Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-2.12-pull-request...
[qemu/ar7.git] / linux-user / syscall.c
blob8671447aca1a3a4becdf2b911864034cc38da86c
1 /*
2 * Linux syscalls
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include <elf.h>
24 #include <endian.h>
25 #include <grp.h>
26 #include <sys/ipc.h>
27 #include <sys/msg.h>
28 #include <sys/wait.h>
29 #include <sys/mount.h>
30 #include <sys/file.h>
31 #include <sys/fsuid.h>
32 #include <sys/personality.h>
33 #include <sys/prctl.h>
34 #include <sys/resource.h>
35 #include <sys/swap.h>
36 #include <linux/capability.h>
37 #include <sched.h>
38 #include <sys/timex.h>
39 #include <sys/socket.h>
40 #include <sys/un.h>
41 #include <sys/uio.h>
42 #include <poll.h>
43 #include <sys/times.h>
44 #include <sys/shm.h>
45 #include <sys/sem.h>
46 #include <sys/statfs.h>
47 #include <utime.h>
48 #include <sys/sysinfo.h>
49 #include <sys/signalfd.h>
50 //#include <sys/user.h>
51 #include <netinet/ip.h>
52 #include <netinet/tcp.h>
53 #include <linux/wireless.h>
54 #include <linux/icmp.h>
55 #include <linux/icmpv6.h>
56 #include <linux/errqueue.h>
57 #include <linux/random.h>
58 #include "qemu-common.h"
59 #ifdef CONFIG_TIMERFD
60 #include <sys/timerfd.h>
61 #endif
62 #ifdef TARGET_GPROF
63 #include <sys/gmon.h>
64 #endif
65 #ifdef CONFIG_EVENTFD
66 #include <sys/eventfd.h>
67 #endif
68 #ifdef CONFIG_EPOLL
69 #include <sys/epoll.h>
70 #endif
71 #ifdef CONFIG_ATTR
72 #include "qemu/xattr.h"
73 #endif
74 #ifdef CONFIG_SENDFILE
75 #include <sys/sendfile.h>
76 #endif
78 #define termios host_termios
79 #define winsize host_winsize
80 #define termio host_termio
81 #define sgttyb host_sgttyb /* same as target */
82 #define tchars host_tchars /* same as target */
83 #define ltchars host_ltchars /* same as target */
85 #include <linux/termios.h>
86 #include <linux/unistd.h>
87 #include <linux/cdrom.h>
88 #include <linux/hdreg.h>
89 #include <linux/soundcard.h>
90 #include <linux/kd.h>
91 #include <linux/mtio.h>
92 #include <linux/fs.h>
93 #if defined(CONFIG_FIEMAP)
94 #include <linux/fiemap.h>
95 #endif
96 #include <linux/fb.h>
97 #include <linux/vt.h>
98 #include <linux/dm-ioctl.h>
99 #include <linux/reboot.h>
100 #include <linux/route.h>
101 #include <linux/filter.h>
102 #include <linux/blkpg.h>
103 #include <netpacket/packet.h>
104 #include <linux/netlink.h>
105 #ifdef CONFIG_RTNETLINK
106 #include <linux/rtnetlink.h>
107 #include <linux/if_bridge.h>
108 #endif
109 #include <linux/audit.h>
110 #include "linux_loop.h"
111 #include "uname.h"
113 #include "qemu.h"
115 #ifndef CLONE_IO
116 #define CLONE_IO 0x80000000 /* Clone io context */
117 #endif
119 /* We can't directly call the host clone syscall, because this will
120 * badly confuse libc (breaking mutexes, for example). So we must
121 * divide clone flags into:
122 * * flag combinations that look like pthread_create()
123 * * flag combinations that look like fork()
124 * * flags we can implement within QEMU itself
125 * * flags we can't support and will return an error for
127 /* For thread creation, all these flags must be present; for
128 * fork, none must be present.
130 #define CLONE_THREAD_FLAGS \
131 (CLONE_VM | CLONE_FS | CLONE_FILES | \
132 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
134 /* These flags are ignored:
135 * CLONE_DETACHED is now ignored by the kernel;
136 * CLONE_IO is just an optimisation hint to the I/O scheduler
138 #define CLONE_IGNORED_FLAGS \
139 (CLONE_DETACHED | CLONE_IO)
141 /* Flags for fork which we can implement within QEMU itself */
142 #define CLONE_OPTIONAL_FORK_FLAGS \
143 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
144 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
146 /* Flags for thread creation which we can implement within QEMU itself */
147 #define CLONE_OPTIONAL_THREAD_FLAGS \
148 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
149 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
151 #define CLONE_INVALID_FORK_FLAGS \
152 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
154 #define CLONE_INVALID_THREAD_FLAGS \
155 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
156 CLONE_IGNORED_FLAGS))
158 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
159 * have almost all been allocated. We cannot support any of
160 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
161 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
162 * The checks against the invalid thread masks above will catch these.
163 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
166 //#define DEBUG
167 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
168 * once. This exercises the codepaths for restart.
170 //#define DEBUG_ERESTARTSYS
172 //#include <linux/msdos_fs.h>
173 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
174 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
176 #undef _syscall0
177 #undef _syscall1
178 #undef _syscall2
179 #undef _syscall3
180 #undef _syscall4
181 #undef _syscall5
182 #undef _syscall6
184 #define _syscall0(type,name) \
185 static type name (void) \
187 return syscall(__NR_##name); \
190 #define _syscall1(type,name,type1,arg1) \
191 static type name (type1 arg1) \
193 return syscall(__NR_##name, arg1); \
196 #define _syscall2(type,name,type1,arg1,type2,arg2) \
197 static type name (type1 arg1,type2 arg2) \
199 return syscall(__NR_##name, arg1, arg2); \
202 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
203 static type name (type1 arg1,type2 arg2,type3 arg3) \
205 return syscall(__NR_##name, arg1, arg2, arg3); \
208 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
209 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
211 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
214 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
215 type5,arg5) \
216 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
218 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
222 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
223 type5,arg5,type6,arg6) \
224 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
225 type6 arg6) \
227 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
231 #define __NR_sys_uname __NR_uname
232 #define __NR_sys_getcwd1 __NR_getcwd
233 #define __NR_sys_getdents __NR_getdents
234 #define __NR_sys_getdents64 __NR_getdents64
235 #define __NR_sys_getpriority __NR_getpriority
236 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
237 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
238 #define __NR_sys_syslog __NR_syslog
239 #define __NR_sys_futex __NR_futex
240 #define __NR_sys_inotify_init __NR_inotify_init
241 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
242 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
244 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
245 #define __NR__llseek __NR_lseek
246 #endif
248 /* Newer kernel ports have llseek() instead of _llseek() */
249 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
250 #define TARGET_NR__llseek TARGET_NR_llseek
251 #endif
253 #ifdef __NR_gettid
254 _syscall0(int, gettid)
255 #else
256 /* This is a replacement for the host gettid() and must return a host
257 errno. */
258 static int gettid(void) {
259 return -ENOSYS;
261 #endif
262 #if defined(TARGET_NR_getdents) && defined(__NR_getdents)
263 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
264 #endif
265 #if !defined(__NR_getdents) || \
266 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
267 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
268 #endif
269 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
270 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
271 loff_t *, res, uint, wh);
272 #endif
273 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
274 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
275 siginfo_t *, uinfo)
276 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
277 #ifdef __NR_exit_group
278 _syscall1(int,exit_group,int,error_code)
279 #endif
280 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
281 _syscall1(int,set_tid_address,int *,tidptr)
282 #endif
283 #if defined(TARGET_NR_futex) && defined(__NR_futex)
284 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
285 const struct timespec *,timeout,int *,uaddr2,int,val3)
286 #endif
287 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
288 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
289 unsigned long *, user_mask_ptr);
290 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
291 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
292 unsigned long *, user_mask_ptr);
293 #define __NR_sys_getcpu __NR_getcpu
294 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
295 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
296 void *, arg);
297 _syscall2(int, capget, struct __user_cap_header_struct *, header,
298 struct __user_cap_data_struct *, data);
299 _syscall2(int, capset, struct __user_cap_header_struct *, header,
300 struct __user_cap_data_struct *, data);
301 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
302 _syscall2(int, ioprio_get, int, which, int, who)
303 #endif
304 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
305 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
306 #endif
307 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
308 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
309 #endif
311 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
312 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
313 unsigned long, idx1, unsigned long, idx2)
314 #endif
316 static bitmask_transtbl fcntl_flags_tbl[] = {
317 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
318 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
319 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
320 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
321 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
322 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
323 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
324 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
325 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
326 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
327 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
328 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
329 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
330 #if defined(O_DIRECT)
331 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
332 #endif
333 #if defined(O_NOATIME)
334 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
335 #endif
336 #if defined(O_CLOEXEC)
337 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
338 #endif
339 #if defined(O_PATH)
340 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
341 #endif
342 #if defined(O_TMPFILE)
343 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE },
344 #endif
345 /* Don't terminate the list prematurely on 64-bit host+guest. */
346 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
347 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
348 #endif
349 { 0, 0, 0, 0 }
352 enum {
353 QEMU_IFLA_BR_UNSPEC,
354 QEMU_IFLA_BR_FORWARD_DELAY,
355 QEMU_IFLA_BR_HELLO_TIME,
356 QEMU_IFLA_BR_MAX_AGE,
357 QEMU_IFLA_BR_AGEING_TIME,
358 QEMU_IFLA_BR_STP_STATE,
359 QEMU_IFLA_BR_PRIORITY,
360 QEMU_IFLA_BR_VLAN_FILTERING,
361 QEMU_IFLA_BR_VLAN_PROTOCOL,
362 QEMU_IFLA_BR_GROUP_FWD_MASK,
363 QEMU_IFLA_BR_ROOT_ID,
364 QEMU_IFLA_BR_BRIDGE_ID,
365 QEMU_IFLA_BR_ROOT_PORT,
366 QEMU_IFLA_BR_ROOT_PATH_COST,
367 QEMU_IFLA_BR_TOPOLOGY_CHANGE,
368 QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED,
369 QEMU_IFLA_BR_HELLO_TIMER,
370 QEMU_IFLA_BR_TCN_TIMER,
371 QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER,
372 QEMU_IFLA_BR_GC_TIMER,
373 QEMU_IFLA_BR_GROUP_ADDR,
374 QEMU_IFLA_BR_FDB_FLUSH,
375 QEMU_IFLA_BR_MCAST_ROUTER,
376 QEMU_IFLA_BR_MCAST_SNOOPING,
377 QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR,
378 QEMU_IFLA_BR_MCAST_QUERIER,
379 QEMU_IFLA_BR_MCAST_HASH_ELASTICITY,
380 QEMU_IFLA_BR_MCAST_HASH_MAX,
381 QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT,
382 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT,
383 QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL,
384 QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL,
385 QEMU_IFLA_BR_MCAST_QUERIER_INTVL,
386 QEMU_IFLA_BR_MCAST_QUERY_INTVL,
387 QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL,
388 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL,
389 QEMU_IFLA_BR_NF_CALL_IPTABLES,
390 QEMU_IFLA_BR_NF_CALL_IP6TABLES,
391 QEMU_IFLA_BR_NF_CALL_ARPTABLES,
392 QEMU_IFLA_BR_VLAN_DEFAULT_PVID,
393 QEMU_IFLA_BR_PAD,
394 QEMU_IFLA_BR_VLAN_STATS_ENABLED,
395 QEMU_IFLA_BR_MCAST_STATS_ENABLED,
396 QEMU___IFLA_BR_MAX,
399 enum {
400 QEMU_IFLA_UNSPEC,
401 QEMU_IFLA_ADDRESS,
402 QEMU_IFLA_BROADCAST,
403 QEMU_IFLA_IFNAME,
404 QEMU_IFLA_MTU,
405 QEMU_IFLA_LINK,
406 QEMU_IFLA_QDISC,
407 QEMU_IFLA_STATS,
408 QEMU_IFLA_COST,
409 QEMU_IFLA_PRIORITY,
410 QEMU_IFLA_MASTER,
411 QEMU_IFLA_WIRELESS,
412 QEMU_IFLA_PROTINFO,
413 QEMU_IFLA_TXQLEN,
414 QEMU_IFLA_MAP,
415 QEMU_IFLA_WEIGHT,
416 QEMU_IFLA_OPERSTATE,
417 QEMU_IFLA_LINKMODE,
418 QEMU_IFLA_LINKINFO,
419 QEMU_IFLA_NET_NS_PID,
420 QEMU_IFLA_IFALIAS,
421 QEMU_IFLA_NUM_VF,
422 QEMU_IFLA_VFINFO_LIST,
423 QEMU_IFLA_STATS64,
424 QEMU_IFLA_VF_PORTS,
425 QEMU_IFLA_PORT_SELF,
426 QEMU_IFLA_AF_SPEC,
427 QEMU_IFLA_GROUP,
428 QEMU_IFLA_NET_NS_FD,
429 QEMU_IFLA_EXT_MASK,
430 QEMU_IFLA_PROMISCUITY,
431 QEMU_IFLA_NUM_TX_QUEUES,
432 QEMU_IFLA_NUM_RX_QUEUES,
433 QEMU_IFLA_CARRIER,
434 QEMU_IFLA_PHYS_PORT_ID,
435 QEMU_IFLA_CARRIER_CHANGES,
436 QEMU_IFLA_PHYS_SWITCH_ID,
437 QEMU_IFLA_LINK_NETNSID,
438 QEMU_IFLA_PHYS_PORT_NAME,
439 QEMU_IFLA_PROTO_DOWN,
440 QEMU_IFLA_GSO_MAX_SEGS,
441 QEMU_IFLA_GSO_MAX_SIZE,
442 QEMU_IFLA_PAD,
443 QEMU_IFLA_XDP,
444 QEMU___IFLA_MAX
447 enum {
448 QEMU_IFLA_BRPORT_UNSPEC,
449 QEMU_IFLA_BRPORT_STATE,
450 QEMU_IFLA_BRPORT_PRIORITY,
451 QEMU_IFLA_BRPORT_COST,
452 QEMU_IFLA_BRPORT_MODE,
453 QEMU_IFLA_BRPORT_GUARD,
454 QEMU_IFLA_BRPORT_PROTECT,
455 QEMU_IFLA_BRPORT_FAST_LEAVE,
456 QEMU_IFLA_BRPORT_LEARNING,
457 QEMU_IFLA_BRPORT_UNICAST_FLOOD,
458 QEMU_IFLA_BRPORT_PROXYARP,
459 QEMU_IFLA_BRPORT_LEARNING_SYNC,
460 QEMU_IFLA_BRPORT_PROXYARP_WIFI,
461 QEMU_IFLA_BRPORT_ROOT_ID,
462 QEMU_IFLA_BRPORT_BRIDGE_ID,
463 QEMU_IFLA_BRPORT_DESIGNATED_PORT,
464 QEMU_IFLA_BRPORT_DESIGNATED_COST,
465 QEMU_IFLA_BRPORT_ID,
466 QEMU_IFLA_BRPORT_NO,
467 QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK,
468 QEMU_IFLA_BRPORT_CONFIG_PENDING,
469 QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER,
470 QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER,
471 QEMU_IFLA_BRPORT_HOLD_TIMER,
472 QEMU_IFLA_BRPORT_FLUSH,
473 QEMU_IFLA_BRPORT_MULTICAST_ROUTER,
474 QEMU_IFLA_BRPORT_PAD,
475 QEMU___IFLA_BRPORT_MAX
478 enum {
479 QEMU_IFLA_INFO_UNSPEC,
480 QEMU_IFLA_INFO_KIND,
481 QEMU_IFLA_INFO_DATA,
482 QEMU_IFLA_INFO_XSTATS,
483 QEMU_IFLA_INFO_SLAVE_KIND,
484 QEMU_IFLA_INFO_SLAVE_DATA,
485 QEMU___IFLA_INFO_MAX,
488 enum {
489 QEMU_IFLA_INET_UNSPEC,
490 QEMU_IFLA_INET_CONF,
491 QEMU___IFLA_INET_MAX,
494 enum {
495 QEMU_IFLA_INET6_UNSPEC,
496 QEMU_IFLA_INET6_FLAGS,
497 QEMU_IFLA_INET6_CONF,
498 QEMU_IFLA_INET6_STATS,
499 QEMU_IFLA_INET6_MCAST,
500 QEMU_IFLA_INET6_CACHEINFO,
501 QEMU_IFLA_INET6_ICMP6STATS,
502 QEMU_IFLA_INET6_TOKEN,
503 QEMU_IFLA_INET6_ADDR_GEN_MODE,
504 QEMU___IFLA_INET6_MAX
507 typedef abi_long (*TargetFdDataFunc)(void *, size_t);
508 typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t);
509 typedef struct TargetFdTrans {
510 TargetFdDataFunc host_to_target_data;
511 TargetFdDataFunc target_to_host_data;
512 TargetFdAddrFunc target_to_host_addr;
513 } TargetFdTrans;
515 static TargetFdTrans **target_fd_trans;
517 static unsigned int target_fd_max;
519 static TargetFdDataFunc fd_trans_target_to_host_data(int fd)
521 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
522 return target_fd_trans[fd]->target_to_host_data;
524 return NULL;
527 static TargetFdDataFunc fd_trans_host_to_target_data(int fd)
529 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
530 return target_fd_trans[fd]->host_to_target_data;
532 return NULL;
535 static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd)
537 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
538 return target_fd_trans[fd]->target_to_host_addr;
540 return NULL;
543 static void fd_trans_register(int fd, TargetFdTrans *trans)
545 unsigned int oldmax;
547 if (fd >= target_fd_max) {
548 oldmax = target_fd_max;
549 target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */
550 target_fd_trans = g_renew(TargetFdTrans *,
551 target_fd_trans, target_fd_max);
552 memset((void *)(target_fd_trans + oldmax), 0,
553 (target_fd_max - oldmax) * sizeof(TargetFdTrans *));
555 target_fd_trans[fd] = trans;
558 static void fd_trans_unregister(int fd)
560 if (fd >= 0 && fd < target_fd_max) {
561 target_fd_trans[fd] = NULL;
565 static void fd_trans_dup(int oldfd, int newfd)
567 fd_trans_unregister(newfd);
568 if (oldfd < target_fd_max && target_fd_trans[oldfd]) {
569 fd_trans_register(newfd, target_fd_trans[oldfd]);
573 static int sys_getcwd1(char *buf, size_t size)
575 if (getcwd(buf, size) == NULL) {
576 /* getcwd() sets errno */
577 return (-1);
579 return strlen(buf)+1;
582 #ifdef TARGET_NR_utimensat
583 #if defined(__NR_utimensat)
584 #define __NR_sys_utimensat __NR_utimensat
585 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
586 const struct timespec *,tsp,int,flags)
587 #else
588 static int sys_utimensat(int dirfd, const char *pathname,
589 const struct timespec times[2], int flags)
591 errno = ENOSYS;
592 return -1;
594 #endif
595 #endif /* TARGET_NR_utimensat */
597 #ifdef TARGET_NR_renameat2
598 #if defined(__NR_renameat2)
599 #define __NR_sys_renameat2 __NR_renameat2
600 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
601 const char *, new, unsigned int, flags)
602 #else
603 static int sys_renameat2(int oldfd, const char *old,
604 int newfd, const char *new, int flags)
606 if (flags == 0) {
607 return renameat(oldfd, old, newfd, new);
609 errno = ENOSYS;
610 return -1;
612 #endif
613 #endif /* TARGET_NR_renameat2 */
615 #ifdef CONFIG_INOTIFY
616 #include <sys/inotify.h>
618 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
619 static int sys_inotify_init(void)
621 return (inotify_init());
623 #endif
624 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
625 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
627 return (inotify_add_watch(fd, pathname, mask));
629 #endif
630 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
631 static int sys_inotify_rm_watch(int fd, int32_t wd)
633 return (inotify_rm_watch(fd, wd));
635 #endif
636 #ifdef CONFIG_INOTIFY1
637 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
638 static int sys_inotify_init1(int flags)
640 return (inotify_init1(flags));
642 #endif
643 #endif
644 #else
645 /* Userspace can usually survive runtime without inotify */
646 #undef TARGET_NR_inotify_init
647 #undef TARGET_NR_inotify_init1
648 #undef TARGET_NR_inotify_add_watch
649 #undef TARGET_NR_inotify_rm_watch
650 #endif /* CONFIG_INOTIFY */
652 #if defined(TARGET_NR_prlimit64)
653 #ifndef __NR_prlimit64
654 # define __NR_prlimit64 -1
655 #endif
656 #define __NR_sys_prlimit64 __NR_prlimit64
657 /* The glibc rlimit structure may not be that used by the underlying syscall */
658 struct host_rlimit64 {
659 uint64_t rlim_cur;
660 uint64_t rlim_max;
662 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
663 const struct host_rlimit64 *, new_limit,
664 struct host_rlimit64 *, old_limit)
665 #endif
668 #if defined(TARGET_NR_timer_create)
669 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
670 static timer_t g_posix_timers[32] = { 0, } ;
672 static inline int next_free_host_timer(void)
674 int k ;
675 /* FIXME: Does finding the next free slot require a lock? */
676 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
677 if (g_posix_timers[k] == 0) {
678 g_posix_timers[k] = (timer_t) 1;
679 return k;
682 return -1;
684 #endif
686 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
687 #ifdef TARGET_ARM
688 static inline int regpairs_aligned(void *cpu_env, int num)
690 return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
692 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
693 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
694 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
695 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
696 * of registers which translates to the same as ARM/MIPS, because we start with
697 * r3 as arg1 */
698 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
699 #elif defined(TARGET_SH4)
700 /* SH4 doesn't align register pairs, except for p{read,write}64 */
701 static inline int regpairs_aligned(void *cpu_env, int num)
703 switch (num) {
704 case TARGET_NR_pread64:
705 case TARGET_NR_pwrite64:
706 return 1;
708 default:
709 return 0;
712 #elif defined(TARGET_XTENSA)
713 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
714 #else
715 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
716 #endif
718 #define ERRNO_TABLE_SIZE 1200
720 /* target_to_host_errno_table[] is initialized from
721 * host_to_target_errno_table[] in syscall_init(). */
722 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
726 * This list is the union of errno values overridden in asm-<arch>/errno.h
727 * minus the errnos that are not actually generic to all archs.
729 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
730 [EAGAIN] = TARGET_EAGAIN,
731 [EIDRM] = TARGET_EIDRM,
732 [ECHRNG] = TARGET_ECHRNG,
733 [EL2NSYNC] = TARGET_EL2NSYNC,
734 [EL3HLT] = TARGET_EL3HLT,
735 [EL3RST] = TARGET_EL3RST,
736 [ELNRNG] = TARGET_ELNRNG,
737 [EUNATCH] = TARGET_EUNATCH,
738 [ENOCSI] = TARGET_ENOCSI,
739 [EL2HLT] = TARGET_EL2HLT,
740 [EDEADLK] = TARGET_EDEADLK,
741 [ENOLCK] = TARGET_ENOLCK,
742 [EBADE] = TARGET_EBADE,
743 [EBADR] = TARGET_EBADR,
744 [EXFULL] = TARGET_EXFULL,
745 [ENOANO] = TARGET_ENOANO,
746 [EBADRQC] = TARGET_EBADRQC,
747 [EBADSLT] = TARGET_EBADSLT,
748 [EBFONT] = TARGET_EBFONT,
749 [ENOSTR] = TARGET_ENOSTR,
750 [ENODATA] = TARGET_ENODATA,
751 [ETIME] = TARGET_ETIME,
752 [ENOSR] = TARGET_ENOSR,
753 [ENONET] = TARGET_ENONET,
754 [ENOPKG] = TARGET_ENOPKG,
755 [EREMOTE] = TARGET_EREMOTE,
756 [ENOLINK] = TARGET_ENOLINK,
757 [EADV] = TARGET_EADV,
758 [ESRMNT] = TARGET_ESRMNT,
759 [ECOMM] = TARGET_ECOMM,
760 [EPROTO] = TARGET_EPROTO,
761 [EDOTDOT] = TARGET_EDOTDOT,
762 [EMULTIHOP] = TARGET_EMULTIHOP,
763 [EBADMSG] = TARGET_EBADMSG,
764 [ENAMETOOLONG] = TARGET_ENAMETOOLONG,
765 [EOVERFLOW] = TARGET_EOVERFLOW,
766 [ENOTUNIQ] = TARGET_ENOTUNIQ,
767 [EBADFD] = TARGET_EBADFD,
768 [EREMCHG] = TARGET_EREMCHG,
769 [ELIBACC] = TARGET_ELIBACC,
770 [ELIBBAD] = TARGET_ELIBBAD,
771 [ELIBSCN] = TARGET_ELIBSCN,
772 [ELIBMAX] = TARGET_ELIBMAX,
773 [ELIBEXEC] = TARGET_ELIBEXEC,
774 [EILSEQ] = TARGET_EILSEQ,
775 [ENOSYS] = TARGET_ENOSYS,
776 [ELOOP] = TARGET_ELOOP,
777 [ERESTART] = TARGET_ERESTART,
778 [ESTRPIPE] = TARGET_ESTRPIPE,
779 [ENOTEMPTY] = TARGET_ENOTEMPTY,
780 [EUSERS] = TARGET_EUSERS,
781 [ENOTSOCK] = TARGET_ENOTSOCK,
782 [EDESTADDRREQ] = TARGET_EDESTADDRREQ,
783 [EMSGSIZE] = TARGET_EMSGSIZE,
784 [EPROTOTYPE] = TARGET_EPROTOTYPE,
785 [ENOPROTOOPT] = TARGET_ENOPROTOOPT,
786 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT,
787 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT,
788 [EOPNOTSUPP] = TARGET_EOPNOTSUPP,
789 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT,
790 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT,
791 [EADDRINUSE] = TARGET_EADDRINUSE,
792 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL,
793 [ENETDOWN] = TARGET_ENETDOWN,
794 [ENETUNREACH] = TARGET_ENETUNREACH,
795 [ENETRESET] = TARGET_ENETRESET,
796 [ECONNABORTED] = TARGET_ECONNABORTED,
797 [ECONNRESET] = TARGET_ECONNRESET,
798 [ENOBUFS] = TARGET_ENOBUFS,
799 [EISCONN] = TARGET_EISCONN,
800 [ENOTCONN] = TARGET_ENOTCONN,
801 [EUCLEAN] = TARGET_EUCLEAN,
802 [ENOTNAM] = TARGET_ENOTNAM,
803 [ENAVAIL] = TARGET_ENAVAIL,
804 [EISNAM] = TARGET_EISNAM,
805 [EREMOTEIO] = TARGET_EREMOTEIO,
806 [EDQUOT] = TARGET_EDQUOT,
807 [ESHUTDOWN] = TARGET_ESHUTDOWN,
808 [ETOOMANYREFS] = TARGET_ETOOMANYREFS,
809 [ETIMEDOUT] = TARGET_ETIMEDOUT,
810 [ECONNREFUSED] = TARGET_ECONNREFUSED,
811 [EHOSTDOWN] = TARGET_EHOSTDOWN,
812 [EHOSTUNREACH] = TARGET_EHOSTUNREACH,
813 [EALREADY] = TARGET_EALREADY,
814 [EINPROGRESS] = TARGET_EINPROGRESS,
815 [ESTALE] = TARGET_ESTALE,
816 [ECANCELED] = TARGET_ECANCELED,
817 [ENOMEDIUM] = TARGET_ENOMEDIUM,
818 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE,
819 #ifdef ENOKEY
820 [ENOKEY] = TARGET_ENOKEY,
821 #endif
822 #ifdef EKEYEXPIRED
823 [EKEYEXPIRED] = TARGET_EKEYEXPIRED,
824 #endif
825 #ifdef EKEYREVOKED
826 [EKEYREVOKED] = TARGET_EKEYREVOKED,
827 #endif
828 #ifdef EKEYREJECTED
829 [EKEYREJECTED] = TARGET_EKEYREJECTED,
830 #endif
831 #ifdef EOWNERDEAD
832 [EOWNERDEAD] = TARGET_EOWNERDEAD,
833 #endif
834 #ifdef ENOTRECOVERABLE
835 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE,
836 #endif
837 #ifdef ENOMSG
838 [ENOMSG] = TARGET_ENOMSG,
839 #endif
840 #ifdef ERKFILL
841 [ERFKILL] = TARGET_ERFKILL,
842 #endif
843 #ifdef EHWPOISON
844 [EHWPOISON] = TARGET_EHWPOISON,
845 #endif
848 static inline int host_to_target_errno(int err)
850 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
851 host_to_target_errno_table[err]) {
852 return host_to_target_errno_table[err];
854 return err;
857 static inline int target_to_host_errno(int err)
859 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
860 target_to_host_errno_table[err]) {
861 return target_to_host_errno_table[err];
863 return err;
866 static inline abi_long get_errno(abi_long ret)
868 if (ret == -1)
869 return -host_to_target_errno(errno);
870 else
871 return ret;
874 static inline int is_error(abi_long ret)
876 return (abi_ulong)ret >= (abi_ulong)(-4096);
879 const char *target_strerror(int err)
881 if (err == TARGET_ERESTARTSYS) {
882 return "To be restarted";
884 if (err == TARGET_QEMU_ESIGRETURN) {
885 return "Successful exit from sigreturn";
888 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
889 return NULL;
891 return strerror(target_to_host_errno(err));
894 #define safe_syscall0(type, name) \
895 static type safe_##name(void) \
897 return safe_syscall(__NR_##name); \
900 #define safe_syscall1(type, name, type1, arg1) \
901 static type safe_##name(type1 arg1) \
903 return safe_syscall(__NR_##name, arg1); \
906 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
907 static type safe_##name(type1 arg1, type2 arg2) \
909 return safe_syscall(__NR_##name, arg1, arg2); \
912 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
913 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
915 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
918 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
919 type4, arg4) \
920 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
922 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
925 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
926 type4, arg4, type5, arg5) \
927 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
928 type5 arg5) \
930 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
933 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
934 type4, arg4, type5, arg5, type6, arg6) \
935 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
936 type5 arg5, type6 arg6) \
938 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
941 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
942 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
943 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
944 int, flags, mode_t, mode)
945 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
946 struct rusage *, rusage)
947 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
948 int, options, struct rusage *, rusage)
949 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
950 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
951 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
952 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
953 struct timespec *, tsp, const sigset_t *, sigmask,
954 size_t, sigsetsize)
955 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
956 int, maxevents, int, timeout, const sigset_t *, sigmask,
957 size_t, sigsetsize)
958 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
959 const struct timespec *,timeout,int *,uaddr2,int,val3)
960 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
961 safe_syscall2(int, kill, pid_t, pid, int, sig)
962 safe_syscall2(int, tkill, int, tid, int, sig)
963 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
964 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
965 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
966 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
967 unsigned long, pos_l, unsigned long, pos_h)
968 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
969 unsigned long, pos_l, unsigned long, pos_h)
970 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
971 socklen_t, addrlen)
972 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
973 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
974 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
975 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
976 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
977 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
978 safe_syscall2(int, flock, int, fd, int, operation)
979 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
980 const struct timespec *, uts, size_t, sigsetsize)
981 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
982 int, flags)
983 safe_syscall2(int, nanosleep, const struct timespec *, req,
984 struct timespec *, rem)
985 #ifdef TARGET_NR_clock_nanosleep
986 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
987 const struct timespec *, req, struct timespec *, rem)
988 #endif
989 #ifdef __NR_msgsnd
990 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
991 int, flags)
992 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
993 long, msgtype, int, flags)
994 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
995 unsigned, nsops, const struct timespec *, timeout)
996 #else
997 /* This host kernel architecture uses a single ipc syscall; fake up
998 * wrappers for the sub-operations to hide this implementation detail.
999 * Annoyingly we can't include linux/ipc.h to get the constant definitions
1000 * for the call parameter because some structs in there conflict with the
1001 * sys/ipc.h ones. So we just define them here, and rely on them being
1002 * the same for all host architectures.
1004 #define Q_SEMTIMEDOP 4
1005 #define Q_MSGSND 11
1006 #define Q_MSGRCV 12
1007 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP))
1009 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
1010 void *, ptr, long, fifth)
1011 static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags)
1013 return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0);
1015 static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags)
1017 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type);
1019 static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops,
1020 const struct timespec *timeout)
1022 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops,
1023 (long)timeout);
1025 #endif
1026 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1027 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
1028 size_t, len, unsigned, prio, const struct timespec *, timeout)
1029 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
1030 size_t, len, unsigned *, prio, const struct timespec *, timeout)
1031 #endif
1032 /* We do ioctl like this rather than via safe_syscall3 to preserve the
1033 * "third argument might be integer or pointer or not present" behaviour of
1034 * the libc function.
