 base_addr = (entry_1 >> 16) |
6212 (entry_2 & 0xff000000) |
6213 ((entry_2 & 0xff) << 16);
6214 target_ldt_info->base_addr = tswapal(base_addr);
6215 target_ldt_info->limit = tswap32(limit);
6216 target_ldt_info->flags = tswap32(flags);
6217 unlock_user_struct(target_ldt_info, ptr, 1);
6218 return 0;
6220 #endif /* TARGET_I386 && TARGET_ABI32 */
6222 #ifndef TARGET_ABI32
6223 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6225 abi_long ret = 0;
6226 abi_ulong val;
6227 int idx;
6229 switch(code) {
6230 case TARGET_ARCH_SET_GS:
6231 case TARGET_ARCH_SET_FS:
6232 if (code == TARGET_ARCH_SET_GS)
6233 idx = R_GS;
6234 else
6235 idx = R_FS;
6236 cpu_x86_load_seg(env, idx, 0);
6237 env->segs[idx].base = addr;
6238 break;
6239 case TARGET_ARCH_GET_GS:
6240 case TARGET_ARCH_GET_FS:
6241 if (code == TARGET_ARCH_GET_GS)
6242 idx = R_GS;
6243 else
6244 idx = R_FS;
6245 val = env->segs[idx].base;
6246 if (put_user(val, addr, abi_ulong))
6247 ret = -TARGET_EFAULT;
6248 break;
6249 default:
6250 ret = -TARGET_EINVAL;
6251 break;
6253 return ret;
6255 #endif
6257 #endif /* defined(TARGET_I386) */
6259 #define NEW_STACK_SIZE 0x40000
6262 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6263 typedef struct {
6264 CPUArchState *env;
6265 pthread_mutex_t mutex;
6266 pthread_cond_t cond;
6267 pthread_t thread;
6268 uint32_t tid;
6269 abi_ulong child_tidptr;
6270 abi_ulong parent_tidptr;
6271 sigset_t sigmask;
6272 } new_thread_info;
6274 static void *clone_func(void *arg)
6276 new_thread_info *info = arg;
6277 CPUArchState *env;
6278 CPUState *cpu;
6279 TaskState *ts;
6281 rcu_register_thread();
6282 tcg_register_thread();
6283 env = info->env;
6284 cpu = ENV_GET_CPU(env);
6285 thread_cpu = cpu;
6286 ts = (TaskState *)cpu->opaque;
6287 info->tid = gettid();
6288 task_settid(ts);
6289 if (info->child_tidptr)
6290 put_user_u32(info->tid, info->child_tidptr);
6291 if (info->parent_tidptr)
6292 put_user_u32(info->tid, info->parent_tidptr);
6293 /* Enable signals. */
6294 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6295 /* Signal to the parent that we're ready. */
6296 pthread_mutex_lock(&info->mutex);
6297 pthread_cond_broadcast(&info->cond);
6298 pthread_mutex_unlock(&info->mutex);
6299 /* Wait until the parent has finished initializing the tls state. */
6300 pthread_mutex_lock(&clone_lock);
6301 pthread_mutex_unlock(&clone_lock);
6302 cpu_loop(env);
6303 /* never exits */
6304 return NULL;
6307 /* do_fork() Must return host values and target errnos (unlike most
6308 do_*() functions). */
6309 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6310 abi_ulong parent_tidptr, target_ulong newtls,
6311 abi_ulong child_tidptr)
6313 CPUState *cpu = ENV_GET_CPU(env);
6314 int ret;
6315 TaskState *ts;
6316 CPUState *new_cpu;
6317 CPUArchState *new_env;
6318 sigset_t sigmask;
6320 flags &= ~CLONE_IGNORED_FLAGS;
6322 /* Emulate vfork() with fork() */
6323 if (flags & CLONE_VFORK)
6324 flags &= ~(CLONE_VFORK | CLONE_VM);
6326 if (flags & CLONE_VM) {
6327 TaskState *parent_ts = (TaskState *)cpu->opaque;
6328 new_thread_info info;
6329 pthread_attr_t attr;
6331 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6332 (flags & CLONE_INVALID_THREAD_FLAGS)) {
6333 return -TARGET_EINVAL;
6336 ts = g_new0(TaskState, 1);
6337 init_task_state(ts);
6338 /* we create a new CPU instance. */
6339 new_env = cpu_copy(env);
6340 /* Init regs that differ from the parent. */
6341 cpu_clone_regs(new_env, newsp);
6342 new_cpu = ENV_GET_CPU(new_env);
6343 new_cpu->opaque = ts;
6344 ts->bprm = parent_ts->bprm;
6345 ts->info = parent_ts->info;
6346 ts->signal_mask = parent_ts->signal_mask;
6348 if (flags & CLONE_CHILD_CLEARTID) {
6349 ts->child_tidptr = child_tidptr;
6352 if (flags & CLONE_SETTLS) {
6353 cpu_set_tls (new_env, newtls);
6356 /* Grab a mutex so that thread setup appears atomic. */
6357 pthread_mutex_lock(&clone_lock);
6359 memset(&info, 0, sizeof(info));
6360 pthread_mutex_init(&info.mutex, NULL);
6361 pthread_mutex_lock(&info.mutex);
6362 pthread_cond_init(&info.cond, NULL);
6363 info.env = new_env;
6364 if (flags & CLONE_CHILD_SETTID) {
6365 info.child_tidptr = child_tidptr;
6367 if (flags & CLONE_PARENT_SETTID) {
6368 info.parent_tidptr = parent_tidptr;
6371 ret = pthread_attr_init(&attr);
6372 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6373 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6374 /* It is not safe to deliver signals until the child has finished
6375 initializing, so temporarily block all signals. */
6376 sigfillset(&sigmask);
6377 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6379 /* If this is our first additional thread, we need to ensure we
6380 * generate code for parallel execution and flush old translations.
6382 if (!parallel_cpus) {
6383 parallel_cpus = true;
6384 tb_flush(cpu);
6387 ret = pthread_create(&info.thread, &attr, clone_func, &info);
6388 /* TODO: Free new CPU state if thread creation failed. */
6390 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6391 pthread_attr_destroy(&attr);
6392 if (ret == 0) {
6393 /* Wait for the child to initialize. */
6394 pthread_cond_wait(&info.cond, &info.mutex);
6395 ret = info.tid;
6396 } else {
6397 ret = -1;
6399 pthread_mutex_unlock(&info.mutex);
6400 pthread_cond_destroy(&info.cond);
6401 pthread_mutex_destroy(&info.mutex);
6402 pthread_mutex_unlock(&clone_lock);
6403 } else {
6404 /* if no CLONE_VM, we consider it is a fork */
6405 if (flags & CLONE_INVALID_FORK_FLAGS) {
6406 return -TARGET_EINVAL;
6409 /* We can't support custom termination signals */
6410 if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6411 return -TARGET_EINVAL;
6414 if (block_signals()) {
6415 return -TARGET_ERESTARTSYS;
6418 fork_start();
6419 ret = fork();
6420 if (ret == 0) {
6421 /* Child Process. */
6422 cpu_clone_regs(env, newsp);
6423 fork_end(1);
6424 /* There is a race condition here. The parent process could
6425 theoretically read the TID in the child process before the child
6426 tid is set. This would require using either ptrace
6427 (not implemented) or having *_tidptr to point at a shared memory
6428 mapping. We can't repeat the spinlock hack used above because
6429 the child process gets its own copy of the lock. */
6430 if (flags & CLONE_CHILD_SETTID)
6431 put_user_u32(gettid(), child_tidptr);
6432 if (flags & CLONE_PARENT_SETTID)
6433 put_user_u32(gettid(), parent_tidptr);
6434 ts = (TaskState *)cpu->opaque;
6435 if (flags & CLONE_SETTLS)
6436 cpu_set_tls (env, newtls);
6437 if (flags & CLONE_CHILD_CLEARTID)
6438 ts->child_tidptr = child_tidptr;
6439 } else {
6440 fork_end(0);
6443 return ret;
6446 /* warning : doesn't handle linux specific flags... */
6447 static int target_to_host_fcntl_cmd(int cmd)
6449 switch(cmd) {
6450 case TARGET_F_DUPFD:
6451 case TARGET_F_GETFD:
6452 case TARGET_F_SETFD:
6453 case TARGET_F_GETFL:
6454 case TARGET_F_SETFL:
6455 return cmd;
6456 case TARGET_F_GETLK:
6457 return F_GETLK64;
6458 case TARGET_F_SETLK:
6459 return F_SETLK64;
6460 case TARGET_F_SETLKW:
6461 return F_SETLKW64;
6462 case TARGET_F_GETOWN:
6463 return F_GETOWN;
6464 case TARGET_F_SETOWN:
6465 return F_SETOWN;
6466 case TARGET_F_GETSIG:
6467 return F_GETSIG;
6468 case TARGET_F_SETSIG:
6469 return F_SETSIG;
6470 #if TARGET_ABI_BITS == 32
6471 case TARGET_F_GETLK64:
6472 return F_GETLK64;
6473 case TARGET_F_SETLK64:
6474 return F_SETLK64;
6475 case TARGET_F_SETLKW64:
6476 return F_SETLKW64;
6477 #endif
6478 case TARGET_F_SETLEASE:
6479 return F_SETLEASE;
6480 case TARGET_F_GETLEASE:
6481 return F_GETLEASE;
6482 #ifdef F_DUPFD_CLOEXEC
6483 case TARGET_F_DUPFD_CLOEXEC:
6484 return F_DUPFD_CLOEXEC;
6485 #endif
6486 case TARGET_F_NOTIFY:
6487 return F_NOTIFY;
6488 #ifdef F_GETOWN_EX
6489 case TARGET_F_GETOWN_EX:
6490 return F_GETOWN_EX;
6491 #endif
6492 #ifdef F_SETOWN_EX
6493 case TARGET_F_SETOWN_EX:
6494 return F_SETOWN_EX;
6495 #endif
6496 #ifdef F_SETPIPE_SZ
6497 case TARGET_F_SETPIPE_SZ:
6498 return F_SETPIPE_SZ;
6499 case TARGET_F_GETPIPE_SZ:
6500 return F_GETPIPE_SZ;
6501 #endif
6502 default:
6503 return -TARGET_EINVAL;
6505 return -TARGET_EINVAL;
6508 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
6509 static const bitmask_transtbl flock_tbl[] = {
6510 TRANSTBL_CONVERT(F_RDLCK),
6511 TRANSTBL_CONVERT(F_WRLCK),
6512 TRANSTBL_CONVERT(F_UNLCK),
6513 TRANSTBL_CONVERT(F_EXLCK),
6514 TRANSTBL_CONVERT(F_SHLCK),
6515 { 0, 0, 0, 0 }
6518 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6519 abi_ulong target_flock_addr)
6521 struct target_flock *target_fl;
6522 short l_type;
6524 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6525 return -TARGET_EFAULT;
6528 __get_user(l_type, &target_fl->l_type);
6529 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
6530 __get_user(fl->l_whence, &target_fl->l_whence);
6531 __get_user(fl->l_start, &target_fl->l_start);
6532 __get_user(fl->l_len, &target_fl->l_len);
6533 __get_user(fl->l_pid, &target_fl->l_pid);
6534 unlock_user_struct(target_fl, target_flock_addr, 0);
6535 return 0;
6538 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6539 const struct flock64 *fl)
6541 struct target_flock *target_fl;
6542 short l_type;
6544 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6545 return -TARGET_EFAULT;
6548 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
6549 __put_user(l_type, &target_fl->l_type);
6550 __put_user(fl->l_whence, &target_fl->l_whence);
6551 __put_user(fl->l_start, &target_fl->l_start);
6552 __put_user(fl->l_len, &target_fl->l_len);
6553 __put_user(fl->l_pid, &target_fl->l_pid);
6554 unlock_user_struct(target_fl, target_flock_addr, 1);
6555 return 0;
6558 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6559 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6561 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6562 static inline abi_long copy_from_user_eabi_flock64(struct flock64 *fl,
6563 abi_ulong target_flock_addr)
6565 struct target_eabi_flock64 *target_fl;
6566 short l_type;
6568 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6569 return -TARGET_EFAULT;
6572 __get_user(l_type, &target_fl->l_type);
6573 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
6574 __get_user(fl->l_whence, &target_fl->l_whence);
6575 __get_user(fl->l_start, &target_fl->l_start);
6576 __get_user(fl->l_len, &target_fl->l_len);
6577 __get_user(fl->l_pid, &target_fl->l_pid);
6578 unlock_user_struct(target_fl, target_flock_addr, 0);
6579 return 0;
6582 static inline abi_long copy_to_user_eabi_flock64(abi_ulong target_flock_addr,
6583 const struct flock64 *fl)
6585 struct target_eabi_flock64 *target_fl;
6586 short l_type;
6588 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6589 return -TARGET_EFAULT;
6592 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
6593 __put_user(l_type, &target_fl->l_type);
6594 __put_user(fl->l_whence, &target_fl->l_whence);
6595 __put_user(fl->l_start, &target_fl->l_start);
6596 __put_user(fl->l_len, &target_fl->l_len);
6597 __put_user(fl->l_pid, &target_fl->l_pid);
6598 unlock_user_struct(target_fl, target_flock_addr, 1);
6599 return 0;
6601 #endif
6603 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6604 abi_ulong target_flock_addr)
6606 struct target_flock64 *target_fl;
6607 short l_type;
6609 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6610 return -TARGET_EFAULT;
6613 __get_user(l_type, &target_fl->l_type);
6614 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
6615 __get_user(fl->l_whence, &target_fl->l_whence);
6616 __get_user(fl->l_start, &target_fl->l_start);
6617 __get_user(fl->l_len, &target_fl->l_len);
6618 __get_user(fl->l_pid, &target_fl->l_pid);
6619 unlock_user_struct(target_fl, target_flock_addr, 0);
6620 return 0;
6623 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6624 const struct flock64 *fl)
6626 struct target_flock64 *target_fl;
6627 short l_type;
6629 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6630 return -TARGET_EFAULT;
6633 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
6634 __put_user(l_type, &target_fl->l_type);
6635 __put_user(fl->l_whence, &target_fl->l_whence);
6636 __put_user(fl->l_start, &target_fl->l_start);
6637 __put_user(fl->l_len, &target_fl->l_len);
6638 __put_user(fl->l_pid, &target_fl->l_pid);
6639 unlock_user_struct(target_fl, target_flock_addr, 1);
6640 return 0;
6643 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6645 struct flock64 fl64;
6646 #ifdef F_GETOWN_EX
6647 struct f_owner_ex fox;
6648 struct target_f_owner_ex *target_fox;
6649 #endif
6650 abi_long ret;
6651 int host_cmd = target_to_host_fcntl_cmd(cmd);
6653 if (host_cmd == -TARGET_EINVAL)
6654 return host_cmd;
6656 switch(cmd) {
6657 case TARGET_F_GETLK:
6658 ret = copy_from_user_flock(&fl64, arg);
6659 if (ret) {
6660 return ret;
6662 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6663 if (ret == 0) {
6664 ret = copy_to_user_flock(arg, &fl64);
6666 break;
6668 case TARGET_F_SETLK:
6669 case TARGET_F_SETLKW:
6670 ret = copy_from_user_flock(&fl64, arg);
6671 if (ret) {
6672 return ret;
6674 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6675 break;
6677 case TARGET_F_GETLK64:
6678 ret = copy_from_user_flock64(&fl64, arg);
6679 if (ret) {
6680 return ret;
6682 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6683 if (ret == 0) {
6684 ret = copy_to_user_flock64(arg, &fl64);
6686 break;
6687 case TARGET_F_SETLK64:
6688 case TARGET_F_SETLKW64:
6689 ret = copy_from_user_flock64(&fl64, arg);
6690 if (ret) {
6691 return ret;
6693 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6694 break;
6696 case TARGET_F_GETFL:
6697 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6698 if (ret >= 0) {
6699 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
6701 break;
6703 case TARGET_F_SETFL:
6704 ret = get_errno(safe_fcntl(fd, host_cmd,
6705 target_to_host_bitmask(arg,
6706 fcntl_flags_tbl)));
6707 break;
6709 #ifdef F_GETOWN_EX
6710 case TARGET_F_GETOWN_EX:
6711 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6712 if (ret >= 0) {
6713 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
6714 return -TARGET_EFAULT;
6715 target_fox->type = tswap32(fox.type);
6716 target_fox->pid = tswap32(fox.pid);
6717 unlock_user_struct(target_fox, arg, 1);
6719 break;
6720 #endif
6722 #ifdef F_SETOWN_EX
6723 case TARGET_F_SETOWN_EX:
6724 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
6725 return -TARGET_EFAULT;
6726 fox.type = tswap32(target_fox->type);
6727 fox.pid = tswap32(target_fox->pid);
6728 unlock_user_struct(target_fox, arg, 0);
6729 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6730 break;
6731 #endif
6733 case TARGET_F_SETOWN:
6734 case TARGET_F_GETOWN:
6735 case TARGET_F_SETSIG:
6736 case TARGET_F_GETSIG:
6737 case TARGET_F_SETLEASE:
6738 case TARGET_F_GETLEASE:
6739 case TARGET_F_SETPIPE_SZ:
6740 case TARGET_F_GETPIPE_SZ:
6741 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6742 break;
6744 default:
6745 ret = get_errno(safe_fcntl(fd, cmd, arg));
6746 break;
6748 return ret;
6751 #ifdef USE_UID16
6753 static inline int high2lowuid(int uid)
6755 if (uid > 65535)
6756 return 65534;
6757 else
6758 return uid;
6761 static inline int high2lowgid(int gid)
6763 if (gid > 65535)
6764 return 65534;
6765 else
6766 return gid;
6769 static inline int low2highuid(int uid)
6771 if ((int16_t)uid == -1)
6772 return -1;
6773 else
6774 return uid;
6777 static inline int low2highgid(int gid)
6779 if ((int16_t)gid == -1)
6780 return -1;
6781 else
6782 return gid;
6784 static inline int tswapid(int id)
6786 return tswap16(id);
6789 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6791 #else /* !USE_UID16 */
6792 static inline int high2lowuid(int uid)
6794 return uid;
6796 static inline int high2lowgid(int gid)
6798 return gid;
6800 static inline int low2highuid(int uid)
6802 return uid;
6804 static inline int low2highgid(int gid)
6806 return gid;
6808 static inline int tswapid(int id)
6810 return tswap32(id);
6813 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6815 #endif /* USE_UID16 */
6817 /* We must do direct syscalls for setting UID/GID, because we want to
6818 * implement the Linux system call semantics of "change only for this thread",
6819 * not the libc/POSIX semantics of "change for all threads in process".
6820 * (See http://ewontfix.com/17/ for more details.)
6821 * We use the 32-bit version of the syscalls if present; if it is not
6822 * then either the host architecture supports 32-bit UIDs natively with
6823 * the standard syscall, or the 16-bit UID is the best we can do.
6825 #ifdef __NR_setuid32
6826 #define __NR_sys_setuid __NR_setuid32
6827 #else
6828 #define __NR_sys_setuid __NR_setuid
6829 #endif
6830 #ifdef __NR_setgid32
6831 #define __NR_sys_setgid __NR_setgid32
6832 #else
6833 #define __NR_sys_setgid __NR_setgid
6834 #endif
6835 #ifdef __NR_setresuid32
6836 #define __NR_sys_setresuid __NR_setresuid32
6837 #else
6838 #define __NR_sys_setresuid __NR_setresuid
6839 #endif
6840 #ifdef __NR_setresgid32
6841 #define __NR_sys_setresgid __NR_setresgid32
6842 #else
6843 #define __NR_sys_setresgid __NR_setresgid
6844 #endif
6846 _syscall1(int, sys_setuid, uid_t, uid)
6847 _syscall1(int, sys_setgid, gid_t, gid)
6848 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
6849 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
6851 void syscall_init(void)
6853 IOCTLEntry *ie;
6854 const argtype *arg_type;
6855 int size;
6856 int i;
6858 thunk_init(STRUCT_MAX);
6860 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
6861 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
6862 #include "syscall_types.h"
6863 #undef STRUCT
6864 #undef STRUCT_SPECIAL
6866 /* Build target_to_host_errno_table[] table from
6867 * host_to_target_errno_table[]. */
6868 for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
6869 target_to_host_errno_table[host_to_target_errno_table[i]] = i;
6872 /* we patch the ioctl size if necessary. We rely on the fact that
6873 no ioctl has all the bits at '1' in the size field */
6874 ie = ioctl_entries;
6875 while (ie->target_cmd != 0) {
6876 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
6877 TARGET_IOC_SIZEMASK) {
6878 arg_type = ie->arg_type;
6879 if (arg_type[0] != TYPE_PTR) {
6880 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
6881 ie->target_cmd);
6882 exit(1);
6884 arg_type++;
6885 size = thunk_type_size(arg_type, 0);
6886 ie->target_cmd = (ie->target_cmd &
6887 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
6888 (size << TARGET_IOC_SIZESHIFT);
6891 /* automatic consistency check if same arch */
6892 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6893 (defined(__x86_64__) && defined(TARGET_X86_64))
6894 if (unlikely(ie->target_cmd != ie->host_cmd)) {
6895 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
6896 ie->name, ie->target_cmd, ie->host_cmd);
6898 #endif
6899 ie++;
6903 #if TARGET_ABI_BITS == 32
6904 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
6906 #ifdef TARGET_WORDS_BIGENDIAN
6907 return ((uint64_t)word0 << 32) | word1;
6908 #else
6909 return ((uint64_t)word1 << 32) | word0;
6910 #endif
6912 #else /* TARGET_ABI_BITS == 32 */
6913 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
6915 return word0;
6917 #endif /* TARGET_ABI_BITS != 32 */
6919 #ifdef TARGET_NR_truncate64
6920 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
6921 abi_long arg2,
6922 abi_long arg3,
6923 abi_long arg4)
6925 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
6926 arg2 = arg3;
6927 arg3 = arg4;
6929 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
6931 #endif
6933 #ifdef TARGET_NR_ftruncate64
6934 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
6935 abi_long arg2,
6936 abi_long arg3,
6937 abi_long arg4)
6939 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
6940 arg2 = arg3;
6941 arg3 = arg4;
6943 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
6945 #endif
6947 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
6948 abi_ulong target_addr)
6950 struct target_timespec *target_ts;
6952 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1))
6953 return -TARGET_EFAULT;
6954 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
6955 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
6956 unlock_user_struct(target_ts, target_addr, 0);
6957 return 0;
6960 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
6961 struct timespec *host_ts)
6963 struct target_timespec *target_ts;
6965 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0))
6966 return -TARGET_EFAULT;
6967 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
6968 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
6969 unlock_user_struct(target_ts, target_addr, 1);
6970 return 0;
6973 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
6974 abi_ulong target_addr)
6976 struct target_itimerspec *target_itspec;
6978 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
6979 return -TARGET_EFAULT;
6982 host_itspec->it_interval.tv_sec =
6983 tswapal(target_itspec->it_interval.tv_sec);
6984 host_itspec->it_interval.tv_nsec =
6985 tswapal(target_itspec->it_interval.tv_nsec);
6986 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
6987 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
6989 unlock_user_struct(target_itspec, target_addr, 1);
6990 return 0;
6993 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
6994 struct itimerspec *host_its)
6996 struct target_itimerspec *target_itspec;
6998 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
6999 return -TARGET_EFAULT;
7002 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
7003 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
7005 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
7006 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
7008 unlock_user_struct(target_itspec, target_addr, 0);
7009 return 0;
7012 static inline abi_long target_to_host_timex(struct timex *host_tx,
7013 abi_long target_addr)
7015 struct target_timex *target_tx;
7017 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7018 return -TARGET_EFAULT;
7021 __get_user(host_tx->modes, &target_tx->modes);
7022 __get_user(host_tx->offset, &target_tx->offset);
7023 __get_user(host_tx->freq, &target_tx->freq);
7024 __get_user(host_tx->maxerror, &target_tx->maxerror);
7025 __get_user(host_tx->esterror, &target_tx->esterror);
7026 __get_user(host_tx->status, &target_tx->status);
7027 __get_user(host_tx->constant, &target_tx->constant);
7028 __get_user(host_tx->precision, &target_tx->precision);
7029 __get_user(host_tx->tolerance, &target_tx->tolerance);
7030 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7031 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7032 __get_user(host_tx->tick, &target_tx->tick);
7033 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7034 __get_user(host_tx->jitter, &target_tx->jitter);
7035 __get_user(host_tx->shift, &target_tx->shift);
7036 __get_user(host_tx->stabil, &target_tx->stabil);
7037 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7038 __get_user(host_tx->calcnt, &target_tx->calcnt);
7039 __get_user(host_tx->errcnt, &target_tx->errcnt);
7040 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7041 __get_user(host_tx->tai, &target_tx->tai);
7043 unlock_user_struct(target_tx, target_addr, 0);
7044 return 0;
7047 static inline abi_long host_to_target_timex(abi_long target_addr,
7048 struct timex *host_tx)
7050 struct target_timex *target_tx;
7052 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7053 return -TARGET_EFAULT;
7056 __put_user(host_tx->modes, &target_tx->modes);
7057 __put_user(host_tx->offset, &target_tx->offset);
7058 __put_user(host_tx->freq, &target_tx->freq);
7059 __put_user(host_tx->maxerror, &target_tx->maxerror);
7060 __put_user(host_tx->esterror, &target_tx->esterror);
7061 __put_user(host_tx->status, &target_tx->status);
7062 __put_user(host_tx->constant, &target_tx->constant);
7063 __put_user(host_tx->precision, &target_tx->precision);
7064 __put_user(host_tx->tolerance, &target_tx->tolerance);
7065 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7066 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7067 __put_user(host_tx->tick, &target_tx->tick);
7068 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7069 __put_user(host_tx->jitter, &target_tx->jitter);
7070 __put_user(host_tx->shift, &target_tx->shift);
7071 __put_user(host_tx->stabil, &target_tx->stabil);
7072 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7073 __put_user(host_tx->calcnt, &target_tx->calcnt);
7074 __put_user(host_tx->errcnt, &target_tx->errcnt);
7075 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7076 __put_user(host_tx->tai, &target_tx->tai);
7078 unlock_user_struct(target_tx, target_addr, 1);
7079 return 0;
7083 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7084 abi_ulong target_addr)
7086 struct target_sigevent *target_sevp;
7088 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7089 return -TARGET_EFAULT;
7092 /* This union is awkward on 64 bit systems because it has a 32 bit
7093 * integer and a pointer in it; we follow the conversion approach
7094 * used for handling sigval types in signal.c so the guest should get
7095 * the correct value back even if we did a 64 bit byteswap and it's
7096 * using the 32 bit integer.
