2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
14 * http://www.nvmexpress.org/resources/
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>
23 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
24 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
27 #include "qemu/osdep.h"
28 #include "hw/block/block.h"
30 #include "hw/pci/msix.h"
31 #include "hw/pci/pci.h"
32 #include "sysemu/sysemu.h"
33 #include "qapi/error.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/block-backend.h"
39 static void nvme_process_sq(void *opaque
);
41 static void nvme_addr_read(NvmeCtrl
*n
, hwaddr addr
, void *buf
, int size
)
43 if (n
->cmbsz
&& addr
>= n
->ctrl_mem
.addr
&&
44 addr
< (n
->ctrl_mem
.addr
+ int128_get64(n
->ctrl_mem
.size
))) {
45 memcpy(buf
, (void *)&n
->cmbuf
[addr
- n
->ctrl_mem
.addr
], size
);
47 pci_dma_read(&n
->parent_obj
, addr
, buf
, size
);
51 static int nvme_check_sqid(NvmeCtrl
*n
, uint16_t sqid
)
53 return sqid
< n
->num_queues
&& n
->sq
[sqid
] != NULL
? 0 : -1;
56 static int nvme_check_cqid(NvmeCtrl
*n
, uint16_t cqid
)
58 return cqid
< n
->num_queues
&& n
->cq
[cqid
] != NULL
? 0 : -1;
61 static void nvme_inc_cq_tail(NvmeCQueue
*cq
)
64 if (cq
->tail
>= cq
->size
) {
66 cq
->phase
= !cq
->phase
;
70 static void nvme_inc_sq_head(NvmeSQueue
*sq
)
72 sq
->head
= (sq
->head
+ 1) % sq
->size
;
75 static uint8_t nvme_cq_full(NvmeCQueue
*cq
)
77 return (cq
->tail
+ 1) % cq
->size
== cq
->head
;
80 static uint8_t nvme_sq_empty(NvmeSQueue
*sq
)
82 return sq
->head
== sq
->tail
;
85 static void nvme_isr_notify(NvmeCtrl
*n
, NvmeCQueue
*cq
)
87 if (cq
->irq_enabled
) {
88 if (msix_enabled(&(n
->parent_obj
))) {
89 msix_notify(&(n
->parent_obj
), cq
->vector
);
91 pci_irq_pulse(&n
->parent_obj
);
96 static uint16_t nvme_map_prp(QEMUSGList
*qsg
, QEMUIOVector
*iov
, uint64_t prp1
,
97 uint64_t prp2
, uint32_t len
, NvmeCtrl
*n
)
99 hwaddr trans_len
= n
->page_size
- (prp1
% n
->page_size
);
100 trans_len
= MIN(len
, trans_len
);
101 int num_prps
= (len
>> n
->page_bits
) + 1;
104 return NVME_INVALID_FIELD
| NVME_DNR
;
105 } else if (n
->cmbsz
&& prp1
>= n
->ctrl_mem
.addr
&&
106 prp1
< n
->ctrl_mem
.addr
+ int128_get64(n
->ctrl_mem
.size
)) {
108 qemu_iovec_init(iov
, num_prps
);
109 qemu_iovec_add(iov
, (void *)&n
->cmbuf
[prp1
- n
->ctrl_mem
.addr
], trans_len
);
111 pci_dma_sglist_init(qsg
, &n
->parent_obj
, num_prps
);
112 qemu_sglist_add(qsg
, prp1
, trans_len
);
119 if (len
> n
->page_size
) {
120 uint64_t prp_list
[n
->max_prp_ents
];
121 uint32_t nents
, prp_trans
;
124 nents
= (len
+ n
->page_size
- 1) >> n
->page_bits
;
125 prp_trans
= MIN(n
->max_prp_ents
, nents
) * sizeof(uint64_t);
126 nvme_addr_read(n
, prp2
, (void *)prp_list
, prp_trans
);
128 uint64_t prp_ent
= le64_to_cpu(prp_list
[i
]);
130 if (i
== n
->max_prp_ents
- 1 && len
> n
->page_size
) {
131 if (!prp_ent
|| prp_ent
& (n
->page_size
- 1)) {
136 nents
= (len
+ n
->page_size
- 1) >> n
->page_bits
;
137 prp_trans
= MIN(n
->max_prp_ents
, nents
) * sizeof(uint64_t);
138 nvme_addr_read(n
, prp_ent
, (void *)prp_list
,
140 prp_ent
= le64_to_cpu(prp_list
[i
]);
143 if (!prp_ent
|| prp_ent
& (n
->page_size
- 1)) {
147 trans_len
= MIN(len
, n
->page_size
);
149 qemu_sglist_add(qsg
, prp_ent
, trans_len
);
151 qemu_iovec_add(iov
, (void *)&n
->cmbuf
[prp_ent
- n
->ctrl_mem
.addr