1036 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
1037 /* Similarly for fcntl. Note that callers must always:
1038 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
1039 * use the flock64 struct rather than unsuffixed flock
1040 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
1042 #ifdef __NR_fcntl64
1043 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
1044 #else
1045 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
1046 #endif
1048 static inline int host_to_target_sock_type(int host_type)
1050 int target_type;
1052 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
1053 case SOCK_DGRAM:
1054 target_type = TARGET_SOCK_DGRAM;
1055 break;
1056 case SOCK_STREAM:
1057 target_type = TARGET_SOCK_STREAM;
1058 break;
1059 default:
1060 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
1061 break;
1064 #if defined(SOCK_CLOEXEC)
1065 if (host_type & SOCK_CLOEXEC) {
1066 target_type |= TARGET_SOCK_CLOEXEC;
1068 #endif
1070 #if defined(SOCK_NONBLOCK)
1071 if (host_type & SOCK_NONBLOCK) {
1072 target_type |= TARGET_SOCK_NONBLOCK;
1074 #endif
1076 return target_type;
1079 static abi_ulong target_brk;
1080 static abi_ulong target_original_brk;
1081 static abi_ulong brk_page;
1083 void target_set_brk(abi_ulong new_brk)
1085 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
1086 brk_page = HOST_PAGE_ALIGN(target_brk);
1089 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
1090 #define DEBUGF_BRK(message, args...)
1092 /* do_brk() must return target values and target errnos. */
1093 abi_long do_brk(abi_ulong new_brk)
1095 abi_long mapped_addr;
1096 abi_ulong new_alloc_size;
1098 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
1100 if (!new_brk) {
1101 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
1102 return target_brk;
1104 if (new_brk < target_original_brk) {
1105 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
1106 target_brk);
1107 return target_brk;
1110 /* If the new brk is less than the highest page reserved to the
1111 * target heap allocation, set it and we're almost done... */
1112 if (new_brk <= brk_page) {
1113 /* Heap contents are initialized to zero, as for anonymous
1114 * mapped pages. */
1115 if (new_brk > target_brk) {
1116 memset(g2h(target_brk), 0, new_brk - target_brk);
1118 target_brk = new_brk;
1119 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
1120 return target_brk;
1123 /* We need to allocate more memory after the brk... Note that
1124 * we don't use MAP_FIXED because that will map over the top of
1125 * any existing mapping (like the one with the host libc or qemu
1126 * itself); instead we treat "mapped but at wrong address" as
1127 * a failure and unmap again.
1129 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
1130 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
1131 PROT_READ|PROT_WRITE,
1132 MAP_ANON|MAP_PRIVATE, 0, 0));
1134 if (mapped_addr == brk_page) {
1135 /* Heap contents are initialized to zero, as for anonymous
1136 * mapped pages. Technically the new pages are already
1137 * initialized to zero since they *are* anonymous mapped
1138 * pages, however we have to take care with the contents that
1139 * come from the remaining part of the previous page: it may
1140 * contains garbage data due to a previous heap usage (grown
1141 * then shrunken). */
1142 memset(g2h(target_brk), 0, brk_page - target_brk);
1144 target_brk = new_brk;
1145 brk_page = HOST_PAGE_ALIGN(target_brk);
1146 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
1147 target_brk);
1148 return target_brk;
1149 } else if (mapped_addr != -1) {
1150 /* Mapped but at wrong address, meaning there wasn't actually
1151 * enough space for this brk.
1153 target_munmap(mapped_addr, new_alloc_size);
1154 mapped_addr = -1;
1155 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
1157 else {
1158 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
1161 #if defined(TARGET_ALPHA)
1162 /* We (partially) emulate OSF/1 on Alpha, which requires we
1163 return a proper errno, not an unchanged brk value. */
1164 return -TARGET_ENOMEM;
1165 #endif
1166 /* For everything else, return the previous break. */
1167 return target_brk;
1170 static inline abi_long copy_from_user_fdset(fd_set *fds,
1171 abi_ulong target_fds_addr,
1172 int n)
1174 int i, nw, j, k;
1175 abi_ulong b, *target_fds;
1177 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1178 if (!(target_fds = lock_user(VERIFY_READ,
1179 target_fds_addr,
1180 sizeof(abi_ulong) * nw,
1181 1)))
1182 return -TARGET_EFAULT;
1184 FD_ZERO(fds);
1185 k = 0;
1186 for (i = 0; i < nw; i++) {
1187 /* grab the abi_ulong */
1188 __get_user(b, &target_fds[i]);
1189 for (j = 0; j < TARGET_ABI_BITS; j++) {
1190 /* check the bit inside the abi_ulong */
1191 if ((b >> j) & 1)
1192 FD_SET(k, fds);
1193 k++;
1197 unlock_user(target_fds, target_fds_addr, 0);
1199 return 0;
1202 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
1203 abi_ulong target_fds_addr,
1204 int n)
1206 if (target_fds_addr) {
1207 if (copy_from_user_fdset(fds, target_fds_addr, n))
1208 return -TARGET_EFAULT;
1209 *fds_ptr = fds;
1210 } else {
1211 *fds_ptr = NULL;
1213 return 0;
1216 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
1217 const fd_set *fds,
1218 int n)
1220 int i, nw, j, k;
1221 abi_long v;
1222 abi_ulong *target_fds;
1224 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1225 if (!(target_fds = lock_user(VERIFY_WRITE,
1226 target_fds_addr,
1227 sizeof(abi_ulong) * nw,
1228 0)))
1229 return -TARGET_EFAULT;
1231 k = 0;
1232 for (i = 0; i < nw; i++) {
1233 v = 0;
1234 for (j = 0; j < TARGET_ABI_BITS; j++) {
1235 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
1236 k++;
1238 __put_user(v, &target_fds[i]);
1241 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
1243 return 0;
1246 #if defined(__alpha__)
1247 #define HOST_HZ 1024
1248 #else
1249 #define HOST_HZ 100
1250 #endif
1252 static inline abi_long host_to_target_clock_t(long ticks)
1254 #if HOST_HZ == TARGET_HZ
1255 return ticks;
1256 #else
1257 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
1258 #endif
1261 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
1262 const struct rusage *rusage)
1264 struct target_rusage *target_rusage;
1266 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
1267 return -TARGET_EFAULT;
1268 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1269 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1270 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1271 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1272 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1273 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1274 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1275 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1276 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1277 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1278 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1279 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1280 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1281 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1282 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1283 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1284 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1285 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1286 unlock_user_struct(target_rusage, target_addr, 1);
1288 return 0;
1291 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1293 abi_ulong target_rlim_swap;
1294 rlim_t result;
1296 target_rlim_swap = tswapal(target_rlim);
1297 if (target_rlim_swap == TARGET_RLIM_INFINITY)
1298 return RLIM_INFINITY;
1300 result = target_rlim_swap;
1301 if (target_rlim_swap != (rlim_t)result)
1302 return RLIM_INFINITY;
1304 return result;
1307 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1309 abi_ulong target_rlim_swap;
1310 abi_ulong result;
1312 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1313 target_rlim_swap = TARGET_RLIM_INFINITY;
1314 else
1315 target_rlim_swap = rlim;
1316 result = tswapal(target_rlim_swap);
1318 return result;
1321 static inline int target_to_host_resource(int code)
1323 switch (code) {
1324 case TARGET_RLIMIT_AS:
1325 return RLIMIT_AS;
1326 case TARGET_RLIMIT_CORE:
1327 return RLIMIT_CORE;
1328 case TARGET_RLIMIT_CPU:
1329 return RLIMIT_CPU;
1330 case TARGET_RLIMIT_DATA:
1331 return RLIMIT_DATA;
1332 case TARGET_RLIMIT_FSIZE:
1333 return RLIMIT_FSIZE;
1334 case TARGET_RLIMIT_LOCKS:
1335 return RLIMIT_LOCKS;
1336 case TARGET_RLIMIT_MEMLOCK:
1337 return RLIMIT_MEMLOCK;
1338 case TARGET_RLIMIT_MSGQUEUE:
1339 return RLIMIT_MSGQUEUE;
1340 case TARGET_RLIMIT_NICE:
1341 return RLIMIT_NICE;
1342 case TARGET_RLIMIT_NOFILE:
1343 return RLIMIT_NOFILE;
1344 case TARGET_RLIMIT_NPROC:
1345 return RLIMIT_NPROC;
1346 case TARGET_RLIMIT_RSS:
1347 return RLIMIT_RSS;
1348 case TARGET_RLIMIT_RTPRIO:
1349 return RLIMIT_RTPRIO;
1350 case TARGET_RLIMIT_SIGPENDING:
1351 return RLIMIT_SIGPENDING;
1352 case TARGET_RLIMIT_STACK:
1353 return RLIMIT_STACK;
1354 default:
1355 return code;
1359 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1360 abi_ulong target_tv_addr)
1362 struct target_timeval *target_tv;
1364 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1))
1365 return -TARGET_EFAULT;
1367 __get_user(tv->tv_sec, &target_tv->tv_sec);
1368 __get_user(tv->tv_usec, &target_tv->tv_usec);
1370 unlock_user_struct(target_tv, target_tv_addr, 0);
1372 return 0;
1375 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1376 const struct timeval *tv)
1378 struct target_timeval *target_tv;
1380 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0))
1381 return -TARGET_EFAULT;
1383 __put_user(tv->tv_sec, &target_tv->tv_sec);
1384 __put_user(tv->tv_usec, &target_tv->tv_usec);
1386 unlock_user_struct(target_tv, target_tv_addr, 1);
1388 return 0;
1391 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1392 abi_ulong target_tz_addr)
1394 struct target_timezone *target_tz;
1396 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1397 return -TARGET_EFAULT;
1400 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1401 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1403 unlock_user_struct(target_tz, target_tz_addr, 0);
1405 return 0;
1408 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1409 #include <mqueue.h>
1411 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1412 abi_ulong target_mq_attr_addr)
1414 struct target_mq_attr *target_mq_attr;
1416 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1417 target_mq_attr_addr, 1))
1418 return -TARGET_EFAULT;
1420 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1421 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1422 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1423 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1425 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1427 return 0;
1430 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1431 const struct mq_attr *attr)
1433 struct target_mq_attr *target_mq_attr;
1435 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1436 target_mq_attr_addr, 0))
1437 return -TARGET_EFAULT;
1439 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1440 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1441 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1442 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1444 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1446 return 0;
1448 #endif
1450 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1451 /* do_select() must return target values and target errnos. */
1452 static abi_long do_select(int n,
1453 abi_ulong rfd_addr, abi_ulong wfd_addr,
1454 abi_ulong efd_addr, abi_ulong target_tv_addr)
1456 fd_set rfds, wfds, efds;
1457 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1458 struct timeval tv;
1459 struct timespec ts, *ts_ptr;
1460 abi_long ret;
1462 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1463 if (ret) {
1464 return ret;
1466 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1467 if (ret) {
1468 return ret;
1470 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1471 if (ret) {
1472 return ret;
1475 if (target_tv_addr) {
1476 if (copy_from_user_timeval(&tv, target_tv_addr))
1477 return -TARGET_EFAULT;
1478 ts.tv_sec = tv.tv_sec;
1479 ts.tv_nsec = tv.tv_usec * 1000;
1480 ts_ptr = &ts;
1481 } else {
1482 ts_ptr = NULL;
1485 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1486 ts_ptr, NULL));
1488 if (!is_error(ret)) {
1489 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1490 return -TARGET_EFAULT;
1491 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1492 return -TARGET_EFAULT;
1493 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1494 return -TARGET_EFAULT;
1496 if (target_tv_addr) {
1497 tv.tv_sec = ts.tv_sec;
1498 tv.tv_usec = ts.tv_nsec / 1000;
1499 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1500 return -TARGET_EFAULT;
1505 return ret;
1508 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1509 static abi_long do_old_select(abi_ulong arg1)
1511 struct target_sel_arg_struct *sel;
1512 abi_ulong inp, outp, exp, tvp;
1513 long nsel;
1515 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1516 return -TARGET_EFAULT;
1519 nsel = tswapal(sel->n);
1520 inp = tswapal(sel->inp);
1521 outp = tswapal(sel->outp);
1522 exp = tswapal(sel->exp);
1523 tvp = tswapal(sel->tvp);
1525 unlock_user_struct(sel, arg1, 0);
1527 return do_select(nsel, inp, outp, exp, tvp);
1529 #endif
1530 #endif
1532 static abi_long do_pipe2(int host_pipe[], int flags)
1534 #ifdef CONFIG_PIPE2
1535 return pipe2(host_pipe, flags);
1536 #else
1537 return -ENOSYS;
1538 #endif
1541 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1542 int flags, int is_pipe2)
1544 int host_pipe[2];
1545 abi_long ret;
1546 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1548 if (is_error(ret))
1549 return get_errno(ret);
1551 /* Several targets have special calling conventions for the original
1552 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1553 if (!is_pipe2) {
1554 #if defined(TARGET_ALPHA)
1555 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1556 return host_pipe[0];
1557 #elif defined(TARGET_MIPS)
1558 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1559 return host_pipe[0];
1560 #elif defined(TARGET_SH4)
1561 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1562 return host_pipe[0];
1563 #elif defined(TARGET_SPARC)
1564 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1565 return host_pipe[0];
1566 #endif
1569 if (put_user_s32(host_pipe[0], pipedes)
1570 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1571 return -TARGET_EFAULT;
1572 return get_errno(ret);
1575 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1576 abi_ulong target_addr,
1577 socklen_t len)
1579 struct target_ip_mreqn *target_smreqn;
1581 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1582 if (!target_smreqn)
1583 return -TARGET_EFAULT;
1584 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1585 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1586 if (len == sizeof(struct target_ip_mreqn))
1587 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1588 unlock_user(target_smreqn, target_addr, 0);
1590 return 0;
1593 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1594 abi_ulong target_addr,
1595 socklen_t len)
1597 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1598 sa_family_t sa_family;
1599 struct target_sockaddr *target_saddr;
1601 if (fd_trans_target_to_host_addr(fd)) {
1602 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1605 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1606 if (!target_saddr)
1607 return -TARGET_EFAULT;
1609 sa_family = tswap16(target_saddr->sa_family);
1611 /* Oops. The caller might send a incomplete sun_path; sun_path
1612 * must be terminated by \0 (see the manual page), but
1613 * unfortunately it is quite common to specify sockaddr_un
1614 * length as "strlen(x->sun_path)" while it should be
1615 * "strlen(...) + 1". We'll fix that here if needed.
1616 * Linux kernel has a similar feature.
1619 if (sa_family == AF_UNIX) {
1620 if (len < unix_maxlen && len > 0) {
1621 char *cp = (char*)target_saddr;
1623 if ( cp[len-1] && !cp[len] )
1624 len++;
1626 if (len > unix_maxlen)
1627 len = unix_maxlen;
1630 memcpy(addr, target_saddr, len);
1631 addr->sa_family = sa_family;
1632 if (sa_family == AF_NETLINK) {
1633 struct sockaddr_nl *nladdr;
1635 nladdr = (struct sockaddr_nl *)addr;
1636 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1637 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1638 } else if (sa_family == AF_PACKET) {
1639 struct target_sockaddr_ll *lladdr;
1641 lladdr = (struct target_sockaddr_ll *)addr;
1642 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1643 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1645 unlock_user(target_saddr, target_addr, 0);
1647 return 0;
1650 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1651 struct sockaddr *addr,
1652 socklen_t len)
1654 struct target_sockaddr *target_saddr;
1656 if (len == 0) {
1657 return 0;
1659 assert(addr);
1661 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1662 if (!target_saddr)
1663 return -TARGET_EFAULT;
1664 memcpy(target_saddr, addr, len);
1665 if (len >= offsetof(struct target_sockaddr, sa_family) +
1666 sizeof(target_saddr->sa_family)) {
1667 target_saddr->sa_family = tswap16(addr->sa_family);
1669 if (addr->sa_family == AF_NETLINK && len >= sizeof(struct sockaddr_nl)) {
1670 struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr;
1671 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1672 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1673 } else if (addr->sa_family == AF_PACKET) {
1674 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1675 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1676 target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1677 } else if (addr->sa_family == AF_INET6 &&
1678 len >= sizeof(struct target_sockaddr_in6)) {
1679 struct target_sockaddr_in6 *target_in6 =
1680 (struct target_sockaddr_in6 *)target_saddr;
1681 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1683 unlock_user(target_saddr, target_addr, len);
1685 return 0;
1688 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1689 struct target_msghdr *target_msgh)
1691 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1692 abi_long msg_controllen;
1693 abi_ulong target_cmsg_addr;
1694 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1695 socklen_t space = 0;
1697 msg_controllen = tswapal(target_msgh->msg_controllen);
1698 if (msg_controllen < sizeof (struct target_cmsghdr))
1699 goto the_end;
1700 target_cmsg_addr = tswapal(target_msgh->msg_control);
1701 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1702 target_cmsg_start = target_cmsg;
1703 if (!target_cmsg)
1704 return -TARGET_EFAULT;
1706 while (cmsg && target_cmsg) {
1707 void *data = CMSG_DATA(cmsg);
1708 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1710 int len = tswapal(target_cmsg->cmsg_len)
1711 - sizeof(struct target_cmsghdr);
1713 space += CMSG_SPACE(len);
1714 if (space > msgh->msg_controllen) {
1715 space -= CMSG_SPACE(len);
1716 /* This is a QEMU bug, since we allocated the payload
1717 * area ourselves (unlike overflow in host-to-target
1718 * conversion, which is just the guest giving us a buffer
1719 * that's too small). It can't happen for the payload types
1720 * we currently support; if it becomes an issue in future
1721 * we would need to improve our allocation strategy to
1722 * something more intelligent than "twice the size of the
1723 * target buffer we're reading from".
1725 gemu_log("Host cmsg overflow\n");
1726 break;
1729 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1730 cmsg->cmsg_level = SOL_SOCKET;
1731 } else {
1732 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1734 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1735 cmsg->cmsg_len = CMSG_LEN(len);
1737 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1738 int *fd = (int *)data;
1739 int *target_fd = (int *)target_data;
1740 int i, numfds = len / sizeof(int);
1742 for (i = 0; i < numfds; i++) {
1743 __get_user(fd[i], target_fd + i);
1745 } else if (cmsg->cmsg_level == SOL_SOCKET
1746 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1747 struct ucred *cred = (struct ucred *)data;
1748 struct target_ucred *target_cred =
1749 (struct target_ucred *)target_data;
1751 __get_user(cred->pid, &target_cred->pid);
1752 __get_user(cred->uid, &target_cred->uid);
1753 __get_user(cred->gid, &target_cred->gid);
1754 } else {
1755 gemu_log("Unsupported ancillary data: %d/%d\n",
1756 cmsg->cmsg_level, cmsg->cmsg_type);
1757 memcpy(data, target_data, len);
1760 cmsg = CMSG_NXTHDR(msgh, cmsg);
1761 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1762 target_cmsg_start);
1764 unlock_user(target_cmsg, target_cmsg_addr, 0);
1765 the_end:
1766 msgh->msg_controllen = space;
1767 return 0;
1770 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1771 struct msghdr *msgh)
1773 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1774 abi_long msg_controllen;
1775 abi_ulong target_cmsg_addr;
1776 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1777 socklen_t space = 0;
1779 msg_controllen = tswapal(target_msgh->msg_controllen);
1780 if (msg_controllen < sizeof (struct target_cmsghdr))
1781 goto the_end;
1782 target_cmsg_addr = tswapal(target_msgh->msg_control);
1783 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1784 target_cmsg_start = target_cmsg;
1785 if (!target_cmsg)
1786 return -TARGET_EFAULT;
1788 while (cmsg && target_cmsg) {
1789 void *data = CMSG_DATA(cmsg);
1790 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1792 int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1793 int tgt_len, tgt_space;
1795 /* We never copy a half-header but may copy half-data;
1796 * this is Linux's behaviour in put_cmsg(). Note that
1797 * truncation here is a guest problem (which we report
1798 * to the guest via the CTRUNC bit), unlike truncation
1799 * in target_to_host_cmsg, which is a QEMU bug.
1801 if (msg_controllen < sizeof(struct target_cmsghdr)) {
1802 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1803 break;
1806 if (cmsg->cmsg_level == SOL_SOCKET) {
1807 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1808 } else {
1809 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1811 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1813 /* Payload types which need a different size of payload on
1814 * the target must adjust tgt_len here.
1816 switch (cmsg->cmsg_level) {
1817 case SOL_SOCKET:
1818 switch (cmsg->cmsg_type) {
1819 case SO_TIMESTAMP:
1820 tgt_len = sizeof(struct target_timeval);
1821 break;
1822 default:
1823 break;
1825 default:
1826 tgt_len = len;
1827 break;
1830 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1831 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1832 tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1835 /* We must now copy-and-convert len bytes of payload
1836 * into tgt_len bytes of destination space. Bear in mind
1837 * that in both source and destination we may be dealing
1838 * with a truncated value!
1840 switch (cmsg->cmsg_level) {
1841 case SOL_SOCKET:
1842 switch (cmsg->cmsg_type) {
1843 case SCM_RIGHTS:
1845 int *fd = (int *)data;
1846 int *target_fd = (int *)target_data;
1847 int i, numfds = tgt_len / sizeof(int);
1849 for (i = 0; i < numfds; i++) {
1850 __put_user(fd[i], target_fd + i);
1852 break;
1854 case SO_TIMESTAMP:
1856 struct timeval *tv = (struct timeval *)data;
1857 struct target_timeval *target_tv =
1858 (struct target_timeval *)target_data;
1860 if (len != sizeof(struct timeval) ||
1861 tgt_len != sizeof(struct target_timeval)) {
1862 goto unimplemented;
1865 /* copy struct timeval to target */
1866 __put_user(tv->tv_sec, &target_tv->tv_sec);
1867 __put_user(tv->tv_usec, &target_tv->tv_usec);
1868 break;
1870 case SCM_CREDENTIALS:
1872 struct ucred *cred = (struct ucred *)data;
1873 struct target_ucred *target_cred =
1874 (struct target_ucred *)target_data;
1876 __put_user(cred->pid, &target_cred->pid);
1877 __put_user(cred->uid, &target_cred->uid);
1878 __put_user(cred->gid, &target_cred->gid);
1879 break;
1881 default:
1882 goto unimplemented;
1884 break;
1886 case SOL_IP:
1887 switch (cmsg->cmsg_type) {
1888 case IP_TTL:
1890 uint32_t *v = (uint32_t *)data;
1891 uint32_t *t_int = (uint32_t *)target_data;
1893 if (len != sizeof(uint32_t) ||
1894 tgt_len != sizeof(uint32_t)) {
1895 goto unimplemented;
1897 __put_user(*v, t_int);
1898 break;
1900 case IP_RECVERR:
1902 struct errhdr_t {
1903 struct sock_extended_err ee;
1904 struct sockaddr_in offender;
1906 struct errhdr_t *errh = (struct errhdr_t *)data;
1907 struct errhdr_t *target_errh =
1908 (struct errhdr_t *)target_data;
1910 if (len != sizeof(struct errhdr_t) ||
1911 tgt_len != sizeof(struct errhdr_t)) {
1912 goto unimplemented;
1914 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1915 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1916 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1917 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1918 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1919 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1920 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1921 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1922 (void *) &errh->offender, sizeof(errh->offender));
1923 break;
1925 default:
1926 goto unimplemented;
1928 break;
1930 case SOL_IPV6:
1931 switch (cmsg->cmsg_type) {
1932 case IPV6_HOPLIMIT:
1934 uint32_t *v = (uint32_t *)data;
1935 uint32_t *t_int = (uint32_t *)target_data;
1937 if (len != sizeof(uint32_t) ||
1938 tgt_len != sizeof(uint32_t)) {
1939 goto unimplemented;
1941 __put_user(*v, t_int);
1942 break;
1944 case IPV6_RECVERR:
1946 struct errhdr6_t {
1947 struct sock_extended_err ee;
1948 struct sockaddr_in6 offender;
1950 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1951 struct errhdr6_t *target_errh =
1952 (struct errhdr6_t *)target_data;
1954 if (len != sizeof(struct errhdr6_t) ||
1955 tgt_len != sizeof(struct errhdr6_t)) {
1956 goto unimplemented;
1958 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1959 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1960 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1961 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1962 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1963 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1964 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1965 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1966 (void *) &errh->offender, sizeof(errh->offender));
1967 break;
1969 default:
1970 goto unimplemented;
1972 break;
1974 default:
1975 unimplemented:
1976 gemu_log("Unsupported ancillary data: %d/%d\n",
1977 cmsg->cmsg_level, cmsg->cmsg_type);
1978 memcpy(target_data, data, MIN(len, tgt_len));
1979 if (tgt_len > len) {
1980 memset(target_data + len, 0, tgt_len - len);
1984 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
1985 tgt_space = TARGET_CMSG_SPACE(tgt_len);
1986 if (msg_controllen < tgt_space) {
1987 tgt_space = msg_controllen;
1989 msg_controllen -= tgt_space;
1990 space += tgt_space;
1991 cmsg = CMSG_NXTHDR(msgh, cmsg);
1992 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1993 target_cmsg_start);
1995 unlock_user(target_cmsg, target_cmsg_addr, space);
1996 the_end:
1997 target_msgh->msg_controllen = tswapal(space);
1998 return 0;
2001 static void tswap_nlmsghdr(struct nlmsghdr *nlh)
2003 nlh->nlmsg_len = tswap32(nlh->nlmsg_len);
2004 nlh->nlmsg_type = tswap16(nlh->nlmsg_type);
2005 nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags);
2006 nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq);
2007 nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid);
2010 static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh,
2011 size_t len,
2012 abi_long (*host_to_target_nlmsg)
2013 (struct nlmsghdr *))
2015 uint32_t nlmsg_len;
2016 abi_long ret;
2018 while (len > sizeof(struct nlmsghdr)) {
2020 nlmsg_len = nlh->nlmsg_len;
2021 if (nlmsg_len < sizeof(struct nlmsghdr) ||
2022 nlmsg_len > len) {
2023 break;
2026 switch (nlh->nlmsg_type) {
2027 case NLMSG_DONE:
2028 tswap_nlmsghdr(nlh);
2029 return 0;
2030 case NLMSG_NOOP:
2031 break;
2032 case NLMSG_ERROR:
2034 struct nlmsgerr *e = NLMSG_DATA(nlh);
2035 e->error = tswap32(e->error);
2036 tswap_nlmsghdr(&e->msg);
2037 tswap_nlmsghdr(nlh);
2038 return 0;
2040 default:
2041 ret = host_to_target_nlmsg(nlh);
2042 if (ret < 0) {
2043 tswap_nlmsghdr(nlh);
2044 return ret;
2046 break;
2048 tswap_nlmsghdr(nlh);
2049 len -= NLMSG_ALIGN(nlmsg_len);
2050 nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len));
2052 return 0;
2055 static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh,
2056 size_t len,
2057 abi_long (*target_to_host_nlmsg)
2058 (struct nlmsghdr *))
2060 int ret;
2062 while (len > sizeof(struct nlmsghdr)) {
2063 if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) ||
2064 tswap32(nlh->nlmsg_len) > len) {
2065 break;
2067 tswap_nlmsghdr(nlh);
2068 switch (nlh->nlmsg_type) {
2069 case NLMSG_DONE:
2070 return 0;
2071 case NLMSG_NOOP:
2072 break;
2073 case NLMSG_ERROR:
2075 struct nlmsgerr *e = NLMSG_DATA(nlh);
2076 e->error = tswap32(e->error);
2077 tswap_nlmsghdr(&e->msg);
2078 return 0;
2080 default:
2081 ret = target_to_host_nlmsg(nlh);
2082 if (ret < 0) {
2083 return ret;
2086 len -= NLMSG_ALIGN(nlh->nlmsg_len);
2087 nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len));
2089 return 0;
2092 #ifdef CONFIG_RTNETLINK
2093 static abi_long host_to_target_for_each_nlattr(struct nlattr *nlattr,
2094 size_t len, void *context,
2095 abi_long (*host_to_target_nlattr)
2096 (struct nlattr *,
2097 void *context))
2099 unsigned short nla_len;
2100 abi_long ret;
2102 while (len > sizeof(struct nlattr)) {
2103 nla_len = nlattr->nla_len;
2104 if (nla_len < sizeof(struct nlattr) ||
2105 nla_len > len) {
2106 break;
2108 ret = host_to_target_nlattr(nlattr, context);
2109 nlattr->nla_len = tswap16(nlattr->nla_len);
2110 nlattr->nla_type = tswap16(nlattr->nla_type);
2111 if (ret < 0) {
2112 return ret;
2114 len -= NLA_ALIGN(nla_len);
2115 nlattr = (struct nlattr *)(((char *)nlattr) + NLA_ALIGN(nla_len));
2117 return 0;
2120 static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr,
2121 size_t len,
2122 abi_long (*host_to_target_rtattr)
2123 (struct rtattr *))
2125 unsigned short rta_len;
2126 abi_long ret;
2128 while (len > sizeof(struct rtattr)) {
2129 rta_len = rtattr->rta_len;
2130 if (rta_len < sizeof(struct rtattr) ||
2131 rta_len > len) {
2132 break;
2134 ret = host_to_target_rtattr(rtattr);
2135 rtattr->rta_len = tswap16(rtattr->rta_len);
2136 rtattr->rta_type = tswap16(rtattr->rta_type);
2137 if (ret < 0) {
2138 return ret;
2140 len -= RTA_ALIGN(rta_len);
2141 rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len));
2143 return 0;
2146 #define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN)
2148 static abi_long host_to_target_data_bridge_nlattr(struct nlattr *nlattr,
2149 void *context)
2151 uint16_t *u16;
2152 uint32_t *u32;
2153 uint64_t *u64;
2155 switch (nlattr->nla_type) {
2156 /* no data */
2157 case QEMU_IFLA_BR_FDB_FLUSH:
2158 break;
2159 /* binary */
2160 case QEMU_IFLA_BR_GROUP_ADDR:
2161 break;
2162 /* uint8_t */
2163 case QEMU_IFLA_BR_VLAN_FILTERING:
2164 case QEMU_IFLA_BR_TOPOLOGY_CHANGE:
2165 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED:
2166 case QEMU_IFLA_BR_MCAST_ROUTER:
2167 case QEMU_IFLA_BR_MCAST_SNOOPING:
2168 case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR:
2169 case QEMU_IFLA_BR_MCAST_QUERIER:
2170 case QEMU_IFLA_BR_NF_CALL_IPTABLES:
2171 case QEMU_IFLA_BR_NF_CALL_IP6TABLES:
2172 case QEMU_IFLA_BR_NF_CALL_ARPTABLES:
2173 break;
2174 /* uint16_t */
2175 case QEMU_IFLA_BR_PRIORITY:
2176 case QEMU_IFLA_BR_VLAN_PROTOCOL:
2177 case QEMU_IFLA_BR_GROUP_FWD_MASK:
2178 case QEMU_IFLA_BR_ROOT_PORT:
2179 case QEMU_IFLA_BR_VLAN_DEFAULT_PVID:
2180 u16 = NLA_DATA(nlattr);
2181 *u16 = tswap16(*u16);
2182 break;
2183 /* uint32_t */
2184 case QEMU_IFLA_BR_FORWARD_DELAY:
2185 case QEMU_IFLA_BR_HELLO_TIME:
2186 case QEMU_IFLA_BR_MAX_AGE:
2187 case QEMU_IFLA_BR_AGEING_TIME:
2188 case QEMU_IFLA_BR_STP_STATE:
2189 case QEMU_IFLA_BR_ROOT_PATH_COST:
2190 case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY:
2191 case QEMU_IFLA_BR_MCAST_HASH_MAX:
2192 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT:
2193 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT:
2194 u32 = NLA_DATA(nlattr);
2195 *u32 = tswap32(*u32);
2196 break;
2197 /* uint64_t */
2198 case QEMU_IFLA_BR_HELLO_TIMER:
2199 case QEMU_IFLA_BR_TCN_TIMER:
2200 case QEMU_IFLA_BR_GC_TIMER:
2201 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER:
2202 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL:
2203 case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL:
2204 case QEMU_IFLA_BR_MCAST_QUERIER_INTVL:
2205 case QEMU_IFLA_BR_MCAST_QUERY_INTVL:
2206 case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL:
2207 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL:
2208 u64 = NLA_DATA(nlattr);
2209 *u64 = tswap64(*u64);
2210 break;
2211 /* ifla_bridge_id: uin8_t[] */
2212 case QEMU_IFLA_BR_ROOT_ID:
2213 case QEMU_IFLA_BR_BRIDGE_ID:
2214 break;
2215 default:
2216 gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr->nla_type);
2217 break;
2219 return 0;
2222 static abi_long host_to_target_slave_data_bridge_nlattr(struct nlattr *nlattr,
2223 void *context)
2225 uint16_t *u16;
2226 uint32_t *u32;
2227 uint64_t *u64;
2229 switch (nlattr->nla_type) {
2230 /* uint8_t */
2231 case QEMU_IFLA_BRPORT_STATE:
2232 case QEMU_IFLA_BRPORT_MODE:
2233 case QEMU_IFLA_BRPORT_GUARD:
2234 case QEMU_IFLA_BRPORT_PROTECT:
2235 case QEMU_IFLA_BRPORT_FAST_LEAVE:
2236 case QEMU_IFLA_BRPORT_LEARNING:
2237 case QEMU_IFLA_BRPORT_UNICAST_FLOOD:
2238 case QEMU_IFLA_BRPORT_PROXYARP:
2239 case QEMU_IFLA_BRPORT_LEARNING_SYNC:
2240 case QEMU_IFLA_BRPORT_PROXYARP_WIFI:
2241 case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK:
2242 case QEMU_IFLA_BRPORT_CONFIG_PENDING:
2243 case QEMU_IFLA_BRPORT_MULTICAST_ROUTER:
2244 break;
2245 /* uint16_t */
2246 case QEMU_IFLA_BRPORT_PRIORITY:
2247 case QEMU_IFLA_BRPORT_DESIGNATED_PORT:
2248 case QEMU_IFLA_BRPORT_DESIGNATED_COST:
2249 case QEMU_IFLA_BRPORT_ID:
2250 case QEMU_IFLA_BRPORT_NO:
2251 u16 = NLA_DATA(nlattr);
2252 *u16 = tswap16(*u16);
2253 break;
2254 /* uin32_t */
2255 case QEMU_IFLA_BRPORT_COST:
2256 u32 = NLA_DATA(nlattr);
2257 *u32 = tswap32(*u32);
2258 break;
2259 /* uint64_t */