7098 host_sevp->sigev_value.sival_ptr =
7099 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7100 host_sevp->sigev_signo =
7101 target_to_host_signal(tswap32(target_sevp->sigev_signo));
7102 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7103 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
7105 unlock_user_struct(target_sevp, target_addr, 1);
7106 return 0;
7109 #if defined(TARGET_NR_mlockall)
7110 static inline int target_to_host_mlockall_arg(int arg)
7112 int result = 0;
7114 if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
7115 result |= MCL_CURRENT;
7117 if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
7118 result |= MCL_FUTURE;
7120 return result;
7122 #endif
7124 static inline abi_long host_to_target_stat64(void *cpu_env,
7125 abi_ulong target_addr,
7126 struct stat *host_st)
7128 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7129 if (((CPUARMState *)cpu_env)->eabi) {
7130 struct target_eabi_stat64 *target_st;
7132 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7133 return -TARGET_EFAULT;
7134 memset(target_st, 0, sizeof(struct target_eabi_stat64));
7135 __put_user(host_st->st_dev, &target_st->st_dev);
7136 __put_user(host_st->st_ino, &target_st->st_ino);
7137 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7138 __put_user(host_st->st_ino, &target_st->__st_ino);
7139 #endif
7140 __put_user(host_st->st_mode, &target_st->st_mode);
7141 __put_user(host_st->st_nlink, &target_st->st_nlink);
7142 __put_user(host_st->st_uid, &target_st->st_uid);
7143 __put_user(host_st->st_gid, &target_st->st_gid);
7144 __put_user(host_st->st_rdev, &target_st->st_rdev);
7145 __put_user(host_st->st_size, &target_st->st_size);
7146 __put_user(host_st->st_blksize, &target_st->st_blksize);
7147 __put_user(host_st->st_blocks, &target_st->st_blocks);
7148 __put_user(host_st->st_atime, &target_st->target_st_atime);
7149 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7150 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7151 unlock_user_struct(target_st, target_addr, 1);
7152 } else
7153 #endif
7155 #if defined(TARGET_HAS_STRUCT_STAT64)
7156 struct target_stat64 *target_st;
7157 #else
7158 struct target_stat *target_st;
7159 #endif
7161 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7162 return -TARGET_EFAULT;
7163 memset(target_st, 0, sizeof(*target_st));
7164 __put_user(host_st->st_dev, &target_st->st_dev);
7165 __put_user(host_st->st_ino, &target_st->st_ino);
7166 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7167 __put_user(host_st->st_ino, &target_st->__st_ino);
7168 #endif
7169 __put_user(host_st->st_mode, &target_st->st_mode);
7170 __put_user(host_st->st_nlink, &target_st->st_nlink);
7171 __put_user(host_st->st_uid, &target_st->st_uid);
7172 __put_user(host_st->st_gid, &target_st->st_gid);
7173 __put_user(host_st->st_rdev, &target_st->st_rdev);
7174 /* XXX: better use of kernel struct */
7175 __put_user(host_st->st_size, &target_st->st_size);
7176 __put_user(host_st->st_blksize, &target_st->st_blksize);
7177 __put_user(host_st->st_blocks, &target_st->st_blocks);
7178 __put_user(host_st->st_atime, &target_st->target_st_atime);
7179 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7180 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7181 unlock_user_struct(target_st, target_addr, 1);
7184 return 0;
7187 /* ??? Using host futex calls even when target atomic operations
7188 are not really atomic probably breaks things. However implementing
7189 futexes locally would make futexes shared between multiple processes
7190 tricky. However they're probably useless because guest atomic
7191 operations won't work either. */
7192 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
7193 target_ulong uaddr2, int val3)
7195 struct timespec ts, *pts;
7196 int base_op;
7198 /* ??? We assume FUTEX_* constants are the same on both host
7199 and target. */
7200 #ifdef FUTEX_CMD_MASK
7201 base_op = op & FUTEX_CMD_MASK;
7202 #else
7203 base_op = op;
7204 #endif
7205 switch (base_op) {
7206 case FUTEX_WAIT:
7207 case FUTEX_WAIT_BITSET:
7208 if (timeout) {
7209 pts = &ts;
7210 target_to_host_timespec(pts, timeout);
7211 } else {
7212 pts = NULL;
7214 return get_errno(safe_futex(g2h(uaddr), op, tswap32(val),
7215 pts, NULL, val3));
7216 case FUTEX_WAKE:
7217 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
7218 case FUTEX_FD:
7219 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
7220 case FUTEX_REQUEUE:
7221 case FUTEX_CMP_REQUEUE:
7222 case FUTEX_WAKE_OP:
7223 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7224 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7225 But the prototype takes a `struct timespec *'; insert casts
7226 to satisfy the compiler. We do not need to tswap TIMEOUT
7227 since it's not compared to guest memory. */
7228 pts = (struct timespec *)(uintptr_t) timeout;
7229 return get_errno(safe_futex(g2h(uaddr), op, val, pts,
7230 g2h(uaddr2),
7231 (base_op == FUTEX_CMP_REQUEUE
7232 ? tswap32(val3)
7233 : val3)));
7234 default:
7235 return -TARGET_ENOSYS;
7238 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7239 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7240 abi_long handle, abi_long mount_id,
7241 abi_long flags)
7243 struct file_handle *target_fh;
7244 struct file_handle *fh;
7245 int mid = 0;
7246 abi_long ret;
7247 char *name;
7248 unsigned int size, total_size;
7250 if (get_user_s32(size, handle)) {
7251 return -TARGET_EFAULT;
7254 name = lock_user_string(pathname);
7255 if (!name) {
7256 return -TARGET_EFAULT;
7259 total_size = sizeof(struct file_handle) + size;
7260 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7261 if (!target_fh) {
7262 unlock_user(name, pathname, 0);
7263 return -TARGET_EFAULT;
7266 fh = g_malloc0(total_size);
7267 fh->handle_bytes = size;
7269 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7270 unlock_user(name, pathname, 0);
7272 /* man name_to_handle_at(2):
7273 * Other than the use of the handle_bytes field, the caller should treat
7274 * the file_handle structure as an opaque data type
7277 memcpy(target_fh, fh, total_size);
7278 target_fh->handle_bytes = tswap32(fh->handle_bytes);
7279 target_fh->handle_type = tswap32(fh->handle_type);
7280 g_free(fh);
7281 unlock_user(target_fh, handle, total_size);
7283 if (put_user_s32(mid, mount_id)) {
7284 return -TARGET_EFAULT;
7287 return ret;
7290 #endif
7292 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7293 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7294 abi_long flags)
7296 struct file_handle *target_fh;
7297 struct file_handle *fh;
7298 unsigned int size, total_size;
7299 abi_long ret;
7301 if (get_user_s32(size, handle)) {
7302 return -TARGET_EFAULT;
7305 total_size = sizeof(struct file_handle) + size;
7306 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7307 if (!target_fh) {
7308 return -TARGET_EFAULT;
7311 fh = g_memdup(target_fh, total_size);
7312 fh->handle_bytes = size;
7313 fh->handle_type = tswap32(target_fh->handle_type);
7315 ret = get_errno(open_by_handle_at(mount_fd, fh,
7316 target_to_host_bitmask(flags, fcntl_flags_tbl)));
7318 g_free(fh);
7320 unlock_user(target_fh, handle, total_size);
7322 return ret;
7324 #endif
7326 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7328 /* signalfd siginfo conversion */
7330 static void
7331 host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo,
7332 const struct signalfd_siginfo *info)
7334 int sig = host_to_target_signal(info->ssi_signo);
7336 /* linux/signalfd.h defines a ssi_addr_lsb
7337 * not defined in sys/signalfd.h but used by some kernels
7340 #ifdef BUS_MCEERR_AO
7341 if (tinfo->ssi_signo == SIGBUS &&
7342 (tinfo->ssi_code == BUS_MCEERR_AR ||
7343 tinfo->ssi_code == BUS_MCEERR_AO)) {
7344 uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1);
7345 uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1);
7346 *tssi_addr_lsb = tswap16(*ssi_addr_lsb);
7348 #endif
7350 tinfo->ssi_signo = tswap32(sig);
7351 tinfo->ssi_errno = tswap32(tinfo->ssi_errno);
7352 tinfo->ssi_code = tswap32(info->ssi_code);
7353 tinfo->ssi_pid = tswap32(info->ssi_pid);
7354 tinfo->ssi_uid = tswap32(info->ssi_uid);
7355 tinfo->ssi_fd = tswap32(info->ssi_fd);
7356 tinfo->ssi_tid = tswap32(info->ssi_tid);
7357 tinfo->ssi_band = tswap32(info->ssi_band);
7358 tinfo->ssi_overrun = tswap32(info->ssi_overrun);
7359 tinfo->ssi_trapno = tswap32(info->ssi_trapno);
7360 tinfo->ssi_status = tswap32(info->ssi_status);
7361 tinfo->ssi_int = tswap32(info->ssi_int);
7362 tinfo->ssi_ptr = tswap64(info->ssi_ptr);
7363 tinfo->ssi_utime = tswap64(info->ssi_utime);
7364 tinfo->ssi_stime = tswap64(info->ssi_stime);
7365 tinfo->ssi_addr = tswap64(info->ssi_addr);
7368 static abi_long host_to_target_data_signalfd(void *buf, size_t len)
7370 int i;
7372 for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) {
7373 host_to_target_signalfd_siginfo(buf + i, buf + i);
7376 return len;
7379 static TargetFdTrans target_signalfd_trans = {
7380 .host_to_target_data = host_to_target_data_signalfd,
7383 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7385 int host_flags;
7386 target_sigset_t *target_mask;
7387 sigset_t host_mask;
7388 abi_long ret;
7390 if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) {
7391 return -TARGET_EINVAL;
7393 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7394 return -TARGET_EFAULT;
7397 target_to_host_sigset(&host_mask, target_mask);
7399 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7401 ret = get_errno(signalfd(fd, &host_mask, host_flags));
7402 if (ret >= 0) {
7403 fd_trans_register(ret, &target_signalfd_trans);
7406 unlock_user_struct(target_mask, mask, 0);
7408 return ret;
7410 #endif
7412 /* Map host to target signal numbers for the wait family of syscalls.
7413 Assume all other status bits are the same. */
7414 int host_to_target_waitstatus(int status)
7416 if (WIFSIGNALED(status)) {
7417 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7419 if (WIFSTOPPED(status)) {
7420 return (host_to_target_signal(WSTOPSIG(status)) << 8)
7421 | (status & 0xff);
7423 return status;
7426 static int open_self_cmdline(void *cpu_env, int fd)
7428 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7429 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7430 int i;
7432 for (i = 0; i < bprm->argc; i++) {
7433 size_t len = strlen(bprm->argv[i]) + 1;
7435 if (write(fd, bprm->argv[i], len) != len) {
7436 return -1;
7440 return 0;
7443 static int open_self_maps(void *cpu_env, int fd)
7445 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7446 TaskState *ts = cpu->opaque;
7447 FILE *fp;
7448 char *line = NULL;
7449 size_t len = 0;
7450 ssize_t read;
7452 fp = fopen("/proc/self/maps", "r");
7453 if (fp == NULL) {
7454 return -1;
7457 while ((read = getline(&line, &len, fp)) != -1) {
7458 int fields, dev_maj, dev_min, inode;
7459 uint64_t min, max, offset;
7460 char flag_r, flag_w, flag_x, flag_p;
7461 char path[512] = "";
7462 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d"
7463 " %512s", &min, &max, &flag_r, &flag_w, &flag_x,
7464 &flag_p, &offset, &dev_maj, &dev_min, &inode, path);
7466 if ((fields < 10) || (fields > 11)) {
7467 continue;
7469 if (h2g_valid(min)) {
7470 int flags = page_get_flags(h2g(min));
7471 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX);
7472 if (page_check_range(h2g(min), max - min, flags) == -1) {
7473 continue;
7475 if (h2g(min) == ts->info->stack_limit) {
7476 pstrcpy(path, sizeof(path), " [stack]");
7478 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx
7479 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n",
7480 h2g(min), h2g(max - 1) + 1, flag_r, flag_w,
7481 flag_x, flag_p, offset, dev_maj, dev_min, inode,
7482 path[0] ? " " : "", path);
7486 free(line);
7487 fclose(fp);
7489 return 0;
7492 static int open_self_stat(void *cpu_env, int fd)
7494 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7495 TaskState *ts = cpu->opaque;
7496 abi_ulong start_stack = ts->info->start_stack;
7497 int i;
7499 for (i = 0; i < 44; i++) {
7500 char buf[128];
7501 int len;
7502 uint64_t val = 0;
7504 if (i == 0) {
7505 /* pid */
7506 val = getpid();
7507 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
7508 } else if (i == 1) {
7509 /* app name */
7510 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]);
7511 } else if (i == 27) {
7512 /* stack bottom */
7513 val = start_stack;
7514 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
7515 } else {
7516 /* for the rest, there is MasterCard */
7517 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' ');
7520 len = strlen(buf);
7521 if (write(fd, buf, len) != len) {
7522 return -1;
7526 return 0;
7529 static int open_self_auxv(void *cpu_env, int fd)
7531 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7532 TaskState *ts = cpu->opaque;
7533 abi_ulong auxv = ts->info->saved_auxv;
7534 abi_ulong len = ts->info->auxv_len;
7535 char *ptr;
7538 * Auxiliary vector is stored in target process stack.
7539 * read in whole auxv vector and copy it to file
7541 ptr = lock_user(VERIFY_READ, auxv, len, 0);
7542 if (ptr != NULL) {
7543 while (len > 0) {
7544 ssize_t r;
7545 r = write(fd, ptr, len);
7546 if (r <= 0) {
7547 break;
7549 len -= r;
7550 ptr += r;
7552 lseek(fd, 0, SEEK_SET);
7553 unlock_user(ptr, auxv, len);
7556 return 0;
7559 static int is_proc_myself(const char *filename, const char *entry)
7561 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
7562 filename += strlen("/proc/");
7563 if (!strncmp(filename, "self/", strlen("self/"))) {
7564 filename += strlen("self/");
7565 } else if (*filename >= '1' && *filename <= '9') {
7566 char myself[80];
7567 snprintf(myself, sizeof(myself), "%d/", getpid());
7568 if (!strncmp(filename, myself, strlen(myself))) {
7569 filename += strlen(myself);
7570 } else {
7571 return 0;
7573 } else {
7574 return 0;
7576 if (!strcmp(filename, entry)) {
7577 return 1;
7580 return 0;
7583 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7584 static int is_proc(const char *filename, const char *entry)
7586 return strcmp(filename, entry) == 0;
7589 static int open_net_route(void *cpu_env, int fd)
7591 FILE *fp;
7592 char *line = NULL;
7593 size_t len = 0;
7594 ssize_t read;
7596 fp = fopen("/proc/net/route", "r");
7597 if (fp == NULL) {
7598 return -1;
7601 /* read header */
7603 read = getline(&line, &len, fp);
7604 dprintf(fd, "%s", line);
7606 /* read routes */
7608 while ((read = getline(&line, &len, fp)) != -1) {
7609 char iface[16];
7610 uint32_t dest, gw, mask;
7611 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
7612 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7613 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
7614 &mask, &mtu, &window, &irtt);
7615 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7616 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
7617 metric, tswap32(mask), mtu, window, irtt);
7620 free(line);
7621 fclose(fp);
7623 return 0;
7625 #endif
7627 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
7629 struct fake_open {
7630 const char *filename;
7631 int (*fill)(void *cpu_env, int fd);
7632 int (*cmp)(const char *s1, const char *s2);
7634 const struct fake_open *fake_open;
7635 static const struct fake_open fakes[] = {
7636 { "maps", open_self_maps, is_proc_myself },
7637 { "stat", open_self_stat, is_proc_myself },
7638 { "auxv", open_self_auxv, is_proc_myself },
7639 { "cmdline", open_self_cmdline, is_proc_myself },
7640 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7641 { "/proc/net/route", open_net_route, is_proc },
7642 #endif
7643 { NULL, NULL, NULL }
7646 if (is_proc_myself(pathname, "exe")) {
7647 int execfd = qemu_getauxval(AT_EXECFD);
7648 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
7651 for (fake_open = fakes; fake_open->filename; fake_open++) {
7652 if (fake_open->cmp(pathname, fake_open->filename)) {
7653 break;
7657 if (fake_open->filename) {
7658 const char *tmpdir;
7659 char filename[PATH_MAX];
7660 int fd, r;
7662 /* create temporary file to map stat to */
7663 tmpdir = getenv("TMPDIR");
7664 if (!tmpdir)
7665 tmpdir = "/tmp";
7666 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
7667 fd = mkstemp(filename);
7668 if (fd < 0) {
7669 return fd;
7671 unlink(filename);
7673 if ((r = fake_open->fill(cpu_env, fd))) {
7674 int e = errno;
7675 close(fd);
7676 errno = e;
7677 return r;
7679 lseek(fd, 0, SEEK_SET);
7681 return fd;
7684 return safe_openat(dirfd, path(pathname), flags, mode);
7687 #define TIMER_MAGIC 0x0caf0000
7688 #define TIMER_MAGIC_MASK 0xffff0000
7690 /* Convert QEMU provided timer ID back to internal 16bit index format */
7691 static target_timer_t get_timer_id(abi_long arg)
7693 target_timer_t timerid = arg;
7695 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
7696 return -TARGET_EINVAL;
7699 timerid &= 0xffff;
7701 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
7702 return -TARGET_EINVAL;
7705 return timerid;
7708 static abi_long swap_data_eventfd(void *buf, size_t len)
7710 uint64_t *counter = buf;
7711 int i;
7713 if (len < sizeof(uint64_t)) {
7714 return -EINVAL;
7717 for (i = 0; i < len; i += sizeof(uint64_t)) {
7718 *counter = tswap64(*counter);
7719 counter++;
7722 return len;
7725 static TargetFdTrans target_eventfd_trans = {
7726 .host_to_target_data = swap_data_eventfd,
7727 .target_to_host_data = swap_data_eventfd,
7730 #if (defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)) || \
7731 (defined(CONFIG_INOTIFY1) && defined(TARGET_NR_inotify_init1) && \
7732 defined(__NR_inotify_init1))
7733 static abi_long host_to_target_data_inotify(void *buf, size_t len)
7735 struct inotify_event *ev;
7736 int i;
7737 uint32_t name_len;
7739 for (i = 0; i < len; i += sizeof(struct inotify_event) + name_len) {
7740 ev = (struct inotify_event *)((char *)buf + i);
7741 name_len = ev->len;
7743 ev->wd = tswap32(ev->wd);
7744 ev->mask = tswap32(ev->mask);
7745 ev->cookie = tswap32(ev->cookie);
7746 ev->len = tswap32(name_len);
7749 return len;
7752 static TargetFdTrans target_inotify_trans = {
7753 .host_to_target_data = host_to_target_data_inotify,
7755 #endif
7757 static int target_to_host_cpu_mask(unsigned long *host_mask,
7758 size_t host_size,
7759 abi_ulong target_addr,
7760 size_t target_size)
7762 unsigned target_bits = sizeof(abi_ulong) * 8;
7763 unsigned host_bits = sizeof(*host_mask) * 8;
7764 abi_ulong *target_mask;
7765 unsigned i, j;
7767 assert(host_size >= target_size);
7769 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
7770 if (!target_mask) {
7771 return -TARGET_EFAULT;
7773 memset(host_mask, 0, host_size);
7775 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7776 unsigned bit = i * target_bits;
7777 abi_ulong val;
7779 __get_user(val, &target_mask[i]);
7780 for (j = 0; j < target_bits; j++, bit++) {
7781 if (val & (1UL << j)) {
7782 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
7787 unlock_user(target_mask, target_addr, 0);
7788 return 0;
7791 static int host_to_target_cpu_mask(const unsigned long *host_mask,
7792 size_t host_size,
7793 abi_ulong target_addr,
7794 size_t target_size)
7796 unsigned target_bits = sizeof(abi_ulong) * 8;
7797 unsigned host_bits = sizeof(*host_mask) * 8;
7798 abi_ulong *target_mask;
7799 unsigned i, j;
7801 assert(host_size >= target_size);
7803 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
7804 if (!target_mask) {
7805 return -TARGET_EFAULT;
7808 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7809 unsigned bit = i * target_bits;
7810 abi_ulong val = 0;
7812 for (j = 0; j < target_bits; j++, bit++) {
7813 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
7814 val |= 1UL << j;
7817 __put_user(val, &target_mask[i]);
7820 unlock_user(target_mask, target_addr, target_size);
7821 return 0;
7824 /* do_syscall() should always have a single exit point at the end so
7825 that actions, such as logging of syscall results, can be performed.
7826 All errnos that do_syscall() returns must be -TARGET_<errcode>. */
7827 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
7828 abi_long arg2, abi_long arg3, abi_long arg4,
7829 abi_long arg5, abi_long arg6, abi_long arg7,
7830 abi_long arg8)
7832 CPUState *cpu = ENV_GET_CPU(cpu_env);
7833 abi_long ret;
7834 struct stat st;
7835 struct statfs stfs;
7836 void *p;
7838 #if defined(DEBUG_ERESTARTSYS)
7839 /* Debug-only code for exercising the syscall-restart code paths
7840 * in the per-architecture cpu main loops: restart every syscall
7841 * the guest makes once before letting it through.