], trans_len
);
157 if (prp2
& (n
->page_size
- 1)) {
161 qemu_sglist_add(qsg
, prp2
, len
);
163 qemu_iovec_add(iov
, (void *)&n
->cmbuf
[prp2
- n
->ctrl_mem
.addr
], trans_len
);
170 qemu_sglist_destroy(qsg
);
171 return NVME_INVALID_FIELD
| NVME_DNR
;
174 static uint16_t nvme_dma_read_prp(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
175 uint64_t prp1
, uint64_t prp2
)
179 uint16_t status
= NVME_SUCCESS
;
181 if (nvme_map_prp(&qsg
, &iov
, prp1
, prp2
, len
, n
)) {
182 return NVME_INVALID_FIELD
| NVME_DNR
;
185 if (dma_buf_read(ptr
, len
, &qsg
)) {
186 status
= NVME_INVALID_FIELD
| NVME_DNR
;
188 qemu_sglist_destroy(&qsg
);
190 if (qemu_iovec_to_buf(&iov
, 0, ptr
, len
) != len
) {
191 status
= NVME_INVALID_FIELD
| NVME_DNR
;
193 qemu_iovec_destroy(&iov
);
198 static void nvme_post_cqes(void *opaque
)
200 NvmeCQueue
*cq
= opaque
;
201 NvmeCtrl
*n
= cq
->ctrl
;
202 NvmeRequest
*req
, *next
;
204 QTAILQ_FOREACH_SAFE(req
, &cq
->req_list
, entry
, next
) {
208 if (nvme_cq_full(cq
)) {
212 QTAILQ_REMOVE(&cq
->req_list
, req
, entry
);
214 req
->cqe
.status
= cpu_to_le16((req
->status
<< 1) | cq
->phase
);
215 req
->cqe
.sq_id
= cpu_to_le16(sq
->sqid
);
216 req
->cqe
.sq_head
= cpu_to_le16(sq
->head
);
217 addr
= cq
->dma_addr
+ cq
->tail
* n
->cqe_size
;
218 nvme_inc_cq_tail(cq
);
219 pci_dma_write(&n
->parent_obj
, addr
, (void *)&req
->cqe
,
221 QTAILQ_INSERT_TAIL(&sq
->req_list
, req
, entry
);
223 nvme_isr_notify(n
, cq
);
226 static void nvme_enqueue_req_completion(NvmeCQueue
*cq
, NvmeRequest
*req
)
228 assert(cq
->cqid
== req
->sq
->cqid
);
229 QTAILQ_REMOVE(&req
->sq
->out_req_list
, req
, entry
);
230 QTAILQ_INSERT_TAIL(&cq
->req_list
, req
, entry
);
231 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
234 static void nvme_rw_cb(void *opaque
, int ret
)
236 NvmeRequest
*req
= opaque
;
237 NvmeSQueue
*sq
= req
->sq
;
238 NvmeCtrl
*n
= sq
->ctrl
;
239 NvmeCQueue
*cq
= n
->cq
[sq
->cqid
];
242 block_acct_done(blk_get_stats(n
->conf
.blk
), &req
->acct
);
243 req
->status
= NVME_SUCCESS
;
245 block_acct_failed(blk_get_stats(n
->conf
.blk
), &req
->acct
);
246 req
->status
= NVME_INTERNAL_DEV_ERROR
;
249 qemu_sglist_destroy(&req
->qsg
);
251 nvme_enqueue_req_completion(cq
, req
);
254 static uint16_t nvme_flush(NvmeCtrl
*n
, NvmeNamespace
*ns
, NvmeCmd
*cmd
,
258 block_acct_start(blk_get_stats(n
->conf
.blk
), &req
->acct
, 0,
260 req
->aiocb
= blk_aio_flush(n
->conf
.blk
, nvme_rw_cb
, req
);
262 return NVME_NO_COMPLETE
;
265 static uint16_t nvme_write_zeros(NvmeCtrl
*n
, NvmeNamespace
*ns
, NvmeCmd
*cmd
,
268 NvmeRwCmd
*rw
= (NvmeRwCmd
*)cmd
;
269 const uint8_t lba_index
= NVME_ID_NS_FLBAS_INDEX(ns
->id_ns
.flbas
);
270 const uint8_t data_shift
= ns
->id_ns
.lbaf
[lba_index
].ds
;
271 uint64_t slba
= le64_to_cpu(rw
->slba
);
272 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
273 uint64_t aio_slba
= slba
<< (data_shift
- BDRV_SECTOR_BITS
);
274 uint32_t aio_nlb
= nlb
<< (data_shift
- BDRV_SECTOR_BITS
);
276 if (slba
+ nlb
> ns
->id_ns
.nsze
) {
277 return NVME_LBA_RANGE
| NVME_DNR
;
281 block_acct_start(blk_get_stats(n
->conf
.blk
), &req
->acct
, 0,
283 req
->aiocb
= blk_aio_pwrite_zeroes(n
->conf
.blk
, aio_slba
, aio_nlb
,
284 BDRV_REQ_MAY_UNMAP
, nvme_rw_cb
, req
);
285 return NVME_NO_COMPLETE
;
288 static uint16_t nvme_rw(NvmeCtrl
*n