2260 case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER:
2261 case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER:
2262 case QEMU_IFLA_BRPORT_HOLD_TIMER:
2263 u64 = NLA_DATA(nlattr);
2264 *u64 = tswap64(*u64);
2265 break;
2266 /* ifla_bridge_id: uint8_t[] */
2267 case QEMU_IFLA_BRPORT_ROOT_ID:
2268 case QEMU_IFLA_BRPORT_BRIDGE_ID:
2269 break;
2270 default:
2271 gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr->nla_type);
2272 break;
2274 return 0;
2277 struct linkinfo_context {
2278 int len;
2279 char *name;
2280 int slave_len;
2281 char *slave_name;
2284 static abi_long host_to_target_data_linkinfo_nlattr(struct nlattr *nlattr,
2285 void *context)
2287 struct linkinfo_context *li_context = context;
2289 switch (nlattr->nla_type) {
2290 /* string */
2291 case QEMU_IFLA_INFO_KIND:
2292 li_context->name = NLA_DATA(nlattr);
2293 li_context->len = nlattr->nla_len - NLA_HDRLEN;
2294 break;
2295 case QEMU_IFLA_INFO_SLAVE_KIND:
2296 li_context->slave_name = NLA_DATA(nlattr);
2297 li_context->slave_len = nlattr->nla_len - NLA_HDRLEN;
2298 break;
2299 /* stats */
2300 case QEMU_IFLA_INFO_XSTATS:
2301 /* FIXME: only used by CAN */
2302 break;
2303 /* nested */
2304 case QEMU_IFLA_INFO_DATA:
2305 if (strncmp(li_context->name, "bridge",
2306 li_context->len) == 0) {
2307 return host_to_target_for_each_nlattr(NLA_DATA(nlattr),
2308 nlattr->nla_len,
2309 NULL,
2310 host_to_target_data_bridge_nlattr);
2311 } else {
2312 gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context->name);
2314 break;
2315 case QEMU_IFLA_INFO_SLAVE_DATA:
2316 if (strncmp(li_context->slave_name, "bridge",
2317 li_context->slave_len) == 0) {
2318 return host_to_target_for_each_nlattr(NLA_DATA(nlattr),
2319 nlattr->nla_len,
2320 NULL,
2321 host_to_target_slave_data_bridge_nlattr);
2322 } else {
2323 gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n",
2324 li_context->slave_name);
2326 break;
2327 default:
2328 gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr->nla_type);
2329 break;
2332 return 0;
2335 static abi_long host_to_target_data_inet_nlattr(struct nlattr *nlattr,
2336 void *context)
2338 uint32_t *u32;
2339 int i;
2341 switch (nlattr->nla_type) {
2342 case QEMU_IFLA_INET_CONF:
2343 u32 = NLA_DATA(nlattr);
2344 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32);
2345 i++) {
2346 u32[i] = tswap32(u32[i]);
2348 break;
2349 default:
2350 gemu_log("Unknown host AF_INET type: %d\n", nlattr->nla_type);
2352 return 0;
2355 static abi_long host_to_target_data_inet6_nlattr(struct nlattr *nlattr,
2356 void *context)
2358 uint32_t *u32;
2359 uint64_t *u64;
2360 struct ifla_cacheinfo *ci;
2361 int i;
2363 switch (nlattr->nla_type) {
2364 /* binaries */
2365 case QEMU_IFLA_INET6_TOKEN:
2366 break;
2367 /* uint8_t */
2368 case QEMU_IFLA_INET6_ADDR_GEN_MODE:
2369 break;
2370 /* uint32_t */
2371 case QEMU_IFLA_INET6_FLAGS:
2372 u32 = NLA_DATA(nlattr);
2373 *u32 = tswap32(*u32);
2374 break;
2375 /* uint32_t[] */
2376 case QEMU_IFLA_INET6_CONF:
2377 u32 = NLA_DATA(nlattr);
2378 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32);
2379 i++) {
2380 u32[i] = tswap32(u32[i]);
2382 break;
2383 /* ifla_cacheinfo */
2384 case QEMU_IFLA_INET6_CACHEINFO:
2385 ci = NLA_DATA(nlattr);
2386 ci->max_reasm_len = tswap32(ci->max_reasm_len);
2387 ci->tstamp = tswap32(ci->tstamp);
2388 ci->reachable_time = tswap32(ci->reachable_time);
2389 ci->retrans_time = tswap32(ci->retrans_time);
2390 break;
2391 /* uint64_t[] */
2392 case QEMU_IFLA_INET6_STATS:
2393 case QEMU_IFLA_INET6_ICMP6STATS:
2394 u64 = NLA_DATA(nlattr);
2395 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u64);
2396 i++) {
2397 u64[i] = tswap64(u64[i]);
2399 break;
2400 default:
2401 gemu_log("Unknown host AF_INET6 type: %d\n", nlattr->nla_type);
2403 return 0;
2406 static abi_long host_to_target_data_spec_nlattr(struct nlattr *nlattr,
2407 void *context)
2409 switch (nlattr->nla_type) {
2410 case AF_INET:
2411 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len,
2412 NULL,
2413 host_to_target_data_inet_nlattr);
2414 case AF_INET6:
2415 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len,
2416 NULL,
2417 host_to_target_data_inet6_nlattr);
2418 default:
2419 gemu_log("Unknown host AF_SPEC type: %d\n", nlattr->nla_type);
2420 break;
2422 return 0;
2425 static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr)
2427 uint32_t *u32;
2428 struct rtnl_link_stats *st;
2429 struct rtnl_link_stats64 *st64;
2430 struct rtnl_link_ifmap *map;
2431 struct linkinfo_context li_context;
2433 switch (rtattr->rta_type) {
2434 /* binary stream */
2435 case QEMU_IFLA_ADDRESS:
2436 case QEMU_IFLA_BROADCAST:
2437 /* string */
2438 case QEMU_IFLA_IFNAME:
2439 case QEMU_IFLA_QDISC:
2440 break;
2441 /* uin8_t */
2442 case QEMU_IFLA_OPERSTATE:
2443 case QEMU_IFLA_LINKMODE:
2444 case QEMU_IFLA_CARRIER:
2445 case QEMU_IFLA_PROTO_DOWN:
2446 break;
2447 /* uint32_t */
2448 case QEMU_IFLA_MTU:
2449 case QEMU_IFLA_LINK:
2450 case QEMU_IFLA_WEIGHT:
2451 case QEMU_IFLA_TXQLEN:
2452 case QEMU_IFLA_CARRIER_CHANGES:
2453 case QEMU_IFLA_NUM_RX_QUEUES:
2454 case QEMU_IFLA_NUM_TX_QUEUES:
2455 case QEMU_IFLA_PROMISCUITY:
2456 case QEMU_IFLA_EXT_MASK:
2457 case QEMU_IFLA_LINK_NETNSID:
2458 case QEMU_IFLA_GROUP:
2459 case QEMU_IFLA_MASTER:
2460 case QEMU_IFLA_NUM_VF:
2461 case QEMU_IFLA_GSO_MAX_SEGS:
2462 case QEMU_IFLA_GSO_MAX_SIZE:
2463 u32 = RTA_DATA(rtattr);
2464 *u32 = tswap32(*u32);
2465 break;
2466 /* struct rtnl_link_stats */
2467 case QEMU_IFLA_STATS:
2468 st = RTA_DATA(rtattr);
2469 st->rx_packets = tswap32(st->rx_packets);
2470 st->tx_packets = tswap32(st->tx_packets);
2471 st->rx_bytes = tswap32(st->rx_bytes);
2472 st->tx_bytes = tswap32(st->tx_bytes);
2473 st->rx_errors = tswap32(st->rx_errors);
2474 st->tx_errors = tswap32(st->tx_errors);
2475 st->rx_dropped = tswap32(st->rx_dropped);
2476 st->tx_dropped = tswap32(st->tx_dropped);
2477 st->multicast = tswap32(st->multicast);
2478 st->collisions = tswap32(st->collisions);
2480 /* detailed rx_errors: */
2481 st->rx_length_errors = tswap32(st->rx_length_errors);
2482 st->rx_over_errors = tswap32(st->rx_over_errors);
2483 st->rx_crc_errors = tswap32(st->rx_crc_errors);
2484 st->rx_frame_errors = tswap32(st->rx_frame_errors);
2485 st->rx_fifo_errors = tswap32(st->rx_fifo_errors);
2486 st->rx_missed_errors = tswap32(st->rx_missed_errors);
2488 /* detailed tx_errors */
2489 st->tx_aborted_errors = tswap32(st->tx_aborted_errors);
2490 st->tx_carrier_errors = tswap32(st->tx_carrier_errors);
2491 st->tx_fifo_errors = tswap32(st->tx_fifo_errors);
2492 st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors);
2493 st->tx_window_errors = tswap32(st->tx_window_errors);
2495 /* for cslip etc */
2496 st->rx_compressed = tswap32(st->rx_compressed);
2497 st->tx_compressed = tswap32(st->tx_compressed);
2498 break;
2499 /* struct rtnl_link_stats64 */
2500 case QEMU_IFLA_STATS64:
2501 st64 = RTA_DATA(rtattr);
2502 st64->rx_packets = tswap64(st64->rx_packets);
2503 st64->tx_packets = tswap64(st64->tx_packets);
2504 st64->rx_bytes = tswap64(st64->rx_bytes);
2505 st64->tx_bytes = tswap64(st64->tx_bytes);
2506 st64->rx_errors = tswap64(st64->rx_errors);
2507 st64->tx_errors = tswap64(st64->tx_errors);
2508 st64->rx_dropped = tswap64(st64->rx_dropped);
2509 st64->tx_dropped = tswap64(st64->tx_dropped);
2510 st64->multicast = tswap64(st64->multicast);
2511 st64->collisions = tswap64(st64->collisions);
2513 /* detailed rx_errors: */
2514 st64->rx_length_errors = tswap64(st64->rx_length_errors);
2515 st64->rx_over_errors = tswap64(st64->rx_over_errors);
2516 st64->rx_crc_errors = tswap64(st64->rx_crc_errors);
2517 st64->rx_frame_errors = tswap64(st64->rx_frame_errors);
2518 st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors);
2519 st64->rx_missed_errors = tswap64(st64->rx_missed_errors);
2521 /* detailed tx_errors */
2522 st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors);
2523 st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors);
2524 st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors);
2525 st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors);
2526 st64->tx_window_errors = tswap64(st64->tx_window_errors);
2528 /* for cslip etc */
2529 st64->rx_compressed = tswap64(st64->rx_compressed);
2530 st64->tx_compressed = tswap64(st64->tx_compressed);
2531 break;
2532 /* struct rtnl_link_ifmap */
2533 case QEMU_IFLA_MAP:
2534 map = RTA_DATA(rtattr);
2535 map->mem_start = tswap64(map->mem_start);
2536 map->mem_end = tswap64(map->mem_end);
2537 map->base_addr = tswap64(map->base_addr);
2538 map->irq = tswap16(map->irq);
2539 break;
2540 /* nested */
2541 case QEMU_IFLA_LINKINFO:
2542 memset(&li_context, 0, sizeof(li_context));
2543 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len,
2544 &li_context,
2545 host_to_target_data_linkinfo_nlattr);
2546 case QEMU_IFLA_AF_SPEC:
2547 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len,
2548 NULL,
2549 host_to_target_data_spec_nlattr);
2550 default:
2551 gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr->rta_type);
2552 break;
2554 return 0;
2557 static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr)
2559 uint32_t *u32;
2560 struct ifa_cacheinfo *ci;
2562 switch (rtattr->rta_type) {
2563 /* binary: depends on family type */
2564 case IFA_ADDRESS:
2565 case IFA_LOCAL:
2566 break;
2567 /* string */
2568 case IFA_LABEL:
2569 break;
2570 /* u32 */
2571 case IFA_FLAGS:
2572 case IFA_BROADCAST:
2573 u32 = RTA_DATA(rtattr);
2574 *u32 = tswap32(*u32);
2575 break;
2576 /* struct ifa_cacheinfo */
2577 case IFA_CACHEINFO:
2578 ci = RTA_DATA(rtattr);
2579 ci->ifa_prefered = tswap32(ci->ifa_prefered);
2580 ci->ifa_valid = tswap32(ci->ifa_valid);
2581 ci->cstamp = tswap32(ci->cstamp);
2582 ci->tstamp = tswap32(ci->tstamp);
2583 break;
2584 default:
2585 gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type);
2586 break;
2588 return 0;
2591 static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr)
2593 uint32_t *u32;
2594 switch (rtattr->rta_type) {
2595 /* binary: depends on family type */
2596 case RTA_GATEWAY:
2597 case RTA_DST:
2598 case RTA_PREFSRC:
2599 break;
2600 /* u32 */
2601 case RTA_PRIORITY:
2602 case RTA_TABLE:
2603 case RTA_OIF:
2604 u32 = RTA_DATA(rtattr);
2605 *u32 = tswap32(*u32);
2606 break;
2607 default:
2608 gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type);
2609 break;
2611 return 0;
2614 static abi_long host_to_target_link_rtattr(struct rtattr *rtattr,
2615 uint32_t rtattr_len)
2617 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2618 host_to_target_data_link_rtattr);
2621 static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr,
2622 uint32_t rtattr_len)
2624 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2625 host_to_target_data_addr_rtattr);
2628 static abi_long host_to_target_route_rtattr(struct rtattr *rtattr,
2629 uint32_t rtattr_len)
2631 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2632 host_to_target_data_route_rtattr);
2635 static abi_long host_to_target_data_route(struct nlmsghdr *nlh)
2637 uint32_t nlmsg_len;
2638 struct ifinfomsg *ifi;
2639 struct ifaddrmsg *ifa;
2640 struct rtmsg *rtm;
2642 nlmsg_len = nlh->nlmsg_len;
2643 switch (nlh->nlmsg_type) {
2644 case RTM_NEWLINK:
2645 case RTM_DELLINK:
2646 case RTM_GETLINK:
2647 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
2648 ifi = NLMSG_DATA(nlh);
2649 ifi->ifi_type = tswap16(ifi->ifi_type);
2650 ifi->ifi_index = tswap32(ifi->ifi_index);
2651 ifi->ifi_flags = tswap32(ifi->ifi_flags);
2652 ifi->ifi_change = tswap32(ifi->ifi_change);
2653 host_to_target_link_rtattr(IFLA_RTA(ifi),
2654 nlmsg_len - NLMSG_LENGTH(sizeof(*ifi)));
2656 break;
2657 case RTM_NEWADDR:
2658 case RTM_DELADDR:
2659 case RTM_GETADDR:
2660 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
2661 ifa = NLMSG_DATA(nlh);
2662 ifa->ifa_index = tswap32(ifa->ifa_index);
2663 host_to_target_addr_rtattr(IFA_RTA(ifa),
2664 nlmsg_len - NLMSG_LENGTH(sizeof(*ifa)));
2666 break;
2667 case RTM_NEWROUTE:
2668 case RTM_DELROUTE:
2669 case RTM_GETROUTE:
2670 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
2671 rtm = NLMSG_DATA(nlh);
2672 rtm->rtm_flags = tswap32(rtm->rtm_flags);
2673 host_to_target_route_rtattr(RTM_RTA(rtm),
2674 nlmsg_len - NLMSG_LENGTH(sizeof(*rtm)));
2676 break;
2677 default:
2678 return -TARGET_EINVAL;
2680 return 0;
2683 static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh,
2684 size_t len)
2686 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route);
2689 static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr,
2690 size_t len,
2691 abi_long (*target_to_host_rtattr)
2692 (struct rtattr *))
2694 abi_long ret;
2696 while (len >= sizeof(struct rtattr)) {
2697 if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) ||
2698 tswap16(rtattr->rta_len) > len) {
2699 break;
2701 rtattr->rta_len = tswap16(rtattr->rta_len);
2702 rtattr->rta_type = tswap16(rtattr->rta_type);
2703 ret = target_to_host_rtattr(rtattr);
2704 if (ret < 0) {
2705 return ret;
2707 len -= RTA_ALIGN(rtattr->rta_len);
2708 rtattr = (struct rtattr *)(((char *)rtattr) +
2709 RTA_ALIGN(rtattr->rta_len));
2711 return 0;
2714 static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr)
2716 switch (rtattr->rta_type) {
2717 default:
2718 gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr->rta_type);
2719 break;
2721 return 0;
2724 static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr)
2726 switch (rtattr->rta_type) {
2727 /* binary: depends on family type */
2728 case IFA_LOCAL:
2729 case IFA_ADDRESS:
2730 break;
2731 default:
2732 gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type);
2733 break;
2735 return 0;
2738 static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr)
2740 uint32_t *u32;
2741 switch (rtattr->rta_type) {
2742 /* binary: depends on family type */
2743 case RTA_DST:
2744 case RTA_SRC:
2745 case RTA_GATEWAY:
2746 break;
2747 /* u32 */
2748 case RTA_PRIORITY:
2749 case RTA_OIF:
2750 u32 = RTA_DATA(rtattr);
2751 *u32 = tswap32(*u32);
2752 break;
2753 default:
2754 gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type);
2755 break;
2757 return 0;
2760 static void target_to_host_link_rtattr(struct rtattr *rtattr,
2761 uint32_t rtattr_len)
2763 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2764 target_to_host_data_link_rtattr);
2767 static void target_to_host_addr_rtattr(struct rtattr *rtattr,
2768 uint32_t rtattr_len)
2770 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2771 target_to_host_data_addr_rtattr);
2774 static void target_to_host_route_rtattr(struct rtattr *rtattr,
2775 uint32_t rtattr_len)
2777 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2778 target_to_host_data_route_rtattr);
2781 static abi_long target_to_host_data_route(struct nlmsghdr *nlh)
2783 struct ifinfomsg *ifi;
2784 struct ifaddrmsg *ifa;
2785 struct rtmsg *rtm;
2787 switch (nlh->nlmsg_type) {
2788 case RTM_GETLINK:
2789 break;
2790 case RTM_NEWLINK:
2791 case RTM_DELLINK:
2792 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
2793 ifi = NLMSG_DATA(nlh);
2794 ifi->ifi_type = tswap16(ifi->ifi_type);
2795 ifi->ifi_index = tswap32(ifi->ifi_index);
2796 ifi->ifi_flags = tswap32(ifi->ifi_flags);
2797 ifi->ifi_change = tswap32(ifi->ifi_change);
2798 target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len -
2799 NLMSG_LENGTH(sizeof(*ifi)));
2801 break;
2802 case RTM_GETADDR:
2803 case RTM_NEWADDR:
2804 case RTM_DELADDR:
2805 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
2806 ifa = NLMSG_DATA(nlh);
2807 ifa->ifa_index = tswap32(ifa->ifa_index);
2808 target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len -
2809 NLMSG_LENGTH(sizeof(*ifa)));
2811 break;
2812 case RTM_GETROUTE:
2813 break;
2814 case RTM_NEWROUTE:
2815 case RTM_DELROUTE:
2816 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
2817 rtm = NLMSG_DATA(nlh);
2818 rtm->rtm_flags = tswap32(rtm->rtm_flags);
2819 target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len -
2820 NLMSG_LENGTH(sizeof(*rtm)));
2822 break;
2823 default:
2824 return -TARGET_EOPNOTSUPP;
2826 return 0;
2829 static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len)
2831 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route);
2833 #endif /* CONFIG_RTNETLINK */
2835 static abi_long host_to_target_data_audit(struct nlmsghdr *nlh)
2837 switch (nlh->nlmsg_type) {
2838 default:
2839 gemu_log("Unknown host audit message type %d\n",
2840 nlh->nlmsg_type);
2841 return -TARGET_EINVAL;
2843 return 0;
2846 static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh,
2847 size_t len)
2849 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit);
2852 static abi_long target_to_host_data_audit(struct nlmsghdr *nlh)
2854 switch (nlh->nlmsg_type) {
2855 case AUDIT_USER:
2856 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
2857 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
2858 break;
2859 default:
2860 gemu_log("Unknown target audit message type %d\n",
2861 nlh->nlmsg_type);
2862 return -TARGET_EINVAL;
2865 return 0;
2868 static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len)
2870 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit);
2873 /* do_setsockopt() Must return target values and target errnos. */
2874 static abi_long do_setsockopt(int sockfd, int level, int optname,
2875 abi_ulong optval_addr, socklen_t optlen)
2877 abi_long ret;
2878 int val;
2879 struct ip_mreqn *ip_mreq;
2880 struct ip_mreq_source *ip_mreq_source;
2882 switch(level) {
2883 case SOL_TCP:
2884 /* TCP options all take an 'int' value. */
2885 if (optlen < sizeof(uint32_t))
2886 return -TARGET_EINVAL;
2888 if (get_user_u32(val, optval_addr))
2889 return -TARGET_EFAULT;
2890 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2891 break;
2892 case SOL_IP:
2893 switch(optname) {
2894 case IP_TOS:
2895 case IP_TTL:
2896 case IP_HDRINCL:
2897 case IP_ROUTER_ALERT:
2898 case IP_RECVOPTS:
2899 case IP_RETOPTS:
2900 case IP_PKTINFO:
2901 case IP_MTU_DISCOVER:
2902 case IP_RECVERR:
2903 case IP_RECVTTL:
2904 case IP_RECVTOS:
2905 #ifdef IP_FREEBIND
2906 case IP_FREEBIND:
2907 #endif
2908 case IP_MULTICAST_TTL:
2909 case IP_MULTICAST_LOOP:
2910 val = 0;
2911 if (optlen >= sizeof(uint32_t)) {
2912 if (get_user_u32(val, optval_addr))
2913 return -TARGET_EFAULT;
2914 } else if (optlen >= 1) {
2915 if (get_user_u8(val, optval_addr))
2916 return -TARGET_EFAULT;
2918 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2919 break;
2920 case IP_ADD_MEMBERSHIP:
2921 case IP_DROP_MEMBERSHIP:
2922 if (optlen < sizeof (struct target_ip_mreq) ||
2923 optlen > sizeof (struct target_ip_mreqn))
2924 return -TARGET_EINVAL;
2926 ip_mreq = (struct ip_mreqn *) alloca(optlen);
2927 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2928 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2929 break;
2931 case IP_BLOCK_SOURCE:
2932 case IP_UNBLOCK_SOURCE:
2933 case IP_ADD_SOURCE_MEMBERSHIP:
2934 case IP_DROP_SOURCE_MEMBERSHIP:
2935 if (optlen != sizeof (struct target_ip_mreq_source))
2936 return -TARGET_EINVAL;
2938 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2939 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2940 unlock_user (ip_mreq_source, optval_addr, 0);
2941 break;
2943 default:
2944 goto unimplemented;
2946 break;
2947 case SOL_IPV6:
2948 switch (optname) {
2949 case IPV6_MTU_DISCOVER:
2950 case IPV6_MTU:
2951 case IPV6_V6ONLY:
2952 case IPV6_RECVPKTINFO:
2953 case IPV6_UNICAST_HOPS:
2954 case IPV6_RECVERR:
2955 case IPV6_RECVHOPLIMIT:
2956 case IPV6_2292HOPLIMIT:
2957 case IPV6_CHECKSUM:
2958 val = 0;
2959 if (optlen < sizeof(uint32_t)) {
2960 return -TARGET_EINVAL;
2962 if (get_user_u32(val, optval_addr)) {
2963 return -TARGET_EFAULT;
2965 ret = get_errno(setsockopt(sockfd, level, optname,
2966 &val, sizeof(val)));
2967 break;
2968 case IPV6_PKTINFO:
2970 struct in6_pktinfo pki;
2972 if (optlen < sizeof(pki)) {
2973 return -TARGET_EINVAL;
2976 if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2977 return -TARGET_EFAULT;
2980 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2982 ret = get_errno(setsockopt(sockfd, level, optname,
2983 &pki, sizeof(pki)));
2984 break;
2986 default:
2987 goto unimplemented;
2989 break;
2990 case SOL_ICMPV6:
2991 switch (optname) {
2992 case ICMPV6_FILTER:
2994 struct icmp6_filter icmp6f;
2996 if (optlen > sizeof(icmp6f)) {
2997 optlen = sizeof(icmp6f);
3000 if (copy_from_user(&icmp6f, optval_addr, optlen)) {
3001 return -TARGET_EFAULT;
3004 for (val = 0; val < 8; val++) {
3005 icmp6f.data[val] = tswap32(icmp6f.data[val]);
3008 ret = get_errno(setsockopt(sockfd, level, optname,
3009 &icmp6f, optlen));
3010 break;
3012 default:
3013 goto unimplemented;
3015 break;
3016 case SOL_RAW:
3017 switch (optname) {
3018 case ICMP_FILTER:
3019 case IPV6_CHECKSUM:
3020 /* those take an u32 value */
3021 if (optlen < sizeof(uint32_t)) {
3022 return -TARGET_EINVAL;
3025 if (get_user_u32(val, optval_addr)) {
3026 return -TARGET_EFAULT;
3028 ret = get_errno(setsockopt(sockfd, level, optname,
3029 &val, sizeof(val)));
3030 break;
3032 default:
3033 goto unimplemented;
3035 break;
3036 case TARGET_SOL_SOCKET:
3037 switch (optname) {
3038 case TARGET_SO_RCVTIMEO:
3040 struct timeval tv;
3042 optname = SO_RCVTIMEO;
3044 set_timeout:
3045 if (optlen != sizeof(struct target_timeval)) {
3046 return -TARGET_EINVAL;
3049 if (copy_from_user_timeval(&tv, optval_addr)) {
3050 return -TARGET_EFAULT;
3053 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
3054 &tv, sizeof(tv)));
3055 return ret;
3057 case TARGET_SO_SNDTIMEO:
3058 optname = SO_SNDTIMEO;
3059 goto set_timeout;
3060 case TARGET_SO_ATTACH_FILTER:
3062 struct target_sock_fprog *tfprog;
3063 struct target_sock_filter *tfilter;
3064 struct sock_fprog fprog;
3065 struct sock_filter *filter;
3066 int i;
3068 if (optlen != sizeof(*tfprog)) {
3069 return -TARGET_EINVAL;
3071 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
3072 return -TARGET_EFAULT;
3074 if (!lock_user_struct(VERIFY_READ, tfilter,
3075 tswapal(tfprog->filter), 0)) {
3076 unlock_user_struct(tfprog, optval_addr, 1);
3077 return -TARGET_EFAULT;
3080 fprog.len = tswap16(tfprog->len);
3081 filter = g_try_new(struct sock_filter, fprog.len);
3082 if (filter == NULL) {
3083 unlock_user_struct(tfilter, tfprog->filter, 1);
3084 unlock_user_struct(tfprog, optval_addr, 1);
3085 return -TARGET_ENOMEM;
3087 for (i = 0; i < fprog.len; i++) {
3088 filter[i].code = tswap16(tfilter[i].code);
3089 filter[i].jt = tfilter[i].jt;
3090 filter[i].jf = tfilter[i].jf;
3091 filter[i].k = tswap32(tfilter[i].k);
3093 fprog.filter = filter;
3095 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
3096 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
3097 g_free(filter);
3099 unlock_user_struct(tfilter, tfprog->filter, 1);
3100 unlock_user_struct(tfprog, optval_addr, 1);
3101 return ret;
3103 case TARGET_SO_BINDTODEVICE:
3105 char *dev_ifname, *addr_ifname;
3107 if (optlen > IFNAMSIZ - 1) {
3108 optlen = IFNAMSIZ - 1;
3110 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
3111 if (!dev_ifname) {
3112 return -TARGET_EFAULT;
3114 optname = SO_BINDTODEVICE;
3115 addr_ifname = alloca(IFNAMSIZ);
3116 memcpy(addr_ifname, dev_ifname, optlen);
3117 addr_ifname[optlen] = 0;
3118 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
3119 addr_ifname, optlen));
3120 unlock_user (dev_ifname, optval_addr, 0);
3121 return ret;
3123 /* Options with 'int' argument. */
3124 case TARGET_SO_DEBUG:
3125 optname = SO_DEBUG;
3126 break;
3127 case TARGET_SO_REUSEADDR:
3128 optname = SO_REUSEADDR;
3129 break;
3130 case TARGET_SO_TYPE:
3131 optname = SO_TYPE;
3132 break;
3133 case TARGET_SO_ERROR:
3134 optname = SO_ERROR;
3135 break;
3136 case TARGET_SO_DONTROUTE:
3137 optname = SO_DONTROUTE;
3138 break;
3139 case TARGET_SO_BROADCAST:
3140 optname = SO_BROADCAST;
3141 break;
3142 case TARGET_SO_SNDBUF:
3143 optname = SO_SNDBUF;
3144 break;
3145 case TARGET_SO_SNDBUFFORCE:
3146 optname = SO_SNDBUFFORCE;
3147 break;
3148 case TARGET_SO_RCVBUF:
3149 optname = SO_RCVBUF;
3150 break;
3151 case TARGET_SO_RCVBUFFORCE:
3152 optname = SO_RCVBUFFORCE;
3153 break;
3154 case TARGET_SO_KEEPALIVE:
3155 optname = SO_KEEPALIVE;
3156 break;
3157 case TARGET_SO_OOBINLINE:
3158 optname = SO_OOBINLINE;
3159 break;
3160 case TARGET_SO_NO_CHECK:
3161 optname = SO_NO_CHECK;
3162 break;
3163 case TARGET_SO_PRIORITY:
3164 optname = SO_PRIORITY;
3165 break;
3166 #ifdef SO_BSDCOMPAT
3167 case TARGET_SO_BSDCOMPAT:
3168 optname = SO_BSDCOMPAT;
3169 break;
3170 #endif
3171 case TARGET_SO_PASSCRED:
3172 optname = SO_PASSCRED;
3173 break;
3174 case TARGET_SO_PASSSEC:
3175 optname = SO_PASSSEC;
3176 break;
3177 case TARGET_SO_TIMESTAMP:
3178 optname = SO_TIMESTAMP;
3179 break;
3180 case TARGET_SO_RCVLOWAT:
3181 optname = SO_RCVLOWAT;
3182 break;
3183 default:
3184 goto unimplemented;
3186 if (optlen < sizeof(uint32_t))
3187 return -TARGET_EINVAL;
3189 if (get_user_u32(val, optval_addr))
3190 return -TARGET_EFAULT;
3191 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
3192 break;
3193 default:
3194 unimplemented:
3195 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname);
3196 ret = -TARGET_ENOPROTOOPT;
3198 return ret;
3201 /* do_getsockopt() Must return target values and target errnos. */
3202 static abi_long do_getsockopt(int sockfd, int level, int optname,
3203 abi_ulong optval_addr, abi_ulong optlen)
3205 abi_long ret;
3206 int len, val;
3207 socklen_t lv;
3209 switch(level) {
3210 case TARGET_SOL_SOCKET:
3211 level = SOL_SOCKET;
3212 switch (optname) {
3213 /* These don't just return a single integer */
3214 case TARGET_SO_LINGER:
3215 case TARGET_SO_RCVTIMEO:
3216 case TARGET_SO_SNDTIMEO:
3217 case TARGET_SO_PEERNAME:
3218 goto unimplemented;
3219 case TARGET_SO_PEERCRED: {
3220 struct ucred cr;
3221 socklen_t crlen;
3222 struct target_ucred *tcr;
3224 if (get_user_u32(len, optlen)) {
3225 return -TARGET_EFAULT;
3227 if (len < 0) {
3228 return -TARGET_EINVAL;
3231 crlen = sizeof(cr);
3232 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
3233 &cr, &crlen));
3234 if (ret < 0) {
3235 return ret;
3237 if (len > crlen) {
3238 len = crlen;
3240 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
3241 return -TARGET_EFAULT;
3243 __put_user(cr.pid, &tcr->pid);
3244 __put_user(cr.uid, &tcr->uid);
3245 __put_user(cr.gid, &tcr->gid);
3246 unlock_user_struct(tcr, optval_addr, 1);
3247 if (put_user_u32(len, optlen)) {
3248 return -TARGET_EFAULT;
3250 break;
3252 /* Options with 'int' argument. */
3253 case TARGET_SO_DEBUG:
3254 optname = SO_DEBUG;
3255 goto int_case;
3256 case TARGET_SO_REUSEADDR:
3257 optname = SO_REUSEADDR;
3258 goto int_case;
3259 case TARGET_SO_TYPE:
3260 optname = SO_TYPE;
3261 goto int_case;
3262 case TARGET_SO_ERROR:
3263 optname = SO_ERROR;
3264 goto int_case;
3265 case TARGET_SO_DONTROUTE:
3266 optname = SO_DONTROUTE;
3267 goto int_case;
3268 case TARGET_SO_BROADCAST:
3269 optname = SO_BROADCAST;
3270 goto int_case;
3271 case TARGET_SO_SNDBUF:
3272 optname = SO_SNDBUF;
3273 goto int_case;
3274 case TARGET_SO_RCVBUF:
3275 optname = SO_RCVBUF;
3276 goto int_case;
3277 case TARGET_SO_KEEPALIVE:
3278 optname = SO_KEEPALIVE;
3279 goto int_case;
3280 case TARGET_SO_OOBINLINE:
3281 optname = SO_OOBINLINE;
3282 goto int_case;
3283 case TARGET_SO_NO_CHECK:
3284 optname = SO_NO_CHECK;
3285 goto int_case;
3286 case TARGET_SO_PRIORITY:
3287 optname = SO_PRIORITY;
3288 goto int_case;
3289 #ifdef SO_BSDCOMPAT
3290 case TARGET_SO_BSDCOMPAT:
3291 optname = SO_BSDCOMPAT;
3292 goto int_case;
3293 #endif
3294 case TARGET_SO_PASSCRED:
3295 optname = SO_PASSCRED;
3296 goto int_case;
3297 case TARGET_SO_TIMESTAMP:
3298 optname = SO_TIMESTAMP;
3299 goto int_case;
3300 case TARGET_SO_RCVLOWAT:
3301 optname = SO_RCVLOWAT;
3302 goto int_case;
3303 case TARGET_SO_ACCEPTCONN:
3304 optname = SO_ACCEPTCONN;
3305 goto int_case;
3306 default:
3307 goto int_case;
3309 break;
3310 case SOL_TCP:
3311 /* TCP options all take an 'int' value. */
3312 int_case:
3313 if (get_user_u32(len, optlen))
3314 return -TARGET_EFAULT;
3315 if (len < 0)
3316 return -TARGET_EINVAL;
3317 lv = sizeof(lv);
3318 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
3319 if (ret < 0)
3320 return ret;
3321 if (optname == SO_TYPE) {
3322 val = host_to_target_sock_type(val);
3324 if (len > lv)
3325 len = lv;
3326 if (len == 4) {
3327 if (put_user_u32(val, optval_addr))
3328 return -TARGET_EFAULT;
3329 } else {
3330 if (put_user_u8(val, optval_addr))
3331 return -TARGET_EFAULT;
3333 if (put_user_u32(len, optlen))
3334 return -TARGET_EFAULT;
3335 break;
3336 case SOL_IP:
3337 switch(optname) {
3338 case IP_TOS:
3339 case IP_TTL:
3340 case IP_HDRINCL:
3341 case IP_ROUTER_ALERT:
3342 case IP_RECVOPTS:
3343 case IP_RETOPTS:
3344 case IP_PKTINFO:
3345 case IP_MTU_DISCOVER:
3346 case IP_RECVERR:
3347 case IP_RECVTOS:
3348 #ifdef IP_FREEBIND
3349 case IP_FREEBIND:
3350 #endif
3351 case IP_MULTICAST_TTL:
3352 case IP_MULTICAST_LOOP:
3353 if (get_user_u32(len, optlen))
3354 return -TARGET_EFAULT;
3355 if (len < 0)
3356 return -TARGET_EINVAL;
3357 lv = sizeof(lv);
3358 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
3359 if (ret < 0)
3360 return ret;
3361 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
3362 len = 1;
3363 if (put_user_u32(len, optlen)
3364 || put_user_u8(val, optval_addr))
3365 return -TARGET_EFAULT;
3366 } else {
3367 if (len > sizeof(int))
3368 len = sizeof(int);
3369 if (put_user_u32(len, optlen)
3370 || put_user_u32(val, optval_addr))
3371 return -TARGET_EFAULT;
3373 break;
3374 default:
3375 ret = -TARGET_ENOPROTOOPT;
3376 break;
3378 break;
3379 default:
3380 unimplemented:
3381 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
3382 level, optname);
3383 ret = -TARGET_EOPNOTSUPP;
3384 break;
3386 return ret;
3389 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
3390 abi_ulong count, int copy)
3392 struct target_iovec *target_vec;
3393 struct iovec *vec;
3394 abi_ulong total_len, max_len;
3395 int i;
3396 int err = 0;
3397 bool bad_address = false;
3399 if (count == 0) {
3400 errno = 0;
3401 return NULL;
3403 if (count > IOV_MAX) {
3404 errno = EINVAL;
3405 return NULL;
3408 vec = g_try_new0(struct iovec, count);
3409 if (vec == NULL) {
3410 errno = ENOMEM;
3411 return NULL;
3414 target_vec = lock_user(VERIFY_READ, target_addr,
3415 count * sizeof(struct target_iovec), 1);
3416 if (target_vec == NULL) {
3417 err = EFAULT;
3418 goto fail2;
3421 /* ??? If host page size > target page size, this will result in a
3422 value larger than what we can actually support. */
3423 max_len = 0x7fffffff & TARGET_PAGE_MASK;
3424 total_len = 0;
3426 for (i = 0; i < count; i++) {
3427 abi_ulong base = tswapal(target_vec[i].iov_base);
3428 abi_long len = tswapal(target_vec[i].iov_len);
3430 if (len < 0) {
3431 err = EINVAL;
3432 goto fail;
3433 } else if (len == 0) {
3434 /* Zero length pointer is ignored. */
3435 vec[i].iov_base = 0;
3436 } else {
3437 vec[i].iov_base = lock_user(type, base, len, copy);
3438 /* If the first buffer pointer is bad, this is a fault. But
3439 * subsequent bad buffers will result in a partial write; this
3440 * is realized by filling the vector with null pointers and
3441 * zero lengths. */
3442 if (!vec[i].iov_base) {
3443 if (i == 0) {
3444 err = EFAULT;
3445 goto fail;
3446 } else {
3447 bad_address = true;
3450 if (bad_address) {
3451 len = 0;
3453 if (len > max_len - total_len) {
3454 len = max_len - total_len;
3457 vec[i].iov_len = len;
3458 total_len += len;
3461 unlock_user(target_vec, target_addr, 0);
3462 return vec;
3464 fail:
3465 while (--i >= 0) {
3466 if (tswapal(target_vec[i].iov_len) > 0) {
3467 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3470 unlock_user(target_vec, target_addr, 0);
3471 fail2:
3472 g_free(vec);
3473 errno = err;
3474 return NULL;
3477 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3478 abi_ulong count, int copy)
3480 struct target_iovec *target_vec;
3481 int i;
3483 target_vec = lock_user(VERIFY_READ, target_addr,
3484 count * sizeof(struct target_iovec), 1);
3485 if (target_vec) {
3486 for (i = 0; i < count; i++) {
3487 abi_ulong base = tswapal(target_vec[i].iov_base);
3488 abi_long len = tswapal(target_vec[i].iov_len);
3489 if (len < 0) {
3490 break;
3492 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3494 unlock_user(target_vec, target_addr, 0);
3497 g_free(vec);
3500 static inline int target_to_host_sock_type(int *type)
3502 int host_type = 0;
3503 int target_type = *type;
3505 switch (target_type & TARGET_SOCK_TYPE_MASK) {
3506 case TARGET_SOCK_DGRAM:
3507 host_type = SOCK_DGRAM;
3508 break;
3509 case TARGET_SOCK_STREAM:
3510 host_type = SOCK_STREAM;
3511 break;
3512 default:
3513 host_type = target_type & TARGET_SOCK_TYPE_MASK;
3514 break;
3516 if (target_type & TARGET_SOCK_CLOEXEC) {
3517 #if defined(SOCK_CLOEXEC)
3518 host_type |= SOCK_CLOEXEC;
3519 #else
3520 return -TARGET_EINVAL;
3521 #endif
3523 if (target_type & TARGET_SOCK_NONBLOCK) {
3524 #if defined(SOCK_NONBLOCK)
3525 host_type |= SOCK_NONBLOCK;
3526 #elif !defined(O_NONBLOCK)
3527 return -TARGET_EINVAL;
3528 #endif
3530 *type = host_type;
3531 return 0;
3534 /* Try to emulate socket type flags after socket creation. */
3535 static int sock_flags_fixup(int fd, int target_type)
3537 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3538 if (target_type & TARGET_SOCK_NONBLOCK) {
3539 int flags = fcntl(fd, F_GETFL);
3540 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3541 close(fd);
3542 return -TARGET_EINVAL;
3545 #endif
3546 return fd;
3549 static abi_long packet_target_to_host_sockaddr(void *host_addr,
3550 abi_ulong target_addr,
3551 socklen_t len)
3553 struct sockaddr *addr = host_addr;
3554 struct target_sockaddr *target_saddr;
3556 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
3557 if (!target_saddr) {
3558 return -TARGET_EFAULT;
3561 memcpy(addr, target_saddr, len);
3562 addr->sa_family = tswap16(target_saddr->sa_family);
3563 /* spkt_protocol is big-endian */
3565 unlock_user(target_saddr, target_addr, 0);
3566 return 0;
3569 static TargetFdTrans target_packet_trans = {
3570 .target_to_host_addr = packet_target_to_host_sockaddr,
3573 #ifdef CONFIG_RTNETLINK
3574 static abi_long netlink_route_target_to_host(void *buf, size_t len)
3576 abi_long ret;
3578 ret = target_to_host_nlmsg_route(buf, len);
3579 if (ret < 0) {
3580 return ret;
3583 return len;
3586 static abi_long netlink_route_host_to_target(void *buf, size_t len)
3588 abi_long ret;
3590 ret = host_to_target_nlmsg_route(buf, len);
3591 if (ret < 0) {
3592 return ret;
3595 return len;
3598 static TargetFdTrans target_netlink_route_trans = {
3599 .target_to_host_data = netlink_route_target_to_host,
3600 .host_to_target_data = netlink_route_host_to_target,