7844 static int flag;
7846 flag = !flag;
7847 if (flag) {
7848 return -TARGET_ERESTARTSYS;
7851 #endif
7853 #ifdef DEBUG
7854 gemu_log("syscall %d", num);
7855 #endif
7856 trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
7857 if(do_strace)
7858 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
7860 switch(num) {
7861 case TARGET_NR_exit:
7862 /* In old applications this may be used to implement _exit(2).
7863 However in threaded applictions it is used for thread termination,
7864 and _exit_group is used for application termination.
7865 Do thread termination if we have more then one thread. */
7867 if (block_signals()) {
7868 ret = -TARGET_ERESTARTSYS;
7869 break;
7872 cpu_list_lock();
7874 if (CPU_NEXT(first_cpu)) {
7875 TaskState *ts;
7877 /* Remove the CPU from the list. */
7878 QTAILQ_REMOVE(&cpus, cpu, node);
7880 cpu_list_unlock();
7882 ts = cpu->opaque;
7883 if (ts->child_tidptr) {
7884 put_user_u32(0, ts->child_tidptr);
7885 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
7886 NULL, NULL, 0);
7888 thread_cpu = NULL;
7889 object_unref(OBJECT(cpu));
7890 g_free(ts);
7891 rcu_unregister_thread();
7892 pthread_exit(NULL);
7895 cpu_list_unlock();
7896 #ifdef TARGET_GPROF
7897 _mcleanup();
7898 #endif
7899 gdb_exit(cpu_env, arg1);
7900 _exit(arg1);
7901 ret = 0; /* avoid warning */
7902 break;
7903 case TARGET_NR_read:
7904 if (arg3 == 0)
7905 ret = 0;
7906 else {
7907 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
7908 goto efault;
7909 ret = get_errno(safe_read(arg1, p, arg3));
7910 if (ret >= 0 &&
7911 fd_trans_host_to_target_data(arg1)) {
7912 ret = fd_trans_host_to_target_data(arg1)(p, ret);
7914 unlock_user(p, arg2, ret);
7916 break;
7917 case TARGET_NR_write:
7918 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
7919 goto efault;
7920 if (fd_trans_target_to_host_data(arg1)) {
7921 void *copy = g_malloc(arg3);
7922 memcpy(copy, p, arg3);
7923 ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
7924 if (ret >= 0) {
7925 ret = get_errno(safe_write(arg1, copy, ret));
7927 g_free(copy);
7928 } else {
7929 ret = get_errno(safe_write(arg1, p, arg3));
7931 unlock_user(p, arg2, 0);
7932 break;
7933 #ifdef TARGET_NR_open
7934 case TARGET_NR_open:
7935 if (!(p = lock_user_string(arg1)))
7936 goto efault;
7937 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
7938 target_to_host_bitmask(arg2, fcntl_flags_tbl),
7939 arg3));
7940 fd_trans_unregister(ret);
7941 unlock_user(p, arg1, 0);
7942 break;
7943 #endif
7944 case TARGET_NR_openat:
7945 if (!(p = lock_user_string(arg2)))
7946 goto efault;
7947 ret = get_errno(do_openat(cpu_env, arg1, p,
7948 target_to_host_bitmask(arg3, fcntl_flags_tbl),
7949 arg4));
7950 fd_trans_unregister(ret);
7951 unlock_user(p, arg2, 0);
7952 break;
7953 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7954 case TARGET_NR_name_to_handle_at:
7955 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
7956 break;
7957 #endif
7958 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7959 case TARGET_NR_open_by_handle_at:
7960 ret = do_open_by_handle_at(arg1, arg2, arg3);
7961 fd_trans_unregister(ret);
7962 break;
7963 #endif
7964 case TARGET_NR_close:
7965 fd_trans_unregister(arg1);
7966 ret = get_errno(close(arg1));
7967 break;
7968 case TARGET_NR_brk:
7969 ret = do_brk(arg1);
7970 break;
7971 #ifdef TARGET_NR_fork
7972 case TARGET_NR_fork:
7973 ret = get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
7974 break;
7975 #endif
7976 #ifdef TARGET_NR_waitpid
7977 case TARGET_NR_waitpid:
7979 int status;
7980 ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
7981 if (!is_error(ret) && arg2 && ret
7982 && put_user_s32(host_to_target_waitstatus(status), arg2))
7983 goto efault;
7985 break;
7986 #endif
7987 #ifdef TARGET_NR_waitid
7988 case TARGET_NR_waitid:
7990 siginfo_t info;
7991 info.si_pid = 0;
7992 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
7993 if (!is_error(ret) && arg3 && info.si_pid != 0) {
7994 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
7995 goto efault;
7996 host_to_target_siginfo(p, &info);
7997 unlock_user(p, arg3, sizeof(target_siginfo_t));
8000 break;
8001 #endif
8002 #ifdef TARGET_NR_creat /* not on alpha */
8003 case TARGET_NR_creat:
8004 if (!(p = lock_user_string(arg1)))
8005 goto efault;
8006 ret = get_errno(creat(p, arg2));
8007 fd_trans_unregister(ret);
8008 unlock_user(p, arg1, 0);
8009 break;
8010 #endif
8011 #ifdef TARGET_NR_link
8012 case TARGET_NR_link:
8014 void * p2;
8015 p = lock_user_string(arg1);
8016 p2 = lock_user_string(arg2);
8017 if (!p || !p2)
8018 ret = -TARGET_EFAULT;
8019 else
8020 ret = get_errno(link(p, p2));
8021 unlock_user(p2, arg2, 0);
8022 unlock_user(p, arg1, 0);
8024 break;
8025 #endif
8026 #if defined(TARGET_NR_linkat)
8027 case TARGET_NR_linkat:
8029 void * p2 = NULL;
8030 if (!arg2 || !arg4)
8031 goto efault;
8032 p = lock_user_string(arg2);
8033 p2 = lock_user_string(arg4);
8034 if (!p || !p2)
8035 ret = -TARGET_EFAULT;
8036 else
8037 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
8038 unlock_user(p, arg2, 0);
8039 unlock_user(p2, arg4, 0);
8041 break;
8042 #endif
8043 #ifdef TARGET_NR_unlink
8044 case TARGET_NR_unlink:
8045 if (!(p = lock_user_string(arg1)))
8046 goto efault;
8047 ret = get_errno(unlink(p));
8048 unlock_user(p, arg1, 0);
8049 break;
8050 #endif
8051 #if defined(TARGET_NR_unlinkat)
8052 case TARGET_NR_unlinkat:
8053 if (!(p = lock_user_string(arg2)))
8054 goto efault;
8055 ret = get_errno(unlinkat(arg1, p, arg3));
8056 unlock_user(p, arg2, 0);
8057 break;
8058 #endif
8059 case TARGET_NR_execve:
8061 char **argp, **envp;
8062 int argc, envc;
8063 abi_ulong gp;
8064 abi_ulong guest_argp;
8065 abi_ulong guest_envp;
8066 abi_ulong addr;
8067 char **q;
8068 int total_size = 0;
8070 argc = 0;
8071 guest_argp = arg2;
8072 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8073 if (get_user_ual(addr, gp))
8074 goto efault;
8075 if (!addr)
8076 break;
8077 argc++;
8079 envc = 0;
8080 guest_envp = arg3;
8081 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8082 if (get_user_ual(addr, gp))
8083 goto efault;
8084 if (!addr)
8085 break;
8086 envc++;
8089 argp = g_new0(char *, argc + 1);
8090 envp = g_new0(char *, envc + 1);
8092 for (gp = guest_argp, q = argp; gp;
8093 gp += sizeof(abi_ulong), q++) {
8094 if (get_user_ual(addr, gp))
8095 goto execve_efault;
8096 if (!addr)
8097 break;
8098 if (!(*q = lock_user_string(addr)))
8099 goto execve_efault;
8100 total_size += strlen(*q) + 1;
8102 *q = NULL;
8104 for (gp = guest_envp, q = envp; gp;
8105 gp += sizeof(abi_ulong), q++) {
8106 if (get_user_ual(addr, gp))
8107 goto execve_efault;
8108 if (!addr)
8109 break;
8110 if (!(*q = lock_user_string(addr)))
8111 goto execve_efault;
8112 total_size += strlen(*q) + 1;
8114 *q = NULL;
8116 if (!(p = lock_user_string(arg1)))
8117 goto execve_efault;
8118 /* Although execve() is not an interruptible syscall it is
8119 * a special case where we must use the safe_syscall wrapper:
8120 * if we allow a signal to happen before we make the host
8121 * syscall then we will 'lose' it, because at the point of
8122 * execve the process leaves QEMU's control. So we use the
8123 * safe syscall wrapper to ensure that we either take the
8124 * signal as a guest signal, or else it does not happen
8125 * before the execve completes and makes it the other
8126 * program's problem.
8128 ret = get_errno(safe_execve(p, argp, envp));
8129 unlock_user(p, arg1, 0);
8131 goto execve_end;
8133 execve_efault:
8134 ret = -TARGET_EFAULT;
8136 execve_end:
8137 for (gp = guest_argp, q = argp; *q;
8138 gp += sizeof(abi_ulong), q++) {
8139 if (get_user_ual(addr, gp)
8140 || !addr)
8141 break;
8142 unlock_user(*q, addr, 0);
8144 for (gp = guest_envp, q = envp; *q;
8145 gp += sizeof(abi_ulong), q++) {
8146 if (get_user_ual(addr, gp)
8147 || !addr)
8148 break;
8149 unlock_user(*q, addr, 0);
8152 g_free(argp);
8153 g_free(envp);
8155 break;
8156 case TARGET_NR_chdir:
8157 if (!(p = lock_user_string(arg1)))
8158 goto efault;
8159 ret = get_errno(chdir(p));
8160 unlock_user(p, arg1, 0);
8161 break;
8162 #ifdef TARGET_NR_time
8163 case TARGET_NR_time:
8165 time_t host_time;
8166 ret = get_errno(time(&host_time));
8167 if (!is_error(ret)
8168 && arg1
8169 && put_user_sal(host_time, arg1))
8170 goto efault;
8172 break;
8173 #endif
8174 #ifdef TARGET_NR_mknod
8175 case TARGET_NR_mknod:
8176 if (!(p = lock_user_string(arg1)))
8177 goto efault;
8178 ret = get_errno(mknod(p, arg2, arg3));
8179 unlock_user(p, arg1, 0);
8180 break;
8181 #endif
8182 #if defined(TARGET_NR_mknodat)
8183 case TARGET_NR_mknodat:
8184 if (!(p = lock_user_string(arg2)))
8185 goto efault;
8186 ret = get_errno(mknodat(arg1, p, arg3, arg4));
8187 unlock_user(p, arg2, 0);
8188 break;
8189 #endif
8190 #ifdef TARGET_NR_chmod
8191 case TARGET_NR_chmod:
8192 if (!(p = lock_user_string(arg1)))
8193 goto efault;
8194 ret = get_errno(chmod(p, arg2));
8195 unlock_user(p, arg1, 0);
8196 break;
8197 #endif
8198 #ifdef TARGET_NR_break
8199 case TARGET_NR_break:
8200 goto unimplemented;
8201 #endif
8202 #ifdef TARGET_NR_oldstat
8203 case TARGET_NR_oldstat:
8204 goto unimplemented;
8205 #endif
8206 case TARGET_NR_lseek:
8207 ret = get_errno(lseek(arg1, arg2, arg3));
8208 break;
8209 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8210 /* Alpha specific */
8211 case TARGET_NR_getxpid:
8212 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
8213 ret = get_errno(getpid());
8214 break;
8215 #endif
8216 #ifdef TARGET_NR_getpid
8217 case TARGET_NR_getpid:
8218 ret = get_errno(getpid());
8219 break;
8220 #endif
8221 case TARGET_NR_mount:
8223 /* need to look at the data field */
8224 void *p2, *p3;
8226 if (arg1) {
8227 p = lock_user_string(arg1);
8228 if (!p) {
8229 goto efault;
8231 } else {
8232 p = NULL;
8235 p2 = lock_user_string(arg2);
8236 if (!p2) {
8237 if (arg1) {
8238 unlock_user(p, arg1, 0);
8240 goto efault;
8243 if (arg3) {
8244 p3 = lock_user_string(arg3);
8245 if (!p3) {
8246 if (arg1) {
8247 unlock_user(p, arg1, 0);
8249 unlock_user(p2, arg2, 0);
8250 goto efault;
8252 } else {
8253 p3 = NULL;
8256 /* FIXME - arg5 should be locked, but it isn't clear how to
8257 * do that since it's not guaranteed to be a NULL-terminated
8258 * string.
8260 if (!arg5) {
8261 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8262 } else {
8263 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
8265 ret = get_errno(ret);
8267 if (arg1) {
8268 unlock_user(p, arg1, 0);
8270 unlock_user(p2, arg2, 0);
8271 if (arg3) {
8272 unlock_user(p3, arg3, 0);
8275 break;
8276 #ifdef TARGET_NR_umount
8277 case TARGET_NR_umount:
8278 if (!(p = lock_user_string(arg1)))
8279 goto efault;
8280 ret = get_errno(umount(p));
8281 unlock_user(p, arg1, 0);
8282 break;
8283 #endif
8284 #ifdef TARGET_NR_stime /* not on alpha */
8285 case TARGET_NR_stime:
8287 time_t host_time;
8288 if (get_user_sal(host_time, arg1))
8289 goto efault;
8290 ret = get_errno(stime(&host_time));
8292 break;
8293 #endif
8294 case TARGET_NR_ptrace:
8295 goto unimplemented;
8296 #ifdef TARGET_NR_alarm /* not on alpha */
8297 case TARGET_NR_alarm:
8298 ret = alarm(arg1);
8299 break;
8300 #endif
8301 #ifdef TARGET_NR_oldfstat
8302 case TARGET_NR_oldfstat:
8303 goto unimplemented;
8304 #endif
8305 #ifdef TARGET_NR_pause /* not on alpha */
8306 case TARGET_NR_pause:
8307 if (!block_signals()) {
8308 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
8310 ret = -TARGET_EINTR;
8311 break;
8312 #endif
8313 #ifdef TARGET_NR_utime
8314 case TARGET_NR_utime:
8316 struct utimbuf tbuf, *host_tbuf;
8317 struct target_utimbuf *target_tbuf;
8318 if (arg2) {
8319 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
8320 goto efault;
8321 tbuf.actime = tswapal(target_tbuf->actime);
8322 tbuf.modtime = tswapal(target_tbuf->modtime);
8323 unlock_user_struct(target_tbuf, arg2, 0);
8324 host_tbuf = &tbuf;
8325 } else {
8326 host_tbuf = NULL;
8328 if (!(p = lock_user_string(arg1)))
8329 goto efault;
8330 ret = get_errno(utime(p, host_tbuf));
8331 unlock_user(p, arg1, 0);
8333 break;
8334 #endif
8335 #ifdef TARGET_NR_utimes
8336 case TARGET_NR_utimes:
8338 struct timeval *tvp, tv[2];
8339 if (arg2) {
8340 if (copy_from_user_timeval(&tv[0], arg2)
8341 || copy_from_user_timeval(&tv[1],
8342 arg2 + sizeof(struct target_timeval)))
8343 goto efault;
8344 tvp = tv;
8345 } else {
8346 tvp = NULL;
8348 if (!(p = lock_user_string(arg1)))
8349 goto efault;
8350 ret = get_errno(utimes(p, tvp));
8351 unlock_user(p, arg1, 0);
8353 break;
8354 #endif
8355 #if defined(TARGET_NR_futimesat)
8356 case TARGET_NR_futimesat:
8358 struct timeval *tvp, tv[2];
8359 if (arg3) {
8360 if (copy_from_user_timeval(&tv[0], arg3)
8361 || copy_from_user_timeval(&tv[1],
8362 arg3 + sizeof(struct target_timeval)))
8363 goto efault;
8364 tvp = tv;
8365 } else {
8366 tvp = NULL;
8368 if (!(p = lock_user_string(arg2)))
8369 goto efault;
8370 ret = get_errno(futimesat(arg1, path(p), tvp));
8371 unlock_user(p, arg2, 0);
8373 break;
8374 #endif
8375 #ifdef TARGET_NR_stty
8376 case TARGET_NR_stty:
8377 goto unimplemented;
8378 #endif
8379 #ifdef TARGET_NR_gtty
8380 case TARGET_NR_gtty:
8381 goto unimplemented;
8382 #endif
8383 #ifdef TARGET_NR_access
8384 case TARGET_NR_access:
8385 if (!(p = lock_user_string(arg1)))
8386 goto efault;
8387 ret = get_errno(access(path(p), arg2));
8388 unlock_user(p, arg1, 0);
8389 break;
8390 #endif
8391 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
8392 case TARGET_NR_faccessat:
8393 if (!(p = lock_user_string(arg2)))
8394 goto efault;
8395 ret = get_errno(faccessat(arg1, p, arg3, 0));
8396 unlock_user(p, arg2, 0);
8397 break;
8398 #endif
8399 #ifdef TARGET_NR_nice /* not on alpha */
8400 case TARGET_NR_nice:
8401 ret = get_errno(nice(arg1));
8402 break;
8403 #endif
8404 #ifdef TARGET_NR_ftime
8405 case TARGET_NR_ftime:
8406 goto unimplemented;
8407 #endif
8408 case TARGET_NR_sync:
8409 sync();
8410 ret = 0;
8411 break;
8412 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
8413 case TARGET_NR_syncfs:
8414 ret = get_errno(syncfs(arg1));
8415 break;
8416 #endif
8417 case TARGET_NR_kill:
8418 ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
8419 break;
8420 #ifdef TARGET_NR_rename
8421 case TARGET_NR_rename:
8423 void *p2;
8424 p = lock_user_string(arg1);
8425 p2 = lock_user_string(arg2);
8426 if (!p || !p2)
8427 ret = -TARGET_EFAULT;
8428 else
8429 ret = get_errno(rename(p, p2));
8430 unlock_user(p2, arg2, 0);
8431 unlock_user(p, arg1, 0);
8433 break;
8434 #endif
8435 #if defined(TARGET_NR_renameat)
8436 case TARGET_NR_renameat:
8438 void *p2;
8439 p = lock_user_string(arg2);
8440 p2 = lock_user_string(arg4);
8441 if (!p || !p2)
8442 ret = -TARGET_EFAULT;
8443 else
8444 ret = get_errno(renameat(arg1, p, arg3, p2));
8445 unlock_user(p2, arg4, 0);
8446 unlock_user(p, arg2, 0);
8448 break;
8449 #endif
8450 #if defined(TARGET_NR_renameat2)
8451 case TARGET_NR_renameat2:
8453 void *p2;
8454 p = lock_user_string(arg2);
8455 p2 = lock_user_string(arg4);
8456 if (!p || !p2) {
8457 ret = -TARGET_EFAULT;
8458 } else {
8459 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
8461 unlock_user(p2, arg4, 0);
8462 unlock_user(p, arg2, 0);
8464 break;
8465 #endif
8466 #ifdef TARGET_NR_mkdir
8467 case TARGET_NR_mkdir:
8468 if (!(p = lock_user_string(arg1)))
8469 goto efault;
8470 ret = get_errno(mkdir(p, arg2));
8471 unlock_user(p, arg1, 0);
8472 break;
8473 #endif
8474 #if defined(TARGET_NR_mkdirat)
8475 case TARGET_NR_mkdirat:
8476 if (!(p = lock_user_string(arg2)))
8477 goto efault;
8478 ret = get_errno(mkdirat(arg1, p, arg3));
8479 unlock_user(p, arg2, 0);
8480 break;
8481 #endif
8482 #ifdef TARGET_NR_rmdir
8483 case TARGET_NR_rmdir:
8484 if (!(p = lock_user_string(arg1)))
8485 goto efault;
8486 ret = get_errno(rmdir(p));
8487 unlock_user(p, arg1, 0);
8488 break;
8489 #endif
8490 case TARGET_NR_dup:
8491 ret = get_errno(dup(arg1));
8492 if (ret >= 0) {
8493 fd_trans_dup(arg1, ret);
8495 break;
8496 #ifdef TARGET_NR_pipe
8497 case TARGET_NR_pipe:
8498 ret = do_pipe(cpu_env, arg1, 0, 0);
8499 break;
8500 #endif
8501 #ifdef TARGET_NR_pipe2
8502 case TARGET_NR_pipe2:
8503 ret = do_pipe(cpu_env, arg1,
8504 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
8505 break;
8506 #endif
8507 case TARGET_NR_times:
8509 struct target_tms *tmsp;
8510 struct tms tms;
8511 ret = get_errno(times(&tms));
8512 if (arg1) {
8513 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
8514 if (!tmsp)
8515 goto efault;
8516 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
8517 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
8518 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
8519 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
8521 if (!is_error(ret))
8522 ret = host_to_target_clock_t(ret);
8524 break;
8525 #ifdef TARGET_NR_prof
8526 case TARGET_NR_prof:
8527 goto unimplemented;
8528 #endif
8529 #ifdef TARGET_NR_signal
8530 case TARGET_NR_signal:
8531 goto unimplemented;
8532 #endif
8533 case TARGET_NR_acct:
8534 if (arg1 == 0) {
8535 ret = get_errno(acct(NULL));
8536 } else {
8537 if (!(p = lock_user_string(arg1)))
8538 goto efault;
8539 ret = get_errno(acct(path(p)));
8540 unlock_user(p, arg1, 0);
8542 break;
8543 #ifdef TARGET_NR_umount2
8544 case TARGET_NR_umount2:
8545 if (!(p = lock_user_string(arg1)))
8546 goto efault;
8547 ret = get_errno(umount2(p, arg2));
8548 unlock_user(p, arg1, 0);
8549 break;
8550 #endif
8551 #ifdef TARGET_NR_lock
8552 case TARGET_NR_lock:
8553 goto unimplemented;
8554 #endif
8555 case TARGET_NR_ioctl:
8556 ret = do_ioctl(arg1, arg2, arg3);
8557 break;
8558 #ifdef TARGET_NR_fcntl
8559 case TARGET_NR_fcntl:
8560 ret = do_fcntl(arg1, arg2, arg3);
8561 break;
8562 #endif
8563 #ifdef TARGET_NR_mpx
8564 case TARGET_NR_mpx:
8565 goto unimplemented;
8566 #endif
8567 case TARGET_NR_setpgid:
8568 ret = get_errno(setpgid(arg1, arg2));
8569 break;
8570 #ifdef TARGET_NR_ulimit
8571 case TARGET_NR_ulimit:
8572 goto unimplemented;
8573 #endif
8574 #ifdef TARGET_NR_oldolduname
8575 case TARGET_NR_oldolduname:
8576 goto unimplemented;
8577 #endif
8578 case TARGET_NR_umask:
8579 ret = get_errno(umask(arg1));
8580 break;
8581 case TARGET_NR_chroot:
8582 if (!(p = lock_user_string(arg1)))
8583 goto efault;
8584 ret = get_errno(chroot(p));
8585 unlock_user(p, arg1, 0);
8586 break;
8587 #ifdef TARGET_NR_ustat
8588 case TARGET_NR_ustat:
8589 goto unimplemented;
8590 #endif
8591 #ifdef TARGET_NR_dup2
8592 case TARGET_NR_dup2:
8593 ret = get_errno(dup2(arg1, arg2));
8594 if (ret >= 0) {
8595 fd_trans_dup(arg1, arg2);
8597 break;
8598 #endif
8599 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8600 case TARGET_NR_dup3:
8602 int host_flags;
8604 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
8605 return -EINVAL;
8607 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
8608 ret = get_errno(dup3(arg1, arg2, host_flags));
8609 if (ret >= 0) {
8610 fd_trans_dup(arg1, arg2);
8612 break;
8614 #endif
8615 #ifdef TARGET_NR_getppid /* not on alpha */
8616 case TARGET_NR_getppid:
8617 ret = get_errno(getppid());
8618 break;
8619 #endif
8620 #ifdef TARGET_NR_getpgrp
8621 case TARGET_NR_getpgrp:
8622 ret = get_errno(getpgrp());
8623 break;
8624 #endif
8625 case TARGET_NR_setsid:
8626 ret = get_errno(setsid());
8627 break;
8628 #ifdef TARGET_NR_sigaction
8629 case TARGET_NR_sigaction:
8631 #if defined(TARGET_ALPHA)
8632 struct target_sigaction act, oact, *pact = 0;
8633 struct target_old_sigaction *old_act;
8634 if (arg2) {
8635 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8636 goto efault;
8637 act._sa_handler = old_act->_sa_handler;
8638 target_siginitset(&act.sa_mask, old_act->sa_mask);
8639 act.sa_flags = old_act->sa_flags;
8640 act.sa_restorer = 0;
8641 unlock_user_struct(old_act, arg2, 0);
8642 pact = &act;
8644 ret = get_errno(do_sigaction(arg1, pact, &oact));
8645 if (!is_error(ret) && arg3) {
8646 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8647 goto efault;
8648 old_act->_sa_handler = oact._sa_handler;
8649 old_act->sa_mask = oact.sa_mask.sig[0];
8650 old_act->sa_flags = oact.sa_flags;
8651 unlock_user_struct(old_act, arg3, 1);
8653 #elif defined(TARGET_MIPS)
8654 struct target_sigaction act, oact, *pact, *old_act;
8656 if (arg2) {
8657 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8658 goto efault;
8659 act._sa_handler = old_act->_sa_handler;
8660 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
8661 act.sa_flags = old_act->sa_flags;
8662 unlock_user_struct(old_act, arg2, 0);
8663 pact = &act;
8664 } else {
8665 pact = NULL;
8668 ret = get_errno(do_sigaction(arg1, pact, &oact));
8670 if (!is_error(ret) && arg3) {
8671 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8672 goto efault;
8673 old_act->_sa_handler = oact._sa_handler;
8674 old_act->sa_flags = oact.sa_flags;
8675 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
8676 old_act->sa_mask.sig[1] = 0;
8677 old_act->sa_mask.sig[2] = 0;
8678 old_act->sa_mask.sig[3] = 0;
8679 unlock_user_struct(old_act, arg3, 1);
8681 #else
8682 struct target_old_sigaction *old_act;
8683 struct target_sigaction act, oact, *pact;
8684 if (arg2) {
8685 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8686 goto efault;
8687 act._sa_handler = old_act->_sa_handler;
8688 target_siginitset(&act.sa_mask, old_act->sa_mask);
8689 act.sa_flags = old_act->sa_flags;
8690 act.sa_restorer = old_act->sa_restorer;
8691 unlock_user_struct(old_act, arg2, 0);
8692 pact = &act;
8693 } else {
8694 pact = NULL;
8696 ret = get_errno(do_sigaction(arg1, pact, &oact));
8697 if (!is_error(ret) && arg3) {
8698 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8699 goto efault;
8700 old_act->_sa_handler = oact._sa_handler;
8701 old_act->sa_mask = oact.sa_mask.sig[0];
8702 old_act->sa_flags = oact.sa_flags;
8703 old_act->sa_restorer = oact.sa_restorer;
8704 unlock_user_struct(old_act, arg3, 1);
8706 #endif
8708 break;
8709 #endif
8710 case TARGET_NR_rt_sigaction:
8712 #if defined(TARGET_ALPHA)
8713 /* For Alpha and SPARC this is a 5 argument syscall, with
8714 * a 'restorer' parameter which must be copied into the
8715 * sa_restorer field of the sigaction struct.
