replay: update documentation
[qemu/ar7.git] / linux-user / elfload.c
blob5fc130cc20ca4f15057fbc1b4e587477d9c9a13d
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
93 #else
94 #define ELF_DATA ELFDATA2LSB
95 #endif
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t;
99 #define tswapreg(ptr) tswap64(ptr)
100 #else
101 typedef abi_ulong target_elf_greg_t;
102 #define tswapreg(ptr) tswapal(ptr)
103 #endif
105 #ifdef USE_UID16
106 typedef abi_ushort target_uid_t;
107 typedef abi_ushort target_gid_t;
108 #else
109 typedef abi_uint target_uid_t;
110 typedef abi_uint target_gid_t;
111 #endif
112 typedef abi_int target_pid_t;
114 #ifdef TARGET_I386
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform[] = "i386";
121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 X86CPU *cpu = X86_CPU(thread_cpu);
135 return cpu->env.features[FEAT_1_EDX];
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
151 #define ELF_NREG 27
152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
159 * See linux kernel: arch/x86/include/asm/elf.h
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
192 #else
194 #define ELF_START_MMAP 0x80000000
197 * This is used to ensure we don't load something for the wrong architecture.
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
202 * These are used to set parameters in the core dumps.
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
207 static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
223 #define ELF_NREG 17
224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
231 * See linux kernel: arch/x86/include/asm/elf.h
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
253 #endif
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
258 #endif
260 #ifdef TARGET_ARM
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
265 #define ELF_START_MMAP 0x80000000
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
273 abi_long stack = infop->start_stack;
274 memset(regs, 0, sizeof(*regs));
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
286 regs->uregs[0] = 0;
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs->uregs[10] = infop->start_data;
292 #define ELF_NREG 18
293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
321 enum
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
347 enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
355 /* The commpage only exists for 32 bit kernels */
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
366 static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
369 unsigned long real_start, test_page_addr;
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
379 if (test_page_addr >= guest_base
380 && test_page_addr < (guest_base + guest_size)) {
381 return -1;
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
414 return 1; /* All good */
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
420 static uint32_t get_elf_hwcap(void)
422 ARMCPU *cpu = ARM_CPU(thread_cpu);
423 uint32_t hwcaps = 0;
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
430 /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
452 return hwcaps;
455 static uint32_t get_elf_hwcap2(void)
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
468 #undef GET_FEATURE
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
474 #define ELF_ARCH EM_AARCH64
475 #define ELF_CLASS ELFCLASS64
476 #define ELF_PLATFORM "aarch64"
478 static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
488 #define ELF_NREG 34
489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
494 int i;
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE 4096
506 enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
515 ARM_HWCAP_A64_ATOMICS = 1 << 8,
516 ARM_HWCAP_A64_FPHP = 1 << 9,
517 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
518 ARM_HWCAP_A64_CPUID = 1 << 11,
519 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
520 ARM_HWCAP_A64_JSCVT = 1 << 13,
521 ARM_HWCAP_A64_FCMA = 1 << 14,
522 ARM_HWCAP_A64_LRCPC = 1 << 15,
523 ARM_HWCAP_A64_DCPOP = 1 << 16,
524 ARM_HWCAP_A64_SHA3 = 1 << 17,
525 ARM_HWCAP_A64_SM3 = 1 << 18,
526 ARM_HWCAP_A64_SM4 = 1 << 19,
527 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
528 ARM_HWCAP_A64_SHA512 = 1 << 21,
529 ARM_HWCAP_A64_SVE = 1 << 22,
532 #define ELF_HWCAP get_elf_hwcap()
534 static uint32_t get_elf_hwcap(void)
536 ARMCPU *cpu = ARM_CPU(thread_cpu);
537 uint32_t hwcaps = 0;
539 hwcaps |= ARM_HWCAP_A64_FP;
540 hwcaps |= ARM_HWCAP_A64_ASIMD;
542 /* probe for the extra features */
543 #define GET_FEATURE(feat, hwcap) \
544 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
545 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
546 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
547 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
548 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
549 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
550 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
551 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
552 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
553 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
554 GET_FEATURE(ARM_FEATURE_V8_FP16,
555 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
556 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
557 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
558 #undef GET_FEATURE
560 return hwcaps;
563 #endif /* not TARGET_AARCH64 */
564 #endif /* TARGET_ARM */
566 #ifdef TARGET_UNICORE32
568 #define ELF_START_MMAP 0x80000000
570 #define ELF_CLASS ELFCLASS32
571 #define ELF_DATA ELFDATA2LSB
572 #define ELF_ARCH EM_UNICORE32
574 static inline void init_thread(struct target_pt_regs *regs,
575 struct image_info *infop)
577 abi_long stack = infop->start_stack;
578 memset(regs, 0, sizeof(*regs));
579 regs->UC32_REG_asr = 0x10;
580 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
581 regs->UC32_REG_sp = infop->start_stack;
582 /* FIXME - what to for failure of get_user()? */
583 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
584 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
585 /* XXX: it seems that r0 is zeroed after ! */
586 regs->UC32_REG_00 = 0;
589 #define ELF_NREG 34
590 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
592 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
594 (*regs)[0] = env->regs[0];
595 (*regs)[1] = env->regs[1];
596 (*regs)[2] = env->regs[2];
597 (*regs)[3] = env->regs[3];
598 (*regs)[4] = env->regs[4];
599 (*regs)[5] = env->regs[5];
600 (*regs)[6] = env->regs[6];
601 (*regs)[7] = env->regs[7];
602 (*regs)[8] = env->regs[8];
603 (*regs)[9] = env->regs[9];
604 (*regs)[10] = env->regs[10];
605 (*regs)[11] = env->regs[11];
606 (*regs)[12] = env->regs[12];
607 (*regs)[13] = env->regs[13];
608 (*regs)[14] = env->regs[14];
609 (*regs)[15] = env->regs[15];
610 (*regs)[16] = env->regs[16];
611 (*regs)[17] = env->regs[17];
612 (*regs)[18] = env->regs[18];
613 (*regs)[19] = env->regs[19];
614 (*regs)[20] = env->regs[20];
615 (*regs)[21] = env->regs[21];
616 (*regs)[22] = env->regs[22];
617 (*regs)[23] = env->regs[23];
618 (*regs)[24] = env->regs[24];
619 (*regs)[25] = env->regs[25];
620 (*regs)[26] = env->regs[26];
621 (*regs)[27] = env->regs[27];
622 (*regs)[28] = env->regs[28];
623 (*regs)[29] = env->regs[29];
624 (*regs)[30] = env->regs[30];
625 (*regs)[31] = env->regs[31];
627 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
628 (*regs)[33] = env->regs[0]; /* XXX */
631 #define USE_ELF_CORE_DUMP
632 #define ELF_EXEC_PAGESIZE 4096
634 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
636 #endif
638 #ifdef TARGET_SPARC
639 #ifdef TARGET_SPARC64
641 #define ELF_START_MMAP 0x80000000
642 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
643 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
644 #ifndef TARGET_ABI32
645 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
646 #else
647 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
648 #endif
650 #define ELF_CLASS ELFCLASS64
651 #define ELF_ARCH EM_SPARCV9
653 #define STACK_BIAS 2047
655 static inline void init_thread(struct target_pt_regs *regs,
656 struct image_info *infop)
658 #ifndef TARGET_ABI32
659 regs->tstate = 0;
660 #endif
661 regs->pc = infop->entry;
662 regs->npc = regs->pc + 4;
663 regs->y = 0;
664 #ifdef TARGET_ABI32
665 regs->u_regs[14] = infop->start_stack - 16 * 4;
666 #else
667 if (personality(infop->personality) == PER_LINUX32)
668 regs->u_regs[14] = infop->start_stack - 16 * 4;
669 else
670 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
671 #endif
674 #else
675 #define ELF_START_MMAP 0x80000000
676 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
677 | HWCAP_SPARC_MULDIV)
679 #define ELF_CLASS ELFCLASS32
680 #define ELF_ARCH EM_SPARC
682 static inline void init_thread(struct target_pt_regs *regs,
683 struct image_info *infop)
685 regs->psr = 0;
686 regs->pc = infop->entry;
687 regs->npc = regs->pc + 4;
688 regs->y = 0;
689 regs->u_regs[14] = infop->start_stack - 16 * 4;
692 #endif
693 #endif
695 #ifdef TARGET_PPC
697 #define ELF_MACHINE PPC_ELF_MACHINE
698 #define ELF_START_MMAP 0x80000000
700 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
702 #define elf_check_arch(x) ( (x) == EM_PPC64 )
704 #define ELF_CLASS ELFCLASS64
706 #else
708 #define ELF_CLASS ELFCLASS32
710 #endif
712 #define ELF_ARCH EM_PPC
714 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
715 See arch/powerpc/include/asm/cputable.h. */
716 enum {
717 QEMU_PPC_FEATURE_32 = 0x80000000,
718 QEMU_PPC_FEATURE_64 = 0x40000000,
719 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
720 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
721 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
722 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
723 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
724 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
725 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
726 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
727 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
728 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
729 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
730 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
731 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
732 QEMU_PPC_FEATURE_CELL = 0x00010000,
733 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
734 QEMU_PPC_FEATURE_SMT = 0x00004000,
735 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
736 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
737 QEMU_PPC_FEATURE_PA6T = 0x00000800,
738 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
739 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
740 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
741 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
742 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
744 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
745 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
747 /* Feature definitions in AT_HWCAP2. */
748 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
749 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
750 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
751 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
752 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
753 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
756 #define ELF_HWCAP get_elf_hwcap()
758 static uint32_t get_elf_hwcap(void)
760 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
761 uint32_t features = 0;
763 /* We don't have to be terribly complete here; the high points are
764 Altivec/FP/SPE support. Anything else is just a bonus. */
765 #define GET_FEATURE(flag, feature) \
766 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
767 #define GET_FEATURE2(flags, feature) \
768 do { \
769 if ((cpu->env.insns_flags2 & flags) == flags) { \
770 features |= feature; \
772 } while (0)
773 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
774 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
775 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
776 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
777 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
778 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
779 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
780 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
781 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
782 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
783 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
784 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
785 QEMU_PPC_FEATURE_ARCH_2_06);
786 #undef GET_FEATURE
787 #undef GET_FEATURE2
789 return features;
792 #define ELF_HWCAP2 get_elf_hwcap2()
794 static uint32_t get_elf_hwcap2(void)
796 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
797 uint32_t features = 0;
799 #define GET_FEATURE(flag, feature) \
800 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
801 #define GET_FEATURE2(flag, feature) \
802 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
804 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
805 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
806 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
807 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
809 #undef GET_FEATURE
810 #undef GET_FEATURE2
812 return features;
816 * The requirements here are:
817 * - keep the final alignment of sp (sp & 0xf)
818 * - make sure the 32-bit value at the first 16 byte aligned position of
819 * AUXV is greater than 16 for glibc compatibility.
