4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
57 #include "exec/cpu-all.h"
58 #include "qemu/rcu_queue.h"
59 #include "qemu/main-loop.h"
60 #include "translate-all.h"
61 #include "sysemu/replay.h"
63 #include "exec/memory-internal.h"
64 #include "exec/ram_addr.h"
67 #include "migration/vmstate.h"
69 #include "qemu/range.h"
71 #include "qemu/mmap-alloc.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
82 static MemoryRegion
*system_memory
;
83 static MemoryRegion
*system_io
;
85 AddressSpace address_space_io
;
86 AddressSpace address_space_memory
;
88 MemoryRegion io_mem_rom
, io_mem_notdirty
;
89 static MemoryRegion io_mem_unassigned
;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
104 #ifdef TARGET_PAGE_BITS_VARY
105 int target_page_bits
;
106 bool target_page_bits_decided
;
109 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
110 /* current CPU in the current thread. It is only valid inside
112 __thread CPUState
*current_cpu
;
113 /* 0 = Do not count executed instructions.
114 1 = Precise instruction counting.
115 2 = Adaptive rate instruction counting. */
118 bool set_preferred_target_page_bits(int bits
)
120 /* The target page size is the lowest common denominator for all
121 * the CPUs in the system, so we can only make it smaller, never
122 * larger. And we can't make it smaller once we've committed to
125 #ifdef TARGET_PAGE_BITS_VARY
126 assert(bits
>= TARGET_PAGE_BITS_MIN
);
127 if (target_page_bits
== 0 || target_page_bits
> bits
) {
128 if (target_page_bits_decided
) {
131 target_page_bits
= bits
;
137 #if !defined(CONFIG_USER_ONLY)
139 static void finalize_target_page_bits(void)
141 #ifdef TARGET_PAGE_BITS_VARY
142 if (target_page_bits
== 0) {
143 target_page_bits
= TARGET_PAGE_BITS_MIN
;
145 target_page_bits_decided
= true;
149 typedef struct PhysPageEntry PhysPageEntry
;
151 struct PhysPageEntry
{
152 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
154 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
158 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
160 /* Size of the L2 (and L3, etc) page tables. */
161 #define ADDR_SPACE_BITS 64
164 #define P_L2_SIZE (1 << P_L2_BITS)
166 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
168 typedef PhysPageEntry Node
[P_L2_SIZE
];
170 typedef struct PhysPageMap
{
173 unsigned sections_nb
;
174 unsigned sections_nb_alloc
;
176 unsigned nodes_nb_alloc
;
178 MemoryRegionSection
*sections
;
181 struct AddressSpaceDispatch
{
184 MemoryRegionSection
*mru_section
;
185 /* This is a multi-level map on the physical address space.
186 * The bottom level has pointers to MemoryRegionSections.
188 PhysPageEntry phys_map
;
193 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194 typedef struct subpage_t
{
198 uint16_t sub_section
[];
201 #define PHYS_SECTION_UNASSIGNED 0
202 #define PHYS_SECTION_NOTDIRTY 1
203 #define PHYS_SECTION_ROM 2
204 #define PHYS_SECTION_WATCH 3
206 static void io_mem_init(void);
207 static void memory_map_init(void);
208 static void tcg_commit(MemoryListener
*listener
);
210 static MemoryRegion io_mem_watch
;
213 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
214 * @cpu: the CPU whose AddressSpace this is
215 * @as: the AddressSpace itself
216 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
217 * @tcg_as_listener: listener for tracking changes to the AddressSpace
219 struct CPUAddressSpace
{
222 struct AddressSpaceDispatch
*memory_dispatch
;
223 MemoryListener tcg_as_listener
;
228 #if !defined(CONFIG_USER_ONLY)
230 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
232 static unsigned alloc_hint
= 16;
233 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
234 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
235 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
236 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
237 alloc_hint
= map
->nodes_nb_alloc
;
241 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
248 ret
= map
->nodes_nb
++;
250 assert(ret
!= PHYS_MAP_NODE_NIL
);
251 assert(ret
!= map
->nodes_nb_alloc
);
253 e
.skip
= leaf
? 0 : 1;
254 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
255 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
256 memcpy(&p
[i
], &e
, sizeof(e
));
261 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
262 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
266 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
268 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
269 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
271 p
= map
->nodes
[lp
->ptr
];
272 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
274 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
275 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
281 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
287 static void phys_page_set(AddressSpaceDispatch
*d
,
288 hwaddr index
, hwaddr nb
,
291 /* Wildly overreserve - it doesn't matter much. */
292 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
294 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
297 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
298 * and update our entry so we can skip it and go directly to the destination.
300 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
302 unsigned valid_ptr
= P_L2_SIZE
;
307 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
312 for (i
= 0; i
< P_L2_SIZE
; i
++) {
313 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
320 phys_page_compact(&p
[i
], nodes
);
324 /* We can only compress if there's only one child. */
329 assert(valid_ptr
< P_L2_SIZE
);
331 /* Don't compress if it won't fit in the # of bits we have. */
332 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
336 lp
->ptr
= p
[valid_ptr
].ptr
;
337 if (!p
[valid_ptr
].skip
) {
338 /* If our only child is a leaf, make this a leaf. */
339 /* By design, we should have made this node a leaf to begin with so we
340 * should never reach here.
341 * But since it's so simple to handle this, let's do it just in case we
346 lp
->skip
+= p
[valid_ptr
].skip
;
350 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
352 if (d
->phys_map
.skip
) {
353 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
357 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
360 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
361 * the section must cover the entire address space.
363 return int128_gethi(section
->size
) ||
364 range_covers_byte(section
->offset_within_address_space
,
365 int128_getlo(section
->size
), addr
);
368 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
369 Node
*nodes
, MemoryRegionSection
*sections
)
372 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
375 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
376 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
377 return §ions
[PHYS_SECTION_UNASSIGNED
];
380 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
383 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
384 return §ions
[lp
.ptr
];
386 return §ions
[PHYS_SECTION_UNASSIGNED
];
390 bool memory_region_is_unassigned(MemoryRegion
*mr
)
392 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
393 && mr
!= &io_mem_watch
;
396 /* Called from RCU critical section */
397 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
399 bool resolve_subpage
)
401 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
405 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
406 section_covers_addr(section
, addr
)) {
409 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
413 if (resolve_subpage
&& section
->mr
->subpage
) {
414 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
415 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
418 atomic_set(&d
->mru_section
, section
);
423 /* Called from RCU critical section */
424 static MemoryRegionSection
*
425 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
426 hwaddr
*plen
, bool resolve_subpage
)
428 MemoryRegionSection
*section
;
432 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
433 /* Compute offset within MemoryRegionSection */
434 addr
-= section
->offset_within_address_space
;
436 /* Compute offset within MemoryRegion */
437 *xlat
= addr
+ section
->offset_within_region
;
441 /* MMIO registers can be expected to perform full-width accesses based only
442 * on their address, without considering adjacent registers that could
443 * decode to completely different MemoryRegions. When such registers
444 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
445 * regions overlap wildly. For this reason we cannot clamp the accesses
448 * If the length is small (as is the case for address_space_ldl/stl),
449 * everything works fine. If the incoming length is large, however,
450 * the caller really has to do the clamping through memory_access_size.