8716 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
8717 * and arg5 is the sigsetsize.
8718 * Alpha also has a separate rt_sigaction struct that it uses
8719 * here; SPARC uses the usual sigaction struct.
8721 struct target_rt_sigaction *rt_act;
8722 struct target_sigaction act, oact, *pact = 0;
8724 if (arg4 != sizeof(target_sigset_t)) {
8725 ret = -TARGET_EINVAL;
8726 break;
8728 if (arg2) {
8729 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
8730 goto efault;
8731 act._sa_handler = rt_act->_sa_handler;
8732 act.sa_mask = rt_act->sa_mask;
8733 act.sa_flags = rt_act->sa_flags;
8734 act.sa_restorer = arg5;
8735 unlock_user_struct(rt_act, arg2, 0);
8736 pact = &act;
8738 ret = get_errno(do_sigaction(arg1, pact, &oact));
8739 if (!is_error(ret) && arg3) {
8740 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
8741 goto efault;
8742 rt_act->_sa_handler = oact._sa_handler;
8743 rt_act->sa_mask = oact.sa_mask;
8744 rt_act->sa_flags = oact.sa_flags;
8745 unlock_user_struct(rt_act, arg3, 1);
8747 #else
8748 #ifdef TARGET_SPARC
8749 target_ulong restorer = arg4;
8750 target_ulong sigsetsize = arg5;
8751 #else
8752 target_ulong sigsetsize = arg4;
8753 #endif
8754 struct target_sigaction *act;
8755 struct target_sigaction *oact;
8757 if (sigsetsize != sizeof(target_sigset_t)) {
8758 ret = -TARGET_EINVAL;
8759 break;
8761 if (arg2) {
8762 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) {
8763 goto efault;
8765 #ifdef TARGET_SPARC
8766 act->sa_restorer = restorer;
8767 #endif
8768 } else {
8769 act = NULL;
8771 if (arg3) {
8772 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
8773 ret = -TARGET_EFAULT;
8774 goto rt_sigaction_fail;
8776 } else
8777 oact = NULL;
8778 ret = get_errno(do_sigaction(arg1, act, oact));
8779 rt_sigaction_fail:
8780 if (act)
8781 unlock_user_struct(act, arg2, 0);
8782 if (oact)
8783 unlock_user_struct(oact, arg3, 1);
8784 #endif
8786 break;
8787 #ifdef TARGET_NR_sgetmask /* not on alpha */
8788 case TARGET_NR_sgetmask:
8790 sigset_t cur_set;
8791 abi_ulong target_set;
8792 ret = do_sigprocmask(0, NULL, &cur_set);
8793 if (!ret) {
8794 host_to_target_old_sigset(&target_set, &cur_set);
8795 ret = target_set;
8798 break;
8799 #endif
8800 #ifdef TARGET_NR_ssetmask /* not on alpha */
8801 case TARGET_NR_ssetmask:
8803 sigset_t set, oset;
8804 abi_ulong target_set = arg1;
8805 target_to_host_old_sigset(&set, &target_set);
8806 ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
8807 if (!ret) {
8808 host_to_target_old_sigset(&target_set, &oset);
8809 ret = target_set;
8812 break;
8813 #endif
8814 #ifdef TARGET_NR_sigprocmask
8815 case TARGET_NR_sigprocmask:
8817 #if defined(TARGET_ALPHA)
8818 sigset_t set, oldset;
8819 abi_ulong mask;
8820 int how;
8822 switch (arg1) {
8823 case TARGET_SIG_BLOCK:
8824 how = SIG_BLOCK;
8825 break;
8826 case TARGET_SIG_UNBLOCK:
8827 how = SIG_UNBLOCK;
8828 break;
8829 case TARGET_SIG_SETMASK:
8830 how = SIG_SETMASK;
8831 break;
8832 default:
8833 ret = -TARGET_EINVAL;
8834 goto fail;
8836 mask = arg2;
8837 target_to_host_old_sigset(&set, &mask);
8839 ret = do_sigprocmask(how, &set, &oldset);
8840 if (!is_error(ret)) {
8841 host_to_target_old_sigset(&mask, &oldset);
8842 ret = mask;
8843 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
8845 #else
8846 sigset_t set, oldset, *set_ptr;
8847 int how;
8849 if (arg2) {
8850 switch (arg1) {
8851 case TARGET_SIG_BLOCK:
8852 how = SIG_BLOCK;
8853 break;
8854 case TARGET_SIG_UNBLOCK:
8855 how = SIG_UNBLOCK;
8856 break;
8857 case TARGET_SIG_SETMASK:
8858 how = SIG_SETMASK;
8859 break;
8860 default:
8861 ret = -TARGET_EINVAL;
8862 goto fail;
8864 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8865 goto efault;
8866 target_to_host_old_sigset(&set, p);
8867 unlock_user(p, arg2, 0);
8868 set_ptr = &set;
8869 } else {
8870 how = 0;
8871 set_ptr = NULL;
8873 ret = do_sigprocmask(how, set_ptr, &oldset);
8874 if (!is_error(ret) && arg3) {
8875 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8876 goto efault;
8877 host_to_target_old_sigset(p, &oldset);
8878 unlock_user(p, arg3, sizeof(target_sigset_t));
8880 #endif
8882 break;
8883 #endif
8884 case TARGET_NR_rt_sigprocmask:
8886 int how = arg1;
8887 sigset_t set, oldset, *set_ptr;
8889 if (arg4 != sizeof(target_sigset_t)) {
8890 ret = -TARGET_EINVAL;
8891 break;
8894 if (arg2) {
8895 switch(how) {
8896 case TARGET_SIG_BLOCK:
8897 how = SIG_BLOCK;
8898 break;
8899 case TARGET_SIG_UNBLOCK:
8900 how = SIG_UNBLOCK;
8901 break;
8902 case TARGET_SIG_SETMASK:
8903 how = SIG_SETMASK;
8904 break;
8905 default:
8906 ret = -TARGET_EINVAL;
8907 goto fail;
8909 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8910 goto efault;
8911 target_to_host_sigset(&set, p);
8912 unlock_user(p, arg2, 0);
8913 set_ptr = &set;
8914 } else {
8915 how = 0;
8916 set_ptr = NULL;
8918 ret = do_sigprocmask(how, set_ptr, &oldset);
8919 if (!is_error(ret) && arg3) {
8920 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8921 goto efault;
8922 host_to_target_sigset(p, &oldset);
8923 unlock_user(p, arg3, sizeof(target_sigset_t));
8926 break;
8927 #ifdef TARGET_NR_sigpending
8928 case TARGET_NR_sigpending:
8930 sigset_t set;
8931 ret = get_errno(sigpending(&set));
8932 if (!is_error(ret)) {
8933 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8934 goto efault;
8935 host_to_target_old_sigset(p, &set);
8936 unlock_user(p, arg1, sizeof(target_sigset_t));
8939 break;
8940 #endif
8941 case TARGET_NR_rt_sigpending:
8943 sigset_t set;
8945 /* Yes, this check is >, not != like most. We follow the kernel's
8946 * logic and it does it like this because it implements
8947 * NR_sigpending through the same code path, and in that case
8948 * the old_sigset_t is smaller in size.
8950 if (arg2 > sizeof(target_sigset_t)) {
8951 ret = -TARGET_EINVAL;
8952 break;
8955 ret = get_errno(sigpending(&set));
8956 if (!is_error(ret)) {
8957 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8958 goto efault;
8959 host_to_target_sigset(p, &set);
8960 unlock_user(p, arg1, sizeof(target_sigset_t));
8963 break;
8964 #ifdef TARGET_NR_sigsuspend
8965 case TARGET_NR_sigsuspend:
8967 TaskState *ts = cpu->opaque;
8968 #if defined(TARGET_ALPHA)
8969 abi_ulong mask = arg1;
8970 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
8971 #else
8972 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8973 goto efault;
8974 target_to_host_old_sigset(&ts->sigsuspend_mask, p);
8975 unlock_user(p, arg1, 0);
8976 #endif
8977 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8978 SIGSET_T_SIZE));
8979 if (ret != -TARGET_ERESTARTSYS) {
8980 ts->in_sigsuspend = 1;
8983 break;
8984 #endif
8985 case TARGET_NR_rt_sigsuspend:
8987 TaskState *ts = cpu->opaque;
8989 if (arg2 != sizeof(target_sigset_t)) {
8990 ret = -TARGET_EINVAL;
8991 break;
8993 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8994 goto efault;
8995 target_to_host_sigset(&ts->sigsuspend_mask, p);
8996 unlock_user(p, arg1, 0);
8997 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8998 SIGSET_T_SIZE));
8999 if (ret != -TARGET_ERESTARTSYS) {
9000 ts->in_sigsuspend = 1;
9003 break;
9004 case TARGET_NR_rt_sigtimedwait:
9006 sigset_t set;
9007 struct timespec uts, *puts;
9008 siginfo_t uinfo;
9010 if (arg4 != sizeof(target_sigset_t)) {
9011 ret = -TARGET_EINVAL;
9012 break;
9015 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9016 goto efault;
9017 target_to_host_sigset(&set, p);
9018 unlock_user(p, arg1, 0);
9019 if (arg3) {
9020 puts = &uts;
9021 target_to_host_timespec(puts, arg3);
9022 } else {
9023 puts = NULL;
9025 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9026 SIGSET_T_SIZE));
9027 if (!is_error(ret)) {
9028 if (arg2) {
9029 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
9031 if (!p) {
9032 goto efault;
9034 host_to_target_siginfo(p, &uinfo);
9035 unlock_user(p, arg2, sizeof(target_siginfo_t));
9037 ret = host_to_target_signal(ret);
9040 break;
9041 case TARGET_NR_rt_sigqueueinfo:
9043 siginfo_t uinfo;
9045 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9046 if (!p) {
9047 goto efault;
9049 target_to_host_siginfo(&uinfo, p);
9050 unlock_user(p, arg3, 0);
9051 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
9053 break;
9054 case TARGET_NR_rt_tgsigqueueinfo:
9056 siginfo_t uinfo;
9058 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
9059 if (!p) {
9060 goto efault;
9062 target_to_host_siginfo(&uinfo, p);
9063 unlock_user(p, arg4, 0);
9064 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
9066 break;
9067 #ifdef TARGET_NR_sigreturn
9068 case TARGET_NR_sigreturn:
9069 if (block_signals()) {
9070 ret = -TARGET_ERESTARTSYS;
9071 } else {
9072 ret = do_sigreturn(cpu_env);
9074 break;
9075 #endif
9076 case TARGET_NR_rt_sigreturn:
9077 if (block_signals()) {
9078 ret = -TARGET_ERESTARTSYS;
9079 } else {
9080 ret = do_rt_sigreturn(cpu_env);
9082 break;
9083 case TARGET_NR_sethostname:
9084 if (!(p = lock_user_string(arg1)))
9085 goto efault;
9086 ret = get_errno(sethostname(p, arg2));
9087 unlock_user(p, arg1, 0);
9088 break;
9089 case TARGET_NR_setrlimit:
9091 int resource = target_to_host_resource(arg1);
9092 struct target_rlimit *target_rlim;
9093 struct rlimit rlim;
9094 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
9095 goto efault;
9096 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
9097 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
9098 unlock_user_struct(target_rlim, arg2, 0);
9099 ret = get_errno(setrlimit(resource, &rlim));
9101 break;
9102 case TARGET_NR_getrlimit:
9104 int resource = target_to_host_resource(arg1);
9105 struct target_rlimit *target_rlim;
9106 struct rlimit rlim;
9108 ret = get_errno(getrlimit(resource, &rlim));
9109 if (!is_error(ret)) {
9110 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
9111 goto efault;
9112 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
9113 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
9114 unlock_user_struct(target_rlim, arg2, 1);
9117 break;
9118 case TARGET_NR_getrusage:
9120 struct rusage rusage;
9121 ret = get_errno(getrusage(arg1, &rusage));
9122 if (!is_error(ret)) {
9123 ret = host_to_target_rusage(arg2, &rusage);
9126 break;
9127 case TARGET_NR_gettimeofday:
9129 struct timeval tv;
9130 ret = get_errno(gettimeofday(&tv, NULL));
9131 if (!is_error(ret)) {
9132 if (copy_to_user_timeval(arg1, &tv))
9133 goto efault;
9136 break;
9137 case TARGET_NR_settimeofday:
9139 struct timeval tv, *ptv = NULL;
9140 struct timezone tz, *ptz = NULL;
9142 if (arg1) {
9143 if (copy_from_user_timeval(&tv, arg1)) {
9144 goto efault;
9146 ptv = &tv;
9149 if (arg2) {
9150 if (copy_from_user_timezone(&tz, arg2)) {
9151 goto efault;
9153 ptz = &tz;
9156 ret = get_errno(settimeofday(ptv, ptz));
9158 break;
9159 #if defined(TARGET_NR_select)
9160 case TARGET_NR_select:
9161 #if defined(TARGET_WANT_NI_OLD_SELECT)
9162 /* some architectures used to have old_select here
9163 * but now ENOSYS it.
9165 ret = -TARGET_ENOSYS;
9166 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9167 ret = do_old_select(arg1);
9168 #else
9169 ret = do_select(arg1, arg2, arg3, arg4, arg5);
9170 #endif
9171 break;
9172 #endif
9173 #ifdef TARGET_NR_pselect6
9174 case TARGET_NR_pselect6:
9176 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
9177 fd_set rfds, wfds, efds;
9178 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
9179 struct timespec ts, *ts_ptr;
9182 * The 6th arg is actually two args smashed together,
9183 * so we cannot use the C library.
9185 sigset_t set;
9186 struct {
9187 sigset_t *set;
9188 size_t size;
9189 } sig, *sig_ptr;
9191 abi_ulong arg_sigset, arg_sigsize, *arg7;
9192 target_sigset_t *target_sigset;
9194 n = arg1;
9195 rfd_addr = arg2;
9196 wfd_addr = arg3;
9197 efd_addr = arg4;
9198 ts_addr = arg5;
9200 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
9201 if (ret) {
9202 goto fail;
9204 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
9205 if (ret) {
9206 goto fail;
9208 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
9209 if (ret) {
9210 goto fail;
9214 * This takes a timespec, and not a timeval, so we cannot
9215 * use the do_select() helper ...