820 * AT_IGNOREPPC is used for that.
821 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
822 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
824 #define DLINFO_ARCH_ITEMS 5
825 #define ARCH_DLINFO \
826 do { \
827 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
828 /* \
829 * Handle glibc compatibility: these magic entries must \
830 * be at the lowest addresses in the final auxv. \
831 */ \
832 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
833 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
834 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
835 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
836 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
837 } while (0)
839 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
841 _regs->gpr[1] = infop->start_stack;
842 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
843 if (get_ppc64_abi(infop) < 2) {
844 uint64_t val;
845 get_user_u64(val, infop->entry + 8);
846 _regs->gpr[2] = val + infop->load_bias;
847 get_user_u64(val, infop->entry);
848 infop->entry = val + infop->load_bias;
849 } else {
850 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
852 #endif
853 _regs->nip = infop->entry;
856 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
857 #define ELF_NREG 48
858 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
860 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
862 int i;
863 target_ulong ccr = 0;
865 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
866 (*regs)[i] = tswapreg(env->gpr[i]);
869 (*regs)[32] = tswapreg(env->nip);
870 (*regs)[33] = tswapreg(env->msr);
871 (*regs)[35] = tswapreg(env->ctr);
872 (*regs)[36] = tswapreg(env->lr);
873 (*regs)[37] = tswapreg(env->xer);
875 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
876 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
878 (*regs)[38] = tswapreg(ccr);
881 #define USE_ELF_CORE_DUMP
882 #define ELF_EXEC_PAGESIZE 4096
884 #endif
886 #ifdef TARGET_MIPS
888 #define ELF_START_MMAP 0x80000000
890 #ifdef TARGET_MIPS64
891 #define ELF_CLASS ELFCLASS64
892 #else
893 #define ELF_CLASS ELFCLASS32
894 #endif
895 #define ELF_ARCH EM_MIPS
897 static inline void init_thread(struct target_pt_regs *regs,
898 struct image_info *infop)
900 regs->cp0_status = 2 << CP0St_KSU;
901 regs->cp0_epc = infop->entry;
902 regs->regs[29] = infop->start_stack;
905 /* See linux kernel: arch/mips/include/asm/elf.h. */
906 #define ELF_NREG 45
907 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
909 /* See linux kernel: arch/mips/include/asm/reg.h. */
910 enum {
911 #ifdef TARGET_MIPS64
912 TARGET_EF_R0 = 0,
913 #else
914 TARGET_EF_R0 = 6,
915 #endif
916 TARGET_EF_R26 = TARGET_EF_R0 + 26,
917 TARGET_EF_R27 = TARGET_EF_R0 + 27,
918 TARGET_EF_LO = TARGET_EF_R0 + 32,
919 TARGET_EF_HI = TARGET_EF_R0 + 33,
920 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
921 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
922 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
923 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
926 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
927 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
929 int i;
931 for (i = 0; i < TARGET_EF_R0; i++) {
932 (*regs)[i] = 0;
934 (*regs)[TARGET_EF_R0] = 0;
936 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
937 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
940 (*regs)[TARGET_EF_R26] = 0;
941 (*regs)[TARGET_EF_R27] = 0;
942 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
943 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
944 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
945 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
946 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
947 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
950 #define USE_ELF_CORE_DUMP
951 #define ELF_EXEC_PAGESIZE 4096
953 #endif /* TARGET_MIPS */
955 #ifdef TARGET_MICROBLAZE
957 #define ELF_START_MMAP 0x80000000
959 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
961 #define ELF_CLASS ELFCLASS32
962 #define ELF_ARCH EM_MICROBLAZE
964 static inline void init_thread(struct target_pt_regs *regs,
965 struct image_info *infop)
967 regs->pc = infop->entry;
968 regs->r1 = infop->start_stack;
972 #define ELF_EXEC_PAGESIZE 4096
974 #define USE_ELF_CORE_DUMP
975 #define ELF_NREG 38
976 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
978 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
979 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
981 int i, pos = 0;
983 for (i = 0; i < 32; i++) {
984 (*regs)[pos++] = tswapreg(env->regs[i]);
987 for (i = 0; i < 6; i++) {
988 (*regs)[pos++] = tswapreg(env->sregs[i]);
992 #endif /* TARGET_MICROBLAZE */
994 #ifdef TARGET_NIOS2
996 #define ELF_START_MMAP 0x80000000
998 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1000 #define ELF_CLASS ELFCLASS32
1001 #define ELF_ARCH EM_ALTERA_NIOS2
1003 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1005 regs->ea = infop->entry;
1006 regs->sp = infop->start_stack;
1007 regs->estatus = 0x3;
1010 #define ELF_EXEC_PAGESIZE 4096
1012 #define USE_ELF_CORE_DUMP
1013 #define ELF_NREG 49
1014 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1016 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1017 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1018 const CPUNios2State *env)
1020 int i;
1022 (*regs)[0] = -1;
1023 for (i = 1; i < 8; i++) /* r0-r7 */
1024 (*regs)[i] = tswapreg(env->regs[i + 7]);
1026 for (i = 8; i < 16; i++) /* r8-r15 */
1027 (*regs)[i] = tswapreg(env->regs[i - 8]);
1029 for (i = 16; i < 24; i++) /* r16-r23 */
1030 (*regs)[i] = tswapreg(env->regs[i + 7]);
1031 (*regs)[24] = -1; /* R_ET */
1032 (*regs)[25] = -1; /* R_BT */
1033 (*regs)[26] = tswapreg(env->regs[R_GP]);
1034 (*regs)[27] = tswapreg(env->regs[R_SP]);
1035 (*regs)[28] = tswapreg(env->regs[R_FP]);
1036 (*regs)[29] = tswapreg(env->regs[R_EA]);
1037 (*regs)[30] = -1; /* R_SSTATUS */
1038 (*regs)[31] = tswapreg(env->regs[R_RA]);
1040 (*regs)[32] = tswapreg(env->regs[R_PC]);
1042 (*regs)[33] = -1; /* R_STATUS */
1043 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1045 for (i = 35; i < 49; i++) /* ... */
1046 (*regs)[i] = -1;
1049 #endif /* TARGET_NIOS2 */
1051 #ifdef TARGET_OPENRISC
1053 #define ELF_START_MMAP 0x08000000
1055 #define ELF_ARCH EM_OPENRISC
1056 #define ELF_CLASS ELFCLASS32
1057 #define ELF_DATA ELFDATA2MSB
1059 static inline void init_thread(struct target_pt_regs *regs,
1060 struct image_info *infop)
1062 regs->pc = infop->entry;
1063 regs->gpr[1] = infop->start_stack;
1066 #define USE_ELF_CORE_DUMP
1067 #define ELF_EXEC_PAGESIZE 8192
1069 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1070 #define ELF_NREG 34 /* gprs and pc, sr */
1071 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1073 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1074 const CPUOpenRISCState *env)
1076 int i;
1078 for (i = 0; i < 32; i++) {
1079 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1081 (*regs)[32] = tswapreg(env->pc);
1082 (*regs)[33] = tswapreg(cpu_get_sr(env));
1084 #define ELF_HWCAP 0
1085 #define ELF_PLATFORM NULL
1087 #endif /* TARGET_OPENRISC */
1089 #ifdef TARGET_SH4
1091 #define ELF_START_MMAP 0x80000000
1093 #define ELF_CLASS ELFCLASS32
1094 #define ELF_ARCH EM_SH
1096 static inline void init_thread(struct target_pt_regs *regs,
1097 struct image_info *infop)
1099 /* Check other registers XXXXX */
1100 regs->pc = infop->entry;
1101 regs->regs[15] = infop->start_stack;
1104 /* See linux kernel: arch/sh/include/asm/elf.h. */
1105 #define ELF_NREG 23
1106 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1108 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1109 enum {
1110 TARGET_REG_PC = 16,
1111 TARGET_REG_PR = 17,
1112 TARGET_REG_SR = 18,
1113 TARGET_REG_GBR = 19,
1114 TARGET_REG_MACH = 20,
1115 TARGET_REG_MACL = 21,
1116 TARGET_REG_SYSCALL = 22
1119 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1120 const CPUSH4State *env)
1122 int i;
1124 for (i = 0; i < 16; i++) {
1125 (*regs)[i] = tswapreg(env->gregs[i]);
1128 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1129 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1130 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1131 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1132 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1133 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1134 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1137 #define USE_ELF_CORE_DUMP
1138 #define ELF_EXEC_PAGESIZE 4096
1140 enum {
1141 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1142 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1143 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1144 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1145 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1146 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1147 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1148 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1149 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1150 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1153 #define ELF_HWCAP get_elf_hwcap()
1155 static uint32_t get_elf_hwcap(void)
1157 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1158 uint32_t hwcap = 0;
1160 hwcap |= SH_CPU_HAS_FPU;
1162 if (cpu->env.features & SH_FEATURE_SH4A) {
1163 hwcap |= SH_CPU_HAS_LLSC;
1166 return hwcap;
1169 #endif
1171 #ifdef TARGET_CRIS
1173 #define ELF_START_MMAP 0x80000000
1175 #define ELF_CLASS ELFCLASS32
1176 #define ELF_ARCH EM_CRIS
1178 static inline void init_thread(struct target_pt_regs *regs,
1179 struct image_info *infop)
1181 regs->erp = infop->entry;
1184 #define ELF_EXEC_PAGESIZE 8192
1186 #endif
1188 #ifdef TARGET_M68K
1190 #define ELF_START_MMAP 0x80000000
1192 #define ELF_CLASS ELFCLASS32
1193 #define ELF_ARCH EM_68K
1195 /* ??? Does this need to do anything?