452 if (memory_region_is_ram(mr
)) {
453 diff
= int128_sub(section
->size
, int128_make64(addr
));
454 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
459 /* Called from RCU critical section */
460 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
463 IOMMUTLBEntry iotlb
= {0};
464 MemoryRegionSection
*section
;
468 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
469 section
= address_space_lookup_region(d
, addr
, false);
470 addr
= addr
- section
->offset_within_address_space
471 + section
->offset_within_region
;
474 if (!mr
->iommu_ops
) {
478 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
479 if (!(iotlb
.perm
& (1 << is_write
))) {
480 iotlb
.target_as
= NULL
;
484 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
485 | (addr
& iotlb
.addr_mask
));
486 as
= iotlb
.target_as
;
492 /* Called from RCU critical section */
493 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
494 hwaddr
*xlat
, hwaddr
*plen
,
498 MemoryRegionSection
*section
;
502 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
503 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
506 if (!mr
->iommu_ops
) {
510 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
511 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
512 | (addr
& iotlb
.addr_mask
));
513 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
514 if (!(iotlb
.perm
& (1 << is_write
))) {
515 mr
= &io_mem_unassigned
;
519 as
= iotlb
.target_as
;
522 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
523 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
524 *plen
= MIN(page
, *plen
);
531 /* Called from RCU critical section */
532 MemoryRegionSection
*
533 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
534 hwaddr
*xlat
, hwaddr
*plen
)
536 MemoryRegionSection
*section
;
537 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
539 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
541 assert(!section
->mr
->iommu_ops
);
546 #if !defined(CONFIG_USER_ONLY)
548 static int cpu_common_post_load(void *opaque
, int version_id
)
550 CPUState
*cpu
= opaque
;
552 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
553 version_id is increased. */
554 cpu
->interrupt_request
&= ~0x01;
560 static int cpu_common_pre_load(void *opaque
)
562 CPUState
*cpu
= opaque
;
564 cpu
->exception_index
= -1;
569 static bool cpu_common_exception_index_needed(void *opaque
)
571 CPUState
*cpu
= opaque
;
573 return tcg_enabled() && cpu
->exception_index
!= -1;
576 static const VMStateDescription vmstate_cpu_common_exception_index
= {
577 .name
= "cpu_common/exception_index",
579 .minimum_version_id
= 1,
580 .needed
= cpu_common_exception_index_needed
,
581 .fields
= (VMStateField
[]) {
582 VMSTATE_INT32(exception_index
, CPUState
),
583 VMSTATE_END_OF_LIST()
587 static bool cpu_common_crash_occurred_needed(void *opaque
)
589 CPUState
*cpu
= opaque
;
591 return cpu
->crash_occurred
;
594 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
595 .name
= "cpu_common/crash_occurred",
597 .minimum_version_id
= 1,
598 .needed
= cpu_common_crash_occurred_needed
,
599 .fields
= (VMStateField
[]) {
600 VMSTATE_BOOL(crash_occurred
, CPUState
),
601 VMSTATE_END_OF_LIST()
605 const VMStateDescription vmstate_cpu_common
= {
606 .name
= "cpu_common",
608 .minimum_version_id
= 1,
609 .pre_load
= cpu_common_pre_load
,
610 .post_load
= cpu_common_post_load
,
611 .fields
= (VMStateField
[]) {
612 VMSTATE_UINT32(halted
, CPUState
),
613 VMSTATE_UINT32(interrupt_request
, CPUState
),
614 VMSTATE_END_OF_LIST()
616 .subsections
= (const VMStateDescription
*[]) {
617 &vmstate_cpu_common_exception_index
,
618 &vmstate_cpu_common_crash_occurred
,
625 CPUState
*qemu_get_cpu(int index
)
630 if (cpu
->cpu_index
== index
) {
638 #if !defined(CONFIG_USER_ONLY)
639 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
641 CPUAddressSpace
*newas
;
643 /* Target code should have set num_ases before calling us */
644 assert(asidx
< cpu
->num_ases
);
647 /* address space 0 gets the convenience alias */
651 /* KVM cannot currently support multiple address spaces. */
652 assert(asidx
== 0 || !kvm_enabled());
654 if (!cpu
->cpu_ases
) {
655 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
658 newas
= &cpu
->cpu_ases
[asidx
];
662 newas
->tcg_as_listener
.commit
= tcg_commit
;
663 memory_listener_register(&newas
->tcg_as_listener
, as
);
667 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
669 /* Return the AddressSpace corresponding to the specified index */
670 return cpu
->cpu_ases
[asidx
].as
;
674 void cpu_exec_unrealizefn(CPUState
*cpu
)
676 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
678 cpu_list_remove(cpu
);
680 if (cc
->vmsd
!= NULL
) {
681 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
683 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
684 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
688 void cpu_exec_initfn(CPUState
*cpu
)
693 #ifndef CONFIG_USER_ONLY
694 cpu
->thread_id
= qemu_get_thread_id();
696 /* This is a softmmu CPU object, so create a property for it
697 * so users can wire up its memory. (This can't go in qom/cpu.c
698 * because that file is compiled only once for both user-mode
699 * and system builds.) The default if no link is set up is to use
700 * the system address space.
702 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
703 (Object
**)&cpu
->memory
,
704 qdev_prop_allow_set_link_before_realize
,
705 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
707 cpu
->memory
= system_memory
;
708 object_ref(OBJECT(cpu
->memory
));
712 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
714 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
718 #ifndef CONFIG_USER_ONLY
719 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
720 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
722 if (cc
->vmsd
!= NULL
) {
723 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
728 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
730 /* Flush the whole TB as this will not have race conditions
731 * even if we don't have proper locking yet.
732 * Ideally we would just invalidate the TBs for the
738 #if defined(CONFIG_USER_ONLY)
739 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
744 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
750 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
754 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
755 int flags
, CPUWatchpoint
**watchpoint
)
760 /* Add a watchpoint. */
761 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
762 int flags
, CPUWatchpoint
**watchpoint
)
766 /* forbid ranges which are empty or run off the end of the address space */
767 if (len
== 0 || (addr
+ len
- 1) < addr
) {
768 error_report("tried to set invalid watchpoint at %"
769 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
772 wp
= g_malloc(sizeof(*wp
));
778 /* keep all GDB-injected watchpoints in front */
779 if (flags
& BP_GDB
) {
780 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
782 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
785 tlb_flush_page(cpu
, addr
);
792 /* Remove a specific watchpoint. */
793 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
798 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
799 if (addr
== wp
->vaddr
&& len
== wp
->len
800 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
801 cpu_watchpoint_remove_by_ref(cpu
, wp
);
808 /* Remove a specific watchpoint by reference. */
809 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
811 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
813 tlb_flush_page(cpu
, watchpoint
->vaddr
);
818 /* Remove all matching watchpoints. */
819 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
821 CPUWatchpoint
*wp
, *next
;
823 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
824 if (wp
->flags
& mask
) {
825 cpu_watchpoint_remove_by_ref(cpu
, wp
);
830 /* Return true if this watchpoint address matches the specified
831 * access (ie the address range covered by the watchpoint overlaps
832 * partially or completely with the address range covered by the
835 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
839 /* We know the lengths are non-zero, but a little caution is
840 * required to avoid errors in the case where the range ends
841 * exactly at the top of the address space and so addr + len
842 * wraps round to zero.