9217 if (ts_addr) {
9218 if (target_to_host_timespec(&ts, ts_addr)) {
9219 goto efault;
9221 ts_ptr = &ts;
9222 } else {
9223 ts_ptr = NULL;
9226 /* Extract the two packed args for the sigset */
9227 if (arg6) {
9228 sig_ptr = &sig;
9229 sig.size = SIGSET_T_SIZE;
9231 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
9232 if (!arg7) {
9233 goto efault;
9235 arg_sigset = tswapal(arg7[0]);
9236 arg_sigsize = tswapal(arg7[1]);
9237 unlock_user(arg7, arg6, 0);
9239 if (arg_sigset) {
9240 sig.set = &set;
9241 if (arg_sigsize != sizeof(*target_sigset)) {
9242 /* Like the kernel, we enforce correct size sigsets */
9243 ret = -TARGET_EINVAL;
9244 goto fail;
9246 target_sigset = lock_user(VERIFY_READ, arg_sigset,
9247 sizeof(*target_sigset), 1);
9248 if (!target_sigset) {
9249 goto efault;
9251 target_to_host_sigset(&set, target_sigset);
9252 unlock_user(target_sigset, arg_sigset, 0);
9253 } else {
9254 sig.set = NULL;
9256 } else {
9257 sig_ptr = NULL;
9260 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
9261 ts_ptr, sig_ptr));
9263 if (!is_error(ret)) {
9264 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
9265 goto efault;
9266 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
9267 goto efault;
9268 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
9269 goto efault;
9271 if (ts_addr && host_to_target_timespec(ts_addr, &ts))
9272 goto efault;
9275 break;
9276 #endif
9277 #ifdef TARGET_NR_symlink
9278 case TARGET_NR_symlink:
9280 void *p2;
9281 p = lock_user_string(arg1);
9282 p2 = lock_user_string(arg2);
9283 if (!p || !p2)
9284 ret = -TARGET_EFAULT;
9285 else
9286 ret = get_errno(symlink(p, p2));
9287 unlock_user(p2, arg2, 0);
9288 unlock_user(p, arg1, 0);
9290 break;
9291 #endif
9292 #if defined(TARGET_NR_symlinkat)
9293 case TARGET_NR_symlinkat:
9295 void *p2;
9296 p = lock_user_string(arg1);
9297 p2 = lock_user_string(arg3);
9298 if (!p || !p2)
9299 ret = -TARGET_EFAULT;
9300 else
9301 ret = get_errno(symlinkat(p, arg2, p2));
9302 unlock_user(p2, arg3, 0);
9303 unlock_user(p, arg1, 0);
9305 break;
9306 #endif
9307 #ifdef TARGET_NR_oldlstat
9308 case TARGET_NR_oldlstat:
9309 goto unimplemented;
9310 #endif
9311 #ifdef TARGET_NR_readlink
9312 case TARGET_NR_readlink:
9314 void *p2;
9315 p = lock_user_string(arg1);
9316 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9317 if (!p || !p2) {
9318 ret = -TARGET_EFAULT;
9319 } else if (!arg3) {
9320 /* Short circuit this for the magic exe check. */
9321 ret = -TARGET_EINVAL;
9322 } else if (is_proc_myself((const char *)p, "exe")) {
9323 char real[PATH_MAX], *temp;
9324 temp = realpath(exec_path, real);
9325 /* Return value is # of bytes that we wrote to the buffer. */
9326 if (temp == NULL) {
9327 ret = get_errno(-1);
9328 } else {
9329 /* Don't worry about sign mismatch as earlier mapping
9330 * logic would have thrown a bad address error. */
9331 ret = MIN(strlen(real), arg3);
9332 /* We cannot NUL terminate the string. */
9333 memcpy(p2, real, ret);
9335 } else {
9336 ret = get_errno(readlink(path(p), p2, arg3));
9338 unlock_user(p2, arg2, ret);
9339 unlock_user(p, arg1, 0);
9341 break;
9342 #endif
9343 #if defined(TARGET_NR_readlinkat)
9344 case TARGET_NR_readlinkat:
9346 void *p2;
9347 p = lock_user_string(arg2);
9348 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9349 if (!p || !p2) {
9350 ret = -TARGET_EFAULT;
9351 } else if (is_proc_myself((const char *)p, "exe")) {
9352 char real[PATH_MAX], *temp;
9353 temp = realpath(exec_path, real);
9354 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9355 snprintf((char *)p2, arg4, "%s", real);
9356 } else {
9357 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9359 unlock_user(p2, arg3, ret);
9360 unlock_user(p, arg2, 0);
9362 break;
9363 #endif
9364 #ifdef TARGET_NR_uselib
9365 case TARGET_NR_uselib:
9366 goto unimplemented;
9367 #endif
9368 #ifdef TARGET_NR_swapon
9369 case TARGET_NR_swapon:
9370 if (!(p = lock_user_string(arg1)))
9371 goto efault;
9372 ret = get_errno(swapon(p, arg2));
9373 unlock_user(p, arg1, 0);
9374 break;
9375 #endif
9376 case TARGET_NR_reboot:
9377 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9378 /* arg4 must be ignored in all other cases */
9379 p = lock_user_string(arg4);
9380 if (!p) {
9381 goto efault;
9383 ret = get_errno(reboot(arg1, arg2, arg3, p));
9384 unlock_user(p, arg4, 0);
9385 } else {
9386 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9388 break;
9389 #ifdef TARGET_NR_readdir
9390 case TARGET_NR_readdir:
9391 goto unimplemented;
9392 #endif
9393 #ifdef TARGET_NR_mmap
9394 case TARGET_NR_mmap:
9395 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9396 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9397 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9398 || defined(TARGET_S390X)
9400 abi_ulong *v;
9401 abi_ulong v1, v2, v3, v4, v5, v6;
9402 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9403 goto efault;
9404 v1 = tswapal(v[0]);
9405 v2 = tswapal(v[1]);
9406 v3 = tswapal(v[2]);
9407 v4 = tswapal(v[3]);
9408 v5 = tswapal(v[4]);
9409 v6 = tswapal(v[5]);
9410 unlock_user(v, arg1, 0);
9411 ret = get_errno(target_mmap(v1, v2, v3,
9412 target_to_host_bitmask(v4, mmap_flags_tbl),
9413 v5, v6));
9415 #else
9416 ret = get_errno(target_mmap(arg1, arg2, arg3,
9417 target_to_host_bitmask(arg4, mmap_flags_tbl),
9418 arg5,
9419 arg6));
9420 #endif
9421 break;
9422 #endif
9423 #ifdef TARGET_NR_mmap2
9424 case TARGET_NR_mmap2:
9425 #ifndef MMAP_SHIFT
9426 #define MMAP_SHIFT 12
9427 #endif
9428 ret = get_errno(target_mmap(arg1, arg2, arg3,
9429 target_to_host_bitmask(arg4, mmap_flags_tbl),
9430 arg5,
9431 arg6 << MMAP_SHIFT));
9432 break;
9433 #endif
9434 case TARGET_NR_munmap:
9435 ret = get_errno(target_munmap(arg1, arg2));
9436 break;
9437 case TARGET_NR_mprotect:
9439 TaskState *ts = cpu->opaque;
9440 /* Special hack to detect libc making the stack executable. */
9441 if ((arg3 & PROT_GROWSDOWN)
9442 && arg1 >= ts->info->stack_limit
9443 && arg1 <= ts->info->start_stack) {
9444 arg3 &= ~PROT_GROWSDOWN;
9445 arg2 = arg2 + arg1 - ts->info->stack_limit;
9446 arg1 = ts->info->stack_limit;
9449 ret = get_errno(target_mprotect(arg1, arg2, arg3));
9450 break;
9451 #ifdef TARGET_NR_mremap
9452 case TARGET_NR_mremap:
9453 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
9454 break;
9455 #endif
9456 /* ??? msync/mlock/munlock are broken for softmmu. */
9457 #ifdef TARGET_NR_msync
9458 case TARGET_NR_msync:
9459 ret = get_errno(msync(g2h(arg1), arg2, arg3));
9460 break;
9461 #endif
9462 #ifdef TARGET_NR_mlock
9463 case TARGET_NR_mlock:
9464 ret = get_errno(mlock(g2h(arg1), arg2));
9465 break;
9466 #endif
9467 #ifdef TARGET_NR_munlock
9468 case TARGET_NR_munlock:
9469 ret = get_errno(munlock(g2h(arg1), arg2));
9470 break;
9471 #endif
9472 #ifdef TARGET_NR_mlockall
9473 case TARGET_NR_mlockall:
9474 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
9475 break;
9476 #endif
9477 #ifdef TARGET_NR_munlockall
9478 case TARGET_NR_munlockall:
9479 ret = get_errno(munlockall());
9480 break;
9481 #endif
9482 case TARGET_NR_truncate:
9483 if (!(p = lock_user_string(arg1)))
9484 goto efault;
9485 ret = get_errno(truncate(p, arg2));
9486 unlock_user(p, arg1, 0);
9487 break;
9488 case TARGET_NR_ftruncate:
9489 ret = get_errno(ftruncate(arg1, arg2));
9490 break;
9491 case TARGET_NR_fchmod:
9492 ret = get_errno(fchmod(arg1, arg2));
9493 break;
9494 #if defined(TARGET_NR_fchmodat)
9495 case TARGET_NR_fchmodat:
9496 if (!(p = lock_user_string(arg2)))
9497 goto efault;
9498 ret = get_errno(fchmodat(arg1, p, arg3, 0));
9499 unlock_user(p, arg2, 0);
9500 break;
9501 #endif
9502 case TARGET_NR_getpriority:
9503 /* Note that negative values are valid for getpriority, so we must
9504 differentiate based on errno settings. */
9505 errno = 0;
9506 ret = getpriority(arg1, arg2);
9507 if (ret == -1 && errno != 0) {
9508 ret = -host_to_target_errno(errno);
9509 break;
9511 #ifdef TARGET_ALPHA
9512 /* Return value is the unbiased priority. Signal no error. */
9513 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
9514 #else
9515 /* Return value is a biased priority to avoid negative numbers. */
9516 ret = 20 - ret;
9517 #endif
9518 break;
9519 case TARGET_NR_setpriority:
9520 ret = get_errno(setpriority(arg1, arg2, arg3));
9521 break;
9522 #ifdef TARGET_NR_profil
9523 case TARGET_NR_profil:
9524 goto unimplemented;
9525 #endif
9526 case TARGET_NR_statfs:
9527 if (!(p = lock_user_string(arg1)))
9528 goto efault;
9529 ret = get_errno(statfs(path(p), &stfs));
9530 unlock_user(p, arg1, 0);
9531 convert_statfs:
9532 if (!is_error(ret)) {
9533 struct target_statfs *target_stfs;
9535 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
9536 goto efault;
9537 __put_user(stfs.f_type, &target_stfs->f_type);
9538 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9539 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9540 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9541 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9542 __put_user(stfs.f_files, &target_stfs->f_files);
9543 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9544 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9545 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9546 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9547 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9548 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9549 unlock_user_struct(target_stfs, arg2, 1);
9551 break;
9552 case TARGET_NR_fstatfs:
9553 ret = get_errno(fstatfs(arg1, &stfs));
9554 goto convert_statfs;
9555 #ifdef TARGET_NR_statfs64
9556 case TARGET_NR_statfs64:
9557 if (!(p = lock_user_string(arg1)))
9558 goto efault;
9559 ret = get_errno(statfs(path(p), &stfs));
9560 unlock_user(p, arg1, 0);
9561 convert_statfs64:
9562 if (!is_error(ret)) {
9563 struct target_statfs64 *target_stfs;
9565 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
9566 goto efault;
9567 __put_user(stfs.f_type, &target_stfs->f_type);
9568 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9569 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9570 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9571 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9572 __put_user(stfs.f_files, &target_stfs->f_files);
9573 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9574 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9575 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9576 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9577 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9578 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9579 unlock_user_struct(target_stfs, arg3, 1);
9581 break;
9582 case TARGET_NR_fstatfs64:
9583 ret = get_errno(fstatfs(arg1, &stfs));
9584 goto convert_statfs64;
9585 #endif
9586 #ifdef TARGET_NR_ioperm
9587 case TARGET_NR_ioperm:
9588 goto unimplemented;
9589 #endif
9590 #ifdef TARGET_NR_socketcall
9591 case TARGET_NR_socketcall:
9592 ret = do_socketcall(arg1, arg2);
9593 break;
9594 #endif
9595 #ifdef TARGET_NR_accept
9596 case TARGET_NR_accept:
9597 ret = do_accept4(arg1, arg2, arg3, 0);
9598 break;
9599 #endif
9600 #ifdef TARGET_NR_accept4
9601 case TARGET_NR_accept4:
9602 ret = do_accept4(arg1, arg2, arg3, arg4);
9603 break;
9604 #endif
9605 #ifdef TARGET_NR_bind
9606 case TARGET_NR_bind:
9607 ret = do_bind(arg1, arg2, arg3);
9608 break;
9609 #endif
9610 #ifdef TARGET_NR_connect
9611 case TARGET_NR_connect:
9612 ret = do_connect(arg1, arg2, arg3);
9613 break;
9614 #endif
9615 #ifdef TARGET_NR_getpeername
9616 case TARGET_NR_getpeername:
9617 ret = do_getpeername(arg1, arg2, arg3);
9618 break;
9619 #endif
9620 #ifdef TARGET_NR_getsockname
9621 case TARGET_NR_getsockname:
9622 ret = do_getsockname(arg1, arg2, arg3);
9623 break;
9624 #endif
9625 #ifdef TARGET_NR_getsockopt
9626 case TARGET_NR_getsockopt:
9627 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5);
9628 break;
9629 #endif
9630 #ifdef TARGET_NR_listen
9631 case TARGET_NR_listen:
9632 ret = get_errno(listen(arg1, arg2));
9633 break;
9634 #endif
9635 #ifdef TARGET_NR_recv
9636 case TARGET_NR_recv:
9637 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
9638 break;
9639 #endif
9640 #ifdef TARGET_NR_recvfrom
9641 case TARGET_NR_recvfrom:
9642 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
9643 break;
9644 #endif
9645 #ifdef TARGET_NR_recvmsg
9646 case TARGET_NR_recvmsg:
9647 ret = do_sendrecvmsg(arg1, arg2, arg3, 0);
9648 break;
9649 #endif
9650 #ifdef TARGET_NR_send
9651 case TARGET_NR_send:
9652 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0);
9653 break;
9654 #endif
9655 #ifdef TARGET_NR_sendmsg
9656 case TARGET_NR_sendmsg:
9657 ret = do_sendrecvmsg(arg1, arg2, arg3, 1);
9658 break;
9659 #endif
9660 #ifdef TARGET_NR_sendmmsg
9661 case TARGET_NR_sendmmsg:
9662 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
9663 break;
9664 case TARGET_NR_recvmmsg:
9665 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
9666 break;
9667 #endif
9668 #ifdef TARGET_NR_sendto
9669 case TARGET_NR_sendto:
9670 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
9671 break;
9672 #endif
9673 #ifdef TARGET_NR_shutdown
9674 case TARGET_NR_shutdown:
9675 ret = get_errno(shutdown(arg1, arg2));
9676 break;
9677 #endif
9678 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9679 case TARGET_NR_getrandom:
9680 p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9681 if (!p) {
9682 goto efault;
9684 ret = get_errno(getrandom(p, arg2, arg3));
9685 unlock_user(p, arg1, ret);
9686 break;
9687 #endif
9688 #ifdef TARGET_NR_socket
9689 case TARGET_NR_socket:
9690 ret = do_socket(arg1, arg2, arg3);
9691 break;
9692 #endif
9693 #ifdef TARGET_NR_socketpair
9694 case TARGET_NR_socketpair:
9695 ret = do_socketpair(arg1, arg2, arg3, arg4);
9696 break;
9697 #endif
9698 #ifdef TARGET_NR_setsockopt
9699 case TARGET_NR_setsockopt:
9700 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
9701 break;
9702 #endif
9703 #if defined(TARGET_NR_syslog)
9704 case TARGET_NR_syslog:
9706 int len = arg2;
9708 switch (arg1) {
9709 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */
9710 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */
9711 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
9712 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */
9713 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */
9714 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
9715 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */
9716 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */
9718 ret = get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
9720 break;
9721 case TARGET_SYSLOG_ACTION_READ: /* Read from log */
9722 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */
9723 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */
9725 ret = -TARGET_EINVAL;
9726 if (len < 0) {
9727 goto fail;
9729 ret = 0;
9730 if (len == 0) {
9731 break;
9733 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9734 if (!p) {
9735 ret = -TARGET_EFAULT;
9736 goto fail;
9738 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
9739 unlock_user(p, arg2, arg3);
9741 break;
9742 default:
9743 ret = -EINVAL;
9744 break;
9747 break;
9748 #endif
9749 case TARGET_NR_setitimer:
9751 struct itimerval value, ovalue, *pvalue;
9753 if (arg2) {
9754 pvalue = &value;
9755 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
9756 || copy_from_user_timeval(&pvalue->it_value,
9757 arg2 + sizeof(struct target_timeval)))
9758 goto efault;
9759 } else {
9760 pvalue = NULL;
9762 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
9763 if (!is_error(ret) && arg3) {
9764 if (copy_to_user_timeval(arg3,
9765 &ovalue.it_interval)
9766 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
9767 &ovalue.it_value))
9768 goto efault;
9771 break;
9772 case TARGET_NR_getitimer:
9774 struct itimerval value;
9776 ret = get_errno(getitimer(arg1, &value));
9777 if (!is_error(ret) && arg2) {
9778 if (copy_to_user_timeval(arg2,
9779 &value.it_interval)
9780 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
9781 &value.it_value))
9782 goto efault;
9785 break;
9786 #ifdef TARGET_NR_stat
9787 case TARGET_NR_stat:
9788 if (!(p = lock_user_string(arg1)))
9789 goto efault;
9790 ret = get_errno(stat(path(p), &st));
9791 unlock_user(p, arg1, 0);
9792 goto do_stat;
9793 #endif
9794 #ifdef TARGET_NR_lstat
9795 case TARGET_NR_lstat:
9796 if (!(p = lock_user_string(arg1)))
9797 goto efault;
9798 ret = get_errno(lstat(path(p), &st));
9799 unlock_user(p, arg1, 0);
9800 goto do_stat;
9801 #endif
9802 case TARGET_NR_fstat:
9804 ret = get_errno(fstat(arg1, &st));
9805 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9806 do_stat:
9807 #endif
9808 if (!is_error(ret)) {
9809 struct target_stat *target_st;
9811 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
9812 goto efault;
9813 memset(target_st, 0, sizeof(*target_st));
9814 __put_user(st.st_dev, &target_st->st_dev);
9815 __put_user(st.st_ino, &target_st->st_ino);
9816 __put_user(st.st_mode, &target_st->st_mode);
9817 __put_user(st.st_uid, &target_st->st_uid);
9818 __put_user(st.st_gid, &target_st->st_gid);
9819 __put_user(st.st_nlink, &target_st->st_nlink);
9820 __put_user(st.st_rdev, &target_st->st_rdev);
9821 __put_user(st.st_size, &target_st->st_size);
9822 __put_user(st.st_blksize, &target_st->st_blksize);
9823 __put_user(st.st_blocks, &target_st->st_blocks);
9824 __put_user(st.st_atime, &target_st->target_st_atime);
9825 __put_user(st.st_mtime, &target_st->target_st_mtime);
9826 __put_user(st.st_ctime, &target_st->target_st_ctime);
9827 unlock_user_struct(target_st, arg2, 1);
9830 break;
9831 #ifdef TARGET_NR_olduname
9832 case TARGET_NR_olduname:
9833 goto unimplemented;
9834 #endif
9835 #ifdef TARGET_NR_iopl
9836 case TARGET_NR_iopl:
9837 goto unimplemented;
9838 #endif
9839 case TARGET_NR_vhangup:
9840 ret = get_errno(vhangup());
9841 break;
9842 #ifdef TARGET_NR_idle
9843 case TARGET_NR_idle:
9844 goto unimplemented;
9845 #endif
9846 #ifdef TARGET_NR_syscall
9847 case TARGET_NR_syscall:
9848 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
9849 arg6, arg7, arg8, 0);
9850 break;
9851 #endif
9852 case TARGET_NR_wait4:
9854 int status;
9855 abi_long status_ptr = arg2;
9856 struct rusage rusage, *rusage_ptr;
9857 abi_ulong target_rusage = arg4;
9858 abi_long rusage_err;
9859 if (target_rusage)
9860 rusage_ptr = &rusage;
9861 else
9862 rusage_ptr = NULL;
9863 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
9864 if (!is_error(ret)) {
9865 if (status_ptr && ret) {
9866 status = host_to_target_waitstatus(status);
9867 if (put_user_s32(status, status_ptr))
9868 goto efault;
9870 if (target_rusage) {
9871 rusage_err = host_to_target_rusage(target_rusage, &rusage);
9872 if (rusage_err) {
9873 ret = rusage_err;
9878 break;
9879 #ifdef TARGET_NR_swapoff
9880 case TARGET_NR_swapoff:
9881 if (!(p = lock_user_string(arg1)))
9882 goto efault;
9883 ret = get_errno(swapoff(p));
9884 unlock_user(p, arg1, 0);
9885 break;
9886 #endif
9887 case TARGET_NR_sysinfo:
9889 struct target_sysinfo *target_value;
9890 struct sysinfo value;
9891 ret = get_errno(sysinfo(&value));
9892 if (!is_error(ret) && arg1)
9894 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
9895 goto efault;
9896 __put_user(value.uptime, &target_value->uptime);
9897 __put_user(value.loads[0], &target_value->loads[0]);
9898 __put_user(value.loads[1], &target_value->loads[1]);
9899 __put_user(value.loads[2], &target_value->loads[2]);
9900 __put_user(value.totalram, &target_value->totalram);
9901 __put_user(value.freeram, &target_value->freeram);
9902 __put_user(value.sharedram, &target_value->sharedram);
9903 __put_user(value.bufferram, &target_value->bufferram);
9904 __put_user(value.totalswap, &target_value->totalswap);
9905 __put_user(value.freeswap, &target_value->freeswap);
9906 __put_user(value.procs, &target_value->procs);
9907 __put_user(value.totalhigh, &target_value->totalhigh);
9908 __put_user(value.freehigh, &target_value->freehigh);
9909 __put_user(value.mem_unit, &target_value->mem_unit);
9910 unlock_user_struct(target_value, arg1, 1);
9913 break;
9914 #ifdef TARGET_NR_ipc
9915 case TARGET_NR_ipc:
9916 ret = do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
9917 break;
9918 #endif
9919 #ifdef TARGET_NR_semget
9920 case TARGET_NR_semget:
9921 ret = get_errno(semget(arg1, arg2, arg3));
9922 break;
9923 #endif
9924 #ifdef TARGET_NR_semop
9925 case TARGET_NR_semop:
9926 ret = do_semop(arg1, arg2, arg3);
9927 break;
9928 #endif
9929 #ifdef TARGET_NR_semctl
9930 case TARGET_NR_semctl:
9931 ret = do_semctl(arg1, arg2, arg3, arg4);
9932 break;
9933 #endif
9934 #ifdef TARGET_NR_msgctl
9935 case TARGET_NR_msgctl:
9936 ret = do_msgctl(arg1, arg2, arg3);
9937 break;
9938 #endif
9939 #ifdef TARGET_NR_msgget
9940 case TARGET_NR_msgget:
9941 ret = get_errno(msgget(arg1, arg2));
9942 break;
9943 #endif
9944 #ifdef TARGET_NR_msgrcv
9945 case TARGET_NR_msgrcv:
9946 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5);
9947 break;
9948 #endif
9949 #ifdef TARGET_NR_msgsnd
9950 case TARGET_NR_msgsnd:
9951 ret = do_msgsnd(arg1, arg2, arg3, arg4);
9952 break;
9953 #endif
9954 #ifdef TARGET_NR_shmget
9955 case TARGET_NR_shmget:
9956 ret = get_errno(shmget(arg1, arg2, arg3));
9957 break;
9958 #endif
9959 #ifdef TARGET_NR_shmctl
9960 case TARGET_NR_shmctl:
9961 ret = do_shmctl(arg1, arg2, arg3);
9962 break;
9963 #endif
9964 #ifdef TARGET_NR_shmat
9965 case TARGET_NR_shmat:
9966 ret = do_shmat(cpu_env, arg1, arg2, arg3);
9967 break;
9968 #endif
9969 #ifdef TARGET_NR_shmdt
9970 case TARGET_NR_shmdt:
9971 ret = do_shmdt(arg1);
9972 break;
9973 #endif
9974 case TARGET_NR_fsync:
9975 ret = get_errno(fsync(arg1));
9976 break;
9977 case TARGET_NR_clone:
9978 /* Linux manages to have three different orderings for its
9979 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
9980 * match the kernel's CONFIG_CLONE_* settings.
9981 * Microblaze is further special in that it uses a sixth
9982 * implicit argument to clone for the TLS pointer.
9984 #if defined(TARGET_MICROBLAZE)
9985 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
9986 #elif defined(TARGET_CLONE_BACKWARDS)
9987 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
9988 #elif defined(TARGET_CLONE_BACKWARDS2)
9989 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
9990 #else
9991 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
9992 #endif
9993 break;
9994 #ifdef __NR_exit_group
9995 /* new thread calls */
9996 case TARGET_NR_exit_group:
9997 #ifdef TARGET_GPROF
9998 _mcleanup();
9999 #endif
10000 gdb_exit(cpu_env, arg1);
10001 ret = get_errno(exit_group(arg1));
10002 break;
10003 #endif
10004 case TARGET_NR_setdomainname:
10005 if (!(p = lock_user_string(arg1)))
10006 goto efault;
10007 ret = get_errno(setdomainname(p, arg2));
10008 unlock_user(p, arg1, 0);
10009 break;
10010 case TARGET_NR_uname:
10011 /* no need to transcode because we use the linux syscall */
10013 struct new_utsname * buf;
10015 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10016 goto efault;
10017 ret = get_errno(sys_uname(buf));
10018 if (!is_error(ret)) {
10019 /* Overwrite the native machine name with whatever is being
10020 emulated. */
10021 strcpy (buf->machine, cpu_to_uname_machine(cpu_env));
10022 /* Allow the user to override the reported release. */
10023 if (qemu_uname_release && *qemu_uname_release) {
10024 g_strlcpy(buf->release, qemu_uname_release,
10025 sizeof(buf->release));
10028 unlock_user_struct(buf, arg1, 1);
10030 break;
10031 #ifdef TARGET_I386
10032 case TARGET_NR_modify_ldt:
10033 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3);
10034 break;
10035 #if !defined(TARGET_X86_64)
10036 case TARGET_NR_vm86old:
10037 goto unimplemented;
10038 case TARGET_NR_vm86:
10039 ret = do_vm86(cpu_env, arg1, arg2);
10040 break;
10041 #endif
10042 #endif
10043 case TARGET_NR_adjtimex:
10045 struct timex host_buf;
10047 if (target_to_host_timex(&host_buf, arg1) != 0) {
10048 goto efault;
10050 ret = get_errno(adjtimex(&host_buf));
10051 if (!is_error(ret)) {
10052 if (host_to_target_timex(arg1, &host_buf) != 0) {
10053 goto efault;
10057 break;
10058 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10059 case TARGET_NR_clock_adjtime:
10061 struct timex htx, *phtx = &htx;
10063 if (target_to_host_timex(phtx, arg2) != 0) {
10064 goto efault;
10066 ret = get_errno(clock_adjtime(arg1, phtx));
10067 if (!is_error(ret) && phtx) {
10068 if (host_to_target_timex(arg2, phtx) != 0) {
10069 goto efault;
10073 break;
10074 #endif
10075 #ifdef TARGET_NR_create_module
10076 case TARGET_NR_create_module:
10077 #endif
10078 case TARGET_NR_init_module:
10079 case TARGET_NR_delete_module:
10080 #ifdef TARGET_NR_get_kernel_syms
10081 case TARGET_NR_get_kernel_syms:
10082 #endif
10083 goto unimplemented;
10084 case TARGET_NR_quotactl:
10085 goto unimplemented;
10086 case TARGET_NR_getpgid:
10087 ret = get_errno(getpgid(arg1));
10088 break;
10089 case TARGET_NR_fchdir:
10090 ret = get_errno(fchdir(arg1));
10091 break;
10092 #ifdef TARGET_NR_bdflush /* not on x86_64 */
10093 case TARGET_NR_bdflush:
10094 goto unimplemented;
10095 #endif
10096 #ifdef TARGET_NR_sysfs
10097 case TARGET_NR_sysfs:
10098 goto unimplemented;
10099 #endif
10100 case TARGET_NR_personality:
10101 ret = get_errno(personality(arg1));
10102 break;
10103 #ifdef TARGET_NR_afs_syscall
10104 case TARGET_NR_afs_syscall:
10105 goto unimplemented;
10106 #endif
10107 #ifdef TARGET_NR__llseek /* Not on alpha */
10108 case TARGET_NR__llseek:
10110 int64_t res;
10111 #if !defined(__NR_llseek)
10112 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
10113 if (res == -1) {
10114 ret = get_errno(res);
10115 } else {
10116 ret = 0;
10118 #else
10119 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
10120 #endif
10121 if ((ret == 0) && put_user_s64(res, arg4)) {
10122 goto efault;
10125 break;
10126 #endif
10127 #ifdef TARGET_NR_getdents
10128 case TARGET_NR_getdents:
10129 #ifdef __NR_getdents
10130 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
10132 struct target_dirent *target_dirp;
10133 struct linux_dirent *dirp;
10134 abi_long count = arg3;
10136 dirp = g_try_malloc(count);
10137 if (!dirp) {
10138 ret = -TARGET_ENOMEM;
10139 goto fail;
10142 ret = get_errno(sys_getdents(arg1, dirp, count));
10143 if (!is_error(ret)) {
10144 struct linux_dirent *de;
10145 struct target_dirent *tde;
10146 int len = ret;
10147 int reclen, treclen;
10148 int count1, tnamelen;
10150 count1 = 0;
10151 de = dirp;
10152 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10153 goto efault;
10154 tde = target_dirp;
10155 while (len > 0) {
10156 reclen = de->d_reclen;
10157 tnamelen = reclen - offsetof(struct linux_dirent, d_name);
10158 assert(tnamelen >= 0);
10159 treclen = tnamelen + offsetof(struct target_dirent, d_name);
10160 assert(count1 + treclen <= count);
10161 tde->d_reclen = tswap16(treclen);
10162 tde->d_ino = tswapal(de->d_ino);
10163 tde->d_off = tswapal(de->d_off);
10164 memcpy(tde->d_name, de->d_name, tnamelen);
10165 de = (struct linux_dirent *)((char *)de + reclen);
10166 len -= reclen;
10167 tde = (struct target_dirent *)((char *)tde + treclen);
10168 count1 += treclen;
10170 ret = count1;
10171 unlock_user(target_dirp, arg2, ret);
10173 g_free(dirp);
10175 #else
10177 struct linux_dirent *dirp;
10178 abi_long count = arg3;
10180 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10181 goto efault;
10182 ret = get_errno(sys_getdents(arg1, dirp, count));
10183 if (!is_error(ret)) {
10184 struct linux_dirent *de;
10185 int len = ret;
10186 int reclen;
10187 de = dirp;
10188 while (len > 0) {
10189 reclen = de->d_reclen;
10190 if (reclen > len)
10191 break;
10192 de->d_reclen = tswap16(reclen);
10193 tswapls(&de->d_ino);
10194 tswapls(&de->d_off);
10195 de = (struct linux_dirent *)((char *)de + reclen);
10196 len -= reclen;
10199 unlock_user(dirp, arg2, ret);
10201 #endif
10202 #else
10203 /* Implement getdents in terms of getdents64 */
10205 struct linux_dirent64 *dirp;
10206 abi_long count = arg3;
10208 dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
10209 if (!dirp) {
10210 goto efault;
10212 ret = get_errno(sys_getdents64(arg1, dirp, count));
10213 if (!is_error(ret)) {
10214 /* Convert the dirent64 structs to target dirent. We do this
10215 * in-place, since we can guarantee that a target_dirent is no
10216 * larger than a dirent64; however this means we have to be
10217 * careful to read everything before writing in the new format.