3602 #endif /* CONFIG_RTNETLINK */
3604 static abi_long netlink_audit_target_to_host(void *buf, size_t len)
3606 abi_long ret;
3608 ret = target_to_host_nlmsg_audit(buf, len);
3609 if (ret < 0) {
3610 return ret;
3613 return len;
3616 static abi_long netlink_audit_host_to_target(void *buf, size_t len)
3618 abi_long ret;
3620 ret = host_to_target_nlmsg_audit(buf, len);
3621 if (ret < 0) {
3622 return ret;
3625 return len;
3628 static TargetFdTrans target_netlink_audit_trans = {
3629 .target_to_host_data = netlink_audit_target_to_host,
3630 .host_to_target_data = netlink_audit_host_to_target,
3633 /* do_socket() Must return target values and target errnos. */
3634 static abi_long do_socket(int domain, int type, int protocol)
3636 int target_type = type;
3637 int ret;
3639 ret = target_to_host_sock_type(&type);
3640 if (ret) {
3641 return ret;
3644 if (domain == PF_NETLINK && !(
3645 #ifdef CONFIG_RTNETLINK
3646 protocol == NETLINK_ROUTE ||
3647 #endif
3648 protocol == NETLINK_KOBJECT_UEVENT ||
3649 protocol == NETLINK_AUDIT)) {
3650 return -EPFNOSUPPORT;
3653 if (domain == AF_PACKET ||
3654 (domain == AF_INET && type == SOCK_PACKET)) {
3655 protocol = tswap16(protocol);
3658 ret = get_errno(socket(domain, type, protocol));
3659 if (ret >= 0) {
3660 ret = sock_flags_fixup(ret, target_type);
3661 if (type == SOCK_PACKET) {
3662 /* Manage an obsolete case :
3663 * if socket type is SOCK_PACKET, bind by name
3665 fd_trans_register(ret, &target_packet_trans);
3666 } else if (domain == PF_NETLINK) {
3667 switch (protocol) {
3668 #ifdef CONFIG_RTNETLINK
3669 case NETLINK_ROUTE:
3670 fd_trans_register(ret, &target_netlink_route_trans);
3671 break;
3672 #endif
3673 case NETLINK_KOBJECT_UEVENT:
3674 /* nothing to do: messages are strings */
3675 break;
3676 case NETLINK_AUDIT:
3677 fd_trans_register(ret, &target_netlink_audit_trans);
3678 break;
3679 default:
3680 g_assert_not_reached();
3684 return ret;
3687 /* do_bind() Must return target values and target errnos. */
3688 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3689 socklen_t addrlen)
3691 void *addr;
3692 abi_long ret;
3694 if ((int)addrlen < 0) {
3695 return -TARGET_EINVAL;
3698 addr = alloca(addrlen+1);
3700 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3701 if (ret)
3702 return ret;
3704 return get_errno(bind(sockfd, addr, addrlen));
3707 /* do_connect() Must return target values and target errnos. */
3708 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3709 socklen_t addrlen)
3711 void *addr;
3712 abi_long ret;
3714 if ((int)addrlen < 0) {
3715 return -TARGET_EINVAL;
3718 addr = alloca(addrlen+1);
3720 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3721 if (ret)
3722 return ret;
3724 return get_errno(safe_connect(sockfd, addr, addrlen));
3727 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3728 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3729 int flags, int send)
3731 abi_long ret, len;
3732 struct msghdr msg;
3733 abi_ulong count;
3734 struct iovec *vec;
3735 abi_ulong target_vec;
3737 if (msgp->msg_name) {
3738 msg.msg_namelen = tswap32(msgp->msg_namelen);
3739 msg.msg_name = alloca(msg.msg_namelen+1);
3740 ret = target_to_host_sockaddr(fd, msg.msg_name,
3741 tswapal(msgp->msg_name),
3742 msg.msg_namelen);
3743 if (ret == -TARGET_EFAULT) {
3744 /* For connected sockets msg_name and msg_namelen must
3745 * be ignored, so returning EFAULT immediately is wrong.
3746 * Instead, pass a bad msg_name to the host kernel, and
3747 * let it decide whether to return EFAULT or not.
3749 msg.msg_name = (void *)-1;
3750 } else if (ret) {
3751 goto out2;
3753 } else {
3754 msg.msg_name = NULL;
3755 msg.msg_namelen = 0;
3757 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3758 msg.msg_control = alloca(msg.msg_controllen);
3759 msg.msg_flags = tswap32(msgp->msg_flags);
3761 count = tswapal(msgp->msg_iovlen);
3762 target_vec = tswapal(msgp->msg_iov);
3764 if (count > IOV_MAX) {
3765 /* sendrcvmsg returns a different errno for this condition than
3766 * readv/writev, so we must catch it here before lock_iovec() does.
3768 ret = -TARGET_EMSGSIZE;
3769 goto out2;
3772 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3773 target_vec, count, send);
3774 if (vec == NULL) {
3775 ret = -host_to_target_errno(errno);
3776 goto out2;
3778 msg.msg_iovlen = count;
3779 msg.msg_iov = vec;
3781 if (send) {
3782 if (fd_trans_target_to_host_data(fd)) {
3783 void *host_msg;
3785 host_msg = g_malloc(msg.msg_iov->iov_len);
3786 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3787 ret = fd_trans_target_to_host_data(fd)(host_msg,
3788 msg.msg_iov->iov_len);
3789 if (ret >= 0) {
3790 msg.msg_iov->iov_base = host_msg;
3791 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3793 g_free(host_msg);
3794 } else {
3795 ret = target_to_host_cmsg(&msg, msgp);
3796 if (ret == 0) {
3797 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3800 } else {
3801 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3802 if (!is_error(ret)) {
3803 len = ret;
3804 if (fd_trans_host_to_target_data(fd)) {
3805 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3806 len);
3807 } else {
3808 ret = host_to_target_cmsg(msgp, &msg);
3810 if (!is_error(ret)) {
3811 msgp->msg_namelen = tswap32(msg.msg_namelen);
3812 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3813 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3814 msg.msg_name, msg.msg_namelen);
3815 if (ret) {
3816 goto out;
3820 ret = len;
3825 out:
3826 unlock_iovec(vec, target_vec, count, !send);
3827 out2:
3828 return ret;
3831 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3832 int flags, int send)
3834 abi_long ret;
3835 struct target_msghdr *msgp;
3837 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3838 msgp,
3839 target_msg,
3840 send ? 1 : 0)) {
3841 return -TARGET_EFAULT;
3843 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3844 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3845 return ret;
3848 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3849 * so it might not have this *mmsg-specific flag either.
3851 #ifndef MSG_WAITFORONE
3852 #define MSG_WAITFORONE 0x10000
3853 #endif
3855 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3856 unsigned int vlen, unsigned int flags,
3857 int send)
3859 struct target_mmsghdr *mmsgp;
3860 abi_long ret = 0;
3861 int i;
3863 if (vlen > UIO_MAXIOV) {
3864 vlen = UIO_MAXIOV;
3867 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3868 if (!mmsgp) {
3869 return -TARGET_EFAULT;
3872 for (i = 0; i < vlen; i++) {
3873 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3874 if (is_error(ret)) {
3875 break;
3877 mmsgp[i].msg_len = tswap32(ret);
3878 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3879 if (flags & MSG_WAITFORONE) {
3880 flags |= MSG_DONTWAIT;
3884 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3886 /* Return number of datagrams sent if we sent any at all;
3887 * otherwise return the error.
3889 if (i) {
3890 return i;
3892 return ret;
3895 /* do_accept4() Must return target values and target errnos. */
3896 static abi_long do_accept4(int fd, abi_ulong target_addr,
3897 abi_ulong target_addrlen_addr, int flags)
3899 socklen_t addrlen;
3900 void *addr;
3901 abi_long ret;
3902 int host_flags;
3904 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3906 if (target_addr == 0) {
3907 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3910 /* linux returns EINVAL if addrlen pointer is invalid */
3911 if (get_user_u32(addrlen, target_addrlen_addr))
3912 return -TARGET_EINVAL;
3914 if ((int)addrlen < 0) {
3915 return -TARGET_EINVAL;
3918 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3919 return -TARGET_EINVAL;
3921 addr = alloca(addrlen);
3923 ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags));
3924 if (!is_error(ret)) {
3925 host_to_target_sockaddr(target_addr, addr, addrlen);
3926 if (put_user_u32(addrlen, target_addrlen_addr))
3927 ret = -TARGET_EFAULT;
3929 return ret;
3932 /* do_getpeername() Must return target values and target errnos. */
3933 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3934 abi_ulong target_addrlen_addr)
3936 socklen_t addrlen;
3937 void *addr;
3938 abi_long ret;
3940 if (get_user_u32(addrlen, target_addrlen_addr))
3941 return -TARGET_EFAULT;
3943 if ((int)addrlen < 0) {
3944 return -TARGET_EINVAL;
3947 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3948 return -TARGET_EFAULT;
3950 addr = alloca(addrlen);
3952 ret = get_errno(getpeername(fd, addr, &addrlen));
3953 if (!is_error(ret)) {
3954 host_to_target_sockaddr(target_addr, addr, addrlen);
3955 if (put_user_u32(addrlen, target_addrlen_addr))
3956 ret = -TARGET_EFAULT;
3958 return ret;
3961 /* do_getsockname() Must return target values and target errnos. */
3962 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3963 abi_ulong target_addrlen_addr)
3965 socklen_t addrlen;
3966 void *addr;
3967 abi_long ret;
3969 if (get_user_u32(addrlen, target_addrlen_addr))
3970 return -TARGET_EFAULT;
3972 if ((int)addrlen < 0) {
3973 return -TARGET_EINVAL;
3976 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3977 return -TARGET_EFAULT;
3979 addr = alloca(addrlen);
3981 ret = get_errno(getsockname(fd, addr, &addrlen));
3982 if (!is_error(ret)) {
3983 host_to_target_sockaddr(target_addr, addr, addrlen);
3984 if (put_user_u32(addrlen, target_addrlen_addr))
3985 ret = -TARGET_EFAULT;
3987 return ret;
3990 /* do_socketpair() Must return target values and target errnos. */
3991 static abi_long do_socketpair(int domain, int type, int protocol,
3992 abi_ulong target_tab_addr)
3994 int tab[2];
3995 abi_long ret;
3997 target_to_host_sock_type(&type);
3999 ret = get_errno(socketpair(domain, type, protocol, tab));
4000 if (!is_error(ret)) {
4001 if (put_user_s32(tab[0], target_tab_addr)
4002 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
4003 ret = -TARGET_EFAULT;
4005 return ret;
4008 /* do_sendto() Must return target values and target errnos. */
4009 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
4010 abi_ulong target_addr, socklen_t addrlen)
4012 void *addr;
4013 void *host_msg;
4014 void *copy_msg = NULL;
4015 abi_long ret;
4017 if ((int)addrlen < 0) {
4018 return -TARGET_EINVAL;
4021 host_msg = lock_user(VERIFY_READ, msg, len, 1);
4022 if (!host_msg)
4023 return -TARGET_EFAULT;
4024 if (fd_trans_target_to_host_data(fd)) {
4025 copy_msg = host_msg;
4026 host_msg = g_malloc(len);
4027 memcpy(host_msg, copy_msg, len);
4028 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
4029 if (ret < 0) {
4030 goto fail;
4033 if (target_addr) {
4034 addr = alloca(addrlen+1);
4035 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
4036 if (ret) {
4037 goto fail;
4039 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
4040 } else {
4041 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
4043 fail:
4044 if (copy_msg) {
4045 g_free(host_msg);
4046 host_msg = copy_msg;
4048 unlock_user(host_msg, msg, 0);
4049 return ret;
4052 /* do_recvfrom() Must return target values and target errnos. */
4053 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
4054 abi_ulong target_addr,
4055 abi_ulong target_addrlen)
4057 socklen_t addrlen;
4058 void *addr;
4059 void *host_msg;
4060 abi_long ret;
4062 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
4063 if (!host_msg)
4064 return -TARGET_EFAULT;
4065 if (target_addr) {
4066 if (get_user_u32(addrlen, target_addrlen)) {
4067 ret = -TARGET_EFAULT;
4068 goto fail;
4070 if ((int)addrlen < 0) {
4071 ret = -TARGET_EINVAL;
4072 goto fail;
4074 addr = alloca(addrlen);
4075 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
4076 addr, &addrlen));
4077 } else {
4078 addr = NULL; /* To keep compiler quiet. */
4079 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
4081 if (!is_error(ret)) {
4082 if (fd_trans_host_to_target_data(fd)) {
4083 ret = fd_trans_host_to_target_data(fd)(host_msg, ret);
4085 if (target_addr) {
4086 host_to_target_sockaddr(target_addr, addr, addrlen);
4087 if (put_user_u32(addrlen, target_addrlen)) {
4088 ret = -TARGET_EFAULT;
4089 goto fail;
4092 unlock_user(host_msg, msg, len);
4093 } else {
4094 fail:
4095 unlock_user(host_msg, msg, 0);
4097 return ret;
4100 #ifdef TARGET_NR_socketcall
4101 /* do_socketcall() must return target values and target errnos. */
4102 static abi_long do_socketcall(int num, abi_ulong vptr)
4104 static const unsigned nargs[] = { /* number of arguments per operation */
4105 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */
4106 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */
4107 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */
4108 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */
4109 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */
4110 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
4111 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
4112 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */
4113 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */
4114 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */
4115 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */
4116 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */
4117 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */
4118 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
4119 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
4120 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */
4121 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */
4122 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */
4123 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */
4124 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */
4126 abi_long a[6]; /* max 6 args */
4127 unsigned i;
4129 /* check the range of the first argument num */
4130 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
4131 if (num < 1 || num > TARGET_SYS_SENDMMSG) {
4132 return -TARGET_EINVAL;
4134 /* ensure we have space for args */
4135 if (nargs[num] > ARRAY_SIZE(a)) {
4136 return -TARGET_EINVAL;
4138 /* collect the arguments in a[] according to nargs[] */
4139 for (i = 0; i < nargs[num]; ++i) {
4140 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
4141 return -TARGET_EFAULT;
4144 /* now when we have the args, invoke the appropriate underlying function */
4145 switch (num) {
4146 case TARGET_SYS_SOCKET: /* domain, type, protocol */
4147 return do_socket(a[0], a[1], a[2]);
4148 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
4149 return do_bind(a[0], a[1], a[2]);
4150 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
4151 return do_connect(a[0], a[1], a[2]);
4152 case TARGET_SYS_LISTEN: /* sockfd, backlog */
4153 return get_errno(listen(a[0], a[1]));
4154 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
4155 return do_accept4(a[0], a[1], a[2], 0);
4156 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
4157 return do_getsockname(a[0], a[1], a[2]);
4158 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
4159 return do_getpeername(a[0], a[1], a[2]);
4160 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
4161 return do_socketpair(a[0], a[1], a[2], a[3]);
4162 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
4163 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
4164 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
4165 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
4166 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
4167 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
4168 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
4169 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
4170 case TARGET_SYS_SHUTDOWN: /* sockfd, how */
4171 return get_errno(shutdown(a[0], a[1]));
4172 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
4173 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
4174 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
4175 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
4176 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
4177 return do_sendrecvmsg(a[0], a[1], a[2], 1);
4178 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
4179 return do_sendrecvmsg(a[0], a[1], a[2], 0);
4180 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
4181 return do_accept4(a[0], a[1], a[2], a[3]);
4182 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
4183 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
4184 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
4185 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
4186 default:
4187 gemu_log("Unsupported socketcall: %d\n", num);
4188 return -TARGET_EINVAL;
4191 #endif
4193 #define N_SHM_REGIONS 32
4195 static struct shm_region {
4196 abi_ulong start;
4197 abi_ulong size;
4198 bool in_use;
4199 } shm_regions[N_SHM_REGIONS];
4201 #ifndef TARGET_SEMID64_DS
4202 /* asm-generic version of this struct */
4203 struct target_semid64_ds
4205 struct target_ipc_perm sem_perm;
4206 abi_ulong sem_otime;
4207 #if TARGET_ABI_BITS == 32
4208 abi_ulong __unused1;
4209 #endif
4210 abi_ulong sem_ctime;
4211 #if TARGET_ABI_BITS == 32
4212 abi_ulong __unused2;
4213 #endif
4214 abi_ulong sem_nsems;
4215 abi_ulong __unused3;
4216 abi_ulong __unused4;
4218 #endif
4220 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
4221 abi_ulong target_addr)
4223 struct target_ipc_perm *target_ip;
4224 struct target_semid64_ds *target_sd;
4226 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4227 return -TARGET_EFAULT;
4228 target_ip = &(target_sd->sem_perm);
4229 host_ip->__key = tswap32(target_ip->__key);
4230 host_ip->uid = tswap32(target_ip->uid);
4231 host_ip->gid = tswap32(target_ip->gid);
4232 host_ip->cuid = tswap32(target_ip->cuid);
4233 host_ip->cgid = tswap32(target_ip->cgid);
4234 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4235 host_ip->mode = tswap32(target_ip->mode);
4236 #else
4237 host_ip->mode = tswap16(target_ip->mode);
4238 #endif
4239 #if defined(TARGET_PPC)
4240 host_ip->__seq = tswap32(target_ip->__seq);
4241 #else
4242 host_ip->__seq = tswap16(target_ip->__seq);
4243 #endif
4244 unlock_user_struct(target_sd, target_addr, 0);
4245 return 0;
4248 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
4249 struct ipc_perm *host_ip)
4251 struct target_ipc_perm *target_ip;
4252 struct target_semid64_ds *target_sd;
4254 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4255 return -TARGET_EFAULT;
4256 target_ip = &(target_sd->sem_perm);
4257 target_ip->__key = tswap32(host_ip->__key);
4258 target_ip->uid = tswap32(host_ip->uid);
4259 target_ip->gid = tswap32(host_ip->gid);
4260 target_ip->cuid = tswap32(host_ip->cuid);
4261 target_ip->cgid = tswap32(host_ip->cgid);
4262 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4263 target_ip->mode = tswap32(host_ip->mode);
4264 #else
4265 target_ip->mode = tswap16(host_ip->mode);
4266 #endif
4267 #if defined(TARGET_PPC)
4268 target_ip->__seq = tswap32(host_ip->__seq);
4269 #else
4270 target_ip->__seq = tswap16(host_ip->__seq);
4271 #endif
4272 unlock_user_struct(target_sd, target_addr, 1);
4273 return 0;
4276 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
4277 abi_ulong target_addr)
4279 struct target_semid64_ds *target_sd;
4281 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4282 return -TARGET_EFAULT;
4283 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
4284 return -TARGET_EFAULT;
4285 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
4286 host_sd->sem_otime = tswapal(target_sd->sem_otime);
4287 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
4288 unlock_user_struct(target_sd, target_addr, 0);
4289 return 0;
4292 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
4293 struct semid_ds *host_sd)
4295 struct target_semid64_ds *target_sd;
4297 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4298 return -TARGET_EFAULT;
4299 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
4300 return -TARGET_EFAULT;
4301 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
4302 target_sd->sem_otime = tswapal(host_sd->sem_otime);
4303 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
4304 unlock_user_struct(target_sd, target_addr, 1);
4305 return 0;
4308 struct target_seminfo {
4309 int semmap;
4310 int semmni;
4311 int semmns;
4312 int semmnu;
4313 int semmsl;
4314 int semopm;
4315 int semume;
4316 int semusz;
4317 int semvmx;
4318 int semaem;
4321 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
4322 struct seminfo *host_seminfo)
4324 struct target_seminfo *target_seminfo;
4325 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
4326 return -TARGET_EFAULT;
4327 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
4328 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
4329 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
4330 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
4331 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
4332 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
4333 __put_user(host_seminfo->semume, &target_seminfo->semume);
4334 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
4335 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
4336 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
4337 unlock_user_struct(target_seminfo, target_addr, 1);
4338 return 0;
4341 union semun {
4342 int val;
4343 struct semid_ds *buf;
4344 unsigned short *array;
4345 struct seminfo *__buf;
4348 union target_semun {
4349 int val;
4350 abi_ulong buf;
4351 abi_ulong array;
4352 abi_ulong __buf;
4355 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
4356 abi_ulong target_addr)
4358 int nsems;
4359 unsigned short *array;
4360 union semun semun;
4361 struct semid_ds semid_ds;
4362 int i, ret;
4364 semun.buf = &semid_ds;
4366 ret = semctl(semid, 0, IPC_STAT, semun);
4367 if (ret == -1)
4368 return get_errno(ret);
4370 nsems = semid_ds.sem_nsems;
4372 *host_array = g_try_new(unsigned short, nsems);
4373 if (!*host_array) {
4374 return -TARGET_ENOMEM;
4376 array = lock_user(VERIFY_READ, target_addr,
4377 nsems*sizeof(unsigned short), 1);
4378 if (!array) {
4379 g_free(*host_array);
4380 return -TARGET_EFAULT;
4383 for(i=0; i<nsems; i++) {
4384 __get_user((*host_array)[i], &array[i]);
4386 unlock_user(array, target_addr, 0);
4388 return 0;
4391 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
4392 unsigned short **host_array)
4394 int nsems;
4395 unsigned short *array;
4396 union semun semun;
4397 struct semid_ds semid_ds;
4398 int i, ret;
4400 semun.buf = &semid_ds;
4402 ret = semctl(semid, 0, IPC_STAT, semun);
4403 if (ret == -1)
4404 return get_errno(ret);
4406 nsems = semid_ds.sem_nsems;
4408 array = lock_user(VERIFY_WRITE, target_addr,
4409 nsems*sizeof(unsigned short), 0);
4410 if (!array)
4411 return -TARGET_EFAULT;
4413 for(i=0; i<nsems; i++) {
4414 __put_user((*host_array)[i], &array[i]);
4416 g_free(*host_array);
4417 unlock_user(array, target_addr, 1);
4419 return 0;
4422 static inline abi_long do_semctl(int semid, int semnum, int cmd,
4423 abi_ulong target_arg)
4425 union target_semun target_su = { .buf = target_arg };
4426 union semun arg;
4427 struct semid_ds dsarg;
4428 unsigned short *array = NULL;
4429 struct seminfo seminfo;
4430 abi_long ret = -TARGET_EINVAL;
4431 abi_long err;
4432 cmd &= 0xff;
4434 switch( cmd ) {
4435 case GETVAL:
4436 case SETVAL:
4437 /* In 64 bit cross-endian situations, we will erroneously pick up
4438 * the wrong half of the union for the "val" element. To rectify
4439 * this, the entire 8-byte structure is byteswapped, followed by
4440 * a swap of the 4 byte val field. In other cases, the data is
4441 * already in proper host byte order. */
4442 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
4443 target_su.buf = tswapal(target_su.buf);
4444 arg.val = tswap32(target_su.val);
4445 } else {
4446 arg.val = target_su.val;
4448 ret = get_errno(semctl(semid, semnum, cmd, arg));
4449 break;
4450 case GETALL:
4451 case SETALL:
4452 err = target_to_host_semarray(semid, &array, target_su.array);
4453 if (err)
4454 return err;
4455 arg.array = array;
4456 ret = get_errno(semctl(semid, semnum, cmd, arg));
4457 err = host_to_target_semarray(semid, target_su.array, &array);
4458 if (err)
4459 return err;
4460 break;
4461 case IPC_STAT:
4462 case IPC_SET:
4463 case SEM_STAT:
4464 err = target_to_host_semid_ds(&dsarg, target_su.buf);
4465 if (err)
4466 return err;
4467 arg.buf = &dsarg;
4468 ret = get_errno(semctl(semid, semnum, cmd, arg));
4469 err = host_to_target_semid_ds(target_su.buf, &dsarg);
4470 if (err)
4471 return err;
4472 break;
4473 case IPC_INFO:
4474 case SEM_INFO:
4475 arg.__buf = &seminfo;
4476 ret = get_errno(semctl(semid, semnum, cmd, arg));
4477 err = host_to_target_seminfo(target_su.__buf, &seminfo);
4478 if (err)
4479 return err;
4480 break;
4481 case IPC_RMID:
4482 case GETPID:
4483 case GETNCNT:
4484 case GETZCNT:
4485 ret = get_errno(semctl(semid, semnum, cmd, NULL));
4486 break;
4489 return ret;
4492 struct target_sembuf {
4493 unsigned short sem_num;
4494 short sem_op;
4495 short sem_flg;
4498 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4499 abi_ulong target_addr,
4500 unsigned nsops)
4502 struct target_sembuf *target_sembuf;
4503 int i;
4505 target_sembuf = lock_user(VERIFY_READ, target_addr,
4506 nsops*sizeof(struct target_sembuf), 1);
4507 if (!target_sembuf)
4508 return -TARGET_EFAULT;
4510 for(i=0; i<nsops; i++) {
4511 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4512 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4513 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4516 unlock_user(target_sembuf, target_addr, 0);
4518 return 0;
4521 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
4523 struct sembuf sops[nsops];
4525 if (target_to_host_sembuf(sops, ptr, nsops))
4526 return -TARGET_EFAULT;
4528 return get_errno(safe_semtimedop(semid, sops, nsops, NULL));
4531 struct target_msqid_ds
4533 struct target_ipc_perm msg_perm;
4534 abi_ulong msg_stime;
4535 #if TARGET_ABI_BITS == 32
4536 abi_ulong __unused1;
4537 #endif
4538 abi_ulong msg_rtime;
4539 #if TARGET_ABI_BITS == 32
4540 abi_ulong __unused2;
4541 #endif
4542 abi_ulong msg_ctime;
4543 #if TARGET_ABI_BITS == 32
4544 abi_ulong __unused3;
4545 #endif
4546 abi_ulong __msg_cbytes;
4547 abi_ulong msg_qnum;
4548 abi_ulong msg_qbytes;
4549 abi_ulong msg_lspid;
4550 abi_ulong msg_lrpid;
4551 abi_ulong __unused4;
4552 abi_ulong __unused5;
4555 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4556 abi_ulong target_addr)
4558 struct target_msqid_ds *target_md;
4560 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4561 return -TARGET_EFAULT;
4562 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4563 return -TARGET_EFAULT;
4564 host_md->msg_stime = tswapal(target_md->msg_stime);
4565 host_md->msg_rtime = tswapal(target_md->msg_rtime);
4566 host_md->msg_ctime = tswapal(target_md->msg_ctime);
4567 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4568 host_md->msg_qnum = tswapal(target_md->msg_qnum);
4569 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4570 host_md->msg_lspid = tswapal(target_md->msg_lspid);
4571 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4572 unlock_user_struct(target_md, target_addr, 0);
4573 return 0;
4576 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4577 struct msqid_ds *host_md)
4579 struct target_msqid_ds *target_md;
4581 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4582 return -TARGET_EFAULT;
4583 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4584 return -TARGET_EFAULT;
4585 target_md->msg_stime = tswapal(host_md->msg_stime);
4586 target_md->msg_rtime = tswapal(host_md->msg_rtime);
4587 target_md->msg_ctime = tswapal(host_md->msg_ctime);
4588 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4589 target_md->msg_qnum = tswapal(host_md->msg_qnum);
4590 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4591 target_md->msg_lspid = tswapal(host_md->msg_lspid);
4592 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4593 unlock_user_struct(target_md, target_addr, 1);
4594 return 0;
4597 struct target_msginfo {
4598 int msgpool;
4599 int msgmap;
4600 int msgmax;
4601 int msgmnb;
4602 int msgmni;
4603 int msgssz;
4604 int msgtql;
4605 unsigned short int msgseg;
4608 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4609 struct msginfo *host_msginfo)
4611 struct target_msginfo *target_msginfo;
4612 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4613 return -TARGET_EFAULT;
4614 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4615 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4616 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4617 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4618 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4619 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4620 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4621 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4622 unlock_user_struct(target_msginfo, target_addr, 1);
4623 return 0;
4626 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4628 struct msqid_ds dsarg;
4629 struct msginfo msginfo;
4630 abi_long ret = -TARGET_EINVAL;
4632 cmd &= 0xff;
4634 switch (cmd) {
4635 case IPC_STAT:
4636 case IPC_SET:
4637 case MSG_STAT:
4638 if (target_to_host_msqid_ds(&dsarg,ptr))
4639 return -TARGET_EFAULT;
4640 ret = get_errno(msgctl(msgid, cmd, &dsarg));
4641 if (host_to_target_msqid_ds(ptr,&dsarg))
4642 return -TARGET_EFAULT;
4643 break;
4644 case IPC_RMID:
4645 ret = get_errno(msgctl(msgid, cmd, NULL));
4646 break;
4647 case IPC_INFO:
4648 case MSG_INFO:
4649 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4650 if (host_to_target_msginfo(ptr, &msginfo))
4651 return -TARGET_EFAULT;
4652 break;
4655 return ret;
4658 struct target_msgbuf {
4659 abi_long mtype;
4660 char mtext[1];
4663 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4664 ssize_t msgsz, int msgflg)
4666 struct target_msgbuf *target_mb;
4667 struct msgbuf *host_mb;
4668 abi_long ret = 0;
4670 if (msgsz < 0) {
4671 return -TARGET_EINVAL;
4674 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4675 return -TARGET_EFAULT;
4676 host_mb = g_try_malloc(msgsz + sizeof(long));
4677 if (!host_mb) {
4678 unlock_user_struct(target_mb, msgp, 0);
4679 return -TARGET_ENOMEM;
4681 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4682 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4683 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4684 g_free(host_mb);
4685 unlock_user_struct(target_mb, msgp, 0);
4687 return ret;
4690 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4691 ssize_t msgsz, abi_long msgtyp,
4692 int msgflg)
4694 struct target_msgbuf *target_mb;
4695 char *target_mtext;
4696 struct msgbuf *host_mb;
4697 abi_long ret = 0;
4699 if (msgsz < 0) {
4700 return -TARGET_EINVAL;
4703 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4704 return -TARGET_EFAULT;
4706 host_mb = g_try_malloc(msgsz + sizeof(long));
4707 if (!host_mb) {
4708 ret = -TARGET_ENOMEM;
4709 goto end;
4711 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4713 if (ret > 0) {
4714 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4715 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4716 if (!target_mtext) {
4717 ret = -TARGET_EFAULT;
4718 goto end;
4720 memcpy(target_mb->mtext, host_mb->mtext, ret);
4721 unlock_user(target_mtext, target_mtext_addr, ret);
4724 target_mb->mtype = tswapal(host_mb->mtype);
4726 end:
4727 if (target_mb)
4728 unlock_user_struct(target_mb, msgp, 1);
4729 g_free(host_mb);
4730 return ret;
4733 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4734 abi_ulong target_addr)
4736 struct target_shmid_ds *target_sd;
4738 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4739 return -TARGET_EFAULT;
4740 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4741 return -TARGET_EFAULT;
4742 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4743 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4744 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4745 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4746 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4747 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4748 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4749 unlock_user_struct(target_sd, target_addr, 0);
4750 return 0;
4753 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4754 struct shmid_ds *host_sd)
4756 struct target_shmid_ds *target_sd;
4758 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4759 return -TARGET_EFAULT;
4760 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4761 return -TARGET_EFAULT;
4762 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4763 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4764 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4765 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4766 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4767 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4768 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4769 unlock_user_struct(target_sd, target_addr, 1);
4770 return 0;
4773 struct target_shminfo {
4774 abi_ulong shmmax;
4775 abi_ulong shmmin;
4776 abi_ulong shmmni;
4777 abi_ulong shmseg;
4778 abi_ulong shmall;
4781 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4782 struct shminfo *host_shminfo)
4784 struct target_shminfo *target_shminfo;
4785 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4786 return -TARGET_EFAULT;
4787 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4788 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4789 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4790 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4791 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4792 unlock_user_struct(target_shminfo, target_addr, 1);
4793 return 0;
4796 struct target_shm_info {
4797 int used_ids;
4798 abi_ulong shm_tot;
4799 abi_ulong shm_rss;
4800 abi_ulong shm_swp;
4801 abi_ulong swap_attempts;
4802 abi_ulong swap_successes;
4805 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4806 struct shm_info *host_shm_info)
4808 struct target_shm_info *target_shm_info;
4809 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4810 return -TARGET_EFAULT;
4811 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4812 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4813 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4814 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4815 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4816 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4817 unlock_user_struct(target_shm_info, target_addr, 1);
4818 return 0;
4821 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4823 struct shmid_ds dsarg;
4824 struct shminfo shminfo;
4825 struct shm_info shm_info;