844 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
845 vaddr addrend
= addr
+ len
- 1;
847 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
852 /* Add a breakpoint. */
853 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
854 CPUBreakpoint
**breakpoint
)
858 bp
= g_malloc(sizeof(*bp
));
863 /* keep all GDB-injected breakpoints in front */
864 if (flags
& BP_GDB
) {
865 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
867 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
870 breakpoint_invalidate(cpu
, pc
);
878 /* Remove a specific breakpoint. */
879 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
883 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
884 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
885 cpu_breakpoint_remove_by_ref(cpu
, bp
);
892 /* Remove a specific breakpoint by reference. */
893 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
895 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
897 breakpoint_invalidate(cpu
, breakpoint
->pc
);
902 /* Remove all matching breakpoints. */
903 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
905 CPUBreakpoint
*bp
, *next
;
907 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
908 if (bp
->flags
& mask
) {
909 cpu_breakpoint_remove_by_ref(cpu
, bp
);
914 /* enable or disable single step mode. EXCP_DEBUG is returned by the
915 CPU loop after each instruction */
916 void cpu_single_step(CPUState
*cpu
, int enabled
)
918 if (cpu
->singlestep_enabled
!= enabled
) {
919 cpu
->singlestep_enabled
= enabled
;
921 kvm_update_guest_debug(cpu
, 0);
923 /* must flush all the translated code to avoid inconsistencies */
924 /* XXX: only flush what is necessary */
930 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
937 fprintf(stderr
, "qemu: fatal: ");
938 vfprintf(stderr
, fmt
, ap
);
939 fprintf(stderr
, "\n");
940 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
941 if (qemu_log_separate()) {
943 qemu_log("qemu: fatal: ");
944 qemu_log_vprintf(fmt
, ap2
);
946 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
954 #if defined(CONFIG_USER_ONLY)
956 struct sigaction act
;
957 sigfillset(&act
.sa_mask
);
958 act
.sa_handler
= SIG_DFL
;
959 sigaction(SIGABRT
, &act
, NULL
);
965 #if !defined(CONFIG_USER_ONLY)
966 /* Called from RCU critical section */
967 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
971 block
= atomic_rcu_read(&ram_list
.mru_block
);
972 if (block
&& addr
- block
->offset
< block
->max_length
) {
975 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
976 if (addr
- block
->offset
< block
->max_length
) {
981 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
985 /* It is safe to write mru_block outside the iothread lock. This
990 * xxx removed from list
994 * call_rcu(reclaim_ramblock, xxx);
997 * atomic_rcu_set is not needed here. The block was already published
998 * when it was placed into the list. Here we're just making an extra
999 * copy of the pointer.
1001 ram_list
.mru_block
= block
;
1005 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1012 end
= TARGET_PAGE_ALIGN(start
+ length
);
1013 start
&= TARGET_PAGE_MASK
;
1016 block
= qemu_get_ram_block(start
);
1017 assert(block
== qemu_get_ram_block(end
- 1));
1018 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1020 tlb_reset_dirty(cpu
, start1
, length
);
1025 /* Note: start and end must be within the same ram block. */
1026 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1030 DirtyMemoryBlocks
*blocks
;
1031 unsigned long end
, page
;
1038 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1039 page
= start
>> TARGET_PAGE_BITS
;
1043 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1045 while (page
< end
) {
1046 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1047 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1048 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1050 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1057 if (dirty
&& tcg_enabled()) {
1058 tlb_reset_dirty_range_all(start
, length
);
1064 /* Called from RCU critical section */
1065 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1066 MemoryRegionSection
*section
,
1068 hwaddr paddr
, hwaddr xlat
,
1070 target_ulong
*address
)
1075 if (memory_region_is_ram(section
->mr
)) {
1077 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1078 if (!section
->readonly
) {
1079 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1081 iotlb
|= PHYS_SECTION_ROM
;
1084 AddressSpaceDispatch
*d
;
1086 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1087 iotlb
= section
- d
->map
.sections
;
1091 /* Make accesses to pages with watchpoints go via the
1092 watchpoint trap routines. */
1093 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1094 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1095 /* Avoid trapping reads of pages with a write breakpoint. */
1096 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1097 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1098 *address
|= TLB_MMIO
;
1106 #endif /* defined(CONFIG_USER_ONLY) */
1108 #if !defined(CONFIG_USER_ONLY)
1110 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1112 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1114 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1115 qemu_anon_ram_alloc
;
1118 * Set a custom physical guest memory alloator.
1119 * Accelerators with unusual needs may need this. Hopefully, we can
1120 * get rid of it eventually.
1122 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1124 phys_mem_alloc
= alloc
;
1127 static uint16_t phys_section_add(PhysPageMap
*map
,
1128 MemoryRegionSection
*section
)
1130 /* The physical section number is ORed with a page-aligned
1131 * pointer to produce the iotlb entries. Thus it should
1132 * never overflow into the page-aligned value.
1134 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1136 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1137 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1138 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1139 map
->sections_nb_alloc
);
1141 map
->sections
[map
->sections_nb
] = *section
;
1142 memory_region_ref(section
->mr
);
1143 return map
->sections_nb
++;
1146 static void phys_section_destroy(MemoryRegion
*mr
)
1148 bool have_sub_page
= mr
->subpage
;
1150 memory_region_unref(mr
);
1152 if (have_sub_page
) {
1153 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1154 object_unref(OBJECT(&subpage
->iomem
));
1159 static void phys_sections_free(PhysPageMap
*map
)
1161 while (map
->sections_nb
> 0) {
1162 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1163 phys_section_destroy(section
->mr
);
1165 g_free(map
->sections
);
1169 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1172 hwaddr base
= section
->offset_within_address_space
1174 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1175 d
->map
.nodes
, d
->map
.sections
);
1176 MemoryRegionSection subsection
= {
1177 .offset_within_address_space
= base
,
1178 .size
= int128_make64(TARGET_PAGE_SIZE
),
1182 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1184 if (!(existing
->mr
->subpage
)) {
1185 subpage
= subpage_init(d
->as
, base
);
1186 subsection
.address_space
= d
->as
;
1187 subsection
.mr
= &subpage
->iomem
;
1188 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1189 phys_section_add(&d
->map
, &subsection
));
1191 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1193 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1194 end
= start
+ int128_get64(section
->size
) - 1;
1195 subpage_register(subpage
, start
, end
,
1196 phys_section_add(&d
->map
, section
));
1200 static void register_multipage(AddressSpaceDispatch
*d
,
1201 MemoryRegionSection
*section
)
1203 hwaddr start_addr
= section
->offset_within_address_space
;
1204 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1205 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1209 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1212 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1214 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1215 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1216 MemoryRegionSection now
= *section
, remain
= *section
;
1217 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1219 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1220 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1221 - now
.offset_within_address_space
;
1223 now
.size
= int128_min(int128_make64(left
), now
.size
);
1224 register_subpage(d
, &now
);
1226 now
.size
= int128_zero();
1228 while (int128_ne(remain
.size
, now
.size
)) {
1229 remain
.size
= int128_sub(remain
.size
, now
.size
);
1230 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1231 remain
.offset_within_region
+= int128_get64(now
.size
);
1233 if (int128_lt(remain
.size
, page_size
)) {
1234 register_subpage(d
, &now
);
1235 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1236 now
.size
= page_size
;
1237 register_subpage(d
, &now
);
1239 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1240 register_multipage(d
, &now
);
1245 void qemu_flush_coalesced_mmio_buffer(void)
1248 kvm_flush_coalesced_mmio_buffer();
1251 void qemu_mutex_lock_ramlist(void)
1253 qemu_mutex_lock(&ram_list
.mutex
);
1256 void qemu_mutex_unlock_ramlist(void)
1258 qemu_mutex_unlock(&ram_list
.mutex
);
1263 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1264 * may or may not name the same files / on the same filesystem now as
1265 * when we actually open and map them. Iterate over the file
1266 * descriptors instead, and use qemu_fd_getpagesize().