10219 struct linux_dirent64 *de;
10220 struct target_dirent *tde;
10221 int len = ret;
10222 int tlen = 0;
10224 de = dirp;
10225 tde = (struct target_dirent *)dirp;
10226 while (len > 0) {
10227 int namelen, treclen;
10228 int reclen = de->d_reclen;
10229 uint64_t ino = de->d_ino;
10230 int64_t off = de->d_off;
10231 uint8_t type = de->d_type;
10233 namelen = strlen(de->d_name);
10234 treclen = offsetof(struct target_dirent, d_name)
10235 + namelen + 2;
10236 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
10238 memmove(tde->d_name, de->d_name, namelen + 1);
10239 tde->d_ino = tswapal(ino);
10240 tde->d_off = tswapal(off);
10241 tde->d_reclen = tswap16(treclen);
10242 /* The target_dirent type is in what was formerly a padding
10243 * byte at the end of the structure:
10245 *(((char *)tde) + treclen - 1) = type;
10247 de = (struct linux_dirent64 *)((char *)de + reclen);
10248 tde = (struct target_dirent *)((char *)tde + treclen);
10249 len -= reclen;
10250 tlen += treclen;
10252 ret = tlen;
10254 unlock_user(dirp, arg2, ret);
10256 #endif
10257 break;
10258 #endif /* TARGET_NR_getdents */
10259 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10260 case TARGET_NR_getdents64:
10262 struct linux_dirent64 *dirp;
10263 abi_long count = arg3;
10264 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10265 goto efault;
10266 ret = get_errno(sys_getdents64(arg1, dirp, count));
10267 if (!is_error(ret)) {
10268 struct linux_dirent64 *de;
10269 int len = ret;
10270 int reclen;
10271 de = dirp;
10272 while (len > 0) {
10273 reclen = de->d_reclen;
10274 if (reclen > len)
10275 break;
10276 de->d_reclen = tswap16(reclen);
10277 tswap64s((uint64_t *)&de->d_ino);
10278 tswap64s((uint64_t *)&de->d_off);
10279 de = (struct linux_dirent64 *)((char *)de + reclen);
10280 len -= reclen;
10283 unlock_user(dirp, arg2, ret);
10285 break;
10286 #endif /* TARGET_NR_getdents64 */
10287 #if defined(TARGET_NR__newselect)
10288 case TARGET_NR__newselect:
10289 ret = do_select(arg1, arg2, arg3, arg4, arg5);
10290 break;
10291 #endif
10292 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
10293 # ifdef TARGET_NR_poll
10294 case TARGET_NR_poll:
10295 # endif
10296 # ifdef TARGET_NR_ppoll
10297 case TARGET_NR_ppoll:
10298 # endif
10300 struct target_pollfd *target_pfd;
10301 unsigned int nfds = arg2;
10302 struct pollfd *pfd;
10303 unsigned int i;
10305 pfd = NULL;
10306 target_pfd = NULL;
10307 if (nfds) {
10308 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
10309 ret = -TARGET_EINVAL;
10310 break;
10313 target_pfd = lock_user(VERIFY_WRITE, arg1,
10314 sizeof(struct target_pollfd) * nfds, 1);
10315 if (!target_pfd) {
10316 goto efault;
10319 pfd = alloca(sizeof(struct pollfd) * nfds);
10320 for (i = 0; i < nfds; i++) {
10321 pfd[i].fd = tswap32(target_pfd[i].fd);
10322 pfd[i].events = tswap16(target_pfd[i].events);
10326 switch (num) {
10327 # ifdef TARGET_NR_ppoll
10328 case TARGET_NR_ppoll:
10330 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
10331 target_sigset_t *target_set;
10332 sigset_t _set, *set = &_set;
10334 if (arg3) {
10335 if (target_to_host_timespec(timeout_ts, arg3)) {
10336 unlock_user(target_pfd, arg1, 0);
10337 goto efault;
10339 } else {
10340 timeout_ts = NULL;
10343 if (arg4) {
10344 if (arg5 != sizeof(target_sigset_t)) {
10345 unlock_user(target_pfd, arg1, 0);
10346 ret = -TARGET_EINVAL;
10347 break;
10350 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
10351 if (!target_set) {
10352 unlock_user(target_pfd, arg1, 0);
10353 goto efault;
10355 target_to_host_sigset(set, target_set);
10356 } else {
10357 set = NULL;
10360 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
10361 set, SIGSET_T_SIZE));
10363 if (!is_error(ret) && arg3) {
10364 host_to_target_timespec(arg3, timeout_ts);
10366 if (arg4) {
10367 unlock_user(target_set, arg4, 0);
10369 break;
10371 # endif
10372 # ifdef TARGET_NR_poll
10373 case TARGET_NR_poll:
10375 struct timespec ts, *pts;
10377 if (arg3 >= 0) {
10378 /* Convert ms to secs, ns */
10379 ts.tv_sec = arg3 / 1000;
10380 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
10381 pts = &ts;
10382 } else {
10383 /* -ve poll() timeout means "infinite" */
10384 pts = NULL;
10386 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
10387 break;
10389 # endif
10390 default:
10391 g_assert_not_reached();
10394 if (!is_error(ret)) {
10395 for(i = 0; i < nfds; i++) {
10396 target_pfd[i].revents = tswap16(pfd[i].revents);
10399 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
10401 break;
10402 #endif
10403 case TARGET_NR_flock:
10404 /* NOTE: the flock constant seems to be the same for every
10405 Linux platform */
10406 ret = get_errno(safe_flock(arg1, arg2));
10407 break;
10408 case TARGET_NR_readv:
10410 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10411 if (vec != NULL) {
10412 ret = get_errno(safe_readv(arg1, vec, arg3));
10413 unlock_iovec(vec, arg2, arg3, 1);
10414 } else {
10415 ret = -host_to_target_errno(errno);
10418 break;
10419 case TARGET_NR_writev:
10421 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10422 if (vec != NULL) {
10423 ret = get_errno(safe_writev(arg1, vec, arg3));
10424 unlock_iovec(vec, arg2, arg3, 0);
10425 } else {
10426 ret = -host_to_target_errno(errno);
10429 break;
10430 #if defined(TARGET_NR_preadv)
10431 case TARGET_NR_preadv:
10433 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10434 if (vec != NULL) {
10435 ret = get_errno(safe_preadv(arg1, vec, arg3, arg4, arg5));
10436 unlock_iovec(vec, arg2, arg3, 1);
10437 } else {
10438 ret = -host_to_target_errno(errno);
10441 break;
10442 #endif
10443 #if defined(TARGET_NR_pwritev)
10444 case TARGET_NR_pwritev:
10446 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10447 if (vec != NULL) {
10448 ret = get_errno(safe_pwritev(arg1, vec, arg3, arg4, arg5));
10449 unlock_iovec(vec, arg2, arg3, 0);
10450 } else {
10451 ret = -host_to_target_errno(errno);
10454 break;
10455 #endif
10456 case TARGET_NR_getsid:
10457 ret = get_errno(getsid(arg1));
10458 break;
10459 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10460 case TARGET_NR_fdatasync:
10461 ret = get_errno(fdatasync(arg1));
10462 break;
10463 #endif
10464 #ifdef TARGET_NR__sysctl
10465 case TARGET_NR__sysctl:
10466 /* We don't implement this, but ENOTDIR is always a safe
10467 return value. */
10468 ret = -TARGET_ENOTDIR;
10469 break;
10470 #endif
10471 case TARGET_NR_sched_getaffinity:
10473 unsigned int mask_size;
10474 unsigned long *mask;
10477 * sched_getaffinity needs multiples of ulong, so need to take
10478 * care of mismatches between target ulong and host ulong sizes.
10480 if (arg2 & (sizeof(abi_ulong) - 1)) {
10481 ret = -TARGET_EINVAL;
10482 break;
10484 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10486 mask = alloca(mask_size);
10487 memset(mask, 0, mask_size);
10488 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10490 if (!is_error(ret)) {
10491 if (ret > arg2) {
10492 /* More data returned than the caller's buffer will fit.
10493 * This only happens if sizeof(abi_long) < sizeof(long)
10494 * and the caller passed us a buffer holding an odd number
10495 * of abi_longs. If the host kernel is actually using the
10496 * extra 4 bytes then fail EINVAL; otherwise we can just
10497 * ignore them and only copy the interesting part.
10499 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10500 if (numcpus > arg2 * 8) {
10501 ret = -TARGET_EINVAL;
10502 break;
10504 ret = arg2;
10507 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10508 goto efault;
10512 break;
10513 case TARGET_NR_sched_setaffinity:
10515 unsigned int mask_size;
10516 unsigned long *mask;
10519 * sched_setaffinity needs multiples of ulong, so need to take
10520 * care of mismatches between target ulong and host ulong sizes.
10522 if (arg2 & (sizeof(abi_ulong) - 1)) {
10523 ret = -TARGET_EINVAL;
10524 break;
10526 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10527 mask = alloca(mask_size);
10529 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10530 if (ret) {
10531 break;
10534 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10536 break;
10537 case TARGET_NR_getcpu:
10539 unsigned cpu, node;
10540 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10541 arg2 ? &node : NULL,
10542 NULL));
10543 if (is_error(ret)) {
10544 goto fail;
10546 if (arg1 && put_user_u32(cpu, arg1)) {
10547 goto efault;
10549 if (arg2 && put_user_u32(node, arg2)) {
10550 goto efault;
10553 break;
10554 case TARGET_NR_sched_setparam:
10556 struct sched_param *target_schp;
10557 struct sched_param schp;
10559 if (arg2 == 0) {
10560 return -TARGET_EINVAL;
10562 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
10563 goto efault;
10564 schp.sched_priority = tswap32(target_schp->sched_priority);
10565 unlock_user_struct(target_schp, arg2, 0);
10566 ret = get_errno(sched_setparam(arg1, &schp));
10568 break;
10569 case TARGET_NR_sched_getparam:
10571 struct sched_param *target_schp;
10572 struct sched_param schp;
10574 if (arg2 == 0) {
10575 return -TARGET_EINVAL;
10577 ret = get_errno(sched_getparam(arg1, &schp));
10578 if (!is_error(ret)) {
10579 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
10580 goto efault;
10581 target_schp->sched_priority = tswap32(schp.sched_priority);
10582 unlock_user_struct(target_schp, arg2, 1);
10585 break;
10586 case TARGET_NR_sched_setscheduler:
10588 struct sched_param *target_schp;
10589 struct sched_param schp;
10590 if (arg3 == 0) {
10591 return -TARGET_EINVAL;
10593 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
10594 goto efault;
10595 schp.sched_priority = tswap32(target_schp->sched_priority);
10596 unlock_user_struct(target_schp, arg3, 0);
10597 ret = get_errno(sched_setscheduler(arg1, arg2, &schp));
10599 break;
10600 case TARGET_NR_sched_getscheduler:
10601 ret = get_errno(sched_getscheduler(arg1));
10602 break;
10603 case TARGET_NR_sched_yield:
10604 ret = get_errno(sched_yield());
10605 break;
10606 case TARGET_NR_sched_get_priority_max:
10607 ret = get_errno(sched_get_priority_max(arg1));
10608 break;
10609 case TARGET_NR_sched_get_priority_min:
10610 ret = get_errno(sched_get_priority_min(arg1));
10611 break;
10612 case TARGET_NR_sched_rr_get_interval:
10614 struct timespec ts;
10615 ret = get_errno(sched_rr_get_interval(arg1, &ts));
10616 if (!is_error(ret)) {
10617 ret = host_to_target_timespec(arg2, &ts);
10620 break;
10621 case TARGET_NR_nanosleep:
10623 struct timespec req, rem;
10624 target_to_host_timespec(&req, arg1);
10625 ret = get_errno(safe_nanosleep(&req, &rem));
10626 if (is_error(ret) && arg2) {
10627 host_to_target_timespec(arg2, &rem);
10630 break;
10631 #ifdef TARGET_NR_query_module
10632 case TARGET_NR_query_module:
10633 goto unimplemented;
10634 #endif
10635 #ifdef TARGET_NR_nfsservctl
10636 case TARGET_NR_nfsservctl:
10637 goto unimplemented;
10638 #endif
10639 case TARGET_NR_prctl:
10640 switch (arg1) {
10641 case PR_GET_PDEATHSIG:
10643 int deathsig;
10644 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
10645 if (!is_error(ret) && arg2
10646 && put_user_ual(deathsig, arg2)) {
10647 goto efault;
10649 break;
10651 #ifdef PR_GET_NAME
10652 case PR_GET_NAME:
10654 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
10655 if (!name) {
10656 goto efault;
10658 ret = get_errno(prctl(arg1, (unsigned long)name,
10659 arg3, arg4, arg5));
10660 unlock_user(name, arg2, 16);
10661 break;
10663 case PR_SET_NAME:
10665 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
10666 if (!name) {
10667 goto efault;
10669 ret = get_errno(prctl(arg1, (unsigned long)name,
10670 arg3, arg4, arg5));
10671 unlock_user(name, arg2, 0);
10672 break;
10674 #endif
10675 #ifdef TARGET_AARCH64
10676 case TARGET_PR_SVE_SET_VL:
10677 /* We cannot support either PR_SVE_SET_VL_ONEXEC
10678 or PR_SVE_VL_INHERIT. Therefore, anything above
10679 ARM_MAX_VQ results in EINVAL. */
10680 ret = -TARGET_EINVAL;
10681 if (arm_feature(cpu_env, ARM_FEATURE_SVE)
10682 && arg2 >= 0 && arg2 <= ARM_MAX_VQ * 16 && !(arg2 & 15)) {
10683 CPUARMState *env = cpu_env;
10684 int old_vq = (env->vfp.zcr_el[1] & 0xf) + 1;
10685 int vq = MAX(arg2 / 16, 1);
10687 if (vq < old_vq) {
10688 aarch64_sve_narrow_vq(env, vq);
10690 env->vfp.zcr_el[1] = vq - 1;
10691 ret = vq * 16;
10693 break;
10694 case TARGET_PR_SVE_GET_VL:
10695 ret = -TARGET_EINVAL;
10696 if (arm_feature(cpu_env, ARM_FEATURE_SVE)) {
10697 CPUARMState *env = cpu_env;
10698 ret = ((env->vfp.zcr_el[1] & 0xf) + 1) * 16;
10700 break;
10701 #endif /* AARCH64 */
10702 case PR_GET_SECCOMP:
10703 case PR_SET_SECCOMP:
10704 /* Disable seccomp to prevent the target disabling syscalls we
10705 * need. */
10706 ret = -TARGET_EINVAL;
10707 break;
10708 default:
10709 /* Most prctl options have no pointer arguments */
10710 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
10711 break;
10713 break;
10714 #ifdef TARGET_NR_arch_prctl
10715 case TARGET_NR_arch_prctl:
10716 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
10717 ret = do_arch_prctl(cpu_env, arg1, arg2);
10718 break;
10719 #else
10720 goto unimplemented;
10721 #endif
10722 #endif
10723 #ifdef TARGET_NR_pread64
10724 case TARGET_NR_pread64:
10725 if (regpairs_aligned(cpu_env, num)) {
10726 arg4 = arg5;
10727 arg5 = arg6;
10729 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
10730 goto efault;
10731 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
10732 unlock_user(p, arg2, ret);
10733 break;
10734 case TARGET_NR_pwrite64:
10735 if (regpairs_aligned(cpu_env, num)) {
10736 arg4 = arg5;
10737 arg5 = arg6;
10739 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
10740 goto efault;
10741 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
10742 unlock_user(p, arg2, 0);
10743 break;
10744 #endif
10745 case TARGET_NR_getcwd:
10746 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
10747 goto efault;
10748 ret = get_errno(sys_getcwd1(p, arg2));
10749 unlock_user(p, arg1, ret);
10750 break;
10751 case TARGET_NR_capget:
10752 case TARGET_NR_capset:
10754 struct target_user_cap_header *target_header;
10755 struct target_user_cap_data *target_data = NULL;
10756 struct __user_cap_header_struct header;
10757 struct __user_cap_data_struct data[2];
10758 struct __user_cap_data_struct *dataptr = NULL;
10759 int i, target_datalen;
10760 int data_items = 1;
10762 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
10763 goto efault;
10765 header.version = tswap32(target_header->version);
10766 header.pid = tswap32(target_header->pid);
10768 if (header.version != _LINUX_CAPABILITY_VERSION) {
10769 /* Version 2 and up takes pointer to two user_data structs */
10770 data_items = 2;
10773 target_datalen = sizeof(*target_data) * data_items;
10775 if (arg2) {
10776 if (num == TARGET_NR_capget) {
10777 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
10778 } else {
10779 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
10781 if (!target_data) {
10782 unlock_user_struct(target_header, arg1, 0);
10783 goto efault;
10786 if (num == TARGET_NR_capset) {
10787 for (i = 0; i < data_items; i++) {
10788 data[i].effective = tswap32(target_data[i].effective);
10789 data[i].permitted = tswap32(target_data[i].permitted);
10790 data[i].inheritable = tswap32(target_data[i].inheritable);
10794 dataptr = data;
10797 if (num == TARGET_NR_capget) {
10798 ret = get_errno(capget(&header, dataptr));
10799 } else {
10800 ret = get_errno(capset(&header, dataptr));
10803 /* The kernel always updates version for both capget and capset */
10804 target_header->version = tswap32(header.version);
10805 unlock_user_struct(target_header, arg1, 1);
10807 if (arg2) {
10808 if (num == TARGET_NR_capget) {
10809 for (i = 0; i < data_items; i++) {
10810 target_data[i].effective = tswap32(data[i].effective);
10811 target_data[i].permitted = tswap32(data[i].permitted);
10812 target_data[i].inheritable = tswap32(data[i].inheritable);
10814 unlock_user(target_data, arg2, target_datalen);
10815 } else {
10816 unlock_user(target_data, arg2, 0);
10819 break;
10821 case TARGET_NR_sigaltstack:
10822 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env));
10823 break;
10825 #ifdef CONFIG_SENDFILE
10826 case TARGET_NR_sendfile:
10828 off_t *offp = NULL;
10829 off_t off;
10830 if (arg3) {
10831 ret = get_user_sal(off, arg3);
10832 if (is_error(ret)) {
10833 break;
10835 offp = &off;
10837 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10838 if (!is_error(ret) && arg3) {
10839 abi_long ret2 = put_user_sal(off, arg3);
10840 if (is_error(ret2)) {
10841 ret = ret2;
10844 break;
10846 #ifdef TARGET_NR_sendfile64
10847 case TARGET_NR_sendfile64:
10849 off_t *offp = NULL;
10850 off_t off;
10851 if (arg3) {
10852 ret = get_user_s64(off, arg3);
10853 if (is_error(ret)) {
10854 break;
10856 offp = &off;
10858 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10859 if (!is_error(ret) && arg3) {
10860 abi_long ret2 = put_user_s64(off, arg3);
10861 if (is_error(ret2)) {
10862 ret = ret2;
10865 break;
10867 #endif
10868 #else
10869 case TARGET_NR_sendfile:
10870 #ifdef TARGET_NR_sendfile64
10871 case TARGET_NR_sendfile64:
10872 #endif
10873 goto unimplemented;
10874 #endif
10876 #ifdef TARGET_NR_getpmsg
10877 case TARGET_NR_getpmsg:
10878 goto unimplemented;
10879 #endif
10880 #ifdef TARGET_NR_putpmsg
10881 case TARGET_NR_putpmsg:
10882 goto unimplemented;
10883 #endif
10884 #ifdef TARGET_NR_vfork
10885 case TARGET_NR_vfork:
10886 ret = get_errno(do_fork(cpu_env,
10887 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
10888 0, 0, 0, 0));
10889 break;
10890 #endif
10891 #ifdef TARGET_NR_ugetrlimit
10892 case TARGET_NR_ugetrlimit:
10894 struct rlimit rlim;
10895 int resource = target_to_host_resource(arg1);
10896 ret = get_errno(getrlimit(resource, &rlim));
10897 if (!is_error(ret)) {
10898 struct target_rlimit *target_rlim;
10899 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10900 goto efault;
10901 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10902 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10903 unlock_user_struct(target_rlim, arg2, 1);
10905 break;
10907 #endif
10908 #ifdef TARGET_NR_truncate64
10909 case TARGET_NR_truncate64:
10910 if (!(p = lock_user_string(arg1)))
10911 goto efault;
10912 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
10913 unlock_user(p, arg1, 0);
10914 break;
10915 #endif
10916 #ifdef TARGET_NR_ftruncate64
10917 case TARGET_NR_ftruncate64:
10918 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
10919 break;
10920 #endif
10921 #ifdef TARGET_NR_stat64
10922 case TARGET_NR_stat64:
10923 if (!(p = lock_user_string(arg1)))
10924 goto efault;
10925 ret = get_errno(stat(path(p), &st));
10926 unlock_user(p, arg1, 0);
10927 if (!is_error(ret))
10928 ret = host_to_target_stat64(cpu_env, arg2, &st);
10929 break;
10930 #endif
10931 #ifdef TARGET_NR_lstat64
10932 case TARGET_NR_lstat64:
10933 if (!(p = lock_user_string(arg1)))
10934 goto efault;
10935 ret = get_errno(lstat(path(p), &st));
10936 unlock_user(p, arg1, 0);
10937 if (!is_error(ret))
10938 ret = host_to_target_stat64(cpu_env, arg2, &st);
10939 break;
10940 #endif
10941 #ifdef TARGET_NR_fstat64
10942 case TARGET_NR_fstat64:
10943 ret = get_errno(fstat(arg1, &st));
10944 if (!is_error(ret))
10945 ret = host_to_target_stat64(cpu_env, arg2, &st);
10946 break;
10947 #endif
10948 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
10949 #ifdef TARGET_NR_fstatat64
10950 case TARGET_NR_fstatat64:
10951 #endif
10952 #ifdef TARGET_NR_newfstatat
10953 case TARGET_NR_newfstatat:
10954 #endif
10955 if (!(p = lock_user_string(arg2)))
10956 goto efault;
10957 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
10958 if (!is_error(ret))
10959 ret = host_to_target_stat64(cpu_env, arg3, &st);
10960 break;
10961 #endif
10962 #ifdef TARGET_NR_lchown
10963 case TARGET_NR_lchown:
10964 if (!(p = lock_user_string(arg1)))
10965 goto efault;
10966 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
10967 unlock_user(p, arg1, 0);
10968 break;
10969 #endif
10970 #ifdef TARGET_NR_getuid
10971 case TARGET_NR_getuid:
10972 ret = get_errno(high2lowuid(getuid()));
10973 break;
10974 #endif
10975 #ifdef TARGET_NR_getgid
10976 case TARGET_NR_getgid:
10977 ret = get_errno(high2lowgid(getgid()));
10978 break;
10979 #endif
10980 #ifdef TARGET_NR_geteuid
10981 case TARGET_NR_geteuid:
10982 ret = get_errno(high2lowuid(geteuid()));
10983 break;
10984 #endif
10985 #ifdef TARGET_NR_getegid
10986 case TARGET_NR_getegid:
10987 ret = get_errno(high2lowgid(getegid()));
10988 break;
10989 #endif
10990 case TARGET_NR_setreuid:
10991 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
10992 break;
10993 case TARGET_NR_setregid:
10994 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
10995 break;
10996 case TARGET_NR_getgroups:
10998 int gidsetsize = arg1;
10999 target_id *target_grouplist;
11000 gid_t *grouplist;
11001 int i;
11003 grouplist = alloca(gidsetsize * sizeof(gid_t));
11004 ret = get_errno(getgroups(gidsetsize, grouplist));
11005 if (gidsetsize == 0)
11006 break;
11007 if (!is_error(ret)) {
11008 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
11009 if (!target_grouplist)
11010 goto efault;
11011 for(i = 0;i < ret; i++)
11012 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11013 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
11016 break;
11017 case TARGET_NR_setgroups:
11019 int gidsetsize = arg1;
11020 target_id *target_grouplist;
11021 gid_t *grouplist = NULL;
11022 int i;
11023 if (gidsetsize) {
11024 grouplist = alloca(gidsetsize * sizeof(gid_t));
11025 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
11026 if (!target_grouplist) {
11027 ret = -TARGET_EFAULT;
11028 goto fail;
11030 for (i = 0; i < gidsetsize; i++) {
11031 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11033 unlock_user(target_grouplist, arg2, 0);
11035 ret = get_errno(setgroups(gidsetsize, grouplist));
11037 break;
11038 case TARGET_NR_fchown:
11039 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11040 break;
11041 #if defined(TARGET_NR_fchownat)
11042 case TARGET_NR_fchownat:
11043 if (!(p = lock_user_string(arg2)))
11044 goto efault;
11045 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11046 low2highgid(arg4), arg5));
11047 unlock_user(p, arg2, 0);
11048 break;
11049 #endif
11050 #ifdef TARGET_NR_setresuid
11051 case TARGET_NR_setresuid:
11052 ret = get_errno(sys_setresuid(low2highuid(arg1),
11053 low2highuid(arg2),
11054 low2highuid(arg3)));
11055 break;
11056 #endif
11057 #ifdef TARGET_NR_getresuid
11058 case TARGET_NR_getresuid:
11060 uid_t ruid, euid, suid;
11061 ret = get_errno(getresuid(&ruid, &euid, &suid));
11062 if (!is_error(ret)) {
11063 if (put_user_id(high2lowuid(ruid), arg1)
11064 || put_user_id(high2lowuid(euid), arg2)
11065 || put_user_id(high2lowuid(suid), arg3))
11066 goto efault;
11069 break;
11070 #endif
11071 #ifdef TARGET_NR_getresgid
11072 case TARGET_NR_setresgid:
11073 ret = get_errno(sys_setresgid(low2highgid(arg1),
11074 low2highgid(arg2),
11075 low2highgid(arg3)));
11076 break;
11077 #endif
11078 #ifdef TARGET_NR_getresgid
11079 case TARGET_NR_getresgid:
11081 gid_t rgid, egid, sgid;
11082 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11083 if (!is_error(ret)) {
11084 if (put_user_id(high2lowgid(rgid), arg1)
11085 || put_user_id(high2lowgid(egid), arg2)
11086 || put_user_id(high2lowgid(sgid), arg3))
11087 goto efault;
11090 break;
11091 #endif
11092 #ifdef TARGET_NR_chown
11093 case TARGET_NR_chown:
11094 if (!(p = lock_user_string(arg1)))
11095 goto efault;
11096 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11097 unlock_user(p, arg1, 0);
11098 break;
11099 #endif
11100 case TARGET_NR_setuid:
11101 ret = get_errno(sys_setuid(low2highuid(arg1)));
11102 break;
11103 case TARGET_NR_setgid:
11104 ret = get_errno(sys_setgid(low2highgid(arg1)));
11105 break;
11106 case TARGET_NR_setfsuid:
11107 ret = get_errno(setfsuid(arg1));
11108 break;
11109 case TARGET_NR_setfsgid:
11110 ret = get_errno(setfsgid(arg1));
11111 break;
11113 #ifdef TARGET_NR_lchown32
11114 case TARGET_NR_lchown32:
11115 if (!(p = lock_user_string(arg1)))
11116 goto efault;
11117 ret = get_errno(lchown(p, arg2, arg3));
11118 unlock_user(p, arg1, 0);
11119 break;
11120 #endif
11121 #ifdef TARGET_NR_getuid32
11122 case TARGET_NR_getuid32:
11123 ret = get_errno(getuid());
11124 break;
11125 #endif
11127 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11128 /* Alpha specific */
11129 case TARGET_NR_getxuid:
11131 uid_t euid;
11132 euid=geteuid();
11133 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
11135 ret = get_errno(getuid());
11136 break;
11137 #endif
11138 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11139 /* Alpha specific */
11140 case TARGET_NR_getxgid:
11142 uid_t egid;
11143 egid=getegid();
11144 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
11146 ret = get_errno(getgid());
11147 break;
11148 #endif
11149 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11150 /* Alpha specific */
11151 case TARGET_NR_osf_getsysinfo:
11152 ret = -TARGET_EOPNOTSUPP;
11153 switch (arg1) {
11154 case TARGET_GSI_IEEE_FP_CONTROL:
11156 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env);
11158 /* Copied from linux ieee_fpcr_to_swcr. */
11159 swcr = (fpcr >> 35) & SWCR_STATUS_MASK;
11160 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ;
11161 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV
11162 | SWCR_TRAP_ENABLE_DZE
11163 | SWCR_TRAP_ENABLE_OVF);
11164 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF
11165 | SWCR_TRAP_ENABLE_INE);
11166 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ;
11167 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO;
11169 if (put_user_u64 (swcr, arg2))
11170 goto efault;
11171 ret = 0;
11173 break;
11175 /* case GSI_IEEE_STATE_AT_SIGNAL:
11176 -- Not implemented in linux kernel.