4826 abi_long ret = -TARGET_EINVAL;
4828 cmd &= 0xff;
4830 switch(cmd) {
4831 case IPC_STAT:
4832 case IPC_SET:
4833 case SHM_STAT:
4834 if (target_to_host_shmid_ds(&dsarg, buf))
4835 return -TARGET_EFAULT;
4836 ret = get_errno(shmctl(shmid, cmd, &dsarg));
4837 if (host_to_target_shmid_ds(buf, &dsarg))
4838 return -TARGET_EFAULT;
4839 break;
4840 case IPC_INFO:
4841 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4842 if (host_to_target_shminfo(buf, &shminfo))
4843 return -TARGET_EFAULT;
4844 break;
4845 case SHM_INFO:
4846 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4847 if (host_to_target_shm_info(buf, &shm_info))
4848 return -TARGET_EFAULT;
4849 break;
4850 case IPC_RMID:
4851 case SHM_LOCK:
4852 case SHM_UNLOCK:
4853 ret = get_errno(shmctl(shmid, cmd, NULL));
4854 break;
4857 return ret;
4860 #ifndef TARGET_FORCE_SHMLBA
4861 /* For most architectures, SHMLBA is the same as the page size;
4862 * some architectures have larger values, in which case they should
4863 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4864 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4865 * and defining its own value for SHMLBA.
4867 * The kernel also permits SHMLBA to be set by the architecture to a
4868 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4869 * this means that addresses are rounded to the large size if
4870 * SHM_RND is set but addresses not aligned to that size are not rejected
4871 * as long as they are at least page-aligned. Since the only architecture
4872 * which uses this is ia64 this code doesn't provide for that oddity.
4874 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4876 return TARGET_PAGE_SIZE;
4878 #endif
4880 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4881 int shmid, abi_ulong shmaddr, int shmflg)
4883 abi_long raddr;
4884 void *host_raddr;
4885 struct shmid_ds shm_info;
4886 int i,ret;
4887 abi_ulong shmlba;
4889 /* find out the length of the shared memory segment */
4890 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4891 if (is_error(ret)) {
4892 /* can't get length, bail out */
4893 return ret;
4896 shmlba = target_shmlba(cpu_env);
4898 if (shmaddr & (shmlba - 1)) {
4899 if (shmflg & SHM_RND) {
4900 shmaddr &= ~(shmlba - 1);
4901 } else {
4902 return -TARGET_EINVAL;
4905 if (!guest_range_valid(shmaddr, shm_info.shm_segsz)) {
4906 return -TARGET_EINVAL;
4909 mmap_lock();
4911 if (shmaddr)
4912 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
4913 else {
4914 abi_ulong mmap_start;
4916 mmap_start = mmap_find_vma(0, shm_info.shm_segsz);
4918 if (mmap_start == -1) {
4919 errno = ENOMEM;
4920 host_raddr = (void *)-1;
4921 } else
4922 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
4925 if (host_raddr == (void *)-1) {
4926 mmap_unlock();
4927 return get_errno((long)host_raddr);
4929 raddr=h2g((unsigned long)host_raddr);
4931 page_set_flags(raddr, raddr + shm_info.shm_segsz,
4932 PAGE_VALID | PAGE_READ |
4933 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
4935 for (i = 0; i < N_SHM_REGIONS; i++) {
4936 if (!shm_regions[i].in_use) {
4937 shm_regions[i].in_use = true;
4938 shm_regions[i].start = raddr;
4939 shm_regions[i].size = shm_info.shm_segsz;
4940 break;
4944 mmap_unlock();
4945 return raddr;
4949 static inline abi_long do_shmdt(abi_ulong shmaddr)
4951 int i;
4952 abi_long rv;
4954 mmap_lock();
4956 for (i = 0; i < N_SHM_REGIONS; ++i) {
4957 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4958 shm_regions[i].in_use = false;
4959 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4960 break;
4963 rv = get_errno(shmdt(g2h(shmaddr)));
4965 mmap_unlock();
4967 return rv;
4970 #ifdef TARGET_NR_ipc
4971 /* ??? This only works with linear mappings. */
4972 /* do_ipc() must return target values and target errnos. */
4973 static abi_long do_ipc(CPUArchState *cpu_env,
4974 unsigned int call, abi_long first,
4975 abi_long second, abi_long third,
4976 abi_long ptr, abi_long fifth)
4978 int version;
4979 abi_long ret = 0;
4981 version = call >> 16;
4982 call &= 0xffff;
4984 switch (call) {
4985 case IPCOP_semop:
4986 ret = do_semop(first, ptr, second);
4987 break;
4989 case IPCOP_semget:
4990 ret = get_errno(semget(first, second, third));
4991 break;
4993 case IPCOP_semctl: {
4994 /* The semun argument to semctl is passed by value, so dereference the
4995 * ptr argument. */
4996 abi_ulong atptr;
4997 get_user_ual(atptr, ptr);
4998 ret = do_semctl(first, second, third, atptr);
4999 break;
5002 case IPCOP_msgget:
5003 ret = get_errno(msgget(first, second));
5004 break;
5006 case IPCOP_msgsnd:
5007 ret = do_msgsnd(first, ptr, second, third);
5008 break;
5010 case IPCOP_msgctl:
5011 ret = do_msgctl(first, second, ptr);
5012 break;
5014 case IPCOP_msgrcv:
5015 switch (version) {
5016 case 0:
5018 struct target_ipc_kludge {
5019 abi_long msgp;
5020 abi_long msgtyp;
5021 } *tmp;
5023 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
5024 ret = -TARGET_EFAULT;
5025 break;
5028 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
5030 unlock_user_struct(tmp, ptr, 0);
5031 break;
5033 default:
5034 ret = do_msgrcv(first, ptr, second, fifth, third);
5036 break;
5038 case IPCOP_shmat:
5039 switch (version) {
5040 default:
5042 abi_ulong raddr;
5043 raddr = do_shmat(cpu_env, first, ptr, second);
5044 if (is_error(raddr))
5045 return get_errno(raddr);
5046 if (put_user_ual(raddr, third))
5047 return -TARGET_EFAULT;
5048 break;
5050 case 1:
5051 ret = -TARGET_EINVAL;
5052 break;
5054 break;
5055 case IPCOP_shmdt:
5056 ret = do_shmdt(ptr);
5057 break;
5059 case IPCOP_shmget:
5060 /* IPC_* flag values are the same on all linux platforms */
5061 ret = get_errno(shmget(first, second, third));
5062 break;
5064 /* IPC_* and SHM_* command values are the same on all linux platforms */
5065 case IPCOP_shmctl:
5066 ret = do_shmctl(first, second, ptr);
5067 break;
5068 default:
5069 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version);
5070 ret = -TARGET_ENOSYS;
5071 break;
5073 return ret;
5075 #endif
5077 /* kernel structure types definitions */
5079 #define STRUCT(name, ...) STRUCT_ ## name,
5080 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
5081 enum {
5082 #include "syscall_types.h"
5083 STRUCT_MAX
5085 #undef STRUCT
5086 #undef STRUCT_SPECIAL
5088 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
5089 #define STRUCT_SPECIAL(name)
5090 #include "syscall_types.h"
5091 #undef STRUCT
5092 #undef STRUCT_SPECIAL
5094 typedef struct IOCTLEntry IOCTLEntry;
5096 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
5097 int fd, int cmd, abi_long arg);
5099 struct IOCTLEntry {
5100 int target_cmd;
5101 unsigned int host_cmd;
5102 const char *name;
5103 int access;
5104 do_ioctl_fn *do_ioctl;
5105 const argtype arg_type[5];
5108 #define IOC_R 0x0001
5109 #define IOC_W 0x0002
5110 #define IOC_RW (IOC_R | IOC_W)
5112 #define MAX_STRUCT_SIZE 4096
5114 #ifdef CONFIG_FIEMAP
5115 /* So fiemap access checks don't overflow on 32 bit systems.
5116 * This is very slightly smaller than the limit imposed by
5117 * the underlying kernel.
5119 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
5120 / sizeof(struct fiemap_extent))
5122 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
5123 int fd, int cmd, abi_long arg)
5125 /* The parameter for this ioctl is a struct fiemap followed
5126 * by an array of struct fiemap_extent whose size is set
5127 * in fiemap->fm_extent_count. The array is filled in by the
5128 * ioctl.
5130 int target_size_in, target_size_out;
5131 struct fiemap *fm;
5132 const argtype *arg_type = ie->arg_type;
5133 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
5134 void *argptr, *p;
5135 abi_long ret;
5136 int i, extent_size = thunk_type_size(extent_arg_type, 0);
5137 uint32_t outbufsz;
5138 int free_fm = 0;
5140 assert(arg_type[0] == TYPE_PTR);
5141 assert(ie->access == IOC_RW);
5142 arg_type++;
5143 target_size_in = thunk_type_size(arg_type, 0);
5144 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
5145 if (!argptr) {
5146 return -TARGET_EFAULT;
5148 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5149 unlock_user(argptr, arg, 0);
5150 fm = (struct fiemap *)buf_temp;
5151 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
5152 return -TARGET_EINVAL;
5155 outbufsz = sizeof (*fm) +
5156 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
5158 if (outbufsz > MAX_STRUCT_SIZE) {
5159 /* We can't fit all the extents into the fixed size buffer.
5160 * Allocate one that is large enough and use it instead.
5162 fm = g_try_malloc(outbufsz);
5163 if (!fm) {
5164 return -TARGET_ENOMEM;
5166 memcpy(fm, buf_temp, sizeof(struct fiemap));
5167 free_fm = 1;
5169 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
5170 if (!is_error(ret)) {
5171 target_size_out = target_size_in;
5172 /* An extent_count of 0 means we were only counting the extents
5173 * so there are no structs to copy
5175 if (fm->fm_extent_count != 0) {
5176 target_size_out += fm->fm_mapped_extents * extent_size;
5178 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
5179 if (!argptr) {
5180 ret = -TARGET_EFAULT;
5181 } else {
5182 /* Convert the struct fiemap */
5183 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
5184 if (fm->fm_extent_count != 0) {
5185 p = argptr + target_size_in;
5186 /* ...and then all the struct fiemap_extents */
5187 for (i = 0; i < fm->fm_mapped_extents; i++) {
5188 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
5189 THUNK_TARGET);
5190 p += extent_size;
5193 unlock_user(argptr, arg, target_size_out);
5196 if (free_fm) {
5197 g_free(fm);
5199 return ret;
5201 #endif
5203 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
5204 int fd, int cmd, abi_long arg)
5206 const argtype *arg_type = ie->arg_type;
5207 int target_size;
5208 void *argptr;
5209 int ret;
5210 struct ifconf *host_ifconf;
5211 uint32_t outbufsz;
5212 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
5213 int target_ifreq_size;
5214 int nb_ifreq;
5215 int free_buf = 0;
5216 int i;
5217 int target_ifc_len;
5218 abi_long target_ifc_buf;
5219 int host_ifc_len;
5220 char *host_ifc_buf;
5222 assert(arg_type[0] == TYPE_PTR);
5223 assert(ie->access == IOC_RW);
5225 arg_type++;
5226 target_size = thunk_type_size(arg_type, 0);
5228 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5229 if (!argptr)
5230 return -TARGET_EFAULT;
5231 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5232 unlock_user(argptr, arg, 0);
5234 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
5235 target_ifc_len = host_ifconf->ifc_len;
5236 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
5238 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
5239 nb_ifreq = target_ifc_len / target_ifreq_size;
5240 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
5242 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
5243 if (outbufsz > MAX_STRUCT_SIZE) {
5244 /* We can't fit all the extents into the fixed size buffer.
5245 * Allocate one that is large enough and use it instead.
5247 host_ifconf = malloc(outbufsz);
5248 if (!host_ifconf) {
5249 return -TARGET_ENOMEM;
5251 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
5252 free_buf = 1;
5254 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf);
5256 host_ifconf->ifc_len = host_ifc_len;
5257 host_ifconf->ifc_buf = host_ifc_buf;
5259 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
5260 if (!is_error(ret)) {
5261 /* convert host ifc_len to target ifc_len */
5263 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
5264 target_ifc_len = nb_ifreq * target_ifreq_size;
5265 host_ifconf->ifc_len = target_ifc_len;
5267 /* restore target ifc_buf */
5269 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
5271 /* copy struct ifconf to target user */
5273 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5274 if (!argptr)
5275 return -TARGET_EFAULT;
5276 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
5277 unlock_user(argptr, arg, target_size);
5279 /* copy ifreq[] to target user */
5281 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
5282 for (i = 0; i < nb_ifreq ; i++) {
5283 thunk_convert(argptr + i * target_ifreq_size,
5284 host_ifc_buf + i * sizeof(struct ifreq),
5285 ifreq_arg_type, THUNK_TARGET);
5287 unlock_user(argptr, target_ifc_buf, target_ifc_len);
5290 if (free_buf) {
5291 free(host_ifconf);
5294 return ret;
5297 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5298 int cmd, abi_long arg)
5300 void *argptr;
5301 struct dm_ioctl *host_dm;
5302 abi_long guest_data;
5303 uint32_t guest_data_size;
5304 int target_size;
5305 const argtype *arg_type = ie->arg_type;
5306 abi_long ret;
5307 void *big_buf = NULL;
5308 char *host_data;
5310 arg_type++;
5311 target_size = thunk_type_size(arg_type, 0);
5312 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5313 if (!argptr) {
5314 ret = -TARGET_EFAULT;
5315 goto out;
5317 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5318 unlock_user(argptr, arg, 0);
5320 /* buf_temp is too small, so fetch things into a bigger buffer */
5321 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5322 memcpy(big_buf, buf_temp, target_size);
5323 buf_temp = big_buf;
5324 host_dm = big_buf;
5326 guest_data = arg + host_dm->data_start;
5327 if ((guest_data - arg) < 0) {
5328 ret = -TARGET_EINVAL;
5329 goto out;
5331 guest_data_size = host_dm->data_size - host_dm->data_start;
5332 host_data = (char*)host_dm + host_dm->data_start;
5334 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5335 if (!argptr) {
5336 ret = -TARGET_EFAULT;
5337 goto out;
5340 switch (ie->host_cmd) {
5341 case DM_REMOVE_ALL:
5342 case DM_LIST_DEVICES:
5343 case DM_DEV_CREATE:
5344 case DM_DEV_REMOVE:
5345 case DM_DEV_SUSPEND:
5346 case DM_DEV_STATUS:
5347 case DM_DEV_WAIT:
5348 case DM_TABLE_STATUS:
5349 case DM_TABLE_CLEAR:
5350 case DM_TABLE_DEPS:
5351 case DM_LIST_VERSIONS:
5352 /* no input data */
5353 break;
5354 case DM_DEV_RENAME:
5355 case DM_DEV_SET_GEOMETRY:
5356 /* data contains only strings */
5357 memcpy(host_data, argptr, guest_data_size);
5358 break;
5359 case DM_TARGET_MSG:
5360 memcpy(host_data, argptr, guest_data_size);
5361 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5362 break;
5363 case DM_TABLE_LOAD:
5365 void *gspec = argptr;
5366 void *cur_data = host_data;
5367 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5368 int spec_size = thunk_type_size(arg_type, 0);
5369 int i;
5371 for (i = 0; i < host_dm->target_count; i++) {
5372 struct dm_target_spec *spec = cur_data;
5373 uint32_t next;
5374 int slen;
5376 thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5377 slen = strlen((char*)gspec + spec_size) + 1;
5378 next = spec->next;
5379 spec->next = sizeof(*spec) + slen;
5380 strcpy((char*)&spec[1], gspec + spec_size);
5381 gspec += next;
5382 cur_data += spec->next;
5384 break;
5386 default:
5387 ret = -TARGET_EINVAL;
5388 unlock_user(argptr, guest_data, 0);
5389 goto out;
5391 unlock_user(argptr, guest_data, 0);
5393 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5394 if (!is_error(ret)) {
5395 guest_data = arg + host_dm->data_start;
5396 guest_data_size = host_dm->data_size - host_dm->data_start;
5397 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5398 switch (ie->host_cmd) {
5399 case DM_REMOVE_ALL:
5400 case DM_DEV_CREATE:
5401 case DM_DEV_REMOVE:
5402 case DM_DEV_RENAME:
5403 case DM_DEV_SUSPEND:
5404 case DM_DEV_STATUS:
5405 case DM_TABLE_LOAD:
5406 case DM_TABLE_CLEAR:
5407 case DM_TARGET_MSG:
5408 case DM_DEV_SET_GEOMETRY:
5409 /* no return data */
5410 break;
5411 case DM_LIST_DEVICES:
5413 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5414 uint32_t remaining_data = guest_data_size;
5415 void *cur_data = argptr;
5416 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5417 int nl_size = 12; /* can't use thunk_size due to alignment */
5419 while (1) {
5420 uint32_t next = nl->next;
5421 if (next) {
5422 nl->next = nl_size + (strlen(nl->name) + 1);
5424 if (remaining_data < nl->next) {
5425 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5426 break;
5428 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5429 strcpy(cur_data + nl_size, nl->name);
5430 cur_data += nl->next;
5431 remaining_data -= nl->next;
5432 if (!next) {
5433 break;
5435 nl = (void*)nl + next;
5437 break;
5439 case DM_DEV_WAIT:
5440 case DM_TABLE_STATUS:
5442 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5443 void *cur_data = argptr;
5444 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5445 int spec_size = thunk_type_size(arg_type, 0);
5446 int i;
5448 for (i = 0; i < host_dm->target_count; i++) {
5449 uint32_t next = spec->next;
5450 int slen = strlen((char*)&spec[1]) + 1;
5451 spec->next = (cur_data - argptr) + spec_size + slen;
5452 if (guest_data_size < spec->next) {
5453 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5454 break;
5456 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5457 strcpy(cur_data + spec_size, (char*)&spec[1]);
5458 cur_data = argptr + spec->next;
5459 spec = (void*)host_dm + host_dm->data_start + next;
5461 break;
5463 case DM_TABLE_DEPS:
5465 void *hdata = (void*)host_dm + host_dm->data_start;
5466 int count = *(uint32_t*)hdata;
5467 uint64_t *hdev = hdata + 8;
5468 uint64_t *gdev = argptr + 8;
5469 int i;
5471 *(uint32_t*)argptr = tswap32(count);
5472 for (i = 0; i < count; i++) {
5473 *gdev = tswap64(*hdev);
5474 gdev++;
5475 hdev++;
5477 break;
5479 case DM_LIST_VERSIONS:
5481 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5482 uint32_t remaining_data = guest_data_size;
5483 void *cur_data = argptr;
5484 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5485 int vers_size = thunk_type_size(arg_type, 0);
5487 while (1) {
5488 uint32_t next = vers->next;
5489 if (next) {
5490 vers->next = vers_size + (strlen(vers->name) + 1);
5492 if (remaining_data < vers->next) {
5493 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5494 break;
5496 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5497 strcpy(cur_data + vers_size, vers->name);
5498 cur_data += vers->next;
5499 remaining_data -= vers->next;
5500 if (!next) {
5501 break;
5503 vers = (void*)vers + next;
5505 break;
5507 default:
5508 unlock_user(argptr, guest_data, 0);
5509 ret = -TARGET_EINVAL;
5510 goto out;
5512 unlock_user(argptr, guest_data, guest_data_size);
5514 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5515 if (!argptr) {
5516 ret = -TARGET_EFAULT;
5517 goto out;
5519 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5520 unlock_user(argptr, arg, target_size);
5522 out:
5523 g_free(big_buf);
5524 return ret;
5527 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5528 int cmd, abi_long arg)
5530 void *argptr;
5531 int target_size;
5532 const argtype *arg_type = ie->arg_type;
5533 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5534 abi_long ret;
5536 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5537 struct blkpg_partition host_part;
5539 /* Read and convert blkpg */
5540 arg_type++;
5541 target_size = thunk_type_size(arg_type, 0);
5542 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5543 if (!argptr) {
5544 ret = -TARGET_EFAULT;
5545 goto out;
5547 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5548 unlock_user(argptr, arg, 0);
5550 switch (host_blkpg->op) {
5551 case BLKPG_ADD_PARTITION:
5552 case BLKPG_DEL_PARTITION:
5553 /* payload is struct blkpg_partition */
5554 break;
5555 default:
5556 /* Unknown opcode */
5557 ret = -TARGET_EINVAL;
5558 goto out;
5561 /* Read and convert blkpg->data */
5562 arg = (abi_long)(uintptr_t)host_blkpg->data;
5563 target_size = thunk_type_size(part_arg_type, 0);
5564 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5565 if (!argptr) {
5566 ret = -TARGET_EFAULT;
5567 goto out;
5569 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5570 unlock_user(argptr, arg, 0);
5572 /* Swizzle the data pointer to our local copy and call! */
5573 host_blkpg->data = &host_part;
5574 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5576 out:
5577 return ret;
5580 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5581 int fd, int cmd, abi_long arg)
5583 const argtype *arg_type = ie->arg_type;
5584 const StructEntry *se;
5585 const argtype *field_types;
5586 const int *dst_offsets, *src_offsets;
5587 int target_size;
5588 void *argptr;
5589 abi_ulong *target_rt_dev_ptr;
5590 unsigned long *host_rt_dev_ptr;
5591 abi_long ret;
5592 int i;
5594 assert(ie->access == IOC_W);
5595 assert(*arg_type == TYPE_PTR);
5596 arg_type++;
5597 assert(*arg_type == TYPE_STRUCT);
5598 target_size = thunk_type_size(arg_type, 0);
5599 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5600 if (!argptr) {
5601 return -TARGET_EFAULT;
5603 arg_type++;
5604 assert(*arg_type == (int)STRUCT_rtentry);
5605 se = struct_entries + *arg_type++;
5606 assert(se->convert[0] == NULL);
5607 /* convert struct here to be able to catch rt_dev string */
5608 field_types = se->field_types;
5609 dst_offsets = se->field_offsets[THUNK_HOST];
5610 src_offsets = se->field_offsets[THUNK_TARGET];
5611 for (i = 0; i < se->nb_fields; i++) {
5612 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5613 assert(*field_types == TYPE_PTRVOID);
5614 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5615 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5616 if (*target_rt_dev_ptr != 0) {
5617 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5618 tswapal(*target_rt_dev_ptr));
5619 if (!*host_rt_dev_ptr) {
5620 unlock_user(argptr, arg, 0);
5621 return -TARGET_EFAULT;
5623 } else {
5624 *host_rt_dev_ptr = 0;
5626 field_types++;
5627 continue;
5629 field_types = thunk_convert(buf_temp + dst_offsets[i],
5630 argptr + src_offsets[i],
5631 field_types, THUNK_HOST);
5633 unlock_user(argptr, arg, 0);
5635 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5636 if (*host_rt_dev_ptr != 0) {
5637 unlock_user((void *)*host_rt_dev_ptr,
5638 *target_rt_dev_ptr, 0);
5640 return ret;
5643 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5644 int fd, int cmd, abi_long arg)
5646 int sig = target_to_host_signal(arg);
5647 return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5650 #ifdef TIOCGPTPEER
5651 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5652 int fd, int cmd, abi_long arg)
5654 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5655 return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5657 #endif
5659 static IOCTLEntry ioctl_entries[] = {
5660 #define IOCTL(cmd, access, ...) \
5661 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5662 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5663 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5664 #define IOCTL_IGNORE(cmd) \
5665 { TARGET_ ## cmd, 0, #cmd },
5666 #include "ioctls.h"
5667 { 0, 0, },
5670 /* ??? Implement proper locking for ioctls. */
5671 /* do_ioctl() Must return target values and target errnos. */
5672 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5674 const IOCTLEntry *ie;
5675 const argtype *arg_type;
5676 abi_long ret;
5677 uint8_t buf_temp[MAX_STRUCT_SIZE];
5678 int target_size;
5679 void *argptr;
5681 ie = ioctl_entries;
5682 for(;;) {
5683 if (ie->target_cmd == 0) {
5684 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5685 return -TARGET_ENOSYS;
5687 if (ie->target_cmd == cmd)
5688 break;
5689 ie++;
5691 arg_type = ie->arg_type;
5692 #if defined(DEBUG)
5693 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name);
5694 #endif
5695 if (ie->do_ioctl) {
5696 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5697 } else if (!ie->host_cmd) {
5698 /* Some architectures define BSD ioctls in their headers
5699 that are not implemented in Linux. */
5700 return -TARGET_ENOSYS;
5703 switch(arg_type[0]) {
5704 case TYPE_NULL:
5705 /* no argument */
5706 ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5707 break;
5708 case TYPE_PTRVOID:
5709 case TYPE_INT:
5710 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5711 break;
5712 case TYPE_PTR:
5713 arg_type++;
5714 target_size = thunk_type_size(arg_type, 0);
5715 switch(ie->access) {
5716 case IOC_R:
5717 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5718 if (!is_error(ret)) {
5719 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5720 if (!argptr)
5721 return -TARGET_EFAULT;
5722 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5723 unlock_user(argptr, arg, target_size);
5725 break;
5726 case IOC_W:
5727 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5728 if (!argptr)
5729 return -TARGET_EFAULT;
5730 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5731 unlock_user(argptr, arg, 0);
5732 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5733 break;
5734 default:
5735 case IOC_RW:
5736 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5737 if (!argptr)
5738 return -TARGET_EFAULT;
5739 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5740 unlock_user(argptr, arg, 0);
5741 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5742 if (!is_error(ret)) {
5743 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5744 if (!argptr)
5745 return -TARGET_EFAULT;
5746 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5747 unlock_user(argptr, arg, target_size);
5749 break;
5751 break;
5752 default:
5753 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5754 (long)cmd, arg_type[0]);
5755 ret = -TARGET_ENOSYS;
5756 break;
5758 return ret;
5761 static const bitmask_transtbl iflag_tbl[] = {
5762 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5763 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5764 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5765 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5766 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5767 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5768 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5769 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5770 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5771 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5772 { TARGET_IXON, TARGET_IXON, IXON, IXON },
5773 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5774 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5775 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5776 { 0, 0, 0, 0 }
5779 static const bitmask_transtbl oflag_tbl[] = {
5780 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5781 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5782 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5783 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5784 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5785 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5786 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5787 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5788 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5789 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5790 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5791 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5792 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5793 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5794 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5795 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5796 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5797 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5798 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5799 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5800 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5801 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5802 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5803 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5804 { 0, 0, 0, 0 }
5807 static const bitmask_transtbl cflag_tbl[] = {
5808 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5809 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5810 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5811 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5812 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5813 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5814 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5815 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5816 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5817 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5818 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5819 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5820 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5821 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5822 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5823 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5824 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5825 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5826 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5827 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5828 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5829 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5830 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5831 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5832 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5833 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5834 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5835 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5836 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5837 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5838 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5839 { 0, 0, 0, 0 }
5842 static const bitmask_transtbl lflag_tbl[] = {
5843 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5844 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5845 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5846 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5847 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5848 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5849 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5850 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5851 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5852 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5853 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5854 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5855 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5856 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5857 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5858 { 0, 0, 0, 0 }
5861 static void target_to_host_termios (void *dst, const void *src)
5863 struct host_termios *host = dst;
5864 const struct target_termios *target = src;
5866 host->c_iflag =
5867 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5868 host->c_oflag =
5869 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5870 host->c_cflag =
5871 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5872 host->c_lflag =
5873 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5874 host->c_line = target->c_line;
5876 memset(host->c_cc, 0, sizeof(host->c_cc));
5877 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5878 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5879 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5880 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5881 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5882 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5883 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5884 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5885 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5886 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5887 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5888 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5889 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5890 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5891 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5892 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5893 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5896 static void host_to_target_termios (void *dst, const void *src)
5898 struct target_termios *target = dst;
5899 const struct host_termios *host = src;
5901 target->c_iflag =
5902 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5903 target->c_oflag =
5904 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5905 target->c_cflag =
5906 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5907 target->c_lflag =
5908 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5909 target->c_line = host->c_line;
5911 memset(target->c_cc, 0, sizeof(target->c_cc));
5912 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5913 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5914 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5915 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5916 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5917 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5918 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5919 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5920 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5921 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5922 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5923 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5924 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5925 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5926 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5927 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5928 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5931 static const StructEntry struct_termios_def = {
5932 .convert = { host_to_target_termios, target_to_host_termios },
5933 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5934 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5937 static bitmask_transtbl mmap_flags_tbl[] = {
5938 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
5939 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
5940 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5941 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5942 MAP_ANONYMOUS, MAP_ANONYMOUS },
5943 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5944 MAP_GROWSDOWN, MAP_GROWSDOWN },
5945 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5946 MAP_DENYWRITE, MAP_DENYWRITE },
5947 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5948 MAP_EXECUTABLE, MAP_EXECUTABLE },
5949 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5950 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5951 MAP_NORESERVE, MAP_NORESERVE },
5952 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5953 /* MAP_STACK had been ignored by the kernel for quite some time.