1268 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1271 long *hpsize_min
= opaque
;
1273 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1274 mem_path
= object_property_get_str(obj
, "mem-path", NULL
);
1276 long hpsize
= qemu_mempath_getpagesize(mem_path
);
1277 if (hpsize
< *hpsize_min
) {
1278 *hpsize_min
= hpsize
;
1281 *hpsize_min
= getpagesize();
1288 long qemu_getrampagesize(void)
1290 long hpsize
= LONG_MAX
;
1291 long mainrampagesize
;
1292 Object
*memdev_root
;
1295 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1297 mainrampagesize
= getpagesize();
1300 /* it's possible we have memory-backend objects with
1301 * hugepage-backed RAM. these may get mapped into system
1302 * address space via -numa parameters or memory hotplug
1303 * hooks. we want to take these into account, but we
1304 * also want to make sure these supported hugepage
1305 * sizes are applicable across the entire range of memory
1306 * we may boot from, so we take the min across all
1307 * backends, and assume normal pages in cases where a
1308 * backend isn't backed by hugepages.
1310 memdev_root
= object_resolve_path("/objects", NULL
);
1312 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1314 if (hpsize
== LONG_MAX
) {
1315 /* No additional memory regions found ==> Report main RAM page size */
1316 return mainrampagesize
;
1319 /* If NUMA is disabled or the NUMA nodes are not backed with a
1320 * memory-backend, then there is at least one node using "normal" RAM,
1321 * so if its page size is smaller we have got to report that size instead.
1323 if (hpsize
> mainrampagesize
&&
1324 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1327 error_report("Huge page support disabled (n/a for main memory).");
1330 return mainrampagesize
;
1336 long qemu_getrampagesize(void)
1338 return getpagesize();
1343 static int64_t get_file_size(int fd
)
1345 int64_t size
= lseek(fd
, 0, SEEK_END
);
1352 static void *file_ram_alloc(RAMBlock
*block
,
1357 bool unlink_on_error
= false;
1359 char *sanitized_name
;
1361 void *area
= MAP_FAILED
;
1365 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1367 "host lacks kvm mmu notifiers, -mem-path unsupported");
1372 fd
= open(path
, O_RDWR
);
1374 /* @path names an existing file, use it */
1377 if (errno
== ENOENT
) {
1378 /* @path names a file that doesn't exist, create it */
1379 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1381 unlink_on_error
= true;
1384 } else if (errno
== EISDIR
) {
1385 /* @path names a directory, create a file there */
1386 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1387 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1388 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1394 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1396 g_free(sanitized_name
);
1398 fd
= mkstemp(filename
);
1406 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1407 error_setg_errno(errp
, errno
,
1408 "can't open backing store %s for guest RAM",
1413 * Try again on EINTR and EEXIST. The latter happens when
1414 * something else creates the file between our two open().
1418 block
->page_size
= qemu_fd_getpagesize(fd
);
1419 block
->mr
->align
= block
->page_size
;
1420 #if defined(__s390x__)
1421 if (kvm_enabled()) {
1422 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1426 file_size
= get_file_size(fd
);
1428 if (memory
< block
->page_size
) {
1429 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1430 "or larger than page size 0x%zx",
1431 memory
, block
->page_size
);
1435 if (file_size
> 0 && file_size
< memory
) {
1436 error_setg(errp
, "backing store %s size 0x%" PRIx64
1437 " does not match 'size' option 0x" RAM_ADDR_FMT
,
1438 path
, file_size
, memory
);
1442 memory
= ROUND_UP(memory
, block
->page_size
);
1445 * ftruncate is not supported by hugetlbfs in older
1446 * hosts, so don't bother bailing out on errors.
1447 * If anything goes wrong with it under other filesystems,
1450 * Do not truncate the non-empty backend file to avoid corrupting
1451 * the existing data in the file. Disabling shrinking is not
1452 * enough. For example, the current vNVDIMM implementation stores
1453 * the guest NVDIMM labels at the end of the backend file. If the
1454 * backend file is later extended, QEMU will not be able to find
1455 * those labels. Therefore, extending the non-empty backend file
1456 * is disabled as well.
1458 if (!file_size
&& ftruncate(fd
, memory
)) {
1459 perror("ftruncate");
1462 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1463 block
->flags
& RAM_SHARED
);
1464 if (area
== MAP_FAILED
) {
1465 error_setg_errno(errp
, errno
,
1466 "unable to map backing store for guest RAM");
1471 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1472 if (errp
&& *errp
) {
1481 if (area
!= MAP_FAILED
) {
1482 qemu_ram_munmap(area
, memory
);
1484 if (unlink_on_error
) {
1494 /* Called with the ramlist lock held. */
1495 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1497 RAMBlock
*block
, *next_block
;
1498 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1500 assert(size
!= 0); /* it would hand out same offset multiple times */
1502 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1506 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1507 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1509 end
= block
->offset
+ block
->max_length
;
1511 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1512 if (next_block
->offset
>= end
) {
1513 next
= MIN(next
, next_block
->offset
);
1516 if (next
- end
>= size
&& next
- end
< mingap
) {
1518 mingap
= next
- end
;
1522 if (offset
== RAM_ADDR_MAX
) {
1523 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1531 ram_addr_t
last_ram_offset(void)
1534 ram_addr_t last
= 0;
1537 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1538 last
= MAX(last
, block
->offset
+ block
->max_length
);
1544 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1548 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1549 if (!machine_dump_guest_core(current_machine
)) {
1550 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1552 perror("qemu_madvise");
1553 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1554 "but dump_guest_core=off specified\n");
1559 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1564 /* Called with iothread lock held. */
1565 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1570 assert(!new_block
->idstr
[0]);
1573 char *id
= qdev_get_dev_path(dev
);
1575 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1579 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1582 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1583 if (block
!= new_block
&&
1584 !strcmp(block
->idstr
, new_block
->idstr
)) {
1585 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1593 /* Called with iothread lock held. */
1594 void qemu_ram_unset_idstr(RAMBlock
*block
)
1596 /* FIXME: arch_init.c assumes that this is not called throughout
1597 * migration. Ignore the problem since hot-unplug during migration
1598 * does not work anyway.
1601 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1605 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1607 return rb
->page_size
;
1610 /* Returns the largest size of page in use */
1611 size_t qemu_ram_pagesize_largest(void)
1616 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1617 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1623 static int memory_try_enable_merging(void *addr
, size_t len
)
1625 if (!machine_mem_merge(current_machine
)) {
1626 /* disabled by the user */
1630 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1633 /* Only legal before guest might have detected the memory size: e.g. on
1634 * incoming migration, or right after reset.
1636 * As memory core doesn't know how is memory accessed, it is up to
1637 * resize callback to update device state and/or add assertions to detect
1638 * misuse, if necessary.
1640 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1644 newsize
= HOST_PAGE_ALIGN(newsize
);
1646 if (block
->used_length
== newsize
) {
1650 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1651 error_setg_errno(errp
, EINVAL
,
1652 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1653 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1654 newsize
, block
->used_length
);
1658 if (block
->max_length
< newsize
) {
1659 error_setg_errno(errp
, EINVAL
,
1660 "Length too large: %s: 0x" RAM_ADDR_FMT
1661 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1662 newsize
, block
->max_length
);
1666 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1667 block
->used_length
= newsize
;
1668 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1670 memory_region_set_size(block
->mr
, newsize
);
1671 if (block
->resized
) {
1672 block
->resized(block
->idstr
, newsize
, block
->host
);
1677 /* Called with ram_list.mutex held */
1678 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1679 ram_addr_t new_ram_size
)
1681 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1682 DIRTY_MEMORY_BLOCK_SIZE
);
1683 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1684 DIRTY_MEMORY_BLOCK_SIZE
);
1687 /* Only need to extend if block count increased */
1688 if (new_num_blocks
<= old_num_blocks
) {
1692 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1693 DirtyMemoryBlocks
*old_blocks
;
1694 DirtyMemoryBlocks
*new_blocks
;
1697 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1698 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1699 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1701 if (old_num_blocks
) {
1702 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1703 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1706 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1707 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1710 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1713 g_free_rcu(old_blocks
, rcu
);
1718 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1721 RAMBlock
*last_block
= NULL
;
1722 ram_addr_t old_ram_size
, new_ram_size
;
1725 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1727 qemu_mutex_lock_ramlist();
1728 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1730 if (!new_block
->host
) {
1731 if (xen_enabled()) {
1732 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1733 new_block
->mr
, &err
);
1735 error_propagate(errp
, err
);
1736 qemu_mutex_unlock_ramlist();
1740 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1741 &new_block
->mr
->align
);
1742 if (!new_block
->host
) {
1743 error_setg_errno(errp
, errno
,
1744 "cannot set up guest memory '%s'",
1745 memory_region_name(new_block
->mr
));
1746 qemu_mutex_unlock_ramlist();
1749 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1753 new_ram_size
= MAX(old_ram_size
,
1754 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1755 if (new_ram_size
> old_ram_size
) {
1756 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1757 dirty_memory_extend(old_ram_size
, new_ram_size
);
1759 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1760 * QLIST (which has an RCU-friendly variant) does not have insertion at
1761 * tail, so save the last element in last_block.