, NvmeNamespace
*ns
, NvmeCmd
*cmd
,
291 NvmeRwCmd
*rw
= (NvmeRwCmd
*)cmd
;
292 uint32_t nlb
= le32_to_cpu(rw
->nlb
) + 1;
293 uint64_t slba
= le64_to_cpu(rw
->slba
);
294 uint64_t prp1
= le64_to_cpu(rw
->prp1
);
295 uint64_t prp2
= le64_to_cpu(rw
->prp2
);
297 uint8_t lba_index
= NVME_ID_NS_FLBAS_INDEX(ns
->id_ns
.flbas
);
298 uint8_t data_shift
= ns
->id_ns
.lbaf
[lba_index
].ds
;
299 uint64_t data_size
= (uint64_t)nlb
<< data_shift
;
300 uint64_t data_offset
= slba
<< data_shift
;
301 int is_write
= rw
->opcode
== NVME_CMD_WRITE
? 1 : 0;
302 enum BlockAcctType acct
= is_write
? BLOCK_ACCT_WRITE
: BLOCK_ACCT_READ
;
304 if ((slba
+ nlb
) > ns
->id_ns
.nsze
) {
305 block_acct_invalid(blk_get_stats(n
->conf
.blk
), acct
);
306 return NVME_LBA_RANGE
| NVME_DNR
;
309 if (nvme_map_prp(&req
->qsg
, &req
->iov
, prp1
, prp2
, data_size
, n
)) {
310 block_acct_invalid(blk_get_stats(n
->conf
.blk
), acct
);
311 return NVME_INVALID_FIELD
| NVME_DNR
;
314 dma_acct_start(n
->conf
.blk
, &req
->acct
, &req
->qsg
, acct
);
315 if (req
->qsg
.nsg
> 0) {
317 req
->aiocb
= is_write
?
318 dma_blk_write(n
->conf
.blk
, &req
->qsg
, data_offset
, BDRV_SECTOR_SIZE
,
320 dma_blk_read(n
->conf
.blk
, &req
->qsg
, data_offset
, BDRV_SECTOR_SIZE
,
324 req
->aiocb
= is_write
?
325 blk_aio_pwritev(n
->conf
.blk
, data_offset
, &req
->iov
, 0, nvme_rw_cb
,
327 blk_aio_preadv(n
->conf
.blk
, data_offset
, &req
->iov
, 0, nvme_rw_cb
,
331 return NVME_NO_COMPLETE
;
334 static uint16_t nvme_io_cmd(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
337 uint32_t nsid
= le32_to_cpu(cmd
->nsid
);
339 if (nsid
== 0 || nsid
> n
->num_namespaces
) {
340 return NVME_INVALID_NSID
| NVME_DNR
;
343 ns
= &n
->namespaces
[nsid
- 1];
344 switch (cmd
->opcode
) {
346 return nvme_flush(n
, ns
, cmd
, req
);
347 case NVME_CMD_WRITE_ZEROS
:
348 return nvme_write_zeros(n
, ns
, cmd
, req
);
351 return nvme_rw(n
, ns
, cmd
, req
);
353 return NVME_INVALID_OPCODE
| NVME_DNR
;
357 static void nvme_free_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
)
359 n
->sq
[sq
->sqid
] = NULL
;
360 timer_del(sq
->timer
);
361 timer_free(sq
->timer
);
368 static uint16_t nvme_del_sq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
370 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)cmd
;
371 NvmeRequest
*req
, *next
;
374 uint16_t qid
= le16_to_cpu(c
->qid
);
376 if (!qid
|| nvme_check_sqid(n
, qid
)) {
377 return NVME_INVALID_QID
| NVME_DNR
;
381 while (!QTAILQ_EMPTY(&sq
->out_req_list
)) {
382 req
= QTAILQ_FIRST(&sq
->out_req_list
);
384 blk_aio_cancel(req
->aiocb
);
386 if (!nvme_check_cqid(n
, sq
->cqid
)) {
387 cq
= n
->cq
[sq
->cqid
];
388 QTAILQ_REMOVE(&cq
->sq_list
, sq
, entry
);
391 QTAILQ_FOREACH_SAFE(req
, &cq
->req_list
, entry
, next
) {
393 QTAILQ_REMOVE(&cq
->req_list
, req
, entry
);
394 QTAILQ_INSERT_TAIL(&sq
->req_list
, req
, entry
);
403 static void nvme_init_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
, uint64_t dma_addr
,
404 uint16_t sqid
, uint16_t cqid
, uint16_t size
)
410 sq
->dma_addr
= dma_addr
;
414 sq
->head
= sq
->tail
= 0;
415 sq
->io_req
= g_new(NvmeRequest
, sq
->size
);
417 QTAILQ_INIT(&sq
->req_list
);
418 QTAILQ_INIT(&sq
->out_req_list
);
419 for (i
= 0; i
< sq
->size
; i
++) {
420 sq
->io_req
[i
].sq
= sq
;
421 QTAILQ_INSERT_TAIL(&(sq
->req_list
), &sq
->io_req