1196 #define ELF_PLAT_INIT(_r) */
1198 static inline void init_thread(struct target_pt_regs *regs,
1199 struct image_info *infop)
1201 regs->usp = infop->start_stack;
1202 regs->sr = 0;
1203 regs->pc = infop->entry;
1206 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1207 #define ELF_NREG 20
1208 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1210 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1212 (*regs)[0] = tswapreg(env->dregs[1]);
1213 (*regs)[1] = tswapreg(env->dregs[2]);
1214 (*regs)[2] = tswapreg(env->dregs[3]);
1215 (*regs)[3] = tswapreg(env->dregs[4]);
1216 (*regs)[4] = tswapreg(env->dregs[5]);
1217 (*regs)[5] = tswapreg(env->dregs[6]);
1218 (*regs)[6] = tswapreg(env->dregs[7]);
1219 (*regs)[7] = tswapreg(env->aregs[0]);
1220 (*regs)[8] = tswapreg(env->aregs[1]);
1221 (*regs)[9] = tswapreg(env->aregs[2]);
1222 (*regs)[10] = tswapreg(env->aregs[3]);
1223 (*regs)[11] = tswapreg(env->aregs[4]);
1224 (*regs)[12] = tswapreg(env->aregs[5]);
1225 (*regs)[13] = tswapreg(env->aregs[6]);
1226 (*regs)[14] = tswapreg(env->dregs[0]);
1227 (*regs)[15] = tswapreg(env->aregs[7]);
1228 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1229 (*regs)[17] = tswapreg(env->sr);
1230 (*regs)[18] = tswapreg(env->pc);
1231 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1234 #define USE_ELF_CORE_DUMP
1235 #define ELF_EXEC_PAGESIZE 8192
1237 #endif
1239 #ifdef TARGET_ALPHA
1241 #define ELF_START_MMAP (0x30000000000ULL)
1243 #define ELF_CLASS ELFCLASS64
1244 #define ELF_ARCH EM_ALPHA
1246 static inline void init_thread(struct target_pt_regs *regs,
1247 struct image_info *infop)
1249 regs->pc = infop->entry;
1250 regs->ps = 8;
1251 regs->usp = infop->start_stack;
1254 #define ELF_EXEC_PAGESIZE 8192
1256 #endif /* TARGET_ALPHA */
1258 #ifdef TARGET_S390X
1260 #define ELF_START_MMAP (0x20000000000ULL)
1262 #define ELF_CLASS ELFCLASS64
1263 #define ELF_DATA ELFDATA2MSB
1264 #define ELF_ARCH EM_S390
1266 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1268 regs->psw.addr = infop->entry;
1269 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1270 regs->gprs[15] = infop->start_stack;
1273 #endif /* TARGET_S390X */
1275 #ifdef TARGET_TILEGX
1277 /* 42 bits real used address, a half for user mode */
1278 #define ELF_START_MMAP (0x00000020000000000ULL)
1280 #define elf_check_arch(x) ((x) == EM_TILEGX)
1282 #define ELF_CLASS ELFCLASS64
1283 #define ELF_DATA ELFDATA2LSB
1284 #define ELF_ARCH EM_TILEGX
1286 static inline void init_thread(struct target_pt_regs *regs,
1287 struct image_info *infop)
1289 regs->pc = infop->entry;
1290 regs->sp = infop->start_stack;
1294 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1296 #endif /* TARGET_TILEGX */
1298 #ifdef TARGET_RISCV
1300 #define ELF_START_MMAP 0x80000000
1301 #define ELF_ARCH EM_RISCV
1303 #ifdef TARGET_RISCV32
1304 #define ELF_CLASS ELFCLASS32
1305 #else
1306 #define ELF_CLASS ELFCLASS64
1307 #endif
1309 static inline void init_thread(struct target_pt_regs *regs,
1310 struct image_info *infop)
1312 regs->sepc = infop->entry;
1313 regs->sp = infop->start_stack;
1316 #define ELF_EXEC_PAGESIZE 4096
1318 #endif /* TARGET_RISCV */
1320 #ifdef TARGET_HPPA
1322 #define ELF_START_MMAP 0x80000000
1323 #define ELF_CLASS ELFCLASS32
1324 #define ELF_ARCH EM_PARISC
1325 #define ELF_PLATFORM "PARISC"
1326 #define STACK_GROWS_DOWN 0
1327 #define STACK_ALIGNMENT 64
1329 static inline void init_thread(struct target_pt_regs *regs,
1330 struct image_info *infop)
1332 regs->iaoq[0] = infop->entry;
1333 regs->iaoq[1] = infop->entry + 4;
1334 regs->gr[23] = 0;
1335 regs->gr[24] = infop->arg_start;
1336 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1337 /* The top-of-stack contains a linkage buffer. */
1338 regs->gr[30] = infop->start_stack + 64;
1339 regs->gr[31] = infop->entry;
1342 #endif /* TARGET_HPPA */
1344 #ifndef ELF_PLATFORM
1345 #define ELF_PLATFORM (NULL)
1346 #endif
1348 #ifndef ELF_MACHINE
1349 #define ELF_MACHINE ELF_ARCH
1350 #endif
1352 #ifndef elf_check_arch
1353 #define elf_check_arch(x) ((x) == ELF_ARCH)
1354 #endif
1356 #ifndef ELF_HWCAP
1357 #define ELF_HWCAP 0
1358 #endif
1360 #ifndef STACK_GROWS_DOWN
1361 #define STACK_GROWS_DOWN 1
1362 #endif
1364 #ifndef STACK_ALIGNMENT
1365 #define STACK_ALIGNMENT 16
1366 #endif
1368 #ifdef TARGET_ABI32
1369 #undef ELF_CLASS
1370 #define ELF_CLASS ELFCLASS32
1371 #undef bswaptls
1372 #define bswaptls(ptr) bswap32s(ptr)
1373 #endif
1375 #include "elf.h"
1377 struct exec
1379 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1380 unsigned int a_text; /* length of text, in bytes */
1381 unsigned int a_data; /* length of data, in bytes */
1382 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1383 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1384 unsigned int a_entry; /* start address */
1385 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1386 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1390 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1391 #define OMAGIC 0407
1392 #define NMAGIC 0410
1393 #define ZMAGIC 0413
1394 #define QMAGIC 0314
1396 /* Necessary parameters */
1397 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1398 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1399 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1400 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1402 #define DLINFO_ITEMS 15
1404 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1406 memcpy(to, from, n);
1409 #ifdef BSWAP_NEEDED
1410 static void bswap_ehdr(struct elfhdr *ehdr)
1412 bswap16s(&ehdr->e_type); /* Object file type */
1413 bswap16s(&ehdr->e_machine); /* Architecture */
1414 bswap32s(&ehdr->e_version); /* Object file version */
1415 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1416 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1417 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1418 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1419 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1420 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1421 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1422 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1423 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1424 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1427 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1429 int i;
1430 for (i = 0; i < phnum; ++i, ++phdr) {
1431 bswap32s(&phdr->p_type); /* Segment type */
1432 bswap32s(&phdr->p_flags); /* Segment flags */
1433 bswaptls(&phdr->p_offset); /* Segment file offset */
1434 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1435 bswaptls(&phdr->p_paddr); /* Segment physical address */
1436 bswaptls(&phdr->p_filesz); /* Segment size in file */
1437 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1438 bswaptls(&phdr->p_align); /* Segment alignment */
1442 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1444 int i;
1445 for (i = 0; i < shnum; ++i, ++shdr) {
1446 bswap32s(&shdr->sh_name);
1447 bswap32s(&shdr->sh_type);
1448 bswaptls(&shdr->sh_flags);
1449 bswaptls(&shdr->sh_addr);
1450 bswaptls(&shdr->sh_offset);
1451 bswaptls(&shdr->sh_size);
1452 bswap32s(&shdr->sh_link);
1453 bswap32s(&shdr->sh_info);
1454 bswaptls(&shdr->sh_addralign);
1455 bswaptls(&shdr->sh_entsize);
1459 static void bswap_sym(struct elf_sym *sym)
1461 bswap32s(&sym->st_name);
1462 bswaptls(&sym->st_value);
1463 bswaptls(&sym->st_size);
1464 bswap16s(&sym->st_shndx);
1466 #else
1467 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1468 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1469 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1470 static inline void bswap_sym(struct elf_sym *sym) { }
1471 #endif
1473 #ifdef USE_ELF_CORE_DUMP
1474 static int elf_core_dump(int, const CPUArchState *);
1475 #endif /* USE_ELF_CORE_DUMP */
1476 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1478 /* Verify the portions of EHDR within E_IDENT for the target.
1479 This can be performed before bswapping the entire header. */
1480 static bool elf_check_ident(struct elfhdr *ehdr)
1482 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1483 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1484 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1485 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1486 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1487 && ehdr->e_ident[EI_DATA] == ELF_DATA
1488 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1491 /* Verify the portions of EHDR outside of E_IDENT for the target.
1492 This has to wait until after bswapping the header. */
1493 static bool elf_check_ehdr(struct elfhdr *ehdr)
1495 return (elf_check_arch(ehdr->e_machine)
1496 && ehdr->e_ehsize == sizeof(struct elfhdr)
1497 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1498 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1502 * 'copy_elf_strings()' copies argument/envelope strings from user
1503 * memory to free pages in kernel mem. These are in a format ready
1504 * to be put directly into the top of new user memory.