1763 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1765 if (block
->max_length
< new_block
->max_length
) {
1770 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1771 } else if (last_block
) {
1772 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1773 } else { /* list is empty */
1774 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1776 ram_list
.mru_block
= NULL
;
1778 /* Write list before version */
1781 qemu_mutex_unlock_ramlist();
1783 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1784 new_block
->used_length
,
1787 if (new_block
->host
) {
1788 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1789 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1790 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1791 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1792 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
1797 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1798 bool share
, const char *mem_path
,
1801 RAMBlock
*new_block
;
1802 Error
*local_err
= NULL
;
1804 if (xen_enabled()) {
1805 error_setg(errp
, "-mem-path not supported with Xen");
1809 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1811 * file_ram_alloc() needs to allocate just like
1812 * phys_mem_alloc, but we haven't bothered to provide
1816 "-mem-path not supported with this accelerator");
1820 size
= HOST_PAGE_ALIGN(size
);
1821 new_block
= g_malloc0(sizeof(*new_block
));
1823 new_block
->used_length
= size
;
1824 new_block
->max_length
= size
;
1825 new_block
->flags
= share
? RAM_SHARED
: 0;
1826 new_block
->host
= file_ram_alloc(new_block
, size
,
1828 if (!new_block
->host
) {
1833 ram_block_add(new_block
, &local_err
);
1836 error_propagate(errp
, local_err
);
1844 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1845 void (*resized
)(const char*,
1848 void *host
, bool resizeable
,
1849 MemoryRegion
*mr
, Error
**errp
)
1851 RAMBlock
*new_block
;
1852 Error
*local_err
= NULL
;
1854 size
= HOST_PAGE_ALIGN(size
);
1855 max_size
= HOST_PAGE_ALIGN(max_size
);
1856 new_block
= g_malloc0(sizeof(*new_block
));
1858 new_block
->resized
= resized
;
1859 new_block
->used_length
= size
;
1860 new_block
->max_length
= max_size
;
1861 assert(max_size
>= size
);
1863 new_block
->page_size
= getpagesize();
1864 new_block
->host
= host
;
1866 new_block
->flags
|= RAM_PREALLOC
;
1869 new_block
->flags
|= RAM_RESIZEABLE
;
1871 ram_block_add(new_block
, &local_err
);
1874 error_propagate(errp
, local_err
);
1880 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1881 MemoryRegion
*mr
, Error
**errp
)
1883 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1886 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1888 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1891 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1892 void (*resized
)(const char*,
1895 MemoryRegion
*mr
, Error
**errp
)
1897 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1900 static void reclaim_ramblock(RAMBlock
*block
)
1902 if (block
->flags
& RAM_PREALLOC
) {
1904 } else if (xen_enabled()) {
1905 xen_invalidate_map_cache_entry(block
->host
);
1907 } else if (block
->fd
>= 0) {
1908 qemu_ram_munmap(block
->host
, block
->max_length
);
1912 qemu_anon_ram_free(block
->host
, block
->max_length
);
1917 void qemu_ram_free(RAMBlock
*block
)
1924 ram_block_notify_remove(block
->host
, block
->max_length
);
1927 qemu_mutex_lock_ramlist();
1928 QLIST_REMOVE_RCU(block
, next
);
1929 ram_list
.mru_block
= NULL
;
1930 /* Write list before version */
1933 call_rcu(block
, reclaim_ramblock
, rcu
);
1934 qemu_mutex_unlock_ramlist();
1938 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1945 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1946 offset
= addr
- block
->offset
;
1947 if (offset
< block
->max_length
) {
1948 vaddr
= ramblock_ptr(block
, offset
);
1949 if (block
->flags
& RAM_PREALLOC
) {
1951 } else if (xen_enabled()) {
1955 if (block
->fd
>= 0) {
1956 flags
|= (block
->flags
& RAM_SHARED
?
1957 MAP_SHARED
: MAP_PRIVATE
);
1958 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1959 flags
, block
->fd
, offset
);
1962 * Remap needs to match alloc. Accelerators that
1963 * set phys_mem_alloc never remap. If they did,
1964 * we'd need a remap hook here.
1966 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1968 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1969 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1972 if (area
!= vaddr
) {
1973 fprintf(stderr
, "Could not remap addr: "
1974 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1978 memory_try_enable_merging(vaddr
, length
);
1979 qemu_ram_setup_dump(vaddr
, length
);
1984 #endif /* !_WIN32 */
1986 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1987 * This should not be used for general purpose DMA. Use address_space_map
1988 * or address_space_rw instead. For local memory (e.g. video ram) that the
1989 * device owns, use memory_region_get_ram_ptr.
1991 * Called within RCU critical section.
1993 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1995 RAMBlock
*block
= ram_block
;
1997 if (block
== NULL
) {
1998 block
= qemu_get_ram_block(addr
);
1999 addr
-= block
->offset
;
2002 if (xen_enabled() && block
->host
== NULL
) {
2003 /* We need to check if the requested address is in the RAM
2004 * because we don't want to map the entire memory in QEMU.
2005 * In that case just map until the end of the page.
2007 if (block
->offset
== 0) {
2008 return xen_map_cache(addr
, 0, 0);
2011 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
2013 return ramblock_ptr(block
, addr
);
2016 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2017 * but takes a size argument.
2019 * Called within RCU critical section.
2021 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2024 RAMBlock
*block
= ram_block
;
2029 if (block
== NULL
) {
2030 block
= qemu_get_ram_block(addr
);
2031 addr
-= block
->offset
;
2033 *size
= MIN(*size
, block
->max_length
- addr
);
2035 if (xen_enabled() && block
->host
== NULL
) {
2036 /* We need to check if the requested address is in the RAM
2037 * because we don't want to map the entire memory in QEMU.
2038 * In that case just map the requested area.