11177 case GSI_UACPROC:
11178 -- Retrieves current unaligned access state; not much used.
11179 case GSI_PROC_TYPE:
11180 -- Retrieves implver information; surely not used.
11181 case GSI_GET_HWRPB:
11182 -- Grabs a copy of the HWRPB; surely not used.
11185 break;
11186 #endif
11187 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11188 /* Alpha specific */
11189 case TARGET_NR_osf_setsysinfo:
11190 ret = -TARGET_EOPNOTSUPP;
11191 switch (arg1) {
11192 case TARGET_SSI_IEEE_FP_CONTROL:
11194 uint64_t swcr, fpcr, orig_fpcr;
11196 if (get_user_u64 (swcr, arg2)) {
11197 goto efault;
11199 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
11200 fpcr = orig_fpcr & FPCR_DYN_MASK;
11202 /* Copied from linux ieee_swcr_to_fpcr. */
11203 fpcr |= (swcr & SWCR_STATUS_MASK) << 35;
11204 fpcr |= (swcr & SWCR_MAP_DMZ) << 36;
11205 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV
11206 | SWCR_TRAP_ENABLE_DZE
11207 | SWCR_TRAP_ENABLE_OVF)) << 48;
11208 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF
11209 | SWCR_TRAP_ENABLE_INE)) << 57;
11210 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0);
11211 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41;
11213 cpu_alpha_store_fpcr(cpu_env, fpcr);
11214 ret = 0;
11216 break;
11218 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11220 uint64_t exc, fpcr, orig_fpcr;
11221 int si_code;
11223 if (get_user_u64(exc, arg2)) {
11224 goto efault;
11227 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
11229 /* We only add to the exception status here. */
11230 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35);
11232 cpu_alpha_store_fpcr(cpu_env, fpcr);
11233 ret = 0;
11235 /* Old exceptions are not signaled. */
11236 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK);
11238 /* If any exceptions set by this call,
11239 and are unmasked, send a signal. */
11240 si_code = 0;
11241 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) {
11242 si_code = TARGET_FPE_FLTRES;
11244 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) {
11245 si_code = TARGET_FPE_FLTUND;
11247 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) {
11248 si_code = TARGET_FPE_FLTOVF;
11250 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) {
11251 si_code = TARGET_FPE_FLTDIV;
11253 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) {
11254 si_code = TARGET_FPE_FLTINV;
11256 if (si_code != 0) {
11257 target_siginfo_t info;
11258 info.si_signo = SIGFPE;
11259 info.si_errno = 0;
11260 info.si_code = si_code;
11261 info._sifields._sigfault._addr
11262 = ((CPUArchState *)cpu_env)->pc;
11263 queue_signal((CPUArchState *)cpu_env, info.si_signo,
11264 QEMU_SI_FAULT, &info);
11267 break;
11269 /* case SSI_NVPAIRS:
11270 -- Used with SSIN_UACPROC to enable unaligned accesses.
11271 case SSI_IEEE_STATE_AT_SIGNAL:
11272 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11273 -- Not implemented in linux kernel
11276 break;
11277 #endif
11278 #ifdef TARGET_NR_osf_sigprocmask
11279 /* Alpha specific. */
11280 case TARGET_NR_osf_sigprocmask:
11282 abi_ulong mask;
11283 int how;
11284 sigset_t set, oldset;
11286 switch(arg1) {
11287 case TARGET_SIG_BLOCK:
11288 how = SIG_BLOCK;
11289 break;
11290 case TARGET_SIG_UNBLOCK:
11291 how = SIG_UNBLOCK;
11292 break;
11293 case TARGET_SIG_SETMASK:
11294 how = SIG_SETMASK;
11295 break;
11296 default:
11297 ret = -TARGET_EINVAL;
11298 goto fail;
11300 mask = arg2;
11301 target_to_host_old_sigset(&set, &mask);
11302 ret = do_sigprocmask(how, &set, &oldset);
11303 if (!ret) {
11304 host_to_target_old_sigset(&mask, &oldset);
11305 ret = mask;
11308 break;
11309 #endif
11311 #ifdef TARGET_NR_getgid32
11312 case TARGET_NR_getgid32:
11313 ret = get_errno(getgid());
11314 break;
11315 #endif
11316 #ifdef TARGET_NR_geteuid32
11317 case TARGET_NR_geteuid32:
11318 ret = get_errno(geteuid());
11319 break;
11320 #endif
11321 #ifdef TARGET_NR_getegid32
11322 case TARGET_NR_getegid32:
11323 ret = get_errno(getegid());
11324 break;
11325 #endif
11326 #ifdef TARGET_NR_setreuid32
11327 case TARGET_NR_setreuid32:
11328 ret = get_errno(setreuid(arg1, arg2));
11329 break;
11330 #endif
11331 #ifdef TARGET_NR_setregid32
11332 case TARGET_NR_setregid32:
11333 ret = get_errno(setregid(arg1, arg2));
11334 break;
11335 #endif
11336 #ifdef TARGET_NR_getgroups32
11337 case TARGET_NR_getgroups32:
11339 int gidsetsize = arg1;
11340 uint32_t *target_grouplist;
11341 gid_t *grouplist;
11342 int i;
11344 grouplist = alloca(gidsetsize * sizeof(gid_t));
11345 ret = get_errno(getgroups(gidsetsize, grouplist));
11346 if (gidsetsize == 0)
11347 break;
11348 if (!is_error(ret)) {
11349 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11350 if (!target_grouplist) {
11351 ret = -TARGET_EFAULT;
11352 goto fail;
11354 for(i = 0;i < ret; i++)
11355 target_grouplist[i] = tswap32(grouplist[i]);
11356 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11359 break;
11360 #endif
11361 #ifdef TARGET_NR_setgroups32
11362 case TARGET_NR_setgroups32:
11364 int gidsetsize = arg1;
11365 uint32_t *target_grouplist;
11366 gid_t *grouplist;
11367 int i;
11369 grouplist = alloca(gidsetsize * sizeof(gid_t));
11370 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11371 if (!target_grouplist) {
11372 ret = -TARGET_EFAULT;
11373 goto fail;
11375 for(i = 0;i < gidsetsize; i++)
11376 grouplist[i] = tswap32(target_grouplist[i]);
11377 unlock_user(target_grouplist, arg2, 0);
11378 ret = get_errno(setgroups(gidsetsize, grouplist));
11380 break;
11381 #endif
11382 #ifdef TARGET_NR_fchown32
11383 case TARGET_NR_fchown32:
11384 ret = get_errno(fchown(arg1, arg2, arg3));
11385 break;
11386 #endif
11387 #ifdef TARGET_NR_setresuid32
11388 case TARGET_NR_setresuid32:
11389 ret = get_errno(sys_setresuid(arg1, arg2, arg3));
11390 break;
11391 #endif
11392 #ifdef TARGET_NR_getresuid32
11393 case TARGET_NR_getresuid32:
11395 uid_t ruid, euid, suid;
11396 ret = get_errno(getresuid(&ruid, &euid, &suid));
11397 if (!is_error(ret)) {
11398 if (put_user_u32(ruid, arg1)
11399 || put_user_u32(euid, arg2)
11400 || put_user_u32(suid, arg3))
11401 goto efault;
11404 break;
11405 #endif
11406 #ifdef TARGET_NR_setresgid32
11407 case TARGET_NR_setresgid32:
11408 ret = get_errno(sys_setresgid(arg1, arg2, arg3));
11409 break;
11410 #endif
11411 #ifdef TARGET_NR_getresgid32
11412 case TARGET_NR_getresgid32:
11414 gid_t rgid, egid, sgid;
11415 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11416 if (!is_error(ret)) {
11417 if (put_user_u32(rgid, arg1)
11418 || put_user_u32(egid, arg2)
11419 || put_user_u32(sgid, arg3))
11420 goto efault;
11423 break;
11424 #endif
11425 #ifdef TARGET_NR_chown32
11426 case TARGET_NR_chown32:
11427 if (!(p = lock_user_string(arg1)))
11428 goto efault;
11429 ret = get_errno(chown(p, arg2, arg3));
11430 unlock_user(p, arg1, 0);
11431 break;
11432 #endif
11433 #ifdef TARGET_NR_setuid32
11434 case TARGET_NR_setuid32:
11435 ret = get_errno(sys_setuid(arg1));
11436 break;
11437 #endif
11438 #ifdef TARGET_NR_setgid32
11439 case TARGET_NR_setgid32:
11440 ret = get_errno(sys_setgid(arg1));
11441 break;
11442 #endif
11443 #ifdef TARGET_NR_setfsuid32
11444 case TARGET_NR_setfsuid32:
11445 ret = get_errno(setfsuid(arg1));
11446 break;
11447 #endif
11448 #ifdef TARGET_NR_setfsgid32
11449 case TARGET_NR_setfsgid32:
11450 ret = get_errno(setfsgid(arg1));
11451 break;
11452 #endif
11454 case TARGET_NR_pivot_root:
11455 goto unimplemented;
11456 #ifdef TARGET_NR_mincore
11457 case TARGET_NR_mincore:
11459 void *a;
11460 ret = -TARGET_ENOMEM;
11461 a = lock_user(VERIFY_READ, arg1, arg2, 0);
11462 if (!a) {
11463 goto fail;
11465 ret = -TARGET_EFAULT;
11466 p = lock_user_string(arg3);
11467 if (!p) {
11468 goto mincore_fail;
11470 ret = get_errno(mincore(a, arg2, p));
11471 unlock_user(p, arg3, ret);
11472 mincore_fail:
11473 unlock_user(a, arg1, 0);
11475 break;
11476 #endif
11477 #ifdef TARGET_NR_arm_fadvise64_64
11478 case TARGET_NR_arm_fadvise64_64:
11479 /* arm_fadvise64_64 looks like fadvise64_64 but
11480 * with different argument order: fd, advice, offset, len
11481 * rather than the usual fd, offset, len, advice.
11482 * Note that offset and len are both 64-bit so appear as
11483 * pairs of 32-bit registers.
11485 ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11486 target_offset64(arg5, arg6), arg2);
11487 ret = -host_to_target_errno(ret);
11488 break;
11489 #endif
11491 #if TARGET_ABI_BITS == 32
11493 #ifdef TARGET_NR_fadvise64_64
11494 case TARGET_NR_fadvise64_64:
11495 #if defined(TARGET_PPC)
11496 /* 6 args: fd, advice, offset (high, low), len (high, low) */
11497 ret = arg2;
11498 arg2 = arg3;
11499 arg3 = arg4;
11500 arg4 = arg5;
11501 arg5 = arg6;
11502 arg6 = ret;
11503 #else
11504 /* 6 args: fd, offset (high, low), len (high, low), advice */
11505 if (regpairs_aligned(cpu_env, num)) {
11506 /* offset is in (3,4), len in (5,6) and advice in 7 */
11507 arg2 = arg3;
11508 arg3 = arg4;
11509 arg4 = arg5;
11510 arg5 = arg6;
11511 arg6 = arg7;
11513 #endif
11514 ret = -host_to_target_errno(posix_fadvise(arg1,
11515 target_offset64(arg2, arg3),
11516 target_offset64(arg4, arg5),
11517 arg6));
11518 break;
11519 #endif
11521 #ifdef TARGET_NR_fadvise64
11522 case TARGET_NR_fadvise64:
11523 /* 5 args: fd, offset (high, low), len, advice */
11524 if (regpairs_aligned(cpu_env, num)) {
11525 /* offset is in (3,4), len in 5 and advice in 6 */
11526 arg2 = arg3;
11527 arg3 = arg4;
11528 arg4 = arg5;
11529 arg5 = arg6;
11531 ret = -host_to_target_errno(posix_fadvise(arg1,
11532 target_offset64(arg2, arg3),
11533 arg4, arg5));
11534 break;
11535 #endif
11537 #else /* not a 32-bit ABI */
11538 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11539 #ifdef TARGET_NR_fadvise64_64
11540 case TARGET_NR_fadvise64_64:
11541 #endif
11542 #ifdef TARGET_NR_fadvise64
11543 case TARGET_NR_fadvise64:
11544 #endif
11545 #ifdef TARGET_S390X
11546 switch (arg4) {
11547 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11548 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11549 case 6: arg4 = POSIX_FADV_DONTNEED; break;
11550 case 7: arg4 = POSIX_FADV_NOREUSE; break;
11551 default: break;
11553 #endif
11554 ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11555 break;
11556 #endif
11557 #endif /* end of 64-bit ABI fadvise handling */
11559 #ifdef TARGET_NR_madvise
11560 case TARGET_NR_madvise:
11561 /* A straight passthrough may not be safe because qemu sometimes
11562 turns private file-backed mappings into anonymous mappings.
11563 This will break MADV_DONTNEED.
11564 This is a hint, so ignoring and returning success is ok. */
11565 ret = get_errno(0);
11566 break;
11567 #endif
11568 #if TARGET_ABI_BITS == 32
11569 case TARGET_NR_fcntl64:
11571 int cmd;
11572 struct flock64 fl;
11573 from_flock64_fn *copyfrom = copy_from_user_flock64;
11574 to_flock64_fn *copyto = copy_to_user_flock64;
11576 #ifdef TARGET_ARM
11577 if (((CPUARMState *)cpu_env)->eabi) {
11578 copyfrom = copy_from_user_eabi_flock64;
11579 copyto = copy_to_user_eabi_flock64;
11581 #endif
11583 cmd = target_to_host_fcntl_cmd(arg2);
11584 if (cmd == -TARGET_EINVAL) {
11585 ret = cmd;
11586 break;
11589 switch(arg2) {
11590 case TARGET_F_GETLK64:
11591 ret = copyfrom(&fl, arg3);
11592 if (ret) {
11593 break;
11595 ret = get_errno(fcntl(arg1, cmd, &fl));
11596 if (ret == 0) {
11597 ret = copyto(arg3, &fl);
11599 break;
11601 case TARGET_F_SETLK64:
11602 case TARGET_F_SETLKW64:
11603 ret = copyfrom(&fl, arg3);
11604 if (ret) {
11605 break;
11607 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11608 break;
11609 default:
11610 ret = do_fcntl(arg1, arg2, arg3);
11611 break;
11613 break;
11615 #endif
11616 #ifdef TARGET_NR_cacheflush
11617 case TARGET_NR_cacheflush:
11618 /* self-modifying code is handled automatically, so nothing needed */
11619 ret = 0;
11620 break;
11621 #endif
11622 #ifdef TARGET_NR_security
11623 case TARGET_NR_security:
11624 goto unimplemented;
11625 #endif
11626 #ifdef TARGET_NR_getpagesize
11627 case TARGET_NR_getpagesize:
11628 ret = TARGET_PAGE_SIZE;
11629 break;
11630 #endif
11631 case TARGET_NR_gettid:
11632 ret = get_errno(gettid());
11633 break;
11634 #ifdef TARGET_NR_readahead
11635 case TARGET_NR_readahead:
11636 #if TARGET_ABI_BITS == 32
11637 if (regpairs_aligned(cpu_env, num)) {
11638 arg2 = arg3;
11639 arg3 = arg4;
11640 arg4 = arg5;
11642 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11643 #else
11644 ret = get_errno(readahead(arg1, arg2, arg3));
11645 #endif
11646 break;
11647 #endif
11648 #ifdef CONFIG_ATTR
11649 #ifdef TARGET_NR_setxattr
11650 case TARGET_NR_listxattr:
11651 case TARGET_NR_llistxattr:
11653 void *p, *b = 0;
11654 if (arg2) {
11655 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11656 if (!b) {
11657 ret = -TARGET_EFAULT;
11658 break;
11661 p = lock_user_string(arg1);
11662 if (p) {
11663 if (num == TARGET_NR_listxattr) {
11664 ret = get_errno(listxattr(p, b, arg3));
11665 } else {
11666 ret = get_errno(llistxattr(p, b, arg3));
11668 } else {
11669 ret = -TARGET_EFAULT;
11671 unlock_user(p, arg1, 0);
11672 unlock_user(b, arg2, arg3);
11673 break;
11675 case TARGET_NR_flistxattr:
11677 void *b = 0;
11678 if (arg2) {
11679 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11680 if (!b) {
11681 ret = -TARGET_EFAULT;
11682 break;
11685 ret = get_errno(flistxattr(arg1, b, arg3));
11686 unlock_user(b, arg2, arg3);
11687 break;
11689 case TARGET_NR_setxattr:
11690 case TARGET_NR_lsetxattr:
11692 void *p, *n, *v = 0;
11693 if (arg3) {
11694 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11695 if (!v) {
11696 ret = -TARGET_EFAULT;
11697 break;
11700 p = lock_user_string(arg1);
11701 n = lock_user_string(arg2);
11702 if (p && n) {
11703 if (num == TARGET_NR_setxattr) {
11704 ret = get_errno(setxattr(p, n, v, arg4, arg5));
11705 } else {
11706 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11708 } else {
11709 ret = -TARGET_EFAULT;
11711 unlock_user(p, arg1, 0);
11712 unlock_user(n, arg2, 0);
11713 unlock_user(v, arg3, 0);
11715 break;
11716 case TARGET_NR_fsetxattr:
11718 void *n, *v = 0;
11719 if (arg3) {
11720 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11721 if (!v) {
11722 ret = -TARGET_EFAULT;
11723 break;
11726 n = lock_user_string(arg2);
11727 if (n) {
11728 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
11729 } else {
11730 ret = -TARGET_EFAULT;
11732 unlock_user(n, arg2, 0);
11733 unlock_user(v, arg3, 0);
11735 break;
11736 case TARGET_NR_getxattr:
11737 case TARGET_NR_lgetxattr:
11739 void *p, *n, *v = 0;
11740 if (arg3) {
11741 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11742 if (!v) {
11743 ret = -TARGET_EFAULT;
11744 break;
11747 p = lock_user_string(arg1);
11748 n = lock_user_string(arg2);
11749 if (p && n) {
11750 if (num == TARGET_NR_getxattr) {
11751 ret = get_errno(getxattr(p, n, v, arg4));
11752 } else {
11753 ret = get_errno(lgetxattr(p, n, v, arg4));
11755 } else {
11756 ret = -TARGET_EFAULT;
11758 unlock_user(p, arg1, 0);
11759 unlock_user(n, arg2, 0);
11760 unlock_user(v, arg3, arg4);
11762 break;
11763 case TARGET_NR_fgetxattr:
11765 void *n, *v = 0;
11766 if (arg3) {
11767 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11768 if (!v) {
11769 ret = -TARGET_EFAULT;
11770 break;
11773 n = lock_user_string(arg2);
11774 if (n) {
11775 ret = get_errno(fgetxattr(arg1, n, v, arg4));
11776 } else {
11777 ret = -TARGET_EFAULT;
11779 unlock_user(n, arg2, 0);
11780 unlock_user(v, arg3, arg4);
11782 break;
11783 case TARGET_NR_removexattr:
11784 case TARGET_NR_lremovexattr:
11786 void *p, *n;
11787 p = lock_user_string(arg1);
11788 n = lock_user_string(arg2);
11789 if (p && n) {
11790 if (num == TARGET_NR_removexattr) {
11791 ret = get_errno(removexattr(p, n));
11792 } else {
11793 ret = get_errno(lremovexattr(p, n));
11795 } else {
11796 ret = -TARGET_EFAULT;
11798 unlock_user(p, arg1, 0);
11799 unlock_user(n, arg2, 0);
11801 break;
11802 case TARGET_NR_fremovexattr:
11804 void *n;
11805 n = lock_user_string(arg2);
11806 if (n) {
11807 ret = get_errno(fremovexattr(arg1, n));
11808 } else {
11809 ret = -TARGET_EFAULT;
11811 unlock_user(n, arg2, 0);
11813 break;
11814 #endif
11815 #endif /* CONFIG_ATTR */
11816 #ifdef TARGET_NR_set_thread_area
11817 case TARGET_NR_set_thread_area:
11818 #if defined(TARGET_MIPS)
11819 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
11820 ret = 0;
11821 break;
11822 #elif defined(TARGET_CRIS)
11823 if (arg1 & 0xff)
11824 ret = -TARGET_EINVAL;
11825 else {
11826 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
11827 ret = 0;
11829 break;
11830 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
11831 ret = do_set_thread_area(cpu_env, arg1);
11832 break;
11833 #elif defined(TARGET_M68K)
11835 TaskState *ts = cpu->opaque;
11836 ts->tp_value = arg1;
11837 ret = 0;
11838 break;
11840 #else
11841 goto unimplemented_nowarn;
11842 #endif
11843 #endif
11844 #ifdef TARGET_NR_get_thread_area
11845 case TARGET_NR_get_thread_area:
11846 #if defined(TARGET_I386) && defined(TARGET_ABI32)
11847 ret = do_get_thread_area(cpu_env, arg1);
11848 break;
11849 #elif defined(TARGET_M68K)
11851 TaskState *ts = cpu->opaque;
11852 ret = ts->tp_value;
11853 break;
11855 #else
11856 goto unimplemented_nowarn;
11857 #endif
11858 #endif
11859 #ifdef TARGET_NR_getdomainname
11860 case TARGET_NR_getdomainname:
11861 goto unimplemented_nowarn;
11862 #endif
11864 #ifdef TARGET_NR_clock_gettime
11865 case TARGET_NR_clock_gettime:
11867 struct timespec ts;
11868 ret = get_errno(clock_gettime(arg1, &ts));
11869 if (!is_error(ret)) {
11870 host_to_target_timespec(arg2, &ts);
11872 break;
11874 #endif
11875 #ifdef TARGET_NR_clock_getres
11876 case TARGET_NR_clock_getres:
11878 struct timespec ts;
11879 ret = get_errno(clock_getres(arg1, &ts));
11880 if (!is_error(ret)) {
11881 host_to_target_timespec(arg2, &ts);
11883 break;
11885 #endif
11886 #ifdef TARGET_NR_clock_nanosleep
11887 case TARGET_NR_clock_nanosleep:
11889 struct timespec ts;
11890 target_to_host_timespec(&ts, arg3);
11891 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
11892 &ts, arg4 ? &ts : NULL));
11893 if (arg4)
11894 host_to_target_timespec(arg4, &ts);
11896 #if defined(TARGET_PPC)
11897 /* clock_nanosleep is odd in that it returns positive errno values.