5954 Recognize it for the target insofar as we do not want to pass
5955 it through to the host. */
5956 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5957 { 0, 0, 0, 0 }
5960 #if defined(TARGET_I386)
5962 /* NOTE: there is really one LDT for all the threads */
5963 static uint8_t *ldt_table;
5965 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5967 int size;
5968 void *p;
5970 if (!ldt_table)
5971 return 0;
5972 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5973 if (size > bytecount)
5974 size = bytecount;
5975 p = lock_user(VERIFY_WRITE, ptr, size, 0);
5976 if (!p)
5977 return -TARGET_EFAULT;
5978 /* ??? Should this by byteswapped? */
5979 memcpy(p, ldt_table, size);
5980 unlock_user(p, ptr, size);
5981 return size;
5984 /* XXX: add locking support */
5985 static abi_long write_ldt(CPUX86State *env,
5986 abi_ulong ptr, unsigned long bytecount, int oldmode)
5988 struct target_modify_ldt_ldt_s ldt_info;
5989 struct target_modify_ldt_ldt_s *target_ldt_info;
5990 int seg_32bit, contents, read_exec_only, limit_in_pages;
5991 int seg_not_present, useable, lm;
5992 uint32_t *lp, entry_1, entry_2;
5994 if (bytecount != sizeof(ldt_info))
5995 return -TARGET_EINVAL;
5996 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5997 return -TARGET_EFAULT;
5998 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5999 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6000 ldt_info.limit = tswap32(target_ldt_info->limit);
6001 ldt_info.flags = tswap32(target_ldt_info->flags);
6002 unlock_user_struct(target_ldt_info, ptr, 0);
6004 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6005 return -TARGET_EINVAL;
6006 seg_32bit = ldt_info.flags & 1;
6007 contents = (ldt_info.flags >> 1) & 3;
6008 read_exec_only = (ldt_info.flags >> 3) & 1;
6009 limit_in_pages = (ldt_info.flags >> 4) & 1;
6010 seg_not_present = (ldt_info.flags >> 5) & 1;
6011 useable = (ldt_info.flags >> 6) & 1;
6012 #ifdef TARGET_ABI32
6013 lm = 0;
6014 #else
6015 lm = (ldt_info.flags >> 7) & 1;
6016 #endif
6017 if (contents == 3) {
6018 if (oldmode)
6019 return -TARGET_EINVAL;
6020 if (seg_not_present == 0)
6021 return -TARGET_EINVAL;
6023 /* allocate the LDT */
6024 if (!ldt_table) {
6025 env->ldt.base = target_mmap(0,
6026 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6027 PROT_READ|PROT_WRITE,
6028 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6029 if (env->ldt.base == -1)
6030 return -TARGET_ENOMEM;
6031 memset(g2h(env->ldt.base), 0,
6032 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6033 env->ldt.limit = 0xffff;
6034 ldt_table = g2h(env->ldt.base);
6037 /* NOTE: same code as Linux kernel */
6038 /* Allow LDTs to be cleared by the user. */
6039 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6040 if (oldmode ||
6041 (contents == 0 &&
6042 read_exec_only == 1 &&
6043 seg_32bit == 0 &&
6044 limit_in_pages == 0 &&
6045 seg_not_present == 1 &&
6046 useable == 0 )) {
6047 entry_1 = 0;
6048 entry_2 = 0;
6049 goto install;
6053 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6054 (ldt_info.limit & 0x0ffff);
6055 entry_2 = (ldt_info.base_addr & 0xff000000) |
6056 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6057 (ldt_info.limit & 0xf0000) |
6058 ((read_exec_only ^ 1) << 9) |
6059 (contents << 10) |
6060 ((seg_not_present ^ 1) << 15) |
6061 (seg_32bit << 22) |
6062 (limit_in_pages << 23) |
6063 (lm << 21) |
6064 0x7000;
6065 if (!oldmode)
6066 entry_2 |= (useable << 20);
6068 /* Install the new entry ... */
6069 install:
6070 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6071 lp[0] = tswap32(entry_1);
6072 lp[1] = tswap32(entry_2);
6073 return 0;
6076 /* specific and weird i386 syscalls */
6077 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6078 unsigned long bytecount)
6080 abi_long ret;
6082 switch (func) {
6083 case 0:
6084 ret = read_ldt(ptr, bytecount);
6085 break;
6086 case 1:
6087 ret = write_ldt(env, ptr, bytecount, 1);
6088 break;
6089 case 0x11:
6090 ret = write_ldt(env, ptr, bytecount, 0);
6091 break;
6092 default:
6093 ret = -TARGET_ENOSYS;
6094 break;
6096 return ret;
6099 #if defined(TARGET_I386) && defined(TARGET_ABI32)
6100 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6102 uint64_t *gdt_table = g2h(env->gdt.base);
6103 struct target_modify_ldt_ldt_s ldt_info;
6104 struct target_modify_ldt_ldt_s *target_ldt_info;
6105 int seg_32bit, contents, read_exec_only, limit_in_pages;
6106 int seg_not_present, useable, lm;
6107 uint32_t *lp, entry_1, entry_2;
6108 int i;
6110 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6111 if (!target_ldt_info)
6112 return -TARGET_EFAULT;
6113 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6114 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6115 ldt_info.limit = tswap32(target_ldt_info->limit);
6116 ldt_info.flags = tswap32(target_ldt_info->flags);
6117 if (ldt_info.entry_number == -1) {
6118 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6119 if (gdt_table[i] == 0) {
6120 ldt_info.entry_number = i;
6121 target_ldt_info->entry_number = tswap32(i);
6122 break;
6126 unlock_user_struct(target_ldt_info, ptr, 1);
6128 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6129 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6130 return -TARGET_EINVAL;
6131 seg_32bit = ldt_info.flags & 1;
6132 contents = (ldt_info.flags >> 1) & 3;
6133 read_exec_only = (ldt_info.flags >> 3) & 1;
6134 limit_in_pages = (ldt_info.flags >> 4) & 1;
6135 seg_not_present = (ldt_info.flags >> 5) & 1;
6136 useable = (ldt_info.flags >> 6) & 1;
6137 #ifdef TARGET_ABI32
6138 lm = 0;
6139 #else
6140 lm = (ldt_info.flags >> 7) & 1;
6141 #endif
6143 if (contents == 3) {
6144 if (seg_not_present == 0)
6145 return -TARGET_EINVAL;
6148 /* NOTE: same code as Linux kernel */
6149 /* Allow LDTs to be cleared by the user. */
6150 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6151 if ((contents == 0 &&
6152 read_exec_only == 1 &&
6153 seg_32bit == 0 &&
6154 limit_in_pages == 0 &&
6155 seg_not_present == 1 &&
6156 useable == 0 )) {
6157 entry_1 = 0;
6158 entry_2 = 0;
6159 goto install;
6163 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6164 (ldt_info.limit & 0x0ffff);
6165 entry_2 = (ldt_info.base_addr & 0xff000000) |
6166 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6167 (ldt_info.limit & 0xf0000) |
6168 ((read_exec_only ^ 1) << 9) |
6169 (contents << 10) |
6170 ((seg_not_present ^ 1) << 15) |
6171 (seg_32bit << 22) |
6172 (limit_in_pages << 23) |
6173 (useable << 20) |
6174 (lm << 21) |
6175 0x7000;
6177 /* Install the new entry ... */
6178 install:
6179 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6180 lp[0] = tswap32(entry_1);
6181 lp[1] = tswap32(entry_2);
6182 return 0;
6185 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6187 struct target_modify_ldt_ldt_s *target_ldt_info;
6188 uint64_t *gdt_table = g2h(env->gdt.base);
6189 uint32_t base_addr, limit, flags;
6190 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6191 int seg_not_present, useable, lm;
6192 uint32_t *lp, entry_1, entry_2;
6194 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6195 if (!target_ldt_info)
6196 return -TARGET_EFAULT;
6197 idx = tswap32(target_ldt_info->entry_number);
6198 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6199 idx > TARGET_GDT_ENTRY_TLS_MAX) {
6200 unlock_user_struct(target_ldt_info, ptr, 1);
6201 return -TARGET_EINVAL;
6203 lp = (uint32_t *)(gdt_table + idx);
6204 entry_1 = tswap32(lp[0]);
6205 entry_2 = tswap32(lp[1]);
6207 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6208 contents = (entry_2 >> 10) & 3;
6209 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6210 seg_32bit = (entry_2 >> 22) & 1;
6211 limit_in_pages = (entry_2 >> 23) & 1;
6212 useable = (entry_2 >> 20) & 1;
6213 #ifdef TARGET_ABI32
6214 lm = 0;
6215 #else
6216 lm = (entry_2 >> 21) & 1;
6217 #endif
6218 flags = (seg_32bit << 0) | (contents << 1) |
6219 (read_exec_only << 3) | (limit_in_pages << 4) |
6220 (seg_not_present << 5) | (useable << 6) | (lm << 7);
6221 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
6222 base_addr = (entry_1 >> 16) |
6223 (entry_2 & 0xff000000) |
6224 ((entry_2 & 0xff) << 16);
6225 target_ldt_info->base_addr = tswapal(base_addr);
6226 target_ldt_info->limit = tswap32(limit);
6227 target_ldt_info->flags = tswap32(flags);
6228 unlock_user_struct(target_ldt_info, ptr, 1);
6229 return 0;
6231 #endif /* TARGET_I386 && TARGET_ABI32 */
6233 #ifndef TARGET_ABI32
6234 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6236 abi_long ret = 0;
6237 abi_ulong val;
6238 int idx;
6240 switch(code) {
6241 case TARGET_ARCH_SET_GS:
6242 case TARGET_ARCH_SET_FS:
6243 if (code == TARGET_ARCH_SET_GS)
6244 idx = R_GS;
6245 else
6246 idx = R_FS;
6247 cpu_x86_load_seg(env, idx, 0);
6248 env->segs[idx].base = addr;
6249 break;
6250 case TARGET_ARCH_GET_GS:
6251 case TARGET_ARCH_GET_FS:
6252 if (code == TARGET_ARCH_GET_GS)
6253 idx = R_GS;
6254 else
6255 idx = R_FS;
6256 val = env->segs[idx].base;
6257 if (put_user(val, addr, abi_ulong))
6258 ret = -TARGET_EFAULT;
6259 break;
6260 default:
6261 ret = -TARGET_EINVAL;
6262 break;
6264 return ret;
6266 #endif
6268 #endif /* defined(TARGET_I386) */
6270 #define NEW_STACK_SIZE 0x40000
6273 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6274 typedef struct {
6275 CPUArchState *env;
6276 pthread_mutex_t mutex;
6277 pthread_cond_t cond;
6278 pthread_t thread;
6279 uint32_t tid;
6280 abi_ulong child_tidptr;
6281 abi_ulong parent_tidptr;
6282 sigset_t sigmask;
6283 } new_thread_info;
6285 static void *clone_func(void *arg)
6287 new_thread_info *info = arg;
6288 CPUArchState *env;
6289 CPUState *cpu;
6290 TaskState *ts;
6292 rcu_register_thread();
6293 tcg_register_thread();
6294 env = info->env;
6295 cpu = ENV_GET_CPU(env);
6296 thread_cpu = cpu;
6297 ts = (TaskState *)cpu->opaque;
6298 info->tid = gettid();
6299 task_settid(ts);
6300 if (info->child_tidptr)
6301 put_user_u32(info->tid, info->child_tidptr);
6302 if (info->parent_tidptr)
6303 put_user_u32(info->tid, info->parent_tidptr);
6304 /* Enable signals. */
6305 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6306 /* Signal to the parent that we're ready. */
6307 pthread_mutex_lock(&info->mutex);
6308 pthread_cond_broadcast(&info->cond);
6309 pthread_mutex_unlock(&info->mutex);
6310 /* Wait until the parent has finished initializing the tls state. */
6311 pthread_mutex_lock(&clone_lock);
6312 pthread_mutex_unlock(&clone_lock);
6313 cpu_loop(env);
6314 /* never exits */
6315 return NULL;
6318 /* do_fork() Must return host values and target errnos (unlike most
6319 do_*() functions). */
6320 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6321 abi_ulong parent_tidptr, target_ulong newtls,
6322 abi_ulong child_tidptr)
6324 CPUState *cpu = ENV_GET_CPU(env);
6325 int ret;
6326 TaskState *ts;
6327 CPUState *new_cpu;
6328 CPUArchState *new_env;
6329 sigset_t sigmask;
6331 flags &= ~CLONE_IGNORED_FLAGS;
6333 /* Emulate vfork() with fork() */
6334 if (flags & CLONE_VFORK)
6335 flags &= ~(CLONE_VFORK | CLONE_VM);
6337 if (flags & CLONE_VM) {
6338 TaskState *parent_ts = (TaskState *)cpu->opaque;
6339 new_thread_info info;
6340 pthread_attr_t attr;
6342 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6343 (flags & CLONE_INVALID_THREAD_FLAGS)) {
6344 return -TARGET_EINVAL;
6347 ts = g_new0(TaskState, 1);
6348 init_task_state(ts);
6350 /* Grab a mutex so that thread setup appears atomic. */
6351 pthread_mutex_lock(&clone_lock);
6353 /* we create a new CPU instance. */
6354 new_env = cpu_copy(env);
6355 /* Init regs that differ from the parent. */
6356 cpu_clone_regs(new_env, newsp);
6357 new_cpu = ENV_GET_CPU(new_env);
6358 new_cpu->opaque = ts;
6359 ts->bprm = parent_ts->bprm;
6360 ts->info = parent_ts->info;
6361 ts->signal_mask = parent_ts->signal_mask;
6363 if (flags & CLONE_CHILD_CLEARTID) {
6364 ts->child_tidptr = child_tidptr;
6367 if (flags & CLONE_SETTLS) {
6368 cpu_set_tls (new_env, newtls);
6371 memset(&info, 0, sizeof(info));
6372 pthread_mutex_init(&info.mutex, NULL);
6373 pthread_mutex_lock(&info.mutex);
6374 pthread_cond_init(&info.cond, NULL);
6375 info.env = new_env;
6376 if (flags & CLONE_CHILD_SETTID) {
6377 info.child_tidptr = child_tidptr;
6379 if (flags & CLONE_PARENT_SETTID) {
6380 info.parent_tidptr = parent_tidptr;
6383 ret = pthread_attr_init(&attr);
6384 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6385 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6386 /* It is not safe to deliver signals until the child has finished
6387 initializing, so temporarily block all signals. */
6388 sigfillset(&sigmask);
6389 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6391 /* If this is our first additional thread, we need to ensure we
6392 * generate code for parallel execution and flush old translations.
6394 if (!parallel_cpus) {
6395 parallel_cpus = true;
6396 tb_flush(cpu);
6399 ret = pthread_create(&info.thread, &attr, clone_func, &info);
6400 /* TODO: Free new CPU state if thread creation failed. */
6402 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6403 pthread_attr_destroy(&attr);
6404 if (ret == 0) {
6405 /* Wait for the child to initialize. */
6406 pthread_cond_wait(&info.cond, &info.mutex);
6407 ret = info.tid;
6408 } else {
6409 ret = -1;
6411 pthread_mutex_unlock(&info.mutex);
6412 pthread_cond_destroy(&info.cond);
6413 pthread_mutex_destroy(&info.mutex);
6414 pthread_mutex_unlock(&clone_lock);
6415 } else {
6416 /* if no CLONE_VM, we consider it is a fork */
6417 if (flags & CLONE_INVALID_FORK_FLAGS) {
6418 return -TARGET_EINVAL;
6421 /* We can't support custom termination signals */
6422 if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6423 return -TARGET_EINVAL;
6426 if (block_signals()) {
6427 return -TARGET_ERESTARTSYS;
6430 fork_start();
6431 ret = fork();
6432 if (ret == 0) {
6433 /* Child Process. */
6434 cpu_clone_regs(env, newsp);
6435 fork_end(1);
6436 /* There is a race condition here. The parent process could
6437 theoretically read the TID in the child process before the child
6438 tid is set. This would require using either ptrace
6439 (not implemented) or having *_tidptr to point at a shared memory
6440 mapping. We can't repeat the spinlock hack used above because
6441 the child process gets its own copy of the lock. */
6442 if (flags & CLONE_CHILD_SETTID)
6443 put_user_u32(gettid(), child_tidptr);
6444 if (flags & CLONE_PARENT_SETTID)
6445 put_user_u32(gettid(), parent_tidptr);
6446 ts = (TaskState *)cpu->opaque;
6447 if (flags & CLONE_SETTLS)
6448 cpu_set_tls (env, newtls);
6449 if (flags & CLONE_CHILD_CLEARTID)
6450 ts->child_tidptr = child_tidptr;
6451 } else {
6452 fork_end(0);
6455 return ret;
6458 /* warning : doesn't handle linux specific flags... */
6459 static int target_to_host_fcntl_cmd(int cmd)
6461 switch(cmd) {
6462 case TARGET_F_DUPFD:
6463 case TARGET_F_GETFD:
6464 case TARGET_F_SETFD:
6465 case TARGET_F_GETFL:
6466 case TARGET_F_SETFL:
6467 return cmd;
6468 case TARGET_F_GETLK:
6469 return F_GETLK64;
6470 case TARGET_F_SETLK:
6471 return F_SETLK64;
6472 case TARGET_F_SETLKW:
6473 return F_SETLKW64;
6474 case TARGET_F_GETOWN:
6475 return F_GETOWN;
6476 case TARGET_F_SETOWN:
6477 return F_SETOWN;
6478 case TARGET_F_GETSIG:
6479 return F_GETSIG;
6480 case TARGET_F_SETSIG:
6481 return F_SETSIG;
6482 #if TARGET_ABI_BITS == 32
6483 case TARGET_F_GETLK64:
6484 return F_GETLK64;
6485 case TARGET_F_SETLK64:
6486 return F_SETLK64;
6487 case TARGET_F_SETLKW64:
6488 return F_SETLKW64;
6489 #endif
6490 case TARGET_F_SETLEASE:
6491 return F_SETLEASE;
6492 case TARGET_F_GETLEASE:
6493 return F_GETLEASE;
6494 #ifdef F_DUPFD_CLOEXEC
6495 case TARGET_F_DUPFD_CLOEXEC:
6496 return F_DUPFD_CLOEXEC;
6497 #endif
6498 case TARGET_F_NOTIFY:
6499 return F_NOTIFY;
6500 #ifdef F_GETOWN_EX
6501 case TARGET_F_GETOWN_EX:
6502 return F_GETOWN_EX;
6503 #endif
6504 #ifdef F_SETOWN_EX
6505 case TARGET_F_SETOWN_EX:
6506 return F_SETOWN_EX;
6507 #endif
6508 #ifdef F_SETPIPE_SZ
6509 case TARGET_F_SETPIPE_SZ:
6510 return F_SETPIPE_SZ;
6511 case TARGET_F_GETPIPE_SZ:
6512 return F_GETPIPE_SZ;
6513 #endif
6514 default:
6515 return -TARGET_EINVAL;
6517 return -TARGET_EINVAL;
6520 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
6521 static const bitmask_transtbl flock_tbl[] = {
6522 TRANSTBL_CONVERT(F_RDLCK),
6523 TRANSTBL_CONVERT(F_WRLCK),
6524 TRANSTBL_CONVERT(F_UNLCK),
6525 TRANSTBL_CONVERT(F_EXLCK),
6526 TRANSTBL_CONVERT(F_SHLCK),
6527 { 0, 0, 0, 0 }
6530 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6531 abi_ulong target_flock_addr)
6533 struct target_flock *target_fl;
6534 short l_type;
6536 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6537 return -TARGET_EFAULT;
6540 __get_user(l_type, &target_fl->l_type);
6541 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
6542 __get_user(fl->l_whence, &target_fl->l_whence);
6543 __get_user(fl->l_start, &target_fl->l_start);
6544 __get_user(fl->l_len, &target_fl->l_len);
6545 __get_user(fl->l_pid, &target_fl->l_pid);
6546 unlock_user_struct(target_fl, target_flock_addr, 0);
6547 return 0;
6550 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6551 const struct flock64 *fl)
6553 struct target_flock *target_fl;
6554 short l_type;
6556 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6557 return -TARGET_EFAULT;
6560 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
6561 __put_user(l_type, &target_fl->l_type);
6562 __put_user(fl->l_whence, &target_fl->l_whence);
6563 __put_user(fl->l_start, &target_fl->l_start);
6564 __put_user(fl->l_len, &target_fl->l_len);
6565 __put_user(fl->l_pid, &target_fl->l_pid);
6566 unlock_user_struct(target_fl, target_flock_addr, 1);
6567 return 0;
6570 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6571 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6573 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6574 static inline abi_long copy_from_user_eabi_flock64(struct flock64 *fl,
6575 abi_ulong target_flock_addr)
6577 struct target_eabi_flock64 *target_fl;
6578 short l_type;
6580 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6581 return -TARGET_EFAULT;
6584 __get_user(l_type, &target_fl->l_type);
6585 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
6586 __get_user(fl->l_whence, &target_fl->l_whence);
6587 __get_user(fl->l_start, &target_fl->l_start);
6588 __get_user(fl->l_len, &target_fl->l_len);
6589 __get_user(fl->l_pid, &target_fl->l_pid);
6590 unlock_user_struct(target_fl, target_flock_addr, 0);
6591 return 0;
6594 static inline abi_long copy_to_user_eabi_flock64(abi_ulong target_flock_addr,
6595 const struct flock64 *fl)
6597 struct target_eabi_flock64 *target_fl;
6598 short l_type;
6600 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6601 return -TARGET_EFAULT;
6604 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
6605 __put_user(l_type, &target_fl->l_type);
6606 __put_user(fl->l_whence, &target_fl->l_whence);
6607 __put_user(fl->l_start, &target_fl->l_start);
6608 __put_user(fl->l_len, &target_fl->l_len);
6609 __put_user(fl->l_pid, &target_fl->l_pid);
6610 unlock_user_struct(target_fl, target_flock_addr, 1);
6611 return 0;
6613 #endif
6615 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6616 abi_ulong target_flock_addr)
6618 struct target_flock64 *target_fl;
6619 short l_type;
6621 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6622 return -TARGET_EFAULT;
6625 __get_user(l_type, &target_fl->l_type);
6626 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
6627 __get_user(fl->l_whence, &target_fl->l_whence);
6628 __get_user(fl->l_start, &target_fl->l_start);
6629 __get_user(fl->l_len, &target_fl->l_len);
6630 __get_user(fl->l_pid, &target_fl->l_pid);
6631 unlock_user_struct(target_fl, target_flock_addr, 0);
6632 return 0;
6635 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6636 const struct flock64 *fl)
6638 struct target_flock64 *target_fl;
6639 short l_type;
6641 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6642 return -TARGET_EFAULT;
6645 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
6646 __put_user(l_type, &target_fl->l_type);
6647 __put_user(fl->l_whence, &target_fl->l_whence);
6648 __put_user(fl->l_start, &target_fl->l_start);
6649 __put_user(fl->l_len, &target_fl->l_len);
6650 __put_user(fl->l_pid, &target_fl->l_pid);
6651 unlock_user_struct(target_fl, target_flock_addr, 1);
6652 return 0;
6655 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6657 struct flock64 fl64;
6658 #ifdef F_GETOWN_EX
6659 struct f_owner_ex fox;
6660 struct target_f_owner_ex *target_fox;
6661 #endif
6662 abi_long ret;
6663 int host_cmd = target_to_host_fcntl_cmd(cmd);
6665 if (host_cmd == -TARGET_EINVAL)
6666 return host_cmd;
6668 switch(cmd) {
6669 case TARGET_F_GETLK:
6670 ret = copy_from_user_flock(&fl64, arg);
6671 if (ret) {
6672 return ret;
6674 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6675 if (ret == 0) {
6676 ret = copy_to_user_flock(arg, &fl64);
6678 break;
6680 case TARGET_F_SETLK:
6681 case TARGET_F_SETLKW:
6682 ret = copy_from_user_flock(&fl64, arg);
6683 if (ret) {
6684 return ret;
6686 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6687 break;
6689 case TARGET_F_GETLK64:
6690 ret = copy_from_user_flock64(&fl64, arg);
6691 if (ret) {
6692 return ret;
6694 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6695 if (ret == 0) {
6696 ret = copy_to_user_flock64(arg, &fl64);
6698 break;
6699 case TARGET_F_SETLK64:
6700 case TARGET_F_SETLKW64:
6701 ret = copy_from_user_flock64(&fl64, arg);
6702 if (ret) {
6703 return ret;
6705 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6706 break;
6708 case TARGET_F_GETFL:
6709 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6710 if (ret >= 0) {
6711 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
6713 break;
6715 case TARGET_F_SETFL:
6716 ret = get_errno(safe_fcntl(fd, host_cmd,
6717 target_to_host_bitmask(arg,
6718 fcntl_flags_tbl)));
6719 break;
6721 #ifdef F_GETOWN_EX
6722 case TARGET_F_GETOWN_EX:
6723 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6724 if (ret >= 0) {
6725 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
6726 return -TARGET_EFAULT;
6727 target_fox->type = tswap32(fox.type);
6728 target_fox->pid = tswap32(fox.pid);
6729 unlock_user_struct(target_fox, arg, 1);
6731 break;
6732 #endif
6734 #ifdef F_SETOWN_EX
6735 case TARGET_F_SETOWN_EX:
6736 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
6737 return -TARGET_EFAULT;
6738 fox.type = tswap32(target_fox->type);
6739 fox.pid = tswap32(target_fox->pid);
6740 unlock_user_struct(target_fox, arg, 0);
6741 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6742 break;
6743 #endif
6745 case TARGET_F_SETOWN:
6746 case TARGET_F_GETOWN:
6747 case TARGET_F_SETSIG:
6748 case TARGET_F_GETSIG:
6749 case TARGET_F_SETLEASE:
6750 case TARGET_F_GETLEASE:
6751 case TARGET_F_SETPIPE_SZ:
6752 case TARGET_F_GETPIPE_SZ:
6753 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6754 break;
6756 default:
6757 ret = get_errno(safe_fcntl(fd, cmd, arg));
6758 break;
6760 return ret;
6763 #ifdef USE_UID16
6765 static inline int high2lowuid(int uid)
6767 if (uid > 65535)
6768 return 65534;
6769 else
6770 return uid;
6773 static inline int high2lowgid(int gid)
6775 if (gid > 65535)
6776 return 65534;
6777 else
6778 return gid;
6781 static inline int low2highuid(int uid)
6783 if ((int16_t)uid == -1)
6784 return -1;
6785 else
6786 return uid;
6789 static inline int low2highgid(int gid)
6791 if ((int16_t)gid == -1)
6792 return -1;
6793 else
6794 return gid;
6796 static inline int tswapid(int id)
6798 return tswap16(id);
6801 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6803 #else /* !USE_UID16 */
6804 static inline int high2lowuid(int uid)
6806 return uid;
6808 static inline int high2lowgid(int gid)
6810 return gid;
6812 static inline int low2highuid(int uid)
6814 return uid;
6816 static inline int low2highgid(int gid)
6818 return gid;
6820 static inline int tswapid(int id)
6822 return tswap32(id);
6825 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6827 #endif /* USE_UID16 */
6829 /* We must do direct syscalls for setting UID/GID, because we want to
6830 * implement the Linux system call semantics of "change only for this thread",
6831 * not the libc/POSIX semantics of "change for all threads in process".
6832 * (See http://ewontfix.com/17/ for more details.)
6833 * We use the 32-bit version of the syscalls if present; if it is not
6834 * then either the host architecture supports 32-bit UIDs natively with
6835 * the standard syscall, or the 16-bit UID is the best we can do.