1507 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1508 abi_ulong p, abi_ulong stack_limit)
1510 char *tmp;
1511 int len, i;
1512 abi_ulong top = p;
1514 if (!p) {
1515 return 0; /* bullet-proofing */
1518 if (STACK_GROWS_DOWN) {
1519 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1520 for (i = argc - 1; i >= 0; --i) {
1521 tmp = argv[i];
1522 if (!tmp) {
1523 fprintf(stderr, "VFS: argc is wrong");
1524 exit(-1);
1526 len = strlen(tmp) + 1;
1527 tmp += len;
1529 if (len > (p - stack_limit)) {
1530 return 0;
1532 while (len) {
1533 int bytes_to_copy = (len > offset) ? offset : len;
1534 tmp -= bytes_to_copy;
1535 p -= bytes_to_copy;
1536 offset -= bytes_to_copy;
1537 len -= bytes_to_copy;
1539 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1541 if (offset == 0) {
1542 memcpy_to_target(p, scratch, top - p);
1543 top = p;
1544 offset = TARGET_PAGE_SIZE;
1548 if (p != top) {
1549 memcpy_to_target(p, scratch + offset, top - p);
1551 } else {
1552 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1553 for (i = 0; i < argc; ++i) {
1554 tmp = argv[i];
1555 if (!tmp) {
1556 fprintf(stderr, "VFS: argc is wrong");
1557 exit(-1);
1559 len = strlen(tmp) + 1;
1560 if (len > (stack_limit - p)) {
1561 return 0;
1563 while (len) {
1564 int bytes_to_copy = (len > remaining) ? remaining : len;
1566 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1568 tmp += bytes_to_copy;
1569 remaining -= bytes_to_copy;
1570 p += bytes_to_copy;
1571 len -= bytes_to_copy;
1573 if (remaining == 0) {
1574 memcpy_to_target(top, scratch, p - top);
1575 top = p;
1576 remaining = TARGET_PAGE_SIZE;
1580 if (p != top) {
1581 memcpy_to_target(top, scratch, p - top);
1585 return p;
1588 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1589 * argument/environment space. Newer kernels (>2.6.33) allow more,
1590 * dependent on stack size, but guarantee at least 32 pages for
1591 * backwards compatibility.
1593 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1595 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1596 struct image_info *info)
1598 abi_ulong size, error, guard;
1600 size = guest_stack_size;
1601 if (size < STACK_LOWER_LIMIT) {
1602 size = STACK_LOWER_LIMIT;
1604 guard = TARGET_PAGE_SIZE;
1605 if (guard < qemu_real_host_page_size) {
1606 guard = qemu_real_host_page_size;
1609 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1610 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1611 if (error == -1) {
1612 perror("mmap stack");
1613 exit(-1);
1616 /* We reserve one extra page at the top of the stack as guard. */
1617 if (STACK_GROWS_DOWN) {
1618 target_mprotect(error, guard, PROT_NONE);
1619 info->stack_limit = error + guard;
1620 return info->stack_limit + size - sizeof(void *);
1621 } else {
1622 target_mprotect(error + size, guard, PROT_NONE);
1623 info->stack_limit = error + size;
1624 return error;
1628 /* Map and zero the bss. We need to explicitly zero any fractional pages
1629 after the data section (i.e. bss). */
1630 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1632 uintptr_t host_start, host_map_start, host_end;
1634 last_bss = TARGET_PAGE_ALIGN(last_bss);
1636 /* ??? There is confusion between qemu_real_host_page_size and
1637 qemu_host_page_size here and elsewhere in target_mmap, which
1638 may lead to the end of the data section mapping from the file
1639 not being mapped. At least there was an explicit test and
1640 comment for that here, suggesting that "the file size must
1641 be known". The comment probably pre-dates the introduction
1642 of the fstat system call in target_mmap which does in fact
1643 find out the size. What isn't clear is if the workaround
1644 here is still actually needed. For now, continue with it,
1645 but merge it with the "normal" mmap that would allocate the bss. */
1647 host_start = (uintptr_t) g2h(elf_bss);
1648 host_end = (uintptr_t) g2h(last_bss);
1649 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1651 if (host_map_start < host_end) {
1652 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1653 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1654 if (p == MAP_FAILED) {
1655 perror("cannot mmap brk");
1656 exit(-1);
1660 /* Ensure that the bss page(s) are valid */
1661 if ((page_get_flags(last_bss-1) & prot) != prot) {
1662 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1665 if (host_start < host_map_start) {
1666 memset((void *)host_start, 0, host_map_start - host_start);
1670 #ifdef CONFIG_USE_FDPIC
1671 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1673 uint16_t n;
1674 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1676 /* elf32_fdpic_loadseg */
1677 n = info->nsegs;
1678 while (n--) {
1679 sp -= 12;
1680 put_user_u32(loadsegs[n].addr, sp+0);
1681 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1682 put_user_u32(loadsegs[n].p_memsz, sp+8);
1685 /* elf32_fdpic_loadmap */
1686 sp -= 4;
1687 put_user_u16(0, sp+0); /* version */
1688 put_user_u16(info->nsegs, sp+2); /* nsegs */
1690 info->personality = PER_LINUX_FDPIC;
1691 info->loadmap_addr = sp;
1693 return sp;
1695 #endif
1697 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1698 struct elfhdr *exec,
1699 struct image_info *info,
1700 struct image_info *interp_info)
1702 abi_ulong sp;
1703 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1704 int size;
1705 int i;
1706 abi_ulong u_rand_bytes;
1707 uint8_t k_rand_bytes[16];
1708 abi_ulong u_platform;
1709 const char *k_platform;
1710 const int n = sizeof(elf_addr_t);
1712 sp = p;
1714 #ifdef CONFIG_USE_FDPIC
1715 /* Needs to be before we load the env/argc/... */
1716 if (elf_is_fdpic(exec)) {
1717 /* Need 4 byte alignment for these structs */
1718 sp &= ~3;
1719 sp = loader_build_fdpic_loadmap(info, sp);
1720 info->other_info = interp_info;
1721 if (interp_info) {
1722 interp_info->other_info = info;
1723 sp = loader_build_fdpic_loadmap(interp_info, sp);
1726 #endif
1728 u_platform = 0;
1729 k_platform = ELF_PLATFORM;
1730 if (k_platform) {
1731 size_t len = strlen(k_platform) + 1;
1732 if (STACK_GROWS_DOWN) {
1733 sp -= (len + n - 1) & ~(n - 1);
1734 u_platform = sp;
1735 /* FIXME - check return value of memcpy_to_target() for failure */
1736 memcpy_to_target(sp, k_platform, len);
1737 } else {
1738 memcpy_to_target(sp, k_platform, len);
1739 u_platform = sp;
1740 sp += len + 1;
1744 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1745 * the argv and envp pointers.
1747 if (STACK_GROWS_DOWN) {
1748 sp = QEMU_ALIGN_DOWN(sp, 16);
1749 } else {
1750 sp = QEMU_ALIGN_UP(sp, 16);
1754 * Generate 16 random bytes for userspace PRNG seeding (not
1755 * cryptically secure but it's not the aim of QEMU).
1757 for (i = 0; i < 16; i++) {
1758 k_rand_bytes[i] = rand();
1760 if (STACK_GROWS_DOWN) {
1761 sp -= 16;
1762 u_rand_bytes = sp;
1763 /* FIXME - check return value of memcpy_to_target() for failure */
1764 memcpy_to_target(sp, k_rand_bytes, 16);
1765 } else {
1766 memcpy_to_target(sp, k_rand_bytes, 16);
1767 u_rand_bytes = sp;
1768 sp += 16;
1771 size = (DLINFO_ITEMS + 1) * 2;
1772 if (k_platform)
1773 size += 2;
1774 #ifdef DLINFO_ARCH_ITEMS
1775 size += DLINFO_ARCH_ITEMS * 2;
1776 #endif
1777 #ifdef ELF_HWCAP2
1778 size += 2;
1779 #endif
1780 info->auxv_len = size * n;
1782 size += envc + argc + 2;
1783 size += 1; /* argc itself */
1784 size *= n;
1786 /* Allocate space and finalize stack alignment for entry now. */
1787 if (STACK_GROWS_DOWN) {
1788 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1789 sp = u_argc;
1790 } else {
1791 u_argc = sp;
1792 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1795 u_argv = u_argc + n;
1796 u_envp = u_argv + (argc + 1) * n;
1797 u_auxv = u_envp + (envc + 1) * n;
1798 info->saved_auxv = u_auxv;
1799 info->arg_start = u_argv;
1800 info->arg_end = u_argv + argc * n;
1802 /* This is correct because Linux defines
1803 * elf_addr_t as Elf32_Off / Elf64_Off
1805 #define NEW_AUX_ENT(id, val) do { \
1806 put_user_ual(id, u_auxv); u_auxv += n; \
1807 put_user_ual(val, u_auxv); u_auxv += n; \
1808 } while(0)
1810 #ifdef ARCH_DLINFO
1812 * ARCH_DLINFO must come first so platform specific code can enforce
1813 * special alignment requirements on the AUXV if necessary (eg. PPC).
1815 ARCH_DLINFO;
1816 #endif
1817 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1818 * on info->auxv_len will trigger.
1820 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1821 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1822 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1823 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1824 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1825 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1826 NEW_AUX_ENT(AT_ENTRY, info->entry);
1827 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1828 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1829 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1830 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1831 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1832 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1833 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1834 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1836 #ifdef ELF_HWCAP2
1837 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1838 #endif
1840 if (u_platform) {
1841 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1843 NEW_AUX_ENT (AT_NULL, 0);
1844 #undef NEW_AUX_ENT
1846 /* Check that our initial calculation of the auxv length matches how much
1847 * we actually put into it.
1849 assert(info->auxv_len == u_auxv - info->saved_auxv);
1851 put_user_ual(argc, u_argc);
1853 p = info->arg_strings;
1854 for (i = 0; i < argc; ++i) {
1855 put_user_ual(p, u_argv);
1856 u_argv += n;
1857 p += target_strlen(p) + 1;
1859 put_user_ual(0, u_argv);
1861 p = info->env_strings;
1862 for (i = 0; i < envc; ++i) {
1863 put_user_ual(p, u_envp);
1864 u_envp += n;
1865 p += target_strlen(p) + 1;
1867 put_user_ual(0, u_envp);
1869 return sp;
1872 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1873 /* If the guest doesn't have a validation function just agree */
1874 static int validate_guest_space(unsigned long guest_base,
1875 unsigned long guest_size)
1877 return 1;
1879 #endif
1881 unsigned long init_guest_space(unsigned long host_start,
1882 unsigned long host_size,
1883 unsigned long guest_start,
1884 bool fixed)
1886 unsigned long current_start, real_start;
1887 int flags;
1889 assert(host_start || host_size);
1891 /* If just a starting address is given, then just verify that
1892 * address. */
1893 if (host_start && !host_size) {
1894 if (validate_guest_space(host_start, host_size) == 1) {
1895 return host_start;
1896 } else {
1897 return (unsigned long)-1;
1901 /* Setup the initial flags and start address. */
1902 current_start = host_start & qemu_host_page_mask;
1903 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1904 if (fixed) {
1905 flags |= MAP_FIXED;
1908 /* Otherwise, a non-zero size region of memory needs to be mapped
1909 * and validated. */
1910 while (1) {
1911 unsigned long real_size = host_size;
1913 /* Do not use mmap_find_vma here because that is limited to the
1914 * guest address space. We are going to make the
1915 * guest address space fit whatever we're given.