11898 * On PPC, CR0 bit 3 should be set in such a situation. */
11899 if (ret && ret != -TARGET_ERESTARTSYS) {
11900 ((CPUPPCState *)cpu_env)->crf[0] |= 1;
11902 #endif
11903 break;
11905 #endif
11907 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
11908 case TARGET_NR_set_tid_address:
11909 ret = get_errno(set_tid_address((int *)g2h(arg1)));
11910 break;
11911 #endif
11913 case TARGET_NR_tkill:
11914 ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
11915 break;
11917 case TARGET_NR_tgkill:
11918 ret = get_errno(safe_tgkill((int)arg1, (int)arg2,
11919 target_to_host_signal(arg3)));
11920 break;
11922 #ifdef TARGET_NR_set_robust_list
11923 case TARGET_NR_set_robust_list:
11924 case TARGET_NR_get_robust_list:
11925 /* The ABI for supporting robust futexes has userspace pass
11926 * the kernel a pointer to a linked list which is updated by
11927 * userspace after the syscall; the list is walked by the kernel
11928 * when the thread exits. Since the linked list in QEMU guest
11929 * memory isn't a valid linked list for the host and we have
11930 * no way to reliably intercept the thread-death event, we can't
11931 * support these. Silently return ENOSYS so that guest userspace
11932 * falls back to a non-robust futex implementation (which should
11933 * be OK except in the corner case of the guest crashing while
11934 * holding a mutex that is shared with another process via
11935 * shared memory).
11937 goto unimplemented_nowarn;
11938 #endif
11940 #if defined(TARGET_NR_utimensat)
11941 case TARGET_NR_utimensat:
11943 struct timespec *tsp, ts[2];
11944 if (!arg3) {
11945 tsp = NULL;
11946 } else {
11947 target_to_host_timespec(ts, arg3);
11948 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
11949 tsp = ts;
11951 if (!arg2)
11952 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
11953 else {
11954 if (!(p = lock_user_string(arg2))) {
11955 ret = -TARGET_EFAULT;
11956 goto fail;
11958 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
11959 unlock_user(p, arg2, 0);
11962 break;
11963 #endif
11964 case TARGET_NR_futex:
11965 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
11966 break;
11967 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
11968 case TARGET_NR_inotify_init:
11969 ret = get_errno(sys_inotify_init());
11970 if (ret >= 0) {
11971 fd_trans_register(ret, &target_inotify_trans);
11973 break;
11974 #endif
11975 #ifdef CONFIG_INOTIFY1
11976 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
11977 case TARGET_NR_inotify_init1:
11978 ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
11979 fcntl_flags_tbl)));
11980 if (ret >= 0) {
11981 fd_trans_register(ret, &target_inotify_trans);
11983 break;
11984 #endif
11985 #endif
11986 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
11987 case TARGET_NR_inotify_add_watch:
11988 p = lock_user_string(arg2);
11989 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
11990 unlock_user(p, arg2, 0);
11991 break;
11992 #endif
11993 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
11994 case TARGET_NR_inotify_rm_watch:
11995 ret = get_errno(sys_inotify_rm_watch(arg1, arg2));
11996 break;
11997 #endif
11999 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12000 case TARGET_NR_mq_open:
12002 struct mq_attr posix_mq_attr;
12003 struct mq_attr *pposix_mq_attr;
12004 int host_flags;
12006 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12007 pposix_mq_attr = NULL;
12008 if (arg4) {
12009 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12010 goto efault;
12012 pposix_mq_attr = &posix_mq_attr;
12014 p = lock_user_string(arg1 - 1);
12015 if (!p) {
12016 goto efault;
12018 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12019 unlock_user (p, arg1, 0);
12021 break;
12023 case TARGET_NR_mq_unlink:
12024 p = lock_user_string(arg1 - 1);
12025 if (!p) {
12026 ret = -TARGET_EFAULT;
12027 break;
12029 ret = get_errno(mq_unlink(p));
12030 unlock_user (p, arg1, 0);
12031 break;
12033 case TARGET_NR_mq_timedsend:
12035 struct timespec ts;
12037 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12038 if (arg5 != 0) {
12039 target_to_host_timespec(&ts, arg5);
12040 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12041 host_to_target_timespec(arg5, &ts);
12042 } else {
12043 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12045 unlock_user (p, arg2, arg3);
12047 break;
12049 case TARGET_NR_mq_timedreceive:
12051 struct timespec ts;
12052 unsigned int prio;
12054 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12055 if (arg5 != 0) {
12056 target_to_host_timespec(&ts, arg5);
12057 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12058 &prio, &ts));
12059 host_to_target_timespec(arg5, &ts);
12060 } else {
12061 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12062 &prio, NULL));
12064 unlock_user (p, arg2, arg3);
12065 if (arg4 != 0)
12066 put_user_u32(prio, arg4);
12068 break;
12070 /* Not implemented for now... */
12071 /* case TARGET_NR_mq_notify: */
12072 /* break; */
12074 case TARGET_NR_mq_getsetattr:
12076 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12077 ret = 0;
12078 if (arg3 != 0) {
12079 ret = mq_getattr(arg1, &posix_mq_attr_out);
12080 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12082 if (arg2 != 0) {
12083 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12084 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out);
12088 break;
12089 #endif
12091 #ifdef CONFIG_SPLICE
12092 #ifdef TARGET_NR_tee
12093 case TARGET_NR_tee:
12095 ret = get_errno(tee(arg1,arg2,arg3,arg4));
12097 break;
12098 #endif
12099 #ifdef TARGET_NR_splice
12100 case TARGET_NR_splice:
12102 loff_t loff_in, loff_out;
12103 loff_t *ploff_in = NULL, *ploff_out = NULL;
12104 if (arg2) {
12105 if (get_user_u64(loff_in, arg2)) {
12106 goto efault;
12108 ploff_in = &loff_in;
12110 if (arg4) {
12111 if (get_user_u64(loff_out, arg4)) {
12112 goto efault;
12114 ploff_out = &loff_out;
12116 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12117 if (arg2) {
12118 if (put_user_u64(loff_in, arg2)) {
12119 goto efault;
12122 if (arg4) {
12123 if (put_user_u64(loff_out, arg4)) {
12124 goto efault;
12128 break;
12129 #endif
12130 #ifdef TARGET_NR_vmsplice
12131 case TARGET_NR_vmsplice:
12133 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12134 if (vec != NULL) {
12135 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12136 unlock_iovec(vec, arg2, arg3, 0);
12137 } else {
12138 ret = -host_to_target_errno(errno);
12141 break;
12142 #endif
12143 #endif /* CONFIG_SPLICE */
12144 #ifdef CONFIG_EVENTFD
12145 #if defined(TARGET_NR_eventfd)
12146 case TARGET_NR_eventfd:
12147 ret = get_errno(eventfd(arg1, 0));
12148 if (ret >= 0) {
12149 fd_trans_register(ret, &target_eventfd_trans);
12151 break;
12152 #endif
12153 #if defined(TARGET_NR_eventfd2)
12154 case TARGET_NR_eventfd2:
12156 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
12157 if (arg2 & TARGET_O_NONBLOCK) {
12158 host_flags |= O_NONBLOCK;
12160 if (arg2 & TARGET_O_CLOEXEC) {
12161 host_flags |= O_CLOEXEC;
12163 ret = get_errno(eventfd(arg1, host_flags));
12164 if (ret >= 0) {
12165 fd_trans_register(ret, &target_eventfd_trans);
12167 break;
12169 #endif
12170 #endif /* CONFIG_EVENTFD */
12171 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12172 case TARGET_NR_fallocate:
12173 #if TARGET_ABI_BITS == 32
12174 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
12175 target_offset64(arg5, arg6)));
12176 #else
12177 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
12178 #endif
12179 break;
12180 #endif
12181 #if defined(CONFIG_SYNC_FILE_RANGE)
12182 #if defined(TARGET_NR_sync_file_range)
12183 case TARGET_NR_sync_file_range:
12184 #if TARGET_ABI_BITS == 32
12185 #if defined(TARGET_MIPS)
12186 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12187 target_offset64(arg5, arg6), arg7));
12188 #else
12189 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
12190 target_offset64(arg4, arg5), arg6));
12191 #endif /* !TARGET_MIPS */
12192 #else
12193 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
12194 #endif
12195 break;
12196 #endif
12197 #if defined(TARGET_NR_sync_file_range2)
12198 case TARGET_NR_sync_file_range2:
12199 /* This is like sync_file_range but the arguments are reordered */
12200 #if TARGET_ABI_BITS == 32
12201 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12202 target_offset64(arg5, arg6), arg2));
12203 #else
12204 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12205 #endif
12206 break;
12207 #endif
12208 #endif
12209 #if defined(TARGET_NR_signalfd4)
12210 case TARGET_NR_signalfd4:
12211 ret = do_signalfd4(arg1, arg2, arg4);
12212 break;
12213 #endif
12214 #if defined(TARGET_NR_signalfd)
12215 case TARGET_NR_signalfd:
12216 ret = do_signalfd4(arg1, arg2, 0);
12217 break;
12218 #endif
12219 #if defined(CONFIG_EPOLL)
12220 #if defined(TARGET_NR_epoll_create)
12221 case TARGET_NR_epoll_create:
12222 ret = get_errno(epoll_create(arg1));
12223 break;
12224 #endif
12225 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12226 case TARGET_NR_epoll_create1:
12227 ret = get_errno(epoll_create1(arg1));
12228 break;
12229 #endif
12230 #if defined(TARGET_NR_epoll_ctl)
12231 case TARGET_NR_epoll_ctl:
12233 struct epoll_event ep;
12234 struct epoll_event *epp = 0;
12235 if (arg4) {
12236 struct target_epoll_event *target_ep;
12237 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12238 goto efault;
12240 ep.events = tswap32(target_ep->events);
12241 /* The epoll_data_t union is just opaque data to the kernel,
12242 * so we transfer all 64 bits across and need not worry what
12243 * actual data type it is.
12245 ep.data.u64 = tswap64(target_ep->data.u64);
12246 unlock_user_struct(target_ep, arg4, 0);
12247 epp = &ep;
12249 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12250 break;
12252 #endif
12254 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12255 #if defined(TARGET_NR_epoll_wait)
12256 case TARGET_NR_epoll_wait:
12257 #endif
12258 #if defined(TARGET_NR_epoll_pwait)
12259 case TARGET_NR_epoll_pwait:
12260 #endif
12262 struct target_epoll_event *target_ep;
12263 struct epoll_event *ep;
12264 int epfd = arg1;
12265 int maxevents = arg3;
12266 int timeout = arg4;
12268 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12269 ret = -TARGET_EINVAL;
12270 break;
12273 target_ep = lock_user(VERIFY_WRITE, arg2,
12274 maxevents * sizeof(struct target_epoll_event), 1);
12275 if (!target_ep) {
12276 goto efault;
12279 ep = g_try_new(struct epoll_event, maxevents);
12280 if (!ep) {
12281 unlock_user(target_ep, arg2, 0);
12282 ret = -TARGET_ENOMEM;
12283 break;
12286 switch (num) {
12287 #if defined(TARGET_NR_epoll_pwait)
12288 case TARGET_NR_epoll_pwait:
12290 target_sigset_t *target_set;
12291 sigset_t _set, *set = &_set;
12293 if (arg5) {
12294 if (arg6 != sizeof(target_sigset_t)) {
12295 ret = -TARGET_EINVAL;
12296 break;
12299 target_set = lock_user(VERIFY_READ, arg5,
12300 sizeof(target_sigset_t), 1);
12301 if (!target_set) {
12302 ret = -TARGET_EFAULT;
12303 break;
12305 target_to_host_sigset(set, target_set);
12306 unlock_user(target_set, arg5, 0);
12307 } else {
12308 set = NULL;
12311 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12312 set, SIGSET_T_SIZE));
12313 break;
12315 #endif
12316 #if defined(TARGET_NR_epoll_wait)
12317 case TARGET_NR_epoll_wait:
12318 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12319 NULL, 0));
12320 break;
12321 #endif
12322 default:
12323 ret = -TARGET_ENOSYS;
12325 if (!is_error(ret)) {
12326 int i;
12327 for (i = 0; i < ret; i++) {
12328 target_ep[i].events = tswap32(ep[i].events);
12329 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12331 unlock_user(target_ep, arg2,
12332 ret * sizeof(struct target_epoll_event));
12333 } else {
12334 unlock_user(target_ep, arg2, 0);
12336 g_free(ep);
12337 break;
12339 #endif
12340 #endif
12341 #ifdef TARGET_NR_prlimit64
12342 case TARGET_NR_prlimit64:
12344 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12345 struct target_rlimit64 *target_rnew, *target_rold;
12346 struct host_rlimit64 rnew, rold, *rnewp = 0;
12347 int resource = target_to_host_resource(arg2);
12348 if (arg3) {
12349 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12350 goto efault;
12352 rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12353 rnew.rlim_max = tswap64(target_rnew->rlim_max);
12354 unlock_user_struct(target_rnew, arg3, 0);
12355 rnewp = &rnew;
12358 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12359 if (!is_error(ret) && arg4) {
12360 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12361 goto efault;
12363 target_rold->rlim_cur = tswap64(rold.rlim_cur);
12364 target_rold->rlim_max = tswap64(rold.rlim_max);
12365 unlock_user_struct(target_rold, arg4, 1);
12367 break;
12369 #endif
12370 #ifdef TARGET_NR_gethostname
12371 case TARGET_NR_gethostname:
12373 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12374 if (name) {
12375 ret = get_errno(gethostname(name, arg2));
12376 unlock_user(name, arg1, arg2);
12377 } else {
12378 ret = -TARGET_EFAULT;
12380 break;
12382 #endif
12383 #ifdef TARGET_NR_atomic_cmpxchg_32
12384 case TARGET_NR_atomic_cmpxchg_32:
12386 /* should use start_exclusive from main.c */
12387 abi_ulong mem_value;
12388 if (get_user_u32(mem_value, arg6)) {
12389 target_siginfo_t info;
12390 info.si_signo = SIGSEGV;
12391 info.si_errno = 0;
12392 info.si_code = TARGET_SEGV_MAPERR;
12393 info._sifields._sigfault._addr = arg6;
12394 queue_signal((CPUArchState *)cpu_env, info.si_signo,
12395 QEMU_SI_FAULT, &info);
12396 ret = 0xdeadbeef;
12399 if (mem_value == arg2)
12400 put_user_u32(arg1, arg6);
12401 ret = mem_value;
12402 break;
12404 #endif
12405 #ifdef TARGET_NR_atomic_barrier
12406 case TARGET_NR_atomic_barrier:
12408 /* Like the kernel implementation and the qemu arm barrier, no-op this? */
12409 ret = 0;
12410 break;
12412 #endif
12414 #ifdef TARGET_NR_timer_create
12415 case TARGET_NR_timer_create:
12417 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12419 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12421 int clkid = arg1;
12422 int timer_index = next_free_host_timer();
12424 if (timer_index < 0) {
12425 ret = -TARGET_EAGAIN;
12426 } else {
12427 timer_t *phtimer = g_posix_timers + timer_index;
12429 if (arg2) {
12430 phost_sevp = &host_sevp;
12431 ret = target_to_host_sigevent(phost_sevp, arg2);
12432 if (ret != 0) {
12433 break;
12437 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12438 if (ret) {
12439 phtimer = NULL;
12440 } else {
12441 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12442 goto efault;
12446 break;
12448 #endif
12450 #ifdef TARGET_NR_timer_settime
12451 case TARGET_NR_timer_settime:
12453 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12454 * struct itimerspec * old_value */
12455 target_timer_t timerid = get_timer_id(arg1);
12457 if (timerid < 0) {
12458 ret = timerid;
12459 } else if (arg3 == 0) {
12460 ret = -TARGET_EINVAL;
12461 } else {
12462 timer_t htimer = g_posix_timers[timerid];
12463 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12465 if (target_to_host_itimerspec(&hspec_new, arg3)) {
12466 goto efault;
12468 ret = get_errno(
12469 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12470 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12471 goto efault;
12474 break;
12476 #endif
12478 #ifdef TARGET_NR_timer_gettime
12479 case TARGET_NR_timer_gettime:
12481 /* args: timer_t timerid, struct itimerspec *curr_value */
12482 target_timer_t timerid = get_timer_id(arg1);
12484 if (timerid < 0) {
12485 ret = timerid;
12486 } else if (!arg2) {
12487 ret = -TARGET_EFAULT;
12488 } else {
12489 timer_t htimer = g_posix_timers[timerid];
12490 struct itimerspec hspec;
12491 ret = get_errno(timer_gettime(htimer, &hspec));
12493 if (host_to_target_itimerspec(arg2, &hspec)) {
12494 ret = -TARGET_EFAULT;
12497 break;
12499 #endif
12501 #ifdef TARGET_NR_timer_getoverrun
12502 case TARGET_NR_timer_getoverrun:
12504 /* args: timer_t timerid */
12505 target_timer_t timerid = get_timer_id(arg1);
12507 if (timerid < 0) {
12508 ret = timerid;
12509 } else {
12510 timer_t htimer = g_posix_timers[timerid];
12511 ret = get_errno(timer_getoverrun(htimer));
12513 fd_trans_unregister(ret);
12514 break;
12516 #endif
12518 #ifdef TARGET_NR_timer_delete
12519 case TARGET_NR_timer_delete:
12521 /* args: timer_t timerid */
12522 target_timer_t timerid = get_timer_id(arg1);
12524 if (timerid < 0) {
12525 ret = timerid;
12526 } else {
12527 timer_t htimer = g_posix_timers[timerid];
12528 ret = get_errno(timer_delete(htimer));
12529 g_posix_timers[timerid] = 0;
12531 break;
12533 #endif
12535 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
12536 case TARGET_NR_timerfd_create:
12537 ret = get_errno(timerfd_create(arg1,
12538 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
12539 break;
12540 #endif
12542 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
12543 case TARGET_NR_timerfd_gettime:
12545 struct itimerspec its_curr;
12547 ret = get_errno(timerfd_gettime(arg1, &its_curr));
12549 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
12550 goto efault;
12553 break;
12554 #endif
12556 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
12557 case TARGET_NR_timerfd_settime:
12559 struct itimerspec its_new, its_old, *p_new;
12561 if (arg3) {
12562 if (target_to_host_itimerspec(&its_new, arg3)) {
12563 goto efault;
12565 p_new = &its_new;
12566 } else {
12567 p_new = NULL;
12570 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
12572 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
12573 goto efault;
12576 break;
12577 #endif
12579 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
12580 case TARGET_NR_ioprio_get:
12581 ret = get_errno(ioprio_get(arg1, arg2));
12582 break;
12583 #endif
12585 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
12586 case TARGET_NR_ioprio_set:
12587 ret = get_errno(ioprio_set(arg1, arg2, arg3));
12588 break;
12589 #endif
12591 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
12592 case TARGET_NR_setns:
12593 ret = get_errno(setns(arg1, arg2));
12594 break;
12595 #endif
12596 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
12597 case TARGET_NR_unshare:
12598 ret = get_errno(unshare(arg1));
12599 break;
12600 #endif
12601 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
12602 case TARGET_NR_kcmp:
12603 ret = get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
12604 break;
12605 #endif
12607 default:
12608 unimplemented:
12609 gemu_log("qemu: Unsupported syscall: %d\n", num);
12610 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
12611 unimplemented_nowarn:
12612 #endif
12613 ret = -TARGET_ENOSYS;
12614 break;
12616 fail:
12617 #ifdef DEBUG
12618 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret);
12619 #endif
12620 if(do_strace)
12621 print_syscall_ret(num, ret);
12622 trace_guest_user_syscall_ret(cpu, num, ret);
12623 return ret;
12624 efault:
12625 ret = -TARGET_EFAULT;
12626 goto fail;