6837 #ifdef __NR_setuid32
6838 #define __NR_sys_setuid __NR_setuid32
6839 #else
6840 #define __NR_sys_setuid __NR_setuid
6841 #endif
6842 #ifdef __NR_setgid32
6843 #define __NR_sys_setgid __NR_setgid32
6844 #else
6845 #define __NR_sys_setgid __NR_setgid
6846 #endif
6847 #ifdef __NR_setresuid32
6848 #define __NR_sys_setresuid __NR_setresuid32
6849 #else
6850 #define __NR_sys_setresuid __NR_setresuid
6851 #endif
6852 #ifdef __NR_setresgid32
6853 #define __NR_sys_setresgid __NR_setresgid32
6854 #else
6855 #define __NR_sys_setresgid __NR_setresgid
6856 #endif
6858 _syscall1(int, sys_setuid, uid_t, uid)
6859 _syscall1(int, sys_setgid, gid_t, gid)
6860 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
6861 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
6863 void syscall_init(void)
6865 IOCTLEntry *ie;
6866 const argtype *arg_type;
6867 int size;
6868 int i;
6870 thunk_init(STRUCT_MAX);
6872 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
6873 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
6874 #include "syscall_types.h"
6875 #undef STRUCT
6876 #undef STRUCT_SPECIAL
6878 /* Build target_to_host_errno_table[] table from
6879 * host_to_target_errno_table[]. */
6880 for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
6881 target_to_host_errno_table[host_to_target_errno_table[i]] = i;
6884 /* we patch the ioctl size if necessary. We rely on the fact that
6885 no ioctl has all the bits at '1' in the size field */
6886 ie = ioctl_entries;
6887 while (ie->target_cmd != 0) {
6888 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
6889 TARGET_IOC_SIZEMASK) {
6890 arg_type = ie->arg_type;
6891 if (arg_type[0] != TYPE_PTR) {
6892 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
6893 ie->target_cmd);
6894 exit(1);
6896 arg_type++;
6897 size = thunk_type_size(arg_type, 0);
6898 ie->target_cmd = (ie->target_cmd &
6899 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
6900 (size << TARGET_IOC_SIZESHIFT);
6903 /* automatic consistency check if same arch */
6904 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6905 (defined(__x86_64__) && defined(TARGET_X86_64))
6906 if (unlikely(ie->target_cmd != ie->host_cmd)) {
6907 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
6908 ie->name, ie->target_cmd, ie->host_cmd);
6910 #endif
6911 ie++;
6915 #if TARGET_ABI_BITS == 32
6916 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
6918 #ifdef TARGET_WORDS_BIGENDIAN
6919 return ((uint64_t)word0 << 32) | word1;
6920 #else
6921 return ((uint64_t)word1 << 32) | word0;
6922 #endif
6924 #else /* TARGET_ABI_BITS == 32 */
6925 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
6927 return word0;
6929 #endif /* TARGET_ABI_BITS != 32 */
6931 #ifdef TARGET_NR_truncate64
6932 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
6933 abi_long arg2,
6934 abi_long arg3,
6935 abi_long arg4)
6937 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
6938 arg2 = arg3;
6939 arg3 = arg4;
6941 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
6943 #endif
6945 #ifdef TARGET_NR_ftruncate64
6946 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
6947 abi_long arg2,
6948 abi_long arg3,
6949 abi_long arg4)
6951 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
6952 arg2 = arg3;
6953 arg3 = arg4;
6955 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
6957 #endif
6959 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
6960 abi_ulong target_addr)
6962 struct target_timespec *target_ts;
6964 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1))
6965 return -TARGET_EFAULT;
6966 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
6967 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
6968 unlock_user_struct(target_ts, target_addr, 0);
6969 return 0;
6972 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
6973 struct timespec *host_ts)
6975 struct target_timespec *target_ts;
6977 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0))
6978 return -TARGET_EFAULT;
6979 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
6980 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
6981 unlock_user_struct(target_ts, target_addr, 1);
6982 return 0;
6985 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
6986 abi_ulong target_addr)
6988 struct target_itimerspec *target_itspec;
6990 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
6991 return -TARGET_EFAULT;
6994 host_itspec->it_interval.tv_sec =
6995 tswapal(target_itspec->it_interval.tv_sec);
6996 host_itspec->it_interval.tv_nsec =
6997 tswapal(target_itspec->it_interval.tv_nsec);
6998 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
6999 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
7001 unlock_user_struct(target_itspec, target_addr, 1);
7002 return 0;
7005 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7006 struct itimerspec *host_its)
7008 struct target_itimerspec *target_itspec;
7010 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
7011 return -TARGET_EFAULT;
7014 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
7015 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
7017 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
7018 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
7020 unlock_user_struct(target_itspec, target_addr, 0);
7021 return 0;
7024 static inline abi_long target_to_host_timex(struct timex *host_tx,
7025 abi_long target_addr)
7027 struct target_timex *target_tx;
7029 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7030 return -TARGET_EFAULT;
7033 __get_user(host_tx->modes, &target_tx->modes);
7034 __get_user(host_tx->offset, &target_tx->offset);
7035 __get_user(host_tx->freq, &target_tx->freq);
7036 __get_user(host_tx->maxerror, &target_tx->maxerror);
7037 __get_user(host_tx->esterror, &target_tx->esterror);
7038 __get_user(host_tx->status, &target_tx->status);
7039 __get_user(host_tx->constant, &target_tx->constant);
7040 __get_user(host_tx->precision, &target_tx->precision);
7041 __get_user(host_tx->tolerance, &target_tx->tolerance);
7042 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7043 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7044 __get_user(host_tx->tick, &target_tx->tick);
7045 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7046 __get_user(host_tx->jitter, &target_tx->jitter);
7047 __get_user(host_tx->shift, &target_tx->shift);
7048 __get_user(host_tx->stabil, &target_tx->stabil);
7049 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7050 __get_user(host_tx->calcnt, &target_tx->calcnt);
7051 __get_user(host_tx->errcnt, &target_tx->errcnt);
7052 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7053 __get_user(host_tx->tai, &target_tx->tai);
7055 unlock_user_struct(target_tx, target_addr, 0);
7056 return 0;
7059 static inline abi_long host_to_target_timex(abi_long target_addr,
7060 struct timex *host_tx)
7062 struct target_timex *target_tx;
7064 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7065 return -TARGET_EFAULT;
7068 __put_user(host_tx->modes, &target_tx->modes);
7069 __put_user(host_tx->offset, &target_tx->offset);
7070 __put_user(host_tx->freq, &target_tx->freq);
7071 __put_user(host_tx->maxerror, &target_tx->maxerror);
7072 __put_user(host_tx->esterror, &target_tx->esterror);
7073 __put_user(host_tx->status, &target_tx->status);
7074 __put_user(host_tx->constant, &target_tx->constant);
7075 __put_user(host_tx->precision, &target_tx->precision);
7076 __put_user(host_tx->tolerance, &target_tx->tolerance);
7077 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7078 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7079 __put_user(host_tx->tick, &target_tx->tick);
7080 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7081 __put_user(host_tx->jitter, &target_tx->jitter);
7082 __put_user(host_tx->shift, &target_tx->shift);
7083 __put_user(host_tx->stabil, &target_tx->stabil);
7084 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7085 __put_user(host_tx->calcnt, &target_tx->calcnt);
7086 __put_user(host_tx->errcnt, &target_tx->errcnt);
7087 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7088 __put_user(host_tx->tai, &target_tx->tai);
7090 unlock_user_struct(target_tx, target_addr, 1);
7091 return 0;
7095 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7096 abi_ulong target_addr)
7098 struct target_sigevent *target_sevp;
7100 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7101 return -TARGET_EFAULT;
7104 /* This union is awkward on 64 bit systems because it has a 32 bit
7105 * integer and a pointer in it; we follow the conversion approach
7106 * used for handling sigval types in signal.c so the guest should get
7107 * the correct value back even if we did a 64 bit byteswap and it's
7108 * using the 32 bit integer.
7110 host_sevp->sigev_value.sival_ptr =
7111 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7112 host_sevp->sigev_signo =
7113 target_to_host_signal(tswap32(target_sevp->sigev_signo));
7114 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7115 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
7117 unlock_user_struct(target_sevp, target_addr, 1);
7118 return 0;
7121 #if defined(TARGET_NR_mlockall)
7122 static inline int target_to_host_mlockall_arg(int arg)
7124 int result = 0;
7126 if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
7127 result |= MCL_CURRENT;
7129 if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
7130 result |= MCL_FUTURE;
7132 return result;
7134 #endif
7136 static inline abi_long host_to_target_stat64(void *cpu_env,
7137 abi_ulong target_addr,
7138 struct stat *host_st)
7140 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7141 if (((CPUARMState *)cpu_env)->eabi) {
7142 struct target_eabi_stat64 *target_st;
7144 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7145 return -TARGET_EFAULT;
7146 memset(target_st, 0, sizeof(struct target_eabi_stat64));
7147 __put_user(host_st->st_dev, &target_st->st_dev);
7148 __put_user(host_st->st_ino, &target_st->st_ino);
7149 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7150 __put_user(host_st->st_ino, &target_st->__st_ino);
7151 #endif
7152 __put_user(host_st->st_mode, &target_st->st_mode);
7153 __put_user(host_st->st_nlink, &target_st->st_nlink);
7154 __put_user(host_st->st_uid, &target_st->st_uid);
7155 __put_user(host_st->st_gid, &target_st->st_gid);
7156 __put_user(host_st->st_rdev, &target_st->st_rdev);
7157 __put_user(host_st->st_size, &target_st->st_size);
7158 __put_user(host_st->st_blksize, &target_st->st_blksize);
7159 __put_user(host_st->st_blocks, &target_st->st_blocks);
7160 __put_user(host_st->st_atime, &target_st->target_st_atime);
7161 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7162 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7163 unlock_user_struct(target_st, target_addr, 1);
7164 } else
7165 #endif
7167 #if defined(TARGET_HAS_STRUCT_STAT64)
7168 struct target_stat64 *target_st;
7169 #else
7170 struct target_stat *target_st;
7171 #endif
7173 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7174 return -TARGET_EFAULT;
7175 memset(target_st, 0, sizeof(*target_st));
7176 __put_user(host_st->st_dev, &target_st->st_dev);
7177 __put_user(host_st->st_ino, &target_st->st_ino);
7178 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7179 __put_user(host_st->st_ino, &target_st->__st_ino);
7180 #endif
7181 __put_user(host_st->st_mode, &target_st->st_mode);
7182 __put_user(host_st->st_nlink, &target_st->st_nlink);
7183 __put_user(host_st->st_uid, &target_st->st_uid);
7184 __put_user(host_st->st_gid, &target_st->st_gid);
7185 __put_user(host_st->st_rdev, &target_st->st_rdev);
7186 /* XXX: better use of kernel struct */
7187 __put_user(host_st->st_size, &target_st->st_size);
7188 __put_user(host_st->st_blksize, &target_st->st_blksize);
7189 __put_user(host_st->st_blocks, &target_st->st_blocks);
7190 __put_user(host_st->st_atime, &target_st->target_st_atime);
7191 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7192 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7193 unlock_user_struct(target_st, target_addr, 1);
7196 return 0;
7199 /* ??? Using host futex calls even when target atomic operations
7200 are not really atomic probably breaks things. However implementing
7201 futexes locally would make futexes shared between multiple processes
7202 tricky. However they're probably useless because guest atomic
7203 operations won't work either. */
7204 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
7205 target_ulong uaddr2, int val3)
7207 struct timespec ts, *pts;
7208 int base_op;
7210 /* ??? We assume FUTEX_* constants are the same on both host
7211 and target. */
7212 #ifdef FUTEX_CMD_MASK
7213 base_op = op & FUTEX_CMD_MASK;
7214 #else
7215 base_op = op;
7216 #endif
7217 switch (base_op) {
7218 case FUTEX_WAIT:
7219 case FUTEX_WAIT_BITSET:
7220 if (timeout) {
7221 pts = &ts;
7222 target_to_host_timespec(pts, timeout);
7223 } else {
7224 pts = NULL;
7226 return get_errno(safe_futex(g2h(uaddr), op, tswap32(val),
7227 pts, NULL, val3));
7228 case FUTEX_WAKE:
7229 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
7230 case FUTEX_FD:
7231 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
7232 case FUTEX_REQUEUE:
7233 case FUTEX_CMP_REQUEUE:
7234 case FUTEX_WAKE_OP:
7235 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7236 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7237 But the prototype takes a `struct timespec *'; insert casts
7238 to satisfy the compiler. We do not need to tswap TIMEOUT
7239 since it's not compared to guest memory. */
7240 pts = (struct timespec *)(uintptr_t) timeout;
7241 return get_errno(safe_futex(g2h(uaddr), op, val, pts,
7242 g2h(uaddr2),
7243 (base_op == FUTEX_CMP_REQUEUE
7244 ? tswap32(val3)
7245 : val3)));
7246 default:
7247 return -TARGET_ENOSYS;
7250 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7251 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7252 abi_long handle, abi_long mount_id,
7253 abi_long flags)
7255 struct file_handle *target_fh;
7256 struct file_handle *fh;
7257 int mid = 0;
7258 abi_long ret;
7259 char *name;
7260 unsigned int size, total_size;
7262 if (get_user_s32(size, handle)) {
7263 return -TARGET_EFAULT;
7266 name = lock_user_string(pathname);
7267 if (!name) {
7268 return -TARGET_EFAULT;
7271 total_size = sizeof(struct file_handle) + size;
7272 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7273 if (!target_fh) {
7274 unlock_user(name, pathname, 0);
7275 return -TARGET_EFAULT;
7278 fh = g_malloc0(total_size);
7279 fh->handle_bytes = size;
7281 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7282 unlock_user(name, pathname, 0);
7284 /* man name_to_handle_at(2):
7285 * Other than the use of the handle_bytes field, the caller should treat
7286 * the file_handle structure as an opaque data type
7289 memcpy(target_fh, fh, total_size);
7290 target_fh->handle_bytes = tswap32(fh->handle_bytes);
7291 target_fh->handle_type = tswap32(fh->handle_type);
7292 g_free(fh);
7293 unlock_user(target_fh, handle, total_size);
7295 if (put_user_s32(mid, mount_id)) {
7296 return -TARGET_EFAULT;
7299 return ret;
7302 #endif
7304 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7305 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7306 abi_long flags)
7308 struct file_handle *target_fh;
7309 struct file_handle *fh;
7310 unsigned int size, total_size;
7311 abi_long ret;
7313 if (get_user_s32(size, handle)) {
7314 return -TARGET_EFAULT;
7317 total_size = sizeof(struct file_handle) + size;
7318 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7319 if (!target_fh) {
7320 return -TARGET_EFAULT;
7323 fh = g_memdup(target_fh, total_size);
7324 fh->handle_bytes = size;
7325 fh->handle_type = tswap32(target_fh->handle_type);
7327 ret = get_errno(open_by_handle_at(mount_fd, fh,
7328 target_to_host_bitmask(flags, fcntl_flags_tbl)));
7330 g_free(fh);
7332 unlock_user(target_fh, handle, total_size);
7334 return ret;
7336 #endif
7338 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7340 /* signalfd siginfo conversion */
7342 static void
7343 host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo,
7344 const struct signalfd_siginfo *info)
7346 int sig = host_to_target_signal(info->ssi_signo);
7348 /* linux/signalfd.h defines a ssi_addr_lsb
7349 * not defined in sys/signalfd.h but used by some kernels
7352 #ifdef BUS_MCEERR_AO
7353 if (tinfo->ssi_signo == SIGBUS &&
7354 (tinfo->ssi_code == BUS_MCEERR_AR ||
7355 tinfo->ssi_code == BUS_MCEERR_AO)) {
7356 uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1);
7357 uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1);
7358 *tssi_addr_lsb = tswap16(*ssi_addr_lsb);
7360 #endif
7362 tinfo->ssi_signo = tswap32(sig);
7363 tinfo->ssi_errno = tswap32(tinfo->ssi_errno);
7364 tinfo->ssi_code = tswap32(info->ssi_code);
7365 tinfo->ssi_pid = tswap32(info->ssi_pid);
7366 tinfo->ssi_uid = tswap32(info->ssi_uid);
7367 tinfo->ssi_fd = tswap32(info->ssi_fd);
7368 tinfo->ssi_tid = tswap32(info->ssi_tid);
7369 tinfo->ssi_band = tswap32(info->ssi_band);
7370 tinfo->ssi_overrun = tswap32(info->ssi_overrun);
7371 tinfo->ssi_trapno = tswap32(info->ssi_trapno);
7372 tinfo->ssi_status = tswap32(info->ssi_status);
7373 tinfo->ssi_int = tswap32(info->ssi_int);
7374 tinfo->ssi_ptr = tswap64(info->ssi_ptr);
7375 tinfo->ssi_utime = tswap64(info->ssi_utime);
7376 tinfo->ssi_stime = tswap64(info->ssi_stime);
7377 tinfo->ssi_addr = tswap64(info->ssi_addr);
7380 static abi_long host_to_target_data_signalfd(void *buf, size_t len)
7382 int i;
7384 for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) {
7385 host_to_target_signalfd_siginfo(buf + i, buf + i);
7388 return len;
7391 static TargetFdTrans target_signalfd_trans = {
7392 .host_to_target_data = host_to_target_data_signalfd,
7395 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7397 int host_flags;
7398 target_sigset_t *target_mask;
7399 sigset_t host_mask;
7400 abi_long ret;
7402 if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) {
7403 return -TARGET_EINVAL;
7405 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7406 return -TARGET_EFAULT;
7409 target_to_host_sigset(&host_mask, target_mask);
7411 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7413 ret = get_errno(signalfd(fd, &host_mask, host_flags));
7414 if (ret >= 0) {
7415 fd_trans_register(ret, &target_signalfd_trans);
7418 unlock_user_struct(target_mask, mask, 0);
7420 return ret;
7422 #endif
7424 /* Map host to target signal numbers for the wait family of syscalls.
7425 Assume all other status bits are the same. */
7426 int host_to_target_waitstatus(int status)
7428 if (WIFSIGNALED(status)) {
7429 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7431 if (WIFSTOPPED(status)) {
7432 return (host_to_target_signal(WSTOPSIG(status)) << 8)
7433 | (status & 0xff);
7435 return status;
7438 static int open_self_cmdline(void *cpu_env, int fd)
7440 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7441 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7442 int i;
7444 for (i = 0; i < bprm->argc; i++) {
7445 size_t len = strlen(bprm->argv[i]) + 1;
7447 if (write(fd, bprm->argv[i], len) != len) {
7448 return -1;
7452 return 0;
7455 static int open_self_maps(void *cpu_env, int fd)
7457 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7458 TaskState *ts = cpu->opaque;
7459 FILE *fp;
7460 char *line = NULL;
7461 size_t len = 0;
7462 ssize_t read;
7464 fp = fopen("/proc/self/maps", "r");
7465 if (fp == NULL) {
7466 return -1;
7469 while ((read = getline(&line, &len, fp)) != -1) {
7470 int fields, dev_maj, dev_min, inode;
7471 uint64_t min, max, offset;
7472 char flag_r, flag_w, flag_x, flag_p;
7473 char path[512] = "";
7474 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d"
7475 " %512s", &min, &max, &flag_r, &flag_w, &flag_x,
7476 &flag_p, &offset, &dev_maj, &dev_min, &inode, path);
7478 if ((fields < 10) || (fields > 11)) {
7479 continue;
7481 if (h2g_valid(min)) {
7482 int flags = page_get_flags(h2g(min));
7483 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX) + 1;
7484 if (page_check_range(h2g(min), max - min, flags) == -1) {
7485 continue;
7487 if (h2g(min) == ts->info->stack_limit) {
7488 pstrcpy(path, sizeof(path), " [stack]");
7490 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx
7491 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n",
7492 h2g(min), h2g(max - 1) + 1, flag_r, flag_w,
7493 flag_x, flag_p, offset, dev_maj, dev_min, inode,
7494 path[0] ? " " : "", path);
7498 free(line);
7499 fclose(fp);
7501 return 0;
7504 static int open_self_stat(void *cpu_env, int fd)
7506 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7507 TaskState *ts = cpu->opaque;
7508 abi_ulong start_stack = ts->info->start_stack;
7509 int i;
7511 for (i = 0; i < 44; i++) {
7512 char buf[128];
7513 int len;
7514 uint64_t val = 0;
7516 if (i == 0) {
7517 /* pid */
7518 val = getpid();
7519 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
7520 } else if (i == 1) {
7521 /* app name */
7522 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]);
7523 } else if (i == 27) {
7524 /* stack bottom */
7525 val = start_stack;
7526 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
7527 } else {
7528 /* for the rest, there is MasterCard */
7529 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' ');
7532 len = strlen(buf);
7533 if (write(fd, buf, len) != len) {
7534 return -1;
7538 return 0;
7541 static int open_self_auxv(void *cpu_env, int fd)
7543 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7544 TaskState *ts = cpu->opaque;
7545 abi_ulong auxv = ts->info->saved_auxv;
7546 abi_ulong len = ts->info->auxv_len;
7547 char *ptr;
7550 * Auxiliary vector is stored in target process stack.
7551 * read in whole auxv vector and copy it to file
7553 ptr = lock_user(VERIFY_READ, auxv, len, 0);
7554 if (ptr != NULL) {
7555 while (len > 0) {
7556 ssize_t r;
7557 r = write(fd, ptr, len);
7558 if (r <= 0) {
7559 break;
7561 len -= r;
7562 ptr += r;
7564 lseek(fd, 0, SEEK_SET);
7565 unlock_user(ptr, auxv, len);
7568 return 0;
7571 static int is_proc_myself(const char *filename, const char *entry)
7573 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
7574 filename += strlen("/proc/");
7575 if (!strncmp(filename, "self/", strlen("self/"))) {
7576 filename += strlen("self/");
7577 } else if (*filename >= '1' && *filename <= '9') {
7578 char myself[80];
7579 snprintf(myself, sizeof(myself), "%d/", getpid());
7580 if (!strncmp(filename, myself, strlen(myself))) {
7581 filename += strlen(myself);
7582 } else {
7583 return 0;
7585 } else {
7586 return 0;
7588 if (!strcmp(filename, entry)) {
7589 return 1;
7592 return 0;
7595 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7596 static int is_proc(const char *filename, const char *entry)
7598 return strcmp(filename, entry) == 0;
7601 static int open_net_route(void *cpu_env, int fd)
7603 FILE *fp;
7604 char *line = NULL;
7605 size_t len = 0;
7606 ssize_t read;
7608 fp = fopen("/proc/net/route", "r");
7609 if (fp == NULL) {
7610 return -1;
7613 /* read header */
7615 read = getline(&line, &len, fp);
7616 dprintf(fd, "%s", line);
7618 /* read routes */
7620 while ((read = getline(&line, &len, fp)) != -1) {
7621 char iface[16];
7622 uint32_t dest, gw, mask;
7623 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
7624 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7625 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
7626 &mask, &mtu, &window, &irtt);
7627 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7628 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
7629 metric, tswap32(mask), mtu, window, irtt);
7632 free(line);
7633 fclose(fp);
7635 return 0;
7637 #endif
7639 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
7641 struct fake_open {
7642 const char *filename;
7643 int (*fill)(void *cpu_env, int fd);
7644 int (*cmp)(const char *s1, const char *s2);
7646 const struct fake_open *fake_open;
7647 static const struct fake_open fakes[] = {
7648 { "maps", open_self_maps, is_proc_myself },
7649 { "stat", open_self_stat, is_proc_myself },
7650 { "auxv", open_self_auxv, is_proc_myself },
7651 { "cmdline", open_self_cmdline, is_proc_myself },
7652 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7653 { "/proc/net/route", open_net_route, is_proc },
7654 #endif
7655 { NULL, NULL, NULL }
7658 if (is_proc_myself(pathname, "exe")) {
7659 int execfd = qemu_getauxval(AT_EXECFD);
7660 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
7663 for (fake_open = fakes; fake_open->filename; fake_open++) {
7664 if (fake_open->cmp(pathname, fake_open->filename)) {
7665 break;
7669 if (fake_open->filename) {
7670 const char *tmpdir;
7671 char filename[PATH_MAX];
7672 int fd, r;
7674 /* create temporary file to map stat to */
7675 tmpdir = getenv("TMPDIR");
7676 if (!tmpdir)
7677 tmpdir = "/tmp";
7678 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
7679 fd = mkstemp(filename);
7680 if (fd < 0) {
7681 return fd;
7683 unlink(filename);
7685 if ((r = fake_open->fill(cpu_env, fd))) {
7686 int e = errno;
7687 close(fd);
7688 errno = e;
7689 return r;
7691 lseek(fd, 0, SEEK_SET);
7693 return fd;
7696 return safe_openat(dirfd, path(pathname), flags, mode);
7699 #define TIMER_MAGIC 0x0caf0000
7700 #define TIMER_MAGIC_MASK 0xffff0000
7702 /* Convert QEMU provided timer ID back to internal 16bit index format */
7703 static target_timer_t get_timer_id(abi_long arg)
7705 target_timer_t timerid = arg;
7707 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
7708 return -TARGET_EINVAL;
7711 timerid &= 0xffff;
7713 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
7714 return -TARGET_EINVAL;
7717 return timerid;
7720 static abi_long swap_data_eventfd(void *buf, size_t len)
7722 uint64_t *counter = buf;
7723 int i;
7725 if (len < sizeof(uint64_t)) {
7726 return -EINVAL;
7729 for (i = 0; i < len; i += sizeof(uint64_t)) {
7730 *counter = tswap64(*counter);
7731 counter++;
7734 return len;
7737 static TargetFdTrans target_eventfd_trans = {
7738 .host_to_target_data = swap_data_eventfd,
7739 .target_to_host_data = swap_data_eventfd,
7742 #if (defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)) || \
7743 (defined(CONFIG_INOTIFY1) && defined(TARGET_NR_inotify_init1) && \
7744 defined(__NR_inotify_init1))
7745 static abi_long host_to_target_data_inotify(void *buf, size_t len)
7747 struct inotify_event *ev;
7748 int i;
7749 uint32_t name_len;
7751 for (i = 0; i < len; i += sizeof(struct inotify_event) + name_len) {
7752 ev = (struct inotify_event *)((char *)buf + i);
7753 name_len = ev->len;
7755 ev->wd = tswap32(ev->wd);
7756 ev->mask = tswap32(ev->mask);
7757 ev->cookie = tswap32(ev->cookie);
7758 ev->len = tswap32(name_len);
7761 return len;
7764 static TargetFdTrans target_inotify_trans = {
7765 .host_to_target_data = host_to_target_data_inotify,
7767 #endif
7769 static int target_to_host_cpu_mask(unsigned long *host_mask,
7770 size_t host_size,
7771 abi_ulong target_addr,
7772 size_t target_size)
7774 unsigned target_bits = sizeof(abi_ulong) * 8;
7775 unsigned host_bits = sizeof(*host_mask) * 8;
7776 abi_ulong *target_mask;
7777 unsigned i, j;
7779 assert(host_size >= target_size);
7781 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
7782 if (!target_mask) {
7783 return -TARGET_EFAULT;
7785 memset(host_mask, 0, host_size);
7787 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7788 unsigned bit = i * target_bits;
7789 abi_ulong val;
7791 __get_user(val, &target_mask[i]);
7792 for (j = 0; j < target_bits; j++, bit++) {
7793 if (val & (1UL << j)) {
7794 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
7799 unlock_user(target_mask, target_addr, 0);
7800 return 0;
7803 static int host_to_target_cpu_mask(const unsigned long *host_mask,
7804 size_t host_size,
7805 abi_ulong target_addr,
7806 size_t target_size)
7808 unsigned target_bits = sizeof(abi_ulong) * 8;
7809 unsigned host_bits = sizeof(*host_mask) * 8;
7810 abi_ulong *target_mask;
7811 unsigned i, j;
7813 assert(host_size >= target_size);
7815 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
7816 if (!target_mask) {
7817 return -TARGET_EFAULT;
7820 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7821 unsigned bit = i * target_bits;
7822 abi_ulong val = 0;
7824 for (j = 0; j < target_bits; j++, bit++) {
7825 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
7826 val |= 1UL << j;
7829 __put_user(val, &target_mask[i]);
7832 unlock_user(target_mask, target_addr, target_size);
7833 return 0;
7836 /* do_syscall() should always have a single exit point at the end so
7837 that actions, such as logging of syscall results, can be performed.
7838 All errnos that do_syscall() returns must be -TARGET_<errcode>. */
7839 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
7840 abi_long arg2, abi_long arg3, abi_long arg4,
7841 abi_long arg5, abi_long arg6, abi_long arg7,
7842 abi_long arg8)
7844 CPUState *cpu = ENV_GET_CPU(cpu_env);
7845 abi_long ret;
7846 struct stat st;
7847 struct statfs stfs;
7848 void *p;
7850 #if defined(DEBUG_ERESTARTSYS)
7851 /* Debug-only code for exercising the syscall-restart code paths
7852 * in the per-architecture cpu main loops: restart every syscall
7853 * the guest makes once before letting it through.
7856 static int flag;
7858 flag = !flag;
7859 if (flag) {
7860 return -TARGET_ERESTARTSYS;
7863 #endif
7865 #ifdef DEBUG
7866 gemu_log("syscall %d", num);
7867 #endif
7868 trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
7869 if(do_strace)
7870 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
7872 switch(num) {
7873 case TARGET_NR_exit:
7874 /* In old applications this may be used to implement _exit(2).
7875 However in threaded applictions it is used for thread termination,
7876 and _exit_group is used for application termination.