1917 real_start = (unsigned long)
1918 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1919 if (real_start == (unsigned long)-1) {
1920 return (unsigned long)-1;
1923 /* Ensure the address is properly aligned. */
1924 if (real_start & ~qemu_host_page_mask) {
1925 munmap((void *)real_start, host_size);
1926 real_size = host_size + qemu_host_page_size;
1927 real_start = (unsigned long)
1928 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1929 if (real_start == (unsigned long)-1) {
1930 return (unsigned long)-1;
1932 real_start = HOST_PAGE_ALIGN(real_start);
1935 /* Check to see if the address is valid. */
1936 if (!host_start || real_start == current_start) {
1937 int valid = validate_guest_space(real_start - guest_start,
1938 real_size);
1939 if (valid == 1) {
1940 break;
1941 } else if (valid == -1) {
1942 return (unsigned long)-1;
1944 /* valid == 0, so try again. */
1947 /* That address didn't work. Unmap and try a different one.
1948 * The address the host picked because is typically right at
1949 * the top of the host address space and leaves the guest with
1950 * no usable address space. Resort to a linear search. We
1951 * already compensated for mmap_min_addr, so this should not
1952 * happen often. Probably means we got unlucky and host
1953 * address space randomization put a shared library somewhere
1954 * inconvenient.
1956 munmap((void *)real_start, host_size);
1957 current_start += qemu_host_page_size;
1958 if (host_start == current_start) {
1959 /* Theoretically possible if host doesn't have any suitably
1960 * aligned areas. Normally the first mmap will fail.
1962 return (unsigned long)-1;
1966 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1968 return real_start;
1971 static void probe_guest_base(const char *image_name,
1972 abi_ulong loaddr, abi_ulong hiaddr)
1974 /* Probe for a suitable guest base address, if the user has not set
1975 * it explicitly, and set guest_base appropriately.
1976 * In case of error we will print a suitable message and exit.
1978 const char *errmsg;
1979 if (!have_guest_base && !reserved_va) {
1980 unsigned long host_start, real_start, host_size;
1982 /* Round addresses to page boundaries. */
1983 loaddr &= qemu_host_page_mask;
1984 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1986 if (loaddr < mmap_min_addr) {
1987 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1988 } else {
1989 host_start = loaddr;
1990 if (host_start != loaddr) {
1991 errmsg = "Address overflow loading ELF binary";
1992 goto exit_errmsg;
1995 host_size = hiaddr - loaddr;
1997 /* Setup the initial guest memory space with ranges gleaned from
1998 * the ELF image that is being loaded.
2000 real_start = init_guest_space(host_start, host_size, loaddr, false);
2001 if (real_start == (unsigned long)-1) {
2002 errmsg = "Unable to find space for application";
2003 goto exit_errmsg;
2005 guest_base = real_start - loaddr;
2007 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2008 TARGET_ABI_FMT_lx " to 0x%lx\n",
2009 loaddr, real_start);
2011 return;
2013 exit_errmsg:
2014 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2015 exit(-1);
2019 /* Load an ELF image into the address space.
2021 IMAGE_NAME is the filename of the image, to use in error messages.
2022 IMAGE_FD is the open file descriptor for the image.
2024 BPRM_BUF is a copy of the beginning of the file; this of course
2025 contains the elf file header at offset 0. It is assumed that this
2026 buffer is sufficiently aligned to present no problems to the host
2027 in accessing data at aligned offsets within the buffer.
2029 On return: INFO values will be filled in, as necessary or available. */
2031 static void load_elf_image(const char *image_name, int image_fd,
2032 struct image_info *info, char **pinterp_name,
2033 char bprm_buf[BPRM_BUF_SIZE])
2035 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2036 struct elf_phdr *phdr;
2037 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2038 int i, retval;
2039 const char *errmsg;
2041 /* First of all, some simple consistency checks */
2042 errmsg = "Invalid ELF image for this architecture";
2043 if (!elf_check_ident(ehdr)) {
2044 goto exit_errmsg;
2046 bswap_ehdr(ehdr);
2047 if (!elf_check_ehdr(ehdr)) {
2048 goto exit_errmsg;
2051 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2052 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2053 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2054 } else {
2055 phdr = (struct elf_phdr *) alloca(i);
2056 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2057 if (retval != i) {
2058 goto exit_read;
2061 bswap_phdr(phdr, ehdr->e_phnum);
2063 #ifdef CONFIG_USE_FDPIC
2064 info->nsegs = 0;
2065 info->pt_dynamic_addr = 0;
2066 #endif
2068 mmap_lock();
2070 /* Find the maximum size of the image and allocate an appropriate
2071 amount of memory to handle that. */
2072 loaddr = -1, hiaddr = 0;
2073 for (i = 0; i < ehdr->e_phnum; ++i) {
2074 if (phdr[i].p_type == PT_LOAD) {
2075 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2076 if (a < loaddr) {
2077 loaddr = a;
2079 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2080 if (a > hiaddr) {
2081 hiaddr = a;
2083 #ifdef CONFIG_USE_FDPIC
2084 ++info->nsegs;
2085 #endif
2089 load_addr = loaddr;
2090 if (ehdr->e_type == ET_DYN) {
2091 /* The image indicates that it can be loaded anywhere. Find a
2092 location that can hold the memory space required. If the
2093 image is pre-linked, LOADDR will be non-zero. Since we do
2094 not supply MAP_FIXED here we'll use that address if and
2095 only if it remains available. */
2096 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2097 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2098 -1, 0);
2099 if (load_addr == -1) {
2100 goto exit_perror;
2102 } else if (pinterp_name != NULL) {
2103 /* This is the main executable. Make sure that the low
2104 address does not conflict with MMAP_MIN_ADDR or the
2105 QEMU application itself. */
2106 probe_guest_base(image_name, loaddr, hiaddr);
2108 load_bias = load_addr - loaddr;
2110 #ifdef CONFIG_USE_FDPIC
2112 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2113 g_malloc(sizeof(*loadsegs) * info->nsegs);
2115 for (i = 0; i < ehdr->e_phnum; ++i) {
2116 switch (phdr[i].p_type) {
2117 case PT_DYNAMIC:
2118 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2119 break;
2120 case PT_LOAD:
2121 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2122 loadsegs->p_vaddr = phdr[i].p_vaddr;
2123 loadsegs->p_memsz = phdr[i].p_memsz;
2124 ++loadsegs;
2125 break;
2129 #endif
2131 info->load_bias = load_bias;
2132 info->load_addr = load_addr;
2133 info->entry = ehdr->e_entry + load_bias;
2134 info->start_code = -1;
2135 info->end_code = 0;
2136 info->start_data = -1;
2137 info->end_data = 0;
2138 info->brk = 0;
2139 info->elf_flags = ehdr->e_flags;
2141 for (i = 0; i < ehdr->e_phnum; i++) {
2142 struct elf_phdr *eppnt = phdr + i;
2143 if (eppnt->p_type == PT_LOAD) {
2144 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2145 int elf_prot = 0;
2147 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2148 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2149 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2151 vaddr = load_bias + eppnt->p_vaddr;
2152 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2153 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2155 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2156 elf_prot, MAP_PRIVATE | MAP_FIXED,
2157 image_fd, eppnt->p_offset - vaddr_po);
2158 if (error == -1) {
2159 goto exit_perror;
2162 vaddr_ef = vaddr + eppnt->p_filesz;
2163 vaddr_em = vaddr + eppnt->p_memsz;
2165 /* If the load segment requests extra zeros (e.g. bss), map it. */
2166 if (vaddr_ef < vaddr_em) {
2167 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2170 /* Find the full program boundaries. */
2171 if (elf_prot & PROT_EXEC) {
2172 if (vaddr < info->start_code) {
2173 info->start_code = vaddr;
2175 if (vaddr_ef > info->end_code) {
2176 info->end_code = vaddr_ef;
2179 if (elf_prot & PROT_WRITE) {
2180 if (vaddr < info->start_data) {
2181 info->start_data = vaddr;
2183 if (vaddr_ef > info->end_data) {
2184 info->end_data = vaddr_ef;
2186 if (vaddr_em > info->brk) {
2187 info->brk = vaddr_em;
2190 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2191 char *interp_name;
2193 if (*pinterp_name) {
2194 errmsg = "Multiple PT_INTERP entries";
2195 goto exit_errmsg;
2197 interp_name = malloc(eppnt->p_filesz);
2198 if (!interp_name) {
2199 goto exit_perror;
2202 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2203 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2204 eppnt->p_filesz);
2205 } else {
2206 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2207 eppnt->p_offset);
2208 if (retval != eppnt->p_filesz) {
2209 goto exit_perror;
2212 if (interp_name[eppnt->p_filesz - 1] != 0) {
2213 errmsg = "Invalid PT_INTERP entry";
2214 goto exit_errmsg;
2216 *pinterp_name = interp_name;
2220 if (info->end_data == 0) {
2221 info->start_data = info->end_code;
2222 info->end_data = info->end_code;
2223 info->brk = info->end_code;
2226 if (qemu_log_enabled()) {
2227 load_symbols(ehdr, image_fd, load_bias);
2230 mmap_unlock();
2232 close(image_fd);
2233 return;
2235 exit_read:
2236 if (retval >= 0) {
2237 errmsg = "Incomplete read of file header";
2238 goto exit_errmsg;
2240 exit_perror:
2241 errmsg = strerror(errno);
2242 exit_errmsg:
2243 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2244 exit(-1);
2247 static void load_elf_interp(const char *filename, struct image_info *info,