[i
], entry
);
423 sq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_process_sq
, sq
);
427 QTAILQ_INSERT_TAIL(&(cq
->sq_list
), sq
, entry
);
431 static uint16_t nvme_create_sq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
434 NvmeCreateSq
*c
= (NvmeCreateSq
*)cmd
;
436 uint16_t cqid
= le16_to_cpu(c
->cqid
);
437 uint16_t sqid
= le16_to_cpu(c
->sqid
);
438 uint16_t qsize
= le16_to_cpu(c
->qsize
);
439 uint16_t qflags
= le16_to_cpu(c
->sq_flags
);
440 uint64_t prp1
= le64_to_cpu(c
->prp1
);
442 if (!cqid
|| nvme_check_cqid(n
, cqid
)) {
443 return NVME_INVALID_CQID
| NVME_DNR
;
445 if (!sqid
|| !nvme_check_sqid(n
, sqid
)) {
446 return NVME_INVALID_QID
| NVME_DNR
;
448 if (!qsize
|| qsize
> NVME_CAP_MQES(n
->bar
.cap
)) {
449 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
451 if (!prp1
|| prp1
& (n
->page_size
- 1)) {
452 return NVME_INVALID_FIELD
| NVME_DNR
;
454 if (!(NVME_SQ_FLAGS_PC(qflags
))) {
455 return NVME_INVALID_FIELD
| NVME_DNR
;
457 sq
= g_malloc0(sizeof(*sq
));
458 nvme_init_sq(sq
, n
, prp1
, sqid
, cqid
, qsize
+ 1);
462 static void nvme_free_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
)
464 n
->cq
[cq
->cqid
] = NULL
;
465 timer_del(cq
->timer
);
466 timer_free(cq
->timer
);
467 msix_vector_unuse(&n
->parent_obj
, cq
->vector
);
473 static uint16_t nvme_del_cq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
475 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)cmd
;
477 uint16_t qid
= le16_to_cpu(c
->qid
);
479 if (!qid
|| nvme_check_cqid(n
, qid
)) {
480 return NVME_INVALID_CQID
| NVME_DNR
;
484 if (!QTAILQ_EMPTY(&cq
->sq_list
)) {
485 return NVME_INVALID_QUEUE_DEL
;
491 static void nvme_init_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
, uint64_t dma_addr
,
492 uint16_t cqid
, uint16_t vector
, uint16_t size
, uint16_t irq_enabled
)
497 cq
->dma_addr
= dma_addr
;
499 cq
->irq_enabled
= irq_enabled
;
501 cq
->head
= cq
->tail
= 0;
502 QTAILQ_INIT(&cq
->req_list
);
503 QTAILQ_INIT(&cq
->sq_list
);
504 msix_vector_use(&n
->parent_obj
, cq
->vector
);
506 cq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_post_cqes
, cq
);
509 static uint16_t nvme_create_cq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
512 NvmeCreateCq
*c
= (NvmeCreateCq
*)cmd
;
513 uint16_t cqid
= le16_to_cpu(c
->cqid
);
514 uint16_t vector
= le16_to_cpu(c
->irq_vector
);
515 uint16_t qsize
= le16_to_cpu(c
->qsize
);
516 uint16_t qflags
= le16_to_cpu(c
->cq_flags
);
517 uint64_t prp1
= le64_to_cpu(c
->prp1
);
519 if (!cqid
|| !nvme_check_cqid(n
, cqid
)) {
520 return NVME_INVALID_CQID
| NVME_DNR
;
522 if (!qsize
|| qsize
> NVME_CAP_MQES(n
->bar
.cap
)) {
523 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
526 return NVME_INVALID_FIELD
| NVME_DNR
;
528 if (vector
> n
->num_queues
) {
529 return NVME_INVALID_IRQ_VECTOR
| NVME_DNR
;
531 if (!(NVME_CQ_FLAGS_PC(qflags
))) {
532 return NVME_INVALID_FIELD
| NVME_DNR
;
535 cq
= g_malloc0(sizeof(*cq
));
536 nvme_init_cq(cq
, n
, prp1
, cqid
, vector
, qsize
+ 1,
537 NVME_CQ_FLAGS_IEN(qflags
));
541 static uint16_t nvme_identify_ctrl(NvmeCtrl
*n
, NvmeIdentify
*c
)
543 uint64_t prp1
= le64_to_cpu(c
->prp1
);
544 uint64_t prp2
= le64_to_cpu(c
->prp2
);
546 return nvme_dma_read_prp(n
, (uint8_t *)&n
->id_ctrl
, sizeof(n
->id_ctrl
),
550 static uint16_t nvme_identify_ns(NvmeCtrl
*n