2040 if (block
->offset
== 0) {
2041 return xen_map_cache(addr
, *size
, 1);
2044 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
2047 return ramblock_ptr(block
, addr
);
2051 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2054 * ptr: Host pointer to look up
2055 * round_offset: If true round the result offset down to a page boundary
2056 * *ram_addr: set to result ram_addr
2057 * *offset: set to result offset within the RAMBlock
2059 * Returns: RAMBlock (or NULL if not found)
2061 * By the time this function returns, the returned pointer is not protected
2062 * by RCU anymore. If the caller is not within an RCU critical section and
2063 * does not hold the iothread lock, it must have other means of protecting the
2064 * pointer, such as a reference to the region that includes the incoming
2067 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2071 uint8_t *host
= ptr
;
2073 if (xen_enabled()) {
2074 ram_addr_t ram_addr
;
2076 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2077 block
= qemu_get_ram_block(ram_addr
);
2079 *offset
= ram_addr
- block
->offset
;
2086 block
= atomic_rcu_read(&ram_list
.mru_block
);
2087 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2091 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
2092 /* This case append when the block is not mapped. */
2093 if (block
->host
== NULL
) {
2096 if (host
- block
->host
< block
->max_length
) {
2105 *offset
= (host
- block
->host
);
2107 *offset
&= TARGET_PAGE_MASK
;
2114 * Finds the named RAMBlock
2116 * name: The name of RAMBlock to find
2118 * Returns: RAMBlock (or NULL if not found)
2120 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2124 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
2125 if (!strcmp(name
, block
->idstr
)) {
2133 /* Some of the softmmu routines need to translate from a host pointer
2134 (typically a TLB entry) back to a ram offset. */
2135 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2140 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2142 return RAM_ADDR_INVALID
;
2145 return block
->offset
+ offset
;
2148 /* Called within RCU critical section. */
2149 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2150 uint64_t val
, unsigned size
)
2152 bool locked
= false;
2154 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2157 tb_invalidate_phys_page_fast(ram_addr
, size
);
2161 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2164 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2167 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2177 /* Set both VGA and migration bits for simplicity and to remove
2178 * the notdirty callback faster.
2180 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2181 DIRTY_CLIENTS_NOCODE
);
2182 /* we remove the notdirty callback only if the code has been
2184 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2185 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2189 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2190 unsigned size
, bool is_write
)
2195 static const MemoryRegionOps notdirty_mem_ops
= {
2196 .write
= notdirty_mem_write
,
2197 .valid
.accepts
= notdirty_mem_accepts
,
2198 .endianness
= DEVICE_NATIVE_ENDIAN
,
2201 /* Generate a debug exception if a watchpoint has been hit. */
2202 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2204 CPUState
*cpu
= current_cpu
;
2205 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2206 CPUArchState
*env
= cpu
->env_ptr
;
2207 target_ulong pc
, cs_base
;
2212 if (cpu
->watchpoint_hit
) {
2213 /* We re-entered the check after replacing the TB. Now raise
2214 * the debug interrupt so that is will trigger after the
2215 * current instruction. */
2216 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2219 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2220 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2221 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2222 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2223 && (wp
->flags
& flags
)) {
2224 if (flags
== BP_MEM_READ
) {
2225 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2227 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2229 wp
->hitaddr
= vaddr
;
2230 wp
->hitattrs
= attrs
;
2231 if (!cpu
->watchpoint_hit
) {
2232 if (wp
->flags
& BP_CPU
&&
2233 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2234 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2237 cpu
->watchpoint_hit
= wp
;
2239 /* Both tb_lock and iothread_mutex will be reset when
2240 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2241 * back into the cpu_exec main loop.
2244 tb_check_watchpoint(cpu
);
2245 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2246 cpu
->exception_index
= EXCP_DEBUG
;
2249 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2250 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2251 cpu_loop_exit_noexc(cpu
);
2255 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2260 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2261 so these check for a hit then pass through to the normal out-of-line
2263 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2264 unsigned size
, MemTxAttrs attrs
)
2268 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2269 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2271 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2274 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2277 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2280 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2288 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2289 uint64_t val
, unsigned size
,
2293 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2294 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2296 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2299 address_space_stb(as
, addr
, val
, attrs
, &res
);
2302 address_space_stw(as
, addr
, val
, attrs
, &res
);
2305 address_space_stl(as
, addr
, val
, attrs
, &res
);
2312 static const MemoryRegionOps watch_mem_ops
= {
2313 .read_with_attrs
= watch_mem_read
,
2314 .write_with_attrs
= watch_mem_write
,
2315 .endianness
= DEVICE_NATIVE_ENDIAN
,
2318 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2319 unsigned len
, MemTxAttrs attrs
)
2321 subpage_t
*subpage
= opaque
;
2325 #if defined(DEBUG_SUBPAGE)
2326 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2327 subpage
, len
, addr
);
2329 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2336 *data
= ldub_p(buf
);
2339 *data
= lduw_p(buf
);
2352 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2353 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2355 subpage_t
*subpage
= opaque
;
2358 #if defined(DEBUG_SUBPAGE)
2359 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2360 " value %"PRIx64
"\n",
2361 __func__
, subpage
, len
, addr
, value
);
2379 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2383 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2384 unsigned len
, bool is_write
)
2386 subpage_t
*subpage
= opaque
;
2387 #if defined(DEBUG_SUBPAGE)
2388 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2389 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2392 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2396 static const MemoryRegionOps subpage_ops
= {
2397 .read_with_attrs
= subpage_read
,
2398 .write_with_attrs
= subpage_write
,
2399 .impl
.min_access_size
= 1,
2400 .impl
.max_access_size
= 8,
2401 .valid
.min_access_size
= 1,
2402 .valid
.max_access_size
= 8,
2403 .valid
.accepts
= subpage_accepts
,
2404 .endianness
= DEVICE_NATIVE_ENDIAN
,
2407 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2412 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2414 idx
= SUBPAGE_IDX(start
);
2415 eidx
= SUBPAGE_IDX(end
);
2416 #if defined(DEBUG_SUBPAGE)
2417 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2418 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2420 for (; idx
<= eidx
; idx
++) {
2421 mmio
->sub_section
[idx
] = section
;
2427 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2431 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2434 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2435 NULL
, TARGET_PAGE_SIZE
);
2436 mmio
->iomem
.subpage
= true;
2437 #if defined(DEBUG_SUBPAGE)
2438 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2439 mmio
, base
, TARGET_PAGE_SIZE
);
2441 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2446 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2450 MemoryRegionSection section
= {
2451 .address_space
= as
,
2453 .offset_within_address_space
= 0,
2454 .offset_within_region
= 0,
2455 .size
= int128_2_64(),
2458 return phys_section_add(map
, §ion
);
2461 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2463 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2464 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2465 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2466 MemoryRegionSection
*sections
= d
->map
.sections
;
2468 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2471 static void io_mem_init(void)
2473 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2474 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2477 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2478 * which can be called without the iothread mutex.
2480 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2482 memory_region_clear_global_locking(&io_mem_notdirty
);
2484 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2488 static void mem_begin(MemoryListener
*listener
)
2490 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2491 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2494 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2495 assert(n
== PHYS_SECTION_UNASSIGNED
);
2496 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2497 assert(n
== PHYS_SECTION_NOTDIRTY
);
2498 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2499 assert(n
== PHYS_SECTION_ROM
);
2500 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2501 assert(n
== PHYS_SECTION_WATCH
);
2503 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2505 as
->next_dispatch
= d
;
2508 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2510 phys_sections_free(&d
->map
);
2514 static void mem_commit(MemoryListener
*listener
)
2516 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2517 AddressSpaceDispatch
*cur
= as
->dispatch
;
2518 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2520 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2522 atomic_rcu_set(&as
->dispatch
, next
);
2524 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2528 static void tcg_commit(MemoryListener
*listener
)
2530 CPUAddressSpace
*cpuas
;
2531 AddressSpaceDispatch
*d
;
2533 /* since each CPU stores ram addresses in its TLB cache, we must
2534 reset the modified entries */
2535 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2536 cpu_reloading_memory_map();
2537 /* The CPU and TLB are protected by the iothread lock.
2538 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2539 * may have split the RCU critical section.