2248 char bprm_buf[BPRM_BUF_SIZE])
2250 int fd, retval;
2252 fd = open(path(filename), O_RDONLY);
2253 if (fd < 0) {
2254 goto exit_perror;
2257 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2258 if (retval < 0) {
2259 goto exit_perror;
2261 if (retval < BPRM_BUF_SIZE) {
2262 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2265 load_elf_image(filename, fd, info, NULL, bprm_buf);
2266 return;
2268 exit_perror:
2269 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2270 exit(-1);
2273 static int symfind(const void *s0, const void *s1)
2275 target_ulong addr = *(target_ulong *)s0;
2276 struct elf_sym *sym = (struct elf_sym *)s1;
2277 int result = 0;
2278 if (addr < sym->st_value) {
2279 result = -1;
2280 } else if (addr >= sym->st_value + sym->st_size) {
2281 result = 1;
2283 return result;
2286 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2288 #if ELF_CLASS == ELFCLASS32
2289 struct elf_sym *syms = s->disas_symtab.elf32;
2290 #else
2291 struct elf_sym *syms = s->disas_symtab.elf64;
2292 #endif
2294 // binary search
2295 struct elf_sym *sym;
2297 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2298 if (sym != NULL) {
2299 return s->disas_strtab + sym->st_name;
2302 return "";
2305 /* FIXME: This should use elf_ops.h */
2306 static int symcmp(const void *s0, const void *s1)
2308 struct elf_sym *sym0 = (struct elf_sym *)s0;
2309 struct elf_sym *sym1 = (struct elf_sym *)s1;
2310 return (sym0->st_value < sym1->st_value)
2311 ? -1
2312 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2315 /* Best attempt to load symbols from this ELF object. */
2316 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2318 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2319 uint64_t segsz;
2320 struct elf_shdr *shdr;
2321 char *strings = NULL;
2322 struct syminfo *s = NULL;
2323 struct elf_sym *new_syms, *syms = NULL;
2325 shnum = hdr->e_shnum;
2326 i = shnum * sizeof(struct elf_shdr);
2327 shdr = (struct elf_shdr *)alloca(i);
2328 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2329 return;
2332 bswap_shdr(shdr, shnum);
2333 for (i = 0; i < shnum; ++i) {
2334 if (shdr[i].sh_type == SHT_SYMTAB) {
2335 sym_idx = i;
2336 str_idx = shdr[i].sh_link;
2337 goto found;
2341 /* There will be no symbol table if the file was stripped. */
2342 return;
2344 found:
2345 /* Now know where the strtab and symtab are. Snarf them. */
2346 s = g_try_new(struct syminfo, 1);
2347 if (!s) {
2348 goto give_up;
2351 segsz = shdr[str_idx].sh_size;
2352 s->disas_strtab = strings = g_try_malloc(segsz);
2353 if (!strings ||
2354 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2355 goto give_up;
2358 segsz = shdr[sym_idx].sh_size;
2359 syms = g_try_malloc(segsz);
2360 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2361 goto give_up;
2364 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2365 /* Implausibly large symbol table: give up rather than ploughing
2366 * on with the number of symbols calculation overflowing
2368 goto give_up;
2370 nsyms = segsz / sizeof(struct elf_sym);
2371 for (i = 0; i < nsyms; ) {
2372 bswap_sym(syms + i);
2373 /* Throw away entries which we do not need. */
2374 if (syms[i].st_shndx == SHN_UNDEF
2375 || syms[i].st_shndx >= SHN_LORESERVE
2376 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2377 if (i < --nsyms) {
2378 syms[i] = syms[nsyms];
2380 } else {
2381 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2382 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2383 syms[i].st_value &= ~(target_ulong)1;
2384 #endif
2385 syms[i].st_value += load_bias;
2386 i++;
2390 /* No "useful" symbol. */
2391 if (nsyms == 0) {
2392 goto give_up;
2395 /* Attempt to free the storage associated with the local symbols
2396 that we threw away. Whether or not this has any effect on the
2397 memory allocation depends on the malloc implementation and how
2398 many symbols we managed to discard. */
2399 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2400 if (new_syms == NULL) {
2401 goto give_up;
2403 syms = new_syms;
2405 qsort(syms, nsyms, sizeof(*syms), symcmp);
2407 s->disas_num_syms = nsyms;
2408 #if ELF_CLASS == ELFCLASS32
2409 s->disas_symtab.elf32 = syms;
2410 #else
2411 s->disas_symtab.elf64 = syms;
2412 #endif
2413 s->lookup_symbol = lookup_symbolxx;
2414 s->next = syminfos;
2415 syminfos = s;
2417 return;
2419 give_up:
2420 g_free(s);
2421 g_free(strings);
2422 g_free(syms);
2425 uint32_t get_elf_eflags(int fd)
2427 struct elfhdr ehdr;
2428 off_t offset;
2429 int ret;
2431 /* Read ELF header */
2432 offset = lseek(fd, 0, SEEK_SET);
2433 if (offset == (off_t) -1) {
2434 return 0;
2436 ret = read(fd, &ehdr, sizeof(ehdr));
2437 if (ret < sizeof(ehdr)) {
2438 return 0;
2440 offset = lseek(fd, offset, SEEK_SET);
2441 if (offset == (off_t) -1) {
2442 return 0;
2445 /* Check ELF signature */
2446 if (!elf_check_ident(&ehdr)) {
2447 return 0;
2450 /* check header */
2451 bswap_ehdr(&ehdr);
2452 if (!elf_check_ehdr(&ehdr)) {
2453 return 0;
2456 /* return architecture id */
2457 return ehdr.e_flags;
2460 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2462 struct image_info interp_info;
2463 struct elfhdr elf_ex;
2464 char *elf_interpreter = NULL;
2465 char *scratch;
2467 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2469 load_elf_image(bprm->filename, bprm->fd, info,
2470 &elf_interpreter, bprm->buf);
2472 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2473 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2474 when we load the interpreter. */
2475 elf_ex = *(struct elfhdr *)bprm->buf;
2477 /* Do this so that we can load the interpreter, if need be. We will
2478 change some of these later */
2479 bprm->p = setup_arg_pages(bprm, info);
2481 scratch = g_new0(char, TARGET_PAGE_SIZE);
2482 if (STACK_GROWS_DOWN) {
2483 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2484 bprm->p, info->stack_limit);
2485 info->file_string = bprm->p;
2486 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2487 bprm->p, info->stack_limit);
2488 info->env_strings = bprm->p;
2489 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2490 bprm->p, info->stack_limit);
2491 info->arg_strings = bprm->p;
2492 } else {
2493 info->arg_strings = bprm->p;
2494 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2495 bprm->p, info->stack_limit);
2496 info->env_strings = bprm->p;
2497 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2498 bprm->p, info->stack_limit);
2499 info->file_string = bprm->p;
2500 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2501 bprm->p, info->stack_limit);
2504 g_free(scratch);
2506 if (!bprm->p) {
2507 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2508 exit(-1);
2511 if (elf_interpreter) {
2512 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2514 /* If the program interpreter is one of these two, then assume
2515 an iBCS2 image. Otherwise assume a native linux image. */
2517 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2518 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2519 info->personality = PER_SVR4;
2521 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2522 and some applications "depend" upon this behavior. Since
2523 we do not have the power to recompile these, we emulate
2524 the SVr4 behavior. Sigh. */
2525 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2526 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2530 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2531 info, (elf_interpreter ? &interp_info : NULL));
2532 info->start_stack = bprm->p;
2534 /* If we have an interpreter, set that as the program's entry point.
2535 Copy the load_bias as well, to help PPC64 interpret the entry
2536 point as a function descriptor. Do this after creating elf tables
2537 so that we copy the original program entry point into the AUXV. */
2538 if (elf_interpreter) {
2539 info->load_bias = interp_info.load_bias;
2540 info->entry = interp_info.entry;
2541 free(elf_interpreter);
2544 #ifdef USE_ELF_CORE_DUMP
2545 bprm->core_dump = &elf_core_dump;
2546 #endif
2548 return 0;
2551 #ifdef USE_ELF_CORE_DUMP
2553 * Definitions to generate Intel SVR4-like core files.
2554 * These mostly have the same names as the SVR4 types with "target_elf_"
2555 * tacked on the front to prevent clashes with linux definitions,
2556 * and the typedef forms have been avoided. This is mostly like
2557 * the SVR4 structure, but more Linuxy, with things that Linux does
2558 * not support and which gdb doesn't really use excluded.
2560 * Fields we don't dump (their contents is zero) in linux-user qemu
2561 * are marked with XXX.
2563 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2565 * Porting ELF coredump for target is (quite) simple process. First you
2566 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2567 * the target resides):
2569 * #define USE_ELF_CORE_DUMP
2571 * Next you define type of register set used for dumping. ELF specification
2572 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2574 * typedef <target_regtype> target_elf_greg_t;
2575 * #define ELF_NREG <number of registers>
2576 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2578 * Last step is to implement target specific function that copies registers
2579 * from given cpu into just specified register set. Prototype is:
2581 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2582 * const CPUArchState *env);
2584 * Parameters:
2585 * regs - copy register values into here (allocated and zeroed by caller)
2586 * env - copy registers from here
2588 * Example for ARM target is provided in this file.