, NvmeIdentify
*c
)
553 uint32_t nsid
= le32_to_cpu(c
->nsid
);
554 uint64_t prp1
= le64_to_cpu(c
->prp1
);
555 uint64_t prp2
= le64_to_cpu(c
->prp2
);
557 if (nsid
== 0 || nsid
> n
->num_namespaces
) {
558 return NVME_INVALID_NSID
| NVME_DNR
;
561 ns
= &n
->namespaces
[nsid
- 1];
562 return nvme_dma_read_prp(n
, (uint8_t *)&ns
->id_ns
, sizeof(ns
->id_ns
),
566 static uint16_t nvme_identify_nslist(NvmeCtrl
*n
, NvmeIdentify
*c
)
568 static const int data_len
= 4096;
569 uint32_t min_nsid
= le32_to_cpu(c
->nsid
);
570 uint64_t prp1
= le64_to_cpu(c
->prp1
);
571 uint64_t prp2
= le64_to_cpu(c
->prp2
);
576 list
= g_malloc0(data_len
);
577 for (i
= 0; i
< n
->num_namespaces
; i
++) {
581 list
[j
++] = cpu_to_le32(i
+ 1);
582 if (j
== data_len
/ sizeof(uint32_t)) {
586 ret
= nvme_dma_read_prp(n
, (uint8_t *)list
, data_len
, prp1
, prp2
);
592 static uint16_t nvme_identify(NvmeCtrl
*n
, NvmeCmd
*cmd
)
594 NvmeIdentify
*c
= (NvmeIdentify
*)cmd
;
596 switch (le32_to_cpu(c
->cns
)) {
598 return nvme_identify_ns(n
, c
);
600 return nvme_identify_ctrl(n
, c
);
602 return nvme_identify_nslist(n
, c
);
604 return NVME_INVALID_FIELD
| NVME_DNR
;
608 static uint16_t nvme_get_feature(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
610 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
614 case NVME_VOLATILE_WRITE_CACHE
:
615 result
= blk_enable_write_cache(n
->conf
.blk
);
617 case NVME_NUMBER_OF_QUEUES
:
618 result
= cpu_to_le32((n
->num_queues
- 2) | ((n
->num_queues
- 2) << 16));
621 return NVME_INVALID_FIELD
| NVME_DNR
;
624 req
->cqe
.result
= result
;
628 static uint16_t nvme_set_feature(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
630 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
631 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
634 case NVME_VOLATILE_WRITE_CACHE
:
635 blk_set_enable_write_cache(n
->conf
.blk
, dw11
& 1);
637 case NVME_NUMBER_OF_QUEUES
:
639 cpu_to_le32((n
->num_queues
- 2) | ((n
->num_queues
- 2) << 16));
642 return NVME_INVALID_FIELD
| NVME_DNR
;
647 static uint16_t nvme_admin_cmd(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
649 switch (cmd
->opcode
) {
650 case NVME_ADM_CMD_DELETE_SQ
:
651 return nvme_del_sq(n
, cmd
);
652 case NVME_ADM_CMD_CREATE_SQ
:
653 return nvme_create_sq(n
, cmd
);
654 case NVME_ADM_CMD_DELETE_CQ
:
655 return nvme_del_cq(n
, cmd
);
656 case NVME_ADM_CMD_CREATE_CQ
:
657 return nvme_create_cq(n
, cmd
);
658 case NVME_ADM_CMD_IDENTIFY
:
659 return nvme_identify(n
, cmd
);
660 case NVME_ADM_CMD_SET_FEATURES
:
661 return nvme_set_feature(n
, cmd
, req
);
662 case NVME_ADM_CMD_GET_FEATURES
:
663 return nvme_get_feature(n
, cmd
, req
);
665 return NVME_INVALID_OPCODE
| NVME_DNR
;
669 static void nvme_process_sq(void *opaque
)
671 NvmeSQueue
*sq
= opaque
;
672 NvmeCtrl
*n
= sq
->ctrl
;
673 NvmeCQueue
*cq
= n
->cq
[sq
->cqid
];
680 while (!(nvme_sq_empty(sq
) || QTAILQ_EMPTY(&sq
->req_list
))) {
681 addr
= sq
->dma_addr
+ sq
->head
* n
->sqe_size
;
682 nvme_addr_read(n
, addr
, (void *)&cmd
, sizeof(cmd
));
683 nvme_inc_sq_head(sq
);
685 req
= QTAILQ_FIRST(&sq
->req_list
);
686 QTAILQ_REMOVE(&sq
->req_list
, req
, entry
);
687 QTAILQ_INSERT_TAIL(&sq
->out_req_list
, req
, entry
);
688 memset(&req
->cqe
, 0, sizeof(req
->cqe
));
689 req
->cqe
.cid
= cmd
.cid
;
691 status
= sq
->sqid
? nvme_io_cmd(n