2541 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2542 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2543 tlb_flush(cpuas
->cpu
);
2546 void address_space_init_dispatch(AddressSpace
*as
)
2548 as
->dispatch
= NULL
;
2549 as
->dispatch_listener
= (MemoryListener
) {
2551 .commit
= mem_commit
,
2552 .region_add
= mem_add
,
2553 .region_nop
= mem_add
,
2556 memory_listener_register(&as
->dispatch_listener
, as
);
2559 void address_space_unregister(AddressSpace
*as
)
2561 memory_listener_unregister(&as
->dispatch_listener
);
2564 void address_space_destroy_dispatch(AddressSpace
*as
)
2566 AddressSpaceDispatch
*d
= as
->dispatch
;
2568 atomic_rcu_set(&as
->dispatch
, NULL
);
2570 call_rcu(d
, address_space_dispatch_free
, rcu
);
2574 static void memory_map_init(void)
2576 system_memory
= g_malloc(sizeof(*system_memory
));
2578 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2579 address_space_init(&address_space_memory
, system_memory
, "memory");
2581 system_io
= g_malloc(sizeof(*system_io
));
2582 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2584 address_space_init(&address_space_io
, system_io
, "I/O");
2587 MemoryRegion
*get_system_memory(void)
2589 return system_memory
;
2592 MemoryRegion
*get_system_io(void)
2597 #endif /* !defined(CONFIG_USER_ONLY) */
2599 /* physical memory access (slow version, mainly for debug) */
2600 #if defined(CONFIG_USER_ONLY)
2601 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2602 uint8_t *buf
, int len
, int is_write
)
2609 page
= addr
& TARGET_PAGE_MASK
;
2610 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2613 flags
= page_get_flags(page
);
2614 if (!(flags
& PAGE_VALID
))
2617 if (!(flags
& PAGE_WRITE
))
2619 /* XXX: this code should not depend on lock_user */
2620 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2623 unlock_user(p
, addr
, l
);
2625 if (!(flags
& PAGE_READ
))
2627 /* XXX: this code should not depend on lock_user */
2628 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2631 unlock_user(p
, addr
, 0);
2642 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2645 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2646 addr
+= memory_region_get_ram_addr(mr
);
2648 /* No early return if dirty_log_mask is or becomes 0, because
2649 * cpu_physical_memory_set_dirty_range will still call
2650 * xen_modified_memory.
2652 if (dirty_log_mask
) {
2654 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2656 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2658 tb_invalidate_phys_range(addr
, addr
+ length
);
2660 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2662 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2665 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2667 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2669 /* Regions are assumed to support 1-4 byte accesses unless
2670 otherwise specified. */
2671 if (access_size_max
== 0) {
2672 access_size_max
= 4;
2675 /* Bound the maximum access by the alignment of the address. */
2676 if (!mr
->ops
->impl
.unaligned
) {
2677 unsigned align_size_max
= addr
& -addr
;
2678 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2679 access_size_max
= align_size_max
;
2683 /* Don't attempt accesses larger than the maximum. */
2684 if (l
> access_size_max
) {
2685 l
= access_size_max
;
2692 static bool prepare_mmio_access(MemoryRegion
*mr
)
2694 bool unlocked
= !qemu_mutex_iothread_locked();
2695 bool release_lock
= false;
2697 if (unlocked
&& mr
->global_locking
) {
2698 qemu_mutex_lock_iothread();
2700 release_lock
= true;
2702 if (mr
->flush_coalesced_mmio
) {
2704 qemu_mutex_lock_iothread();
2706 qemu_flush_coalesced_mmio_buffer();
2708 qemu_mutex_unlock_iothread();
2712 return release_lock
;
2715 /* Called within RCU critical section. */
2716 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2719 int len
, hwaddr addr1
,
2720 hwaddr l
, MemoryRegion
*mr
)
2724 MemTxResult result
= MEMTX_OK
;
2725 bool release_lock
= false;
2728 if (!memory_access_is_direct(mr
, true)) {
2729 release_lock
|= prepare_mmio_access(mr
);
2730 l
= memory_access_size(mr
, l
, addr1
);
2731 /* XXX: could force current_cpu to NULL to avoid
2735 /* 64 bit write access */
2737 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2741 /* 32 bit write access */
2742 val
= (uint32_t)ldl_p(buf
);
2743 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2747 /* 16 bit write access */
2749 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2753 /* 8 bit write access */
2755 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2763 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2764 memcpy(ptr
, buf
, l
);
2765 invalidate_and_set_dirty(mr
, addr1
, l
);
2769 qemu_mutex_unlock_iothread();
2770 release_lock
= false;
2782 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2788 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2789 const uint8_t *buf
, int len
)
2794 MemTxResult result
= MEMTX_OK
;
2799 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2800 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2808 /* Called within RCU critical section. */
2809 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2810 MemTxAttrs attrs
, uint8_t *buf
,
2811 int len
, hwaddr addr1
, hwaddr l
,
2816 MemTxResult result
= MEMTX_OK
;
2817 bool release_lock
= false;
2820 if (!memory_access_is_direct(mr
, false)) {
2822 release_lock
|= prepare_mmio_access(mr
);
2823 l
= memory_access_size(mr
, l
, addr1
);
2826 /* 64 bit read access */
2827 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2832 /* 32 bit read access */
2833 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2838 /* 16 bit read access */
2839 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2844 /* 8 bit read access */
2845 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2854 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2855 memcpy(buf
, ptr
, l
);
2859 qemu_mutex_unlock_iothread();
2860 release_lock
= false;
2872 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2878 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2879 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2884 MemTxResult result
= MEMTX_OK
;
2889 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2890 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2898 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2899 uint8_t *buf
, int len
, bool is_write
)
2902 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2904 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2908 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2909 int len
, int is_write
)
2911 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2912 buf
, len
, is_write
);
2915 enum write_rom_type
{
2920 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2921 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2931 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2933 if (!(memory_region_is_ram(mr
) ||
2934 memory_region_is_romd(mr
))) {
2935 l
= memory_access_size(mr
, l
, addr1
);
2938 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2941 memcpy(ptr
, buf
, l
);
2942 invalidate_and_set_dirty(mr
, addr1
, l
);
2945 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2956 /* used for ROM loading : can write in RAM and ROM */
2957 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2958 const uint8_t *buf
, int len
)
2960 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2963 void cpu_flush_icache_range(hwaddr start
, int len
)
2966 * This function should do the same thing as an icache flush that was
2967 * triggered from within the guest. For TCG we are always cache coherent,
2968 * so there is no need to flush anything. For KVM / Xen we need to flush
2969 * the host's instruction cache at least.
2971 if (tcg_enabled()) {
2975 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2976 start
, NULL
, len
, FLUSH_CACHE
);
2987 static BounceBuffer bounce
;
2989 typedef struct MapClient
{
2991 QLIST_ENTRY(MapClient
) link
;
2994 QemuMutex map_client_list_lock
;
2995 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2996 = QLIST_HEAD_INITIALIZER(map_client_list
);
2998 static void cpu_unregister_map_client_do(MapClient
*client
)
3000 QLIST_REMOVE(client
, link
);
3004 static void cpu_notify_map_clients_locked(void)
3008 while (!QLIST_EMPTY(&map_client_list
)) {
3009 client
= QLIST_FIRST(&map_client_list
);
3010 qemu_bh_schedule(client
->bh
);
3011 cpu_unregister_map_client_do(client
);
3015 void cpu_register_map_client(QEMUBH
*bh
)
3017 MapClient
*client
= g_malloc(sizeof(*client
));
3019 qemu_mutex_lock(&map_client_list_lock
);
3021 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3022 if (!atomic_read(&bounce
.in_use
)) {
3023 cpu_notify_map_clients_locked();
3025 qemu_mutex_unlock(&map_client_list_lock
);
3028 void cpu_exec_init_all(void)
3030 qemu_mutex_init(&ram_list
.mutex
);
3031 /* The data structures we set up here depend on knowing the page size,
3032 * so no more changes can be made after this point.