2591 /* An ELF note in memory */
2592 struct memelfnote {
2593 const char *name;
2594 size_t namesz;
2595 size_t namesz_rounded;
2596 int type;
2597 size_t datasz;
2598 size_t datasz_rounded;
2599 void *data;
2600 size_t notesz;
2603 struct target_elf_siginfo {
2604 abi_int si_signo; /* signal number */
2605 abi_int si_code; /* extra code */
2606 abi_int si_errno; /* errno */
2609 struct target_elf_prstatus {
2610 struct target_elf_siginfo pr_info; /* Info associated with signal */
2611 abi_short pr_cursig; /* Current signal */
2612 abi_ulong pr_sigpend; /* XXX */
2613 abi_ulong pr_sighold; /* XXX */
2614 target_pid_t pr_pid;
2615 target_pid_t pr_ppid;
2616 target_pid_t pr_pgrp;
2617 target_pid_t pr_sid;
2618 struct target_timeval pr_utime; /* XXX User time */
2619 struct target_timeval pr_stime; /* XXX System time */
2620 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2621 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2622 target_elf_gregset_t pr_reg; /* GP registers */
2623 abi_int pr_fpvalid; /* XXX */
2626 #define ELF_PRARGSZ (80) /* Number of chars for args */
2628 struct target_elf_prpsinfo {
2629 char pr_state; /* numeric process state */
2630 char pr_sname; /* char for pr_state */
2631 char pr_zomb; /* zombie */
2632 char pr_nice; /* nice val */
2633 abi_ulong pr_flag; /* flags */
2634 target_uid_t pr_uid;
2635 target_gid_t pr_gid;
2636 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2637 /* Lots missing */
2638 char pr_fname[16]; /* filename of executable */
2639 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2642 /* Here is the structure in which status of each thread is captured. */
2643 struct elf_thread_status {
2644 QTAILQ_ENTRY(elf_thread_status) ets_link;
2645 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2646 #if 0
2647 elf_fpregset_t fpu; /* NT_PRFPREG */
2648 struct task_struct *thread;
2649 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2650 #endif
2651 struct memelfnote notes[1];
2652 int num_notes;
2655 struct elf_note_info {
2656 struct memelfnote *notes;
2657 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2658 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2660 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2661 #if 0
2663 * Current version of ELF coredump doesn't support
2664 * dumping fp regs etc.
2666 elf_fpregset_t *fpu;
2667 elf_fpxregset_t *xfpu;
2668 int thread_status_size;
2669 #endif
2670 int notes_size;
2671 int numnote;
2674 struct vm_area_struct {
2675 target_ulong vma_start; /* start vaddr of memory region */
2676 target_ulong vma_end; /* end vaddr of memory region */
2677 abi_ulong vma_flags; /* protection etc. flags for the region */
2678 QTAILQ_ENTRY(vm_area_struct) vma_link;
2681 struct mm_struct {
2682 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2683 int mm_count; /* number of mappings */
2686 static struct mm_struct *vma_init(void);
2687 static void vma_delete(struct mm_struct *);
2688 static int vma_add_mapping(struct mm_struct *, target_ulong,
2689 target_ulong, abi_ulong);
2690 static int vma_get_mapping_count(const struct mm_struct *);
2691 static struct vm_area_struct *vma_first(const struct mm_struct *);
2692 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2693 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2694 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2695 unsigned long flags);
2697 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2698 static void fill_note(struct memelfnote *, const char *, int,
2699 unsigned int, void *);
2700 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2701 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2702 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2703 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2704 static size_t note_size(const struct memelfnote *);
2705 static void free_note_info(struct elf_note_info *);
2706 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2707 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2708 static int core_dump_filename(const TaskState *, char *, size_t);
2710 static int dump_write(int, const void *, size_t);
2711 static int write_note(struct memelfnote *, int);
2712 static int write_note_info(struct elf_note_info *, int);
2714 #ifdef BSWAP_NEEDED
2715 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2717 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2718 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2719 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2720 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2721 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2722 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2723 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2724 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2725 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2726 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2727 /* cpu times are not filled, so we skip them */
2728 /* regs should be in correct format already */
2729 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2732 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2734 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2735 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2736 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2737 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2738 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2739 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2740 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2743 static void bswap_note(struct elf_note *en)
2745 bswap32s(&en->n_namesz);
2746 bswap32s(&en->n_descsz);
2747 bswap32s(&en->n_type);
2749 #else
2750 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2751 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2752 static inline void bswap_note(struct elf_note *en) { }
2753 #endif /* BSWAP_NEEDED */
2756 * Minimal support for linux memory regions. These are needed
2757 * when we are finding out what memory exactly belongs to
2758 * emulated process. No locks needed here, as long as
2759 * thread that received the signal is stopped.
2762 static struct mm_struct *vma_init(void)
2764 struct mm_struct *mm;
2766 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2767 return (NULL);
2769 mm->mm_count = 0;
2770 QTAILQ_INIT(&mm->mm_mmap);
2772 return (mm);
2775 static void vma_delete(struct mm_struct *mm)
2777 struct vm_area_struct *vma;
2779 while ((vma = vma_first(mm)) != NULL) {
2780 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2781 g_free(vma);
2783 g_free(mm);
2786 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2787 target_ulong end, abi_ulong flags)
2789 struct vm_area_struct *vma;
2791 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2792 return (-1);
2794 vma->vma_start = start;
2795 vma->vma_end = end;
2796 vma->vma_flags = flags;
2798 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2799 mm->mm_count++;
2801 return (0);
2804 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2806 return (QTAILQ_FIRST(&mm->mm_mmap));
2809 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2811 return (QTAILQ_NEXT(vma, vma_link));
2814 static int vma_get_mapping_count(const struct mm_struct *mm)
2816 return (mm->mm_count);
2820 * Calculate file (dump) size of given memory region.
2822 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2824 /* if we cannot even read the first page, skip it */
2825 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2826 return (0);
2829 * Usually we don't dump executable pages as they contain
2830 * non-writable code that debugger can read directly from
2831 * target library etc. However, thread stacks are marked
2832 * also executable so we read in first page of given region
2833 * and check whether it contains elf header. If there is
2834 * no elf header, we dump it.
2836 if (vma->vma_flags & PROT_EXEC) {
2837 char page[TARGET_PAGE_SIZE];
2839 copy_from_user(page, vma->vma_start, sizeof (page));
2840 if ((page[EI_MAG0] == ELFMAG0) &&
2841 (page[EI_MAG1] == ELFMAG1) &&
2842 (page[EI_MAG2] == ELFMAG2) &&
2843 (page[EI_MAG3] == ELFMAG3)) {
2845 * Mappings are possibly from ELF binary. Don't dump
2846 * them.
2848 return (0);
2852 return (vma->vma_end - vma->vma_start);
2855 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2856 unsigned long flags)
2858 struct mm_struct *mm = (struct mm_struct *)priv;
2860 vma_add_mapping(mm, start, end, flags);
2861 return (0);
2864 static void fill_note(struct memelfnote *note, const char *name, int type,
2865 unsigned int sz, void *data)
2867 unsigned int namesz;
2869 namesz = strlen(name) + 1;
2870 note->name = name;
2871 note->namesz = namesz;
2872 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2873 note->type = type;
2874 note->datasz = sz;
2875 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2877 note->data = data;
2880 * We calculate rounded up note size here as specified by
2881 * ELF document.
2883 note->notesz = sizeof (struct elf_note) +
2884 note->namesz_rounded + note->datasz_rounded;
2887 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2888 uint32_t flags)
2890 (void) memset(elf, 0, sizeof(*elf));
2892 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2893 elf->e_ident[EI_CLASS] = ELF_CLASS;
2894 elf->e_ident[EI_DATA] = ELF_DATA;
2895 elf->e_ident[EI_VERSION] = EV_CURRENT;
2896 elf->e_ident[EI_OSABI] = ELF_OSABI;
2898 elf->e_type = ET_CORE;
2899 elf->e_machine = machine;
2900 elf->e_version = EV_CURRENT;
2901 elf->e_phoff = sizeof(struct elfhdr);
2902 elf->e_flags = flags;
2903 elf->e_ehsize = sizeof(struct elfhdr);
2904 elf->e_phentsize = sizeof(struct elf_phdr);
2905 elf->e_phnum = segs;
2907 bswap_ehdr(elf);
2910 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2912 phdr->p_type = PT_NOTE;
2913 phdr->p_offset = offset;
2914 phdr->p_vaddr = 0;
2915 phdr->p_paddr = 0;
2916 phdr->p_filesz = sz;
2917 phdr->p_memsz = 0;
2918 phdr->p_flags = 0;
2919 phdr->p_align = 0;
2921 bswap_phdr(phdr, 1);
2924 static size_t note_size(const struct memelfnote *note)
2926 return (note->notesz);
2929 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2930 const TaskState *ts, int signr)
2932 (void) memset(prstatus, 0, sizeof (*prstatus));
2933 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2934 prstatus->pr_pid = ts->ts_tid;
2935 prstatus->pr_ppid = getppid();
2936 prstatus->pr_pgrp = getpgrp();
2937 prstatus->pr_sid = getsid(0);
2939 bswap_prstatus(prstatus);
2942 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2944 char *base_filename;
2945 unsigned int i, len;
2947 (void) memset(psinfo, 0, sizeof (*psinfo));
2949 len = ts->info->arg_end - ts->info->arg_start;
2950 if (len >= ELF_PRARGSZ)
2951 len = ELF_PRARGSZ - 1;
2952 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2953 return -EFAULT;
2954 for (i = 0; i < len; i++)
2955 if (psinfo->pr_psargs[i] == 0)
2956 psinfo->pr_psargs[i] = ' ';
2957 psinfo->pr_psargs[len] = 0;
2959 psinfo->pr_pid = getpid();
2960 psinfo->pr_ppid = getppid();
2961 psinfo->pr_pgrp = getpgrp();
2962 psinfo->pr_sid = getsid(0);
2963 psinfo->pr_uid = getuid();
2964 psinfo->pr_gid = getgid();
2966 base_filename = g_path_get_basename(ts->bprm->filename);
2968 * Using strncpy here is fine: at max-length,
2969 * this field is not NUL-terminated.
2971 (void) strncpy(psinfo->pr_fname, base_filename,
2972 sizeof(psinfo->pr_fname));
2974 g_free(base_filename);
2975 bswap_psinfo(psinfo);
2976 return (0);
2979 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2981 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2982 elf_addr_t orig_auxv = auxv;
2983 void *ptr;
2984 int len = ts->info->auxv_len;
2987 * Auxiliary vector is stored in target process stack. It contains
2988 * {type, value} pairs that we need to dump into note. This is not
2989 * strictly necessary but we do it here for sake of completeness.
2992 /* read in whole auxv vector and copy it to memelfnote */
2993 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2994 if (ptr != NULL) {
2995 fill_note(note, "CORE", NT_AUXV, len, ptr);
2996 unlock_user(ptr, auxv, len);
3001 * Constructs name of coredump file. We have following convention
3002 * for the name:
3003 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3005 * Returns 0 in case of success, -1 otherwise (errno is set).