, &cmd
, req
) :
692 nvme_admin_cmd(n
, &cmd
, req
);
693 if (status
!= NVME_NO_COMPLETE
) {
694 req
->status
= status
;
695 nvme_enqueue_req_completion(cq
, req
);
700 static void nvme_clear_ctrl(NvmeCtrl
*n
)
704 for (i
= 0; i
< n
->num_queues
; i
++) {
705 if (n
->sq
[i
] != NULL
) {
706 nvme_free_sq(n
->sq
[i
], n
);
709 for (i
= 0; i
< n
->num_queues
; i
++) {
710 if (n
->cq
[i
] != NULL
) {
711 nvme_free_cq(n
->cq
[i
], n
);
715 blk_flush(n
->conf
.blk
);
719 static int nvme_start_ctrl(NvmeCtrl
*n
)
721 uint32_t page_bits
= NVME_CC_MPS(n
->bar
.cc
) + 12;
722 uint32_t page_size
= 1 << page_bits
;
724 if (n
->cq
[0] || n
->sq
[0] || !n
->bar
.asq
|| !n
->bar
.acq
||
725 n
->bar
.asq
& (page_size
- 1) || n
->bar
.acq
& (page_size
- 1) ||
726 NVME_CC_MPS(n
->bar
.cc
) < NVME_CAP_MPSMIN(n
->bar
.cap
) ||
727 NVME_CC_MPS(n
->bar
.cc
) > NVME_CAP_MPSMAX(n
->bar
.cap
) ||
728 NVME_CC_IOCQES(n
->bar
.cc
) < NVME_CTRL_CQES_MIN(n
->id_ctrl
.cqes
) ||
729 NVME_CC_IOCQES(n
->bar
.cc
) > NVME_CTRL_CQES_MAX(n
->id_ctrl
.cqes
) ||
730 NVME_CC_IOSQES(n
->bar
.cc
) < NVME_CTRL_SQES_MIN(n
->id_ctrl
.sqes
) ||
731 NVME_CC_IOSQES(n
->bar
.cc
) > NVME_CTRL_SQES_MAX(n
->id_ctrl
.sqes
) ||
732 !NVME_AQA_ASQS(n
->bar
.aqa
) || !NVME_AQA_ACQS(n
->bar
.aqa
)) {
736 n
->page_bits
= page_bits
;
737 n
->page_size
= page_size
;
738 n
->max_prp_ents
= n
->page_size
/ sizeof(uint64_t);
739 n
->cqe_size
= 1 << NVME_CC_IOCQES(n
->bar
.cc
);
740 n
->sqe_size
= 1 << NVME_CC_IOSQES(n
->bar
.cc
);
741 nvme_init_cq(&n
->admin_cq
, n
, n
->bar
.acq
, 0, 0,
742 NVME_AQA_ACQS(n
->bar
.aqa
) + 1, 1);
743 nvme_init_sq(&n
->admin_sq
, n
, n
->bar
.asq
, 0, 0,
744 NVME_AQA_ASQS(n
->bar
.aqa
) + 1);
749 static void nvme_write_bar(NvmeCtrl
*n
, hwaddr offset
, uint64_t data
,
754 n
->bar
.intms
|= data
& 0xffffffff;
755 n
->bar
.intmc
= n
->bar
.intms
;
758 n
->bar
.intms
&= ~(data
& 0xffffffff);
759 n
->bar
.intmc
= n
->bar
.intms
;
762 /* Windows first sends data, then sends enable bit */
763 if (!NVME_CC_EN(data
) && !NVME_CC_EN(n
->bar
.cc
) &&
764 !NVME_CC_SHN(data
) && !NVME_CC_SHN(n
->bar
.cc
))
769 if (NVME_CC_EN(data
) && !NVME_CC_EN(n
->bar
.cc
)) {
771 if (nvme_start_ctrl(n
)) {
772 n
->bar
.csts
= NVME_CSTS_FAILED
;
774 n
->bar
.csts
= NVME_CSTS_READY
;
776 } else if (!NVME_CC_EN(data
) && NVME_CC_EN(n
->bar
.cc
)) {
778 n
->bar
.csts
&= ~NVME_CSTS_READY
;
780 if (NVME_CC_SHN(data
) && !(NVME_CC_SHN(n
->bar
.cc
))) {
783 n
->bar
.csts
|= NVME_CSTS_SHST_COMPLETE
;
784 } else if (!NVME_CC_SHN(data
) && NVME_CC_SHN(n
->bar
.cc
)) {
785 n
->bar
.csts
&= ~NVME_CSTS_SHST_COMPLETE
;
790 n
->bar
.aqa
= data
& 0xffffffff;
796 n
->bar
.asq
|= data
<< 32;
802 n
->bar
.acq
|= data
<< 32;
809 static uint64_t nvme_mmio_read(void *opaque
, hwaddr addr
, unsigned size
)
811 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
812 uint8_t *ptr
= (uint8_t *)&n
->bar
;
815 if (addr
< sizeof(n
->bar
)) {
816 memcpy(&val
, ptr
+ addr
, size
);
821 static void nvme_process_db(NvmeCtrl
*n
, hwaddr addr
, int val
)
825 if (addr
& ((1 << 2) - 1)) {
829 if (((addr
- 0x1000) >> 2) & 1) {
830 uint16_t new_head
= val
& 0xffff;
834 qid
= (addr
- (0x1000 + (1 << 2))) >> 3;
835 if (nvme_check_cqid(n
, qid
)) {
840 if (new_head
>= cq
->size
) {
844 start_sqs
= nvme_cq_full(cq
) ? 1 : 0;
848 QTAILQ_FOREACH(sq
, &cq
->sq_list