3033 * In an ideal world, nothing we did before we had finished the
3034 * machine setup would care about the target page size, and we could
3035 * do this much later, rather than requiring board models to state
3036 * up front what their requirements are.
3038 finalize_target_page_bits();
3041 qemu_mutex_init(&map_client_list_lock
);
3044 void cpu_unregister_map_client(QEMUBH
*bh
)
3048 qemu_mutex_lock(&map_client_list_lock
);
3049 QLIST_FOREACH(client
, &map_client_list
, link
) {
3050 if (client
->bh
== bh
) {
3051 cpu_unregister_map_client_do(client
);
3055 qemu_mutex_unlock(&map_client_list_lock
);
3058 static void cpu_notify_map_clients(void)
3060 qemu_mutex_lock(&map_client_list_lock
);
3061 cpu_notify_map_clients_locked();
3062 qemu_mutex_unlock(&map_client_list_lock
);
3065 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
3073 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3074 if (!memory_access_is_direct(mr
, is_write
)) {
3075 l
= memory_access_size(mr
, l
, addr
);
3076 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
3090 address_space_extend_translation(AddressSpace
*as
, hwaddr addr
, hwaddr target_len
,
3091 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3096 MemoryRegion
*this_mr
;
3102 if (target_len
== 0) {
3107 this_mr
= address_space_translate(as
, addr
, &xlat
, &len
, is_write
);
3108 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3114 /* Map a physical memory region into a host virtual address.
3115 * May map a subset of the requested range, given by and returned in *plen.
3116 * May return NULL if resources needed to perform the mapping are exhausted.
3117 * Use only for reads OR writes - not for read-modify-write operations.
3118 * Use cpu_register_map_client() to know when retrying the map operation is
3119 * likely to succeed.
3121 void *address_space_map(AddressSpace
*as
,
3137 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3139 if (!memory_access_is_direct(mr
, is_write
)) {
3140 if (atomic_xchg(&bounce
.in_use
, true)) {
3144 /* Avoid unbounded allocations */
3145 l
= MIN(l
, TARGET_PAGE_SIZE
);
3146 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3150 memory_region_ref(mr
);
3153 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
3159 return bounce
.buffer
;
3163 memory_region_ref(mr
);
3164 *plen
= address_space_extend_translation(as
, addr
, len
, mr
, xlat
, l
, is_write
);
3165 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
);
3171 /* Unmaps a memory region previously mapped by address_space_map().
3172 * Will also mark the memory as dirty if is_write == 1. access_len gives
3173 * the amount of memory that was actually read or written by the caller.
3175 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3176 int is_write
, hwaddr access_len
)
3178 if (buffer
!= bounce
.buffer
) {
3182 mr
= memory_region_from_host(buffer
, &addr1
);
3185 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3187 if (xen_enabled()) {
3188 xen_invalidate_map_cache_entry(buffer
);
3190 memory_region_unref(mr
);
3194 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3195 bounce
.buffer
, access_len
);
3197 qemu_vfree(bounce
.buffer
);
3198 bounce
.buffer
= NULL
;
3199 memory_region_unref(bounce
.mr
);
3200 atomic_mb_set(&bounce
.in_use
, false);
3201 cpu_notify_map_clients();
3204 void *cpu_physical_memory_map(hwaddr addr
,
3208 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3211 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3212 int is_write
, hwaddr access_len
)
3214 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3217 #define ARG1_DECL AddressSpace *as
3220 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3221 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3222 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3223 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3224 #define RCU_READ_LOCK(...) rcu_read_lock()
3225 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3226 #include "memory_ldst.inc.c"
3228 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3241 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3242 if (!memory_access_is_direct(mr
, is_write
)) {
3246 l
= address_space_extend_translation(as
, addr
, len
, mr
, xlat
, l
, is_write
);
3247 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, &l
);
3250 cache
->is_write
= is_write
;
3254 memory_region_ref(cache
->mr
);
3259 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3263 assert(cache
->is_write
);
3264 invalidate_and_set_dirty(cache
->mr
, addr
+ cache
->xlat
, access_len
);
3267 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3273 if (xen_enabled()) {
3274 xen_invalidate_map_cache_entry(cache
->ptr
);
3276 memory_region_unref(cache
->mr
);
3280 /* Called from RCU critical section. This function has the same
3281 * semantics as address_space_translate, but it only works on a
3282 * predefined range of a MemoryRegion that was mapped with
3283 * address_space_cache_init.
3285 static inline MemoryRegion
*address_space_translate_cached(
3286 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3287 hwaddr
*plen
, bool is_write
)
3289 assert(addr
< cache
->len
&& *plen
<= cache
->len
- addr
);
3290 *xlat
= addr
+ cache
->xlat
;
3294 #define ARG1_DECL MemoryRegionCache *cache
3296 #define SUFFIX _cached
3297 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3298 #define IS_DIRECT(mr, is_write) true
3299 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3300 #define INVALIDATE(mr, ofs, len) ((void)0)
3301 #define RCU_READ_LOCK() ((void)0)
3302 #define RCU_READ_UNLOCK() ((void)0)
3303 #include "memory_ldst.inc.c"
3305 /* virtual memory access for debug (includes writing to ROM) */
3306 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3307 uint8_t *buf
, int len
, int is_write
)
3313 cpu_synchronize_state(cpu
);
3318 page
= addr
& TARGET_PAGE_MASK
;
3319 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3320 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3321 /* if no physical page mapped, return an error */
3322 if (phys_addr
== -1)
3324 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3327 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3329 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3332 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3333 MEMTXATTRS_UNSPECIFIED
,
3344 * Allows code that needs to deal with migration bitmaps etc to still be built
3345 * target independent.
3347 size_t qemu_target_page_bits(void)
3349 return TARGET_PAGE_BITS
;
3355 * A helper function for the _utterly broken_ virtio device model to find out if
3356 * it's running on a big endian machine. Don't do this at home kids!
3358 bool target_words_bigendian(void);
3359 bool target_words_bigendian(void)
3361 #if defined(TARGET_WORDS_BIGENDIAN)
3368 #ifndef CONFIG_USER_ONLY
3369 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3376 mr
= address_space_translate(&address_space_memory
,
3377 phys_addr
, &phys_addr
, &l
, false);
3379 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3384 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3390 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3391 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3392 block
->used_length
, opaque
);
3402 * Unmap pages of memory from start to start+length such that
3403 * they a) read as 0, b) Trigger whatever fault mechanism
3404 * the OS provides for postcopy.
3405 * The pages must be unmapped by the end of the function.
3406 * Returns: 0 on success, none-0 on failure
3409 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3413 uint8_t *host_startaddr
= rb
->host
+ start
;
3415 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3416 error_report("ram_block_discard_range: Unaligned start address: %p",
3421 if ((start
+ length
) <= rb
->used_length
) {
3422 uint8_t *host_endaddr
= host_startaddr
+ length
;
3423 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
3424 error_report("ram_block_discard_range: Unaligned end address: %p",
3429 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3431 if (rb
->page_size
== qemu_host_page_size
) {
3432 #if defined(CONFIG_MADVISE)
3433 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3436 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3439 /* Huge page case - unfortunately it can't do DONTNEED, but
3440 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3443 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3444 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3450 error_report("ram_block_discard_range: Failed to discard range "
3451 "%s:%" PRIx64
" +%zx (%d)",
3452 rb
->idstr
, start
, length
, ret
);
3455 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3456 "/%zx/" RAM_ADDR_FMT
")",
3457 rb
->idstr
, start
, length
, rb
->used_length
);