3007 static int core_dump_filename(const TaskState *ts, char *buf,
3008 size_t bufsize)
3010 char timestamp[64];
3011 char *base_filename = NULL;
3012 struct timeval tv;
3013 struct tm tm;
3015 assert(bufsize >= PATH_MAX);
3017 if (gettimeofday(&tv, NULL) < 0) {
3018 (void) fprintf(stderr, "unable to get current timestamp: %s",
3019 strerror(errno));
3020 return (-1);
3023 base_filename = g_path_get_basename(ts->bprm->filename);
3024 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3025 localtime_r(&tv.tv_sec, &tm));
3026 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3027 base_filename, timestamp, (int)getpid());
3028 g_free(base_filename);
3030 return (0);
3033 static int dump_write(int fd, const void *ptr, size_t size)
3035 const char *bufp = (const char *)ptr;
3036 ssize_t bytes_written, bytes_left;
3037 struct rlimit dumpsize;
3038 off_t pos;
3040 bytes_written = 0;
3041 getrlimit(RLIMIT_CORE, &dumpsize);
3042 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3043 if (errno == ESPIPE) { /* not a seekable stream */
3044 bytes_left = size;
3045 } else {
3046 return pos;
3048 } else {
3049 if (dumpsize.rlim_cur <= pos) {
3050 return -1;
3051 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3052 bytes_left = size;
3053 } else {
3054 size_t limit_left=dumpsize.rlim_cur - pos;
3055 bytes_left = limit_left >= size ? size : limit_left ;
3060 * In normal conditions, single write(2) should do but
3061 * in case of socket etc. this mechanism is more portable.
3063 do {
3064 bytes_written = write(fd, bufp, bytes_left);
3065 if (bytes_written < 0) {
3066 if (errno == EINTR)
3067 continue;
3068 return (-1);
3069 } else if (bytes_written == 0) { /* eof */
3070 return (-1);
3072 bufp += bytes_written;
3073 bytes_left -= bytes_written;
3074 } while (bytes_left > 0);
3076 return (0);
3079 static int write_note(struct memelfnote *men, int fd)
3081 struct elf_note en;
3083 en.n_namesz = men->namesz;
3084 en.n_type = men->type;
3085 en.n_descsz = men->datasz;
3087 bswap_note(&en);
3089 if (dump_write(fd, &en, sizeof(en)) != 0)
3090 return (-1);
3091 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3092 return (-1);
3093 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3094 return (-1);
3096 return (0);
3099 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3101 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3102 TaskState *ts = (TaskState *)cpu->opaque;
3103 struct elf_thread_status *ets;
3105 ets = g_malloc0(sizeof (*ets));
3106 ets->num_notes = 1; /* only prstatus is dumped */
3107 fill_prstatus(&ets->prstatus, ts, 0);
3108 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3109 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3110 &ets->prstatus);
3112 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3114 info->notes_size += note_size(&ets->notes[0]);
3117 static void init_note_info(struct elf_note_info *info)
3119 /* Initialize the elf_note_info structure so that it is at
3120 * least safe to call free_note_info() on it. Must be
3121 * called before calling fill_note_info().
3123 memset(info, 0, sizeof (*info));
3124 QTAILQ_INIT(&info->thread_list);
3127 static int fill_note_info(struct elf_note_info *info,
3128 long signr, const CPUArchState *env)
3130 #define NUMNOTES 3
3131 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3132 TaskState *ts = (TaskState *)cpu->opaque;
3133 int i;
3135 info->notes = g_new0(struct memelfnote, NUMNOTES);
3136 if (info->notes == NULL)
3137 return (-ENOMEM);
3138 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3139 if (info->prstatus == NULL)
3140 return (-ENOMEM);
3141 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3142 if (info->prstatus == NULL)
3143 return (-ENOMEM);
3146 * First fill in status (and registers) of current thread
3147 * including process info & aux vector.
3149 fill_prstatus(info->prstatus, ts, signr);
3150 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3151 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3152 sizeof (*info->prstatus), info->prstatus);
3153 fill_psinfo(info->psinfo, ts);
3154 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3155 sizeof (*info->psinfo), info->psinfo);
3156 fill_auxv_note(&info->notes[2], ts);
3157 info->numnote = 3;
3159 info->notes_size = 0;
3160 for (i = 0; i < info->numnote; i++)
3161 info->notes_size += note_size(&info->notes[i]);
3163 /* read and fill status of all threads */
3164 cpu_list_lock();
3165 CPU_FOREACH(cpu) {
3166 if (cpu == thread_cpu) {
3167 continue;
3169 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3171 cpu_list_unlock();
3173 return (0);
3176 static void free_note_info(struct elf_note_info *info)
3178 struct elf_thread_status *ets;
3180 while (!QTAILQ_EMPTY(&info->thread_list)) {
3181 ets = QTAILQ_FIRST(&info->thread_list);
3182 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3183 g_free(ets);
3186 g_free(info->prstatus);
3187 g_free(info->psinfo);
3188 g_free(info->notes);
3191 static int write_note_info(struct elf_note_info *info, int fd)
3193 struct elf_thread_status *ets;
3194 int i, error = 0;
3196 /* write prstatus, psinfo and auxv for current thread */
3197 for (i = 0; i < info->numnote; i++)
3198 if ((error = write_note(&info->notes[i], fd)) != 0)
3199 return (error);
3201 /* write prstatus for each thread */
3202 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3203 if ((error = write_note(&ets->notes[0], fd)) != 0)
3204 return (error);
3207 return (0);
3211 * Write out ELF coredump.
3213 * See documentation of ELF object file format in:
3214 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3216 * Coredump format in linux is following:
3218 * 0 +----------------------+ \
3219 * | ELF header | ET_CORE |
3220 * +----------------------+ |
3221 * | ELF program headers | |--- headers
3222 * | - NOTE section | |
3223 * | - PT_LOAD sections | |
3224 * +----------------------+ /
3225 * | NOTEs: |
3226 * | - NT_PRSTATUS |
3227 * | - NT_PRSINFO |
3228 * | - NT_AUXV |
3229 * +----------------------+ <-- aligned to target page
3230 * | Process memory dump |
3231 * : :
3232 * . .
3233 * : :
3234 * | |
3235 * +----------------------+
3237 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3238 * NT_PRSINFO -> struct elf_prpsinfo
3239 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3241 * Format follows System V format as close as possible. Current
3242 * version limitations are as follows:
3243 * - no floating point registers are dumped
3245 * Function returns 0 in case of success, negative errno otherwise.
3247 * TODO: make this work also during runtime: it should be
3248 * possible to force coredump from running process and then
3249 * continue processing. For example qemu could set up SIGUSR2
3250 * handler (provided that target process haven't registered
3251 * handler for that) that does the dump when signal is received.
3253 static int elf_core_dump(int signr, const CPUArchState *env)
3255 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3256 const TaskState *ts = (const TaskState *)cpu->opaque;
3257 struct vm_area_struct *vma = NULL;
3258 char corefile[PATH_MAX];
3259 struct elf_note_info info;
3260 struct elfhdr elf;
3261 struct elf_phdr phdr;
3262 struct rlimit dumpsize;
3263 struct mm_struct *mm = NULL;
3264 off_t offset = 0, data_offset = 0;
3265 int segs = 0;
3266 int fd = -1;
3268 init_note_info(&info);
3270 errno = 0;
3271 getrlimit(RLIMIT_CORE, &dumpsize);
3272 if (dumpsize.rlim_cur == 0)
3273 return 0;
3275 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3276 return (-errno);
3278 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3279 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3280 return (-errno);
3283 * Walk through target process memory mappings and
3284 * set up structure containing this information. After
3285 * this point vma_xxx functions can be used.
3287 if ((mm = vma_init()) == NULL)
3288 goto out;
3290 walk_memory_regions(mm, vma_walker);
3291 segs = vma_get_mapping_count(mm);
3294 * Construct valid coredump ELF header. We also
3295 * add one more segment for notes.
3297 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3298 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3299 goto out;
3301 /* fill in the in-memory version of notes */
3302 if (fill_note_info(&info, signr, env) < 0)
3303 goto out;
3305 offset += sizeof (elf); /* elf header */
3306 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3308 /* write out notes program header */
3309 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3311 offset += info.notes_size;
3312 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3313 goto out;
3316 * ELF specification wants data to start at page boundary so
3317 * we align it here.
3319 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3322 * Write program headers for memory regions mapped in
3323 * the target process.
3325 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3326 (void) memset(&phdr, 0, sizeof (phdr));
3328 phdr.p_type = PT_LOAD;
3329 phdr.p_offset = offset;
3330 phdr.p_vaddr = vma->vma_start;
3331 phdr.p_paddr = 0;
3332 phdr.p_filesz = vma_dump_size(vma);
3333 offset += phdr.p_filesz;
3334 phdr.p_memsz = vma->vma_end - vma->vma_start;
3335 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3336 if (vma->vma_flags & PROT_WRITE)
3337 phdr.p_flags |= PF_W;
3338 if (vma->vma_flags & PROT_EXEC)
3339 phdr.p_flags |= PF_X;
3340 phdr.p_align = ELF_EXEC_PAGESIZE;
3342 bswap_phdr(&phdr, 1);
3343 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3344 goto out;
3349 * Next we write notes just after program headers. No
3350 * alignment needed here.
3352 if (write_note_info(&info, fd) < 0)
3353 goto out;
3355 /* align data to page boundary */
3356 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3357 goto out;
3360 * Finally we can dump process memory into corefile as well.
3362 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3363 abi_ulong addr;
3364 abi_ulong end;
3366 end = vma->vma_start + vma_dump_size(vma);
3368 for (addr = vma->vma_start; addr < end;
3369 addr += TARGET_PAGE_SIZE) {
3370 char page[TARGET_PAGE_SIZE];
3371 int error;
3374 * Read in page from target process memory and
3375 * write it to coredump file.
3377 error = copy_from_user(page, addr, sizeof (page));
3378 if (error != 0) {
3379 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3380 addr);
3381 errno = -error;
3382 goto out;
3384 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3385 goto out;
3389 out:
3390 free_note_info(&info);
3391 if (mm != NULL)
3392 vma_delete(mm);
3393 (void) close(fd);
3395 if (errno != 0)
3396 return (-errno);
3397 return (0);
3399 #endif /* USE_ELF_CORE_DUMP */
3401 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3403 init_thread(regs, infop);