, entry
) {
849 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
851 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
854 if (cq
->tail
!= cq
->head
) {
855 nvme_isr_notify(n
, cq
);
858 uint16_t new_tail
= val
& 0xffff;
861 qid
= (addr
- 0x1000) >> 3;
862 if (nvme_check_sqid(n
, qid
)) {
867 if (new_tail
>= sq
->size
) {
872 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
876 static void nvme_mmio_write(void *opaque
, hwaddr addr
, uint64_t data
,
879 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
880 if (addr
< sizeof(n
->bar
)) {
881 nvme_write_bar(n
, addr
, data
, size
);
882 } else if (addr
>= 0x1000) {
883 nvme_process_db(n
, addr
, data
);
887 static const MemoryRegionOps nvme_mmio_ops
= {
888 .read
= nvme_mmio_read
,
889 .write
= nvme_mmio_write
,
890 .endianness
= DEVICE_LITTLE_ENDIAN
,
892 .min_access_size
= 2,
893 .max_access_size
= 8,
897 static void nvme_cmb_write(void *opaque
, hwaddr addr
, uint64_t data
,
900 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
901 memcpy(&n
->cmbuf
[addr
], &data
, size
);
904 static uint64_t nvme_cmb_read(void *opaque
, hwaddr addr
, unsigned size
)
907 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
909 memcpy(&val
, &n
->cmbuf
[addr
], size
);
913 static const MemoryRegionOps nvme_cmb_ops
= {
914 .read
= nvme_cmb_read
,
915 .write
= nvme_cmb_write
,
916 .endianness
= DEVICE_LITTLE_ENDIAN
,
918 .min_access_size
= 2,
919 .max_access_size
= 8,
923 static int nvme_init(PCIDevice
*pci_dev
)
925 NvmeCtrl
*n
= NVME(pci_dev
);
926 NvmeIdCtrl
*id
= &n
->id_ctrl
;
931 Error
*local_err
= NULL
;
937 bs_size
= blk_getlength(n
->conf
.blk
);
942 blkconf_serial(&n
->conf
, &n
->serial
);
946 blkconf_blocksizes(&n
->conf
);
947 blkconf_apply_backend_options(&n
->conf
, blk_is_read_only(n
->conf
.blk
),
950 error_report_err(local_err
);
954 pci_conf
= pci_dev
->config
;
955 pci_conf
[PCI_INTERRUPT_PIN
] = 1;
956 pci_config_set_prog_interface(pci_dev
->config
, 0x2);
957 pci_config_set_class(pci_dev
->config
, PCI_CLASS_STORAGE_EXPRESS
);
958 pcie_endpoint_cap_init(&n
->parent_obj
, 0x80);
960 n
->num_namespaces
= 1;
962 n
->reg_size
= pow2ceil(0x1004 + 2 * (n
->num_queues
+ 1) * 4);
963 n
->ns_size
= bs_size
/ (uint64_t)n
->num_namespaces
;
965 n
->namespaces
= g_new0(NvmeNamespace
, n
->num_namespaces
);
966 n
->sq
= g_new0(NvmeSQueue
*, n
->num_queues
);
967 n
->cq
= g_new0(NvmeCQueue
*, n
->num_queues
);
969 memory_region_init_io(&n
->iomem
, OBJECT(n
), &nvme_mmio_ops
, n
,
970 "nvme", n
->reg_size
);
971 pci_register_bar(&n
->parent_obj
, 0,
972 PCI_BASE_ADDRESS_SPACE_MEMORY
| PCI_BASE_ADDRESS_MEM_TYPE_64
,
974 msix_init_exclusive_bar(&n
->parent_obj
, n
->num_queues
, 4, NULL
);
976 id
->vid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_VENDOR_ID
));
977 id
->ssvid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_SUBSYSTEM_VENDOR_ID
));
978 strpadcpy((char *)id
->mn
, sizeof(id
->mn
), "QEMU NVMe Ctrl", ' ');
979 strpadcpy((char *)id
->fr
, sizeof(id
->fr
), "1.0", ' ');
980 strpadcpy((char *)id
->sn
, sizeof(id
->sn
), n
->serial
, ' ');
985 id
->oacs
= cpu_to_le16(0);
988 id
->sqes
= (0x6 << 4) | 0x6;
989 id
->cqes
= (0x4 << 4) | 0x4;
990 id
->nn
= cpu_to_le32(n
->num_namespaces
);
991 id
->oncs
= cpu_to_le16(NVME_ONCS_WRITE_ZEROS
);
992 id
->psd
[0].mp
= cpu_to_le16(0x9c4);
993 id
->psd
[0].enlat
= cpu_to_le32(0x10);
994 id
->psd
[0].exlat
= cpu_to_le32(0x4);
995 if (blk_enable_write_cache(n
->conf
.blk
)) {
1000 NVME_CAP_SET_MQES(n
->bar
.cap
, 0x7ff);
1001 NVME_CAP_SET_CQR(n
->bar
.cap
, 1);
1002 NVME_CAP_SET_AMS(n
->bar
.cap
, 1);
1003 NVME_CAP_SET_TO(n
->bar
.cap
, 0xf);
1004 NVME_CAP_SET_CSS(n
->bar
.cap
, 1);
1005 NVME_CAP_SET_MPSMAX(n
->bar
.cap
, 4);
1007 n
->bar
.vs
= 0x00010200;
1008 n
->bar
.intmc
= n
->bar
.intms
= 0;
1010 if (n
->cmb_size_mb
) {
1012 NVME_CMBLOC_SET_BIR(n
->bar
.cmbloc
, 2);
1013 NVME_CMBLOC_SET_OFST(n
->bar
.cmbloc
, 0);
1015 NVME_CMBSZ_SET_SQS(n
->bar
.cmbsz
, 1);
1016 NVME_CMBSZ_SET_CQS(n
->bar
.cmbsz
, 0);
1017 NVME_CMBSZ_SET_LISTS(n
->bar
.cmbsz
, 0);
1018 NVME_CMBSZ_SET_RDS(n
->bar
.cmbsz
, 1);
1019 NVME_CMBSZ_SET_WDS(n
->bar
.cmbsz
, 1);
1020 NVME_CMBSZ_SET_SZU(n
->bar
.cmbsz
, 2); /* MBs */
1021 NVME_CMBSZ_SET_SZ(n
->bar
.cmbsz
, n
->cmb_size_mb
);
1023 n
->cmbloc
= n
->bar
.cmbloc
;
1024 n
->cmbsz
= n
->bar
.cmbsz
;
1026 n
->cmbuf
= g_malloc0(NVME_CMBSZ_GETSIZE(n
->bar
.cmbsz
));
1027 memory_region_init_io(&n
->ctrl_mem
, OBJECT(n
), &nvme_cmb_ops
, n
,
1028 "nvme-cmb", NVME_CMBSZ_GETSIZE(n
->bar
.cmbsz
));
1029 pci_register_bar(&n
->parent_obj
, NVME_CMBLOC_BIR(n
->bar
.cmbloc
),
1030 PCI_BASE_ADDRESS_SPACE_MEMORY
| PCI_BASE_ADDRESS_MEM_TYPE_64
|
1031 PCI_BASE_ADDRESS_MEM_PREFETCH
, &n
->ctrl_mem
);
1035 for (i
= 0; i
< n
->num_namespaces
; i
++) {
1036 NvmeNamespace
*ns
= &n
->namespaces
[i
];
1037 NvmeIdNs
*id_ns
= &ns
->id_ns
;
1044 id_ns
->lbaf
[0].ds
= BDRV_SECTOR_BITS
;
1045 id_ns
->ncap
= id_ns
->nuse
= id_ns
->nsze
=
1046 cpu_to_le64(n
->ns_size
>>
1047 id_ns
->lbaf
[NVME_ID_NS_FLBAS_INDEX(ns
->id_ns
.flbas
)].ds
);
1052 static void nvme_exit(PCIDevice
*pci_dev
)
1054 NvmeCtrl
*n
= NVME(pci_dev
);
1057 g_free(n
->namespaces
);
1061 memory_region_unref(&n
->ctrl_mem
);
1064 msix_uninit_exclusive_bar(pci_dev
);
1067 static Property nvme_props
[] = {
1068 DEFINE_BLOCK_PROPERTIES(NvmeCtrl
, conf
),
1069 DEFINE_PROP_STRING("serial", NvmeCtrl
, serial
),
1070 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl
, cmb_size_mb
, 0),
1071 DEFINE_PROP_END_OF_LIST(),
1074 static const VMStateDescription nvme_vmstate
= {
1079 static void nvme_class_init(ObjectClass
*oc
, void *data
)
1081 DeviceClass
*dc
= DEVICE_CLASS(oc
);
1082 PCIDeviceClass
*pc
= PCI_DEVICE_CLASS(oc
);
1084 pc
->init
= nvme_init
;
1085 pc
->exit
= nvme_exit
;
1086 pc
->class_id
= PCI_CLASS_STORAGE_EXPRESS
;
1087 pc
->vendor_id
= PCI_VENDOR_ID_INTEL
;
1088 pc
->device_id
= 0x5845;
1092 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
1093 dc
->desc
= "Non-Volatile Memory Express";
1094 dc
->props
= nvme_props
;
1095 dc
->vmsd
= &nvme_vmstate
;
1098 static void nvme_instance_init(Object
*obj
)
1100 NvmeCtrl
*s
= NVME(obj
);
1102 device_add_bootindex_property(obj
, &s
->conf
.bootindex
,
1103 "bootindex", "/namespace@1,0",
1104 DEVICE(obj
), &error_abort
);
1107 static const TypeInfo nvme_info
= {
1109 .parent
= TYPE_PCI_DEVICE
,
1110 .instance_size
= sizeof(NvmeCtrl
),
1111 .class_init
= nvme_class_init
,
1112 .instance_init
= nvme_instance_init
,
1113 .interfaces
= (InterfaceInfo
[]) {
1114 { INTERFACE_PCIE_DEVICE
},
1119 static void nvme_register_types(void)
1121 type_register_static(&nvme_info
);
1124 type_init(nvme_register_types
)