7877 Do thread termination if we have more then one thread. */
7879 if (block_signals()) {
7880 ret = -TARGET_ERESTARTSYS;
7881 break;
7884 cpu_list_lock();
7886 if (CPU_NEXT(first_cpu)) {
7887 TaskState *ts;
7889 /* Remove the CPU from the list. */
7890 QTAILQ_REMOVE(&cpus, cpu, node);
7892 cpu_list_unlock();
7894 ts = cpu->opaque;
7895 if (ts->child_tidptr) {
7896 put_user_u32(0, ts->child_tidptr);
7897 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
7898 NULL, NULL, 0);
7900 thread_cpu = NULL;
7901 object_unref(OBJECT(cpu));
7902 g_free(ts);
7903 rcu_unregister_thread();
7904 pthread_exit(NULL);
7907 cpu_list_unlock();
7908 #ifdef TARGET_GPROF
7909 _mcleanup();
7910 #endif
7911 gdb_exit(cpu_env, arg1);
7912 _exit(arg1);
7913 ret = 0; /* avoid warning */
7914 break;
7915 case TARGET_NR_read:
7916 if (arg3 == 0)
7917 ret = 0;
7918 else {
7919 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
7920 goto efault;
7921 ret = get_errno(safe_read(arg1, p, arg3));
7922 if (ret >= 0 &&
7923 fd_trans_host_to_target_data(arg1)) {
7924 ret = fd_trans_host_to_target_data(arg1)(p, ret);
7926 unlock_user(p, arg2, ret);
7928 break;
7929 case TARGET_NR_write:
7930 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
7931 goto efault;
7932 if (fd_trans_target_to_host_data(arg1)) {
7933 void *copy = g_malloc(arg3);
7934 memcpy(copy, p, arg3);
7935 ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
7936 if (ret >= 0) {
7937 ret = get_errno(safe_write(arg1, copy, ret));
7939 g_free(copy);
7940 } else {
7941 ret = get_errno(safe_write(arg1, p, arg3));
7943 unlock_user(p, arg2, 0);
7944 break;
7945 #ifdef TARGET_NR_open
7946 case TARGET_NR_open:
7947 if (!(p = lock_user_string(arg1)))
7948 goto efault;
7949 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
7950 target_to_host_bitmask(arg2, fcntl_flags_tbl),
7951 arg3));
7952 fd_trans_unregister(ret);
7953 unlock_user(p, arg1, 0);
7954 break;
7955 #endif
7956 case TARGET_NR_openat:
7957 if (!(p = lock_user_string(arg2)))
7958 goto efault;
7959 ret = get_errno(do_openat(cpu_env, arg1, p,
7960 target_to_host_bitmask(arg3, fcntl_flags_tbl),
7961 arg4));
7962 fd_trans_unregister(ret);
7963 unlock_user(p, arg2, 0);
7964 break;
7965 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7966 case TARGET_NR_name_to_handle_at:
7967 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
7968 break;
7969 #endif
7970 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7971 case TARGET_NR_open_by_handle_at:
7972 ret = do_open_by_handle_at(arg1, arg2, arg3);
7973 fd_trans_unregister(ret);
7974 break;
7975 #endif
7976 case TARGET_NR_close:
7977 fd_trans_unregister(arg1);
7978 ret = get_errno(close(arg1));
7979 break;
7980 case TARGET_NR_brk:
7981 ret = do_brk(arg1);
7982 break;
7983 #ifdef TARGET_NR_fork
7984 case TARGET_NR_fork:
7985 ret = get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
7986 break;
7987 #endif
7988 #ifdef TARGET_NR_waitpid
7989 case TARGET_NR_waitpid:
7991 int status;
7992 ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
7993 if (!is_error(ret) && arg2 && ret
7994 && put_user_s32(host_to_target_waitstatus(status), arg2))
7995 goto efault;
7997 break;
7998 #endif
7999 #ifdef TARGET_NR_waitid
8000 case TARGET_NR_waitid:
8002 siginfo_t info;
8003 info.si_pid = 0;
8004 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
8005 if (!is_error(ret) && arg3 && info.si_pid != 0) {
8006 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
8007 goto efault;
8008 host_to_target_siginfo(p, &info);
8009 unlock_user(p, arg3, sizeof(target_siginfo_t));
8012 break;
8013 #endif
8014 #ifdef TARGET_NR_creat /* not on alpha */
8015 case TARGET_NR_creat:
8016 if (!(p = lock_user_string(arg1)))
8017 goto efault;
8018 ret = get_errno(creat(p, arg2));
8019 fd_trans_unregister(ret);
8020 unlock_user(p, arg1, 0);
8021 break;
8022 #endif
8023 #ifdef TARGET_NR_link
8024 case TARGET_NR_link:
8026 void * p2;
8027 p = lock_user_string(arg1);
8028 p2 = lock_user_string(arg2);
8029 if (!p || !p2)
8030 ret = -TARGET_EFAULT;
8031 else
8032 ret = get_errno(link(p, p2));
8033 unlock_user(p2, arg2, 0);
8034 unlock_user(p, arg1, 0);
8036 break;
8037 #endif
8038 #if defined(TARGET_NR_linkat)
8039 case TARGET_NR_linkat:
8041 void * p2 = NULL;
8042 if (!arg2 || !arg4)
8043 goto efault;
8044 p = lock_user_string(arg2);
8045 p2 = lock_user_string(arg4);
8046 if (!p || !p2)
8047 ret = -TARGET_EFAULT;
8048 else
8049 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
8050 unlock_user(p, arg2, 0);
8051 unlock_user(p2, arg4, 0);
8053 break;
8054 #endif
8055 #ifdef TARGET_NR_unlink
8056 case TARGET_NR_unlink:
8057 if (!(p = lock_user_string(arg1)))
8058 goto efault;
8059 ret = get_errno(unlink(p));
8060 unlock_user(p, arg1, 0);
8061 break;
8062 #endif
8063 #if defined(TARGET_NR_unlinkat)
8064 case TARGET_NR_unlinkat:
8065 if (!(p = lock_user_string(arg2)))
8066 goto efault;
8067 ret = get_errno(unlinkat(arg1, p, arg3));
8068 unlock_user(p, arg2, 0);
8069 break;
8070 #endif
8071 case TARGET_NR_execve:
8073 char **argp, **envp;
8074 int argc, envc;
8075 abi_ulong gp;
8076 abi_ulong guest_argp;
8077 abi_ulong guest_envp;
8078 abi_ulong addr;
8079 char **q;
8080 int total_size = 0;
8082 argc = 0;
8083 guest_argp = arg2;
8084 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8085 if (get_user_ual(addr, gp))
8086 goto efault;
8087 if (!addr)
8088 break;
8089 argc++;
8091 envc = 0;
8092 guest_envp = arg3;
8093 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8094 if (get_user_ual(addr, gp))
8095 goto efault;
8096 if (!addr)
8097 break;
8098 envc++;
8101 argp = g_new0(char *, argc + 1);
8102 envp = g_new0(char *, envc + 1);
8104 for (gp = guest_argp, q = argp; gp;
8105 gp += sizeof(abi_ulong), q++) {
8106 if (get_user_ual(addr, gp))
8107 goto execve_efault;
8108 if (!addr)
8109 break;
8110 if (!(*q = lock_user_string(addr)))
8111 goto execve_efault;
8112 total_size += strlen(*q) + 1;
8114 *q = NULL;
8116 for (gp = guest_envp, q = envp; gp;
8117 gp += sizeof(abi_ulong), q++) {
8118 if (get_user_ual(addr, gp))
8119 goto execve_efault;
8120 if (!addr)
8121 break;
8122 if (!(*q = lock_user_string(addr)))
8123 goto execve_efault;
8124 total_size += strlen(*q) + 1;
8126 *q = NULL;
8128 if (!(p = lock_user_string(arg1)))
8129 goto execve_efault;
8130 /* Although execve() is not an interruptible syscall it is
8131 * a special case where we must use the safe_syscall wrapper:
8132 * if we allow a signal to happen before we make the host
8133 * syscall then we will 'lose' it, because at the point of
8134 * execve the process leaves QEMU's control. So we use the
8135 * safe syscall wrapper to ensure that we either take the
8136 * signal as a guest signal, or else it does not happen
8137 * before the execve completes and makes it the other
8138 * program's problem.
8140 ret = get_errno(safe_execve(p, argp, envp));
8141 unlock_user(p, arg1, 0);
8143 goto execve_end;
8145 execve_efault:
8146 ret = -TARGET_EFAULT;
8148 execve_end:
8149 for (gp = guest_argp, q = argp; *q;
8150 gp += sizeof(abi_ulong), q++) {
8151 if (get_user_ual(addr, gp)
8152 || !addr)
8153 break;
8154 unlock_user(*q, addr, 0);
8156 for (gp = guest_envp, q = envp; *q;
8157 gp += sizeof(abi_ulong), q++) {
8158 if (get_user_ual(addr, gp)
8159 || !addr)
8160 break;
8161 unlock_user(*q, addr, 0);
8164 g_free(argp);
8165 g_free(envp);
8167 break;
8168 case TARGET_NR_chdir:
8169 if (!(p = lock_user_string(arg1)))
8170 goto efault;
8171 ret = get_errno(chdir(p));
8172 unlock_user(p, arg1, 0);
8173 break;
8174 #ifdef TARGET_NR_time
8175 case TARGET_NR_time:
8177 time_t host_time;
8178 ret = get_errno(time(&host_time));
8179 if (!is_error(ret)
8180 && arg1
8181 && put_user_sal(host_time, arg1))
8182 goto efault;
8184 break;
8185 #endif
8186 #ifdef TARGET_NR_mknod
8187 case TARGET_NR_mknod:
8188 if (!(p = lock_user_string(arg1)))
8189 goto efault;
8190 ret = get_errno(mknod(p, arg2, arg3));
8191 unlock_user(p, arg1, 0);
8192 break;
8193 #endif
8194 #if defined(TARGET_NR_mknodat)
8195 case TARGET_NR_mknodat:
8196 if (!(p = lock_user_string(arg2)))
8197 goto efault;
8198 ret = get_errno(mknodat(arg1, p, arg3, arg4));
8199 unlock_user(p, arg2, 0);
8200 break;
8201 #endif
8202 #ifdef TARGET_NR_chmod
8203 case TARGET_NR_chmod:
8204 if (!(p = lock_user_string(arg1)))
8205 goto efault;
8206 ret = get_errno(chmod(p, arg2));
8207 unlock_user(p, arg1, 0);
8208 break;
8209 #endif
8210 #ifdef TARGET_NR_break
8211 case TARGET_NR_break:
8212 goto unimplemented;
8213 #endif
8214 #ifdef TARGET_NR_oldstat
8215 case TARGET_NR_oldstat:
8216 goto unimplemented;
8217 #endif
8218 case TARGET_NR_lseek:
8219 ret = get_errno(lseek(arg1, arg2, arg3));
8220 break;
8221 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8222 /* Alpha specific */
8223 case TARGET_NR_getxpid:
8224 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
8225 ret = get_errno(getpid());
8226 break;
8227 #endif
8228 #ifdef TARGET_NR_getpid
8229 case TARGET_NR_getpid:
8230 ret = get_errno(getpid());
8231 break;
8232 #endif
8233 case TARGET_NR_mount:
8235 /* need to look at the data field */
8236 void *p2, *p3;
8238 if (arg1) {
8239 p = lock_user_string(arg1);
8240 if (!p) {
8241 goto efault;
8243 } else {
8244 p = NULL;
8247 p2 = lock_user_string(arg2);
8248 if (!p2) {
8249 if (arg1) {
8250 unlock_user(p, arg1, 0);
8252 goto efault;
8255 if (arg3) {
8256 p3 = lock_user_string(arg3);
8257 if (!p3) {
8258 if (arg1) {
8259 unlock_user(p, arg1, 0);
8261 unlock_user(p2, arg2, 0);
8262 goto efault;
8264 } else {
8265 p3 = NULL;
8268 /* FIXME - arg5 should be locked, but it isn't clear how to
8269 * do that since it's not guaranteed to be a NULL-terminated
8270 * string.
8272 if (!arg5) {
8273 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8274 } else {
8275 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
8277 ret = get_errno(ret);
8279 if (arg1) {
8280 unlock_user(p, arg1, 0);
8282 unlock_user(p2, arg2, 0);
8283 if (arg3) {
8284 unlock_user(p3, arg3, 0);
8287 break;
8288 #ifdef TARGET_NR_umount
8289 case TARGET_NR_umount:
8290 if (!(p = lock_user_string(arg1)))
8291 goto efault;
8292 ret = get_errno(umount(p));
8293 unlock_user(p, arg1, 0);
8294 break;
8295 #endif
8296 #ifdef TARGET_NR_stime /* not on alpha */
8297 case TARGET_NR_stime:
8299 time_t host_time;
8300 if (get_user_sal(host_time, arg1))
8301 goto efault;
8302 ret = get_errno(stime(&host_time));
8304 break;
8305 #endif
8306 case TARGET_NR_ptrace:
8307 goto unimplemented;
8308 #ifdef TARGET_NR_alarm /* not on alpha */
8309 case TARGET_NR_alarm:
8310 ret = alarm(arg1);
8311 break;
8312 #endif
8313 #ifdef TARGET_NR_oldfstat
8314 case TARGET_NR_oldfstat:
8315 goto unimplemented;
8316 #endif
8317 #ifdef TARGET_NR_pause /* not on alpha */
8318 case TARGET_NR_pause:
8319 if (!block_signals()) {
8320 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
8322 ret = -TARGET_EINTR;
8323 break;
8324 #endif
8325 #ifdef TARGET_NR_utime
8326 case TARGET_NR_utime:
8328 struct utimbuf tbuf, *host_tbuf;
8329 struct target_utimbuf *target_tbuf;
8330 if (arg2) {
8331 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
8332 goto efault;
8333 tbuf.actime = tswapal(target_tbuf->actime);
8334 tbuf.modtime = tswapal(target_tbuf->modtime);
8335 unlock_user_struct(target_tbuf, arg2, 0);
8336 host_tbuf = &tbuf;
8337 } else {
8338 host_tbuf = NULL;
8340 if (!(p = lock_user_string(arg1)))
8341 goto efault;
8342 ret = get_errno(utime(p, host_tbuf));
8343 unlock_user(p, arg1, 0);
8345 break;
8346 #endif
8347 #ifdef TARGET_NR_utimes
8348 case TARGET_NR_utimes:
8350 struct timeval *tvp, tv[2];
8351 if (arg2) {
8352 if (copy_from_user_timeval(&tv[0], arg2)
8353 || copy_from_user_timeval(&tv[1],
8354 arg2 + sizeof(struct target_timeval)))
8355 goto efault;
8356 tvp = tv;
8357 } else {
8358 tvp = NULL;
8360 if (!(p = lock_user_string(arg1)))
8361 goto efault;
8362 ret = get_errno(utimes(p, tvp));
8363 unlock_user(p, arg1, 0);
8365 break;
8366 #endif
8367 #if defined(TARGET_NR_futimesat)
8368 case TARGET_NR_futimesat:
8370 struct timeval *tvp, tv[2];
8371 if (arg3) {
8372 if (copy_from_user_timeval(&tv[0], arg3)
8373 || copy_from_user_timeval(&tv[1],
8374 arg3 + sizeof(struct target_timeval)))
8375 goto efault;
8376 tvp = tv;
8377 } else {
8378 tvp = NULL;
8380 if (!(p = lock_user_string(arg2)))
8381 goto efault;
8382 ret = get_errno(futimesat(arg1, path(p), tvp));
8383 unlock_user(p, arg2, 0);
8385 break;
8386 #endif
8387 #ifdef TARGET_NR_stty
8388 case TARGET_NR_stty:
8389 goto unimplemented;
8390 #endif
8391 #ifdef TARGET_NR_gtty
8392 case TARGET_NR_gtty:
8393 goto unimplemented;
8394 #endif
8395 #ifdef TARGET_NR_access
8396 case TARGET_NR_access:
8397 if (!(p = lock_user_string(arg1)))
8398 goto efault;
8399 ret = get_errno(access(path(p), arg2));
8400 unlock_user(p, arg1, 0);
8401 break;
8402 #endif
8403 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
8404 case TARGET_NR_faccessat:
8405 if (!(p = lock_user_string(arg2)))
8406 goto efault;
8407 ret = get_errno(faccessat(arg1, p, arg3, 0));
8408 unlock_user(p, arg2, 0);
8409 break;
8410 #endif
8411 #ifdef TARGET_NR_nice /* not on alpha */
8412 case TARGET_NR_nice:
8413 ret = get_errno(nice(arg1));
8414 break;
8415 #endif
8416 #ifdef TARGET_NR_ftime
8417 case TARGET_NR_ftime:
8418 goto unimplemented;
8419 #endif
8420 case TARGET_NR_sync:
8421 sync();
8422 ret = 0;
8423 break;
8424 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
8425 case TARGET_NR_syncfs:
8426 ret = get_errno(syncfs(arg1));
8427 break;
8428 #endif
8429 case TARGET_NR_kill:
8430 ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
8431 break;
8432 #ifdef TARGET_NR_rename
8433 case TARGET_NR_rename:
8435 void *p2;
8436 p = lock_user_string(arg1);
8437 p2 = lock_user_string(arg2);
8438 if (!p || !p2)
8439 ret = -TARGET_EFAULT;
8440 else
8441 ret = get_errno(rename(p, p2));
8442 unlock_user(p2, arg2, 0);
8443 unlock_user(p, arg1, 0);
8445 break;
8446 #endif
8447 #if defined(TARGET_NR_renameat)
8448 case TARGET_NR_renameat:
8450 void *p2;
8451 p = lock_user_string(arg2);
8452 p2 = lock_user_string(arg4);
8453 if (!p || !p2)
8454 ret = -TARGET_EFAULT;
8455 else
8456 ret = get_errno(renameat(arg1, p, arg3, p2));
8457 unlock_user(p2, arg4, 0);
8458 unlock_user(p, arg2, 0);
8460 break;
8461 #endif
8462 #if defined(TARGET_NR_renameat2)
8463 case TARGET_NR_renameat2:
8465 void *p2;
8466 p = lock_user_string(arg2);
8467 p2 = lock_user_string(arg4);
8468 if (!p || !p2) {
8469 ret = -TARGET_EFAULT;
8470 } else {
8471 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
8473 unlock_user(p2, arg4, 0);
8474 unlock_user(p, arg2, 0);
8476 break;
8477 #endif
8478 #ifdef TARGET_NR_mkdir
8479 case TARGET_NR_mkdir:
8480 if (!(p = lock_user_string(arg1)))
8481 goto efault;
8482 ret = get_errno(mkdir(p, arg2));
8483 unlock_user(p, arg1, 0);
8484 break;
8485 #endif
8486 #if defined(TARGET_NR_mkdirat)
8487 case TARGET_NR_mkdirat:
8488 if (!(p = lock_user_string(arg2)))
8489 goto efault;
8490 ret = get_errno(mkdirat(arg1, p, arg3));
8491 unlock_user(p, arg2, 0);
8492 break;
8493 #endif
8494 #ifdef TARGET_NR_rmdir
8495 case TARGET_NR_rmdir:
8496 if (!(p = lock_user_string(arg1)))
8497 goto efault;
8498 ret = get_errno(rmdir(p));
8499 unlock_user(p, arg1, 0);
8500 break;
8501 #endif
8502 case TARGET_NR_dup:
8503 ret = get_errno(dup(arg1));
8504 if (ret >= 0) {
8505 fd_trans_dup(arg1, ret);
8507 break;
8508 #ifdef TARGET_NR_pipe
8509 case TARGET_NR_pipe:
8510 ret = do_pipe(cpu_env, arg1, 0, 0);
8511 break;
8512 #endif
8513 #ifdef TARGET_NR_pipe2
8514 case TARGET_NR_pipe2:
8515 ret = do_pipe(cpu_env, arg1,
8516 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
8517 break;
8518 #endif
8519 case TARGET_NR_times:
8521 struct target_tms *tmsp;
8522 struct tms tms;
8523 ret = get_errno(times(&tms));
8524 if (arg1) {
8525 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
8526 if (!tmsp)
8527 goto efault;
8528 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
8529 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
8530 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
8531 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
8533 if (!is_error(ret))
8534 ret = host_to_target_clock_t(ret);
8536 break;
8537 #ifdef TARGET_NR_prof
8538 case TARGET_NR_prof:
8539 goto unimplemented;
8540 #endif
8541 #ifdef TARGET_NR_signal
8542 case TARGET_NR_signal:
8543 goto unimplemented;
8544 #endif
8545 case TARGET_NR_acct:
8546 if (arg1 == 0) {
8547 ret = get_errno(acct(NULL));
8548 } else {
8549 if (!(p = lock_user_string(arg1)))
8550 goto efault;
8551 ret = get_errno(acct(path(p)));
8552 unlock_user(p, arg1, 0);
8554 break;
8555 #ifdef TARGET_NR_umount2
8556 case TARGET_NR_umount2:
8557 if (!(p = lock_user_string(arg1)))
8558 goto efault;
8559 ret = get_errno(umount2(p, arg2));
8560 unlock_user(p, arg1, 0);
8561 break;
8562 #endif
8563 #ifdef TARGET_NR_lock
8564 case TARGET_NR_lock:
8565 goto unimplemented;
8566 #endif
8567 case TARGET_NR_ioctl:
8568 ret = do_ioctl(arg1, arg2, arg3);
8569 break;
8570 #ifdef TARGET_NR_fcntl
8571 case TARGET_NR_fcntl:
8572 ret = do_fcntl(arg1, arg2, arg3);
8573 break;
8574 #endif
8575 #ifdef TARGET_NR_mpx
8576 case TARGET_NR_mpx:
8577 goto unimplemented;
8578 #endif
8579 case TARGET_NR_setpgid:
8580 ret = get_errno(setpgid(arg1, arg2));
8581 break;
8582 #ifdef TARGET_NR_ulimit
8583 case TARGET_NR_ulimit:
8584 goto unimplemented;
8585 #endif
8586 #ifdef TARGET_NR_oldolduname
8587 case TARGET_NR_oldolduname:
8588 goto unimplemented;
8589 #endif
8590 case TARGET_NR_umask:
8591 ret = get_errno(umask(arg1));
8592 break;
8593 case TARGET_NR_chroot:
8594 if (!(p = lock_user_string(arg1)))
8595 goto efault;
8596 ret = get_errno(chroot(p));
8597 unlock_user(p, arg1, 0);
8598 break;
8599 #ifdef TARGET_NR_ustat
8600 case TARGET_NR_ustat:
8601 goto unimplemented;
8602 #endif
8603 #ifdef TARGET_NR_dup2
8604 case TARGET_NR_dup2:
8605 ret = get_errno(dup2(arg1, arg2));
8606 if (ret >= 0) {
8607 fd_trans_dup(arg1, arg2);
8609 break;
8610 #endif
8611 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8612 case TARGET_NR_dup3:
8614 int host_flags;
8616 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
8617 return -EINVAL;
8619 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
8620 ret = get_errno(dup3(arg1, arg2, host_flags));
8621 if (ret >= 0) {
8622 fd_trans_dup(arg1, arg2);
8624 break;
8626 #endif
8627 #ifdef TARGET_NR_getppid /* not on alpha */
8628 case TARGET_NR_getppid:
8629 ret = get_errno(getppid());
8630 break;
8631 #endif
8632 #ifdef TARGET_NR_getpgrp
8633 case TARGET_NR_getpgrp:
8634 ret = get_errno(getpgrp());
8635 break;
8636 #endif
8637 case TARGET_NR_setsid:
8638 ret = get_errno(setsid());
8639 break;
8640 #ifdef TARGET_NR_sigaction
8641 case TARGET_NR_sigaction:
8643 #if defined(TARGET_ALPHA)
8644 struct target_sigaction act, oact, *pact = 0;
8645 struct target_old_sigaction *old_act;
8646 if (arg2) {
8647 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8648 goto efault;
8649 act._sa_handler = old_act->_sa_handler;
8650 target_siginitset(&act.sa_mask, old_act->sa_mask);
8651 act.sa_flags = old_act->sa_flags;
8652 act.sa_restorer = 0;
8653 unlock_user_struct(old_act, arg2, 0);
8654 pact = &act;
8656 ret = get_errno(do_sigaction(arg1, pact, &oact));
8657 if (!is_error(ret) && arg3) {
8658 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8659 goto efault;
8660 old_act->_sa_handler = oact._sa_handler;
8661 old_act->sa_mask = oact.sa_mask.sig[0];
8662 old_act->sa_flags = oact.sa_flags;
8663 unlock_user_struct(old_act, arg3, 1);
8665 #elif defined(TARGET_MIPS)
8666 struct target_sigaction act, oact, *pact, *old_act;
8668 if (arg2) {
8669 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8670 goto efault;
8671 act._sa_handler = old_act->_sa_handler;
8672 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
8673 act.sa_flags = old_act->sa_flags;
8674 unlock_user_struct(old_act, arg2, 0);
8675 pact = &act;
8676 } else {
8677 pact = NULL;
8680 ret = get_errno(do_sigaction(arg1, pact, &oact));
8682 if (!is_error(ret) && arg3) {
8683 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8684 goto efault;
8685 old_act->_sa_handler = oact._sa_handler;
8686 old_act->sa_flags = oact.sa_flags;
8687 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
8688 old_act->sa_mask.sig[1] = 0;
8689 old_act->sa_mask.sig[2] = 0;
8690 old_act->sa_mask.sig[3] = 0;
8691 unlock_user_struct(old_act, arg3, 1);
8693 #else
8694 struct target_old_sigaction *old_act;
8695 struct target_sigaction act, oact, *pact;
8696 if (arg2) {
8697 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8698 goto efault;
8699 act._sa_handler = old_act->_sa_handler;
8700 target_siginitset(&act.sa_mask, old_act->sa_mask);
8701 act.sa_flags = old_act->sa_flags;
8702 act.sa_restorer = old_act->sa_restorer;
8703 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8704 act.ka_restorer = 0;
8705 #endif
8706 unlock_user_struct(old_act, arg2, 0);
8707 pact = &act;
8708 } else {
8709 pact = NULL;
8711 ret = get_errno(do_sigaction(arg1, pact, &oact));
8712 if (!is_error(ret) && arg3) {
8713 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8714 goto efault;
8715 old_act->_sa_handler = oact._sa_handler;
8716 old_act->sa_mask = oact.sa_mask.sig[0];
8717 old_act->sa_flags = oact.sa_flags;
8718 old_act->sa_restorer = oact.sa_restorer;
8719 unlock_user_struct(old_act, arg3, 1);
8721 #endif
8723 break;
8724 #endif
8725 case TARGET_NR_rt_sigaction:
8727 #if defined(TARGET_ALPHA)
8728 /* For Alpha and SPARC this is a 5 argument syscall, with
8729 * a 'restorer' parameter which must be copied into the
8730 * sa_restorer field of the sigaction struct.
8731 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
8732 * and arg5 is the sigsetsize.
8733 * Alpha also has a separate rt_sigaction struct that it uses
8734 * here; SPARC uses the usual sigaction struct.
8736 struct target_rt_sigaction *rt_act;
8737 struct target_sigaction act, oact, *pact = 0;
8739 if (arg4 != sizeof(target_sigset_t)) {
8740 ret = -TARGET_EINVAL;
8741 break;
8743 if (arg2) {
8744 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
8745 goto efault;
8746 act._sa_handler = rt_act->_sa_handler;
8747 act.sa_mask = rt_act->sa_mask;
8748 act.sa_flags = rt_act->sa_flags;
8749 act.sa_restorer = arg5;
8750 unlock_user_struct(rt_act, arg2, 0);
8751 pact = &act;
8753 ret = get_errno(do_sigaction(arg1, pact, &oact));
8754 if (!is_error(ret) && arg3) {
8755 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
8756 goto efault;
8757 rt_act->_sa_handler = oact._sa_handler;
8758 rt_act->sa_mask = oact.sa_mask;
8759 rt_act->sa_flags = oact.sa_flags;
8760 unlock_user_struct(rt_act, arg3, 1);
8762 #else
8763 #ifdef TARGET_SPARC
8764 target_ulong restorer = arg4;
8765 target_ulong sigsetsize = arg5;
8766 #else
8767 target_ulong sigsetsize = arg4;
8768 #endif
8769 struct target_sigaction *act;
8770 struct target_sigaction *oact;
8772 if (sigsetsize != sizeof(target_sigset_t)) {
8773 ret = -TARGET_EINVAL;
8774 break;
8776 if (arg2) {
8777 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) {
8778 goto efault;
8780 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8781 act->ka_restorer = restorer;
8782 #endif
8783 } else {
8784 act = NULL;
8786 if (arg3) {
8787 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
8788 ret = -TARGET_EFAULT;
8789 goto rt_sigaction_fail;
8791 } else
8792 oact = NULL;
8793 ret = get_errno(do_sigaction(arg1, act, oact));
8794 rt_sigaction_fail:
8795 if (act)
8796 unlock_user_struct(act, arg2, 0);
8797 if (oact)
8798 unlock_user_struct(oact, arg3, 1);
8799 #endif
8801 break;
8802 #ifdef TARGET_NR_sgetmask /* not on alpha */
8803 case TARGET_NR_sgetmask:
8805 sigset_t cur_set;
8806 abi_ulong target_set;
8807 ret = do_sigprocmask(0, NULL, &cur_set);
8808 if (!ret) {
8809 host_to_target_old_sigset(&target_set, &cur_set);
8810 ret = target_set;
8813 break;
8814 #endif
8815 #ifdef TARGET_NR_ssetmask /* not on alpha */
8816 case TARGET_NR_ssetmask:
8818 sigset_t set, oset;
8819 abi_ulong target_set = arg1;
8820 target_to_host_old_sigset(&set, &target_set);
8821 ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
8822 if (!ret) {
8823 host_to_target_old_sigset(&target_set, &oset);
8824 ret = target_set;
8827 break;
8828 #endif
8829 #ifdef TARGET_NR_sigprocmask
8830 case TARGET_NR_sigprocmask:
8832 #if defined(TARGET_ALPHA)
8833 sigset_t set, oldset;
8834 abi_ulong mask;
8835 int how;
8837 switch (arg1) {
8838 case TARGET_SIG_BLOCK:
8839 how = SIG_BLOCK;
8840 break;
8841 case TARGET_SIG_UNBLOCK:
8842 how = SIG_UNBLOCK;
8843 break;
8844 case TARGET_SIG_SETMASK:
8845 how = SIG_SETMASK;
8846 break;
8847 default:
8848 ret = -TARGET_EINVAL;
8849 goto fail;
8851 mask = arg2;
8852 target_to_host_old_sigset(&set, &mask);
8854 ret = do_sigprocmask(how, &set, &oldset);
8855 if (!is_error(ret)) {
8856 host_to_target_old_sigset(&mask, &oldset);
8857 ret = mask;
8858 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
8860 #else
8861 sigset_t set, oldset, *set_ptr;
8862 int how;
8864 if (arg2) {
8865 switch (arg1) {
8866 case TARGET_SIG_BLOCK:
8867 how = SIG_BLOCK;
8868 break;
8869 case TARGET_SIG_UNBLOCK:
8870 how = SIG_UNBLOCK;
8871 break;
8872 case TARGET_SIG_SETMASK:
8873 how = SIG_SETMASK;
8874 break;
8875 default:
8876 ret = -TARGET_EINVAL;
8877 goto fail;
8879 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8880 goto efault;
8881 target_to_host_old_sigset(&set, p);
8882 unlock_user(p, arg2, 0);
8883 set_ptr = &set;
8884 } else {
8885 how = 0;
8886 set_ptr = NULL;
8888 ret = do_sigprocmask(how, set_ptr, &oldset);
8889 if (!is_error(ret) && arg3) {
8890 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8891 goto efault;
8892 host_to_target_old_sigset(p, &oldset);
8893 unlock_user(p, arg3, sizeof(target_sigset_t));
8895 #endif
8897 break;
8898 #endif
8899 case TARGET_NR_rt_sigprocmask:
8901 int how = arg1;
8902 sigset_t set, oldset, *set_ptr;
8904 if (arg4 != sizeof(target_sigset_t)) {
8905 ret = -TARGET_EINVAL;
8906 break;
8909 if (arg2) {
8910 switch(how) {
8911 case TARGET_SIG_BLOCK:
8912 how = SIG_BLOCK;
8913 break;
8914 case TARGET_SIG_UNBLOCK:
8915 how = SIG_UNBLOCK;
8916 break;
8917 case TARGET_SIG_SETMASK:
8918 how = SIG_SETMASK;
8919 break;
8920 default:
8921 ret = -TARGET_EINVAL;
8922 goto fail;
8924 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8925 goto efault;
8926 target_to_host_sigset(&set, p);
8927 unlock_user(p, arg2, 0);
8928 set_ptr = &set;
8929 } else {
8930 how = 0;
8931 set_ptr = NULL;
8933 ret = do_sigprocmask(how, set_ptr, &oldset);
8934 if (!is_error(ret) && arg3) {
8935 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8936 goto efault;
8937 host_to_target_sigset(p, &oldset);
8938 unlock_user(p, arg3, sizeof(target_sigset_t));
8941 break;
8942 #ifdef TARGET_NR_sigpending
8943 case TARGET_NR_sigpending:
8945 sigset_t set;
8946 ret = get_errno(sigpending(&set));
8947 if (!is_error(ret)) {
8948 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8949 goto efault;
8950 host_to_target_old_sigset(p, &set);
8951 unlock_user(p, arg1, sizeof(target_sigset_t));
8954 break;
8955 #endif
8956 case TARGET_NR_rt_sigpending:
8958 sigset_t set;
8960 /* Yes, this check is >, not != like most. We follow the kernel's
8961 * logic and it does it like this because it implements
8962 * NR_sigpending through the same code path, and in that case
8963 * the old_sigset_t is smaller in size.
8965 if (arg2 > sizeof(target_sigset_t)) {
8966 ret = -TARGET_EINVAL;
8967 break;
8970 ret = get_errno(sigpending(&set));
8971 if (!is_error(ret)) {
8972 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8973 goto efault;
8974 host_to_target_sigset(p, &set);
8975 unlock_user(p, arg1, sizeof(target_sigset_t));
8978 break;
8979 #ifdef TARGET_NR_sigsuspend
8980 case TARGET_NR_sigsuspend:
8982 TaskState *ts = cpu->opaque;
8983 #if defined(TARGET_ALPHA)
8984 abi_ulong mask = arg1;
8985 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
8986 #else
8987 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8988 goto efault;
8989 target_to_host_old_sigset(&ts->sigsuspend_mask, p);
8990 unlock_user(p, arg1, 0);
8991 #endif
8992 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8993 SIGSET_T_SIZE));
8994 if (ret != -TARGET_ERESTARTSYS) {
8995 ts->in_sigsuspend = 1;
8998 break;
8999 #endif
9000 case TARGET_NR_rt_sigsuspend:
9002 TaskState *ts = cpu->opaque;
9004 if (arg2 != sizeof(target_sigset_t)) {
9005 ret = -TARGET_EINVAL;
9006 break;
9008 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9009 goto efault;
9010 target_to_host_sigset(&ts->sigsuspend_mask, p);
9011 unlock_user(p, arg1, 0);
9012 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9013 SIGSET_T_SIZE));
9014 if (ret != -TARGET_ERESTARTSYS) {
9015 ts->in_sigsuspend = 1;
9018 break;
9019 case TARGET_NR_rt_sigtimedwait:
9021 sigset_t set;
9022 struct timespec uts, *puts;
9023 siginfo_t uinfo;
9025 if (arg4 != sizeof(target_sigset_t)) {
9026 ret = -TARGET_EINVAL;
9027 break;
9030 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9031 goto efault;
9032 target_to_host_sigset(&set, p);
9033 unlock_user(p, arg1, 0);
9034 if (arg3) {
9035 puts = &uts;
9036 target_to_host_timespec(puts, arg3);
9037 } else {
9038 puts = NULL;
9040 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9041 SIGSET_T_SIZE));
9042 if (!is_error(ret)) {
9043 if (arg2) {
9044 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
9046 if (!p) {
9047 goto efault;
9049 host_to_target_siginfo(p, &uinfo);
9050 unlock_user(p, arg2, sizeof(target_siginfo_t));
9052 ret = host_to_target_signal(ret);
9055 break;
9056 case TARGET_NR_rt_sigqueueinfo:
9058 siginfo_t uinfo;
9060 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9061 if (!p) {
9062 goto efault;
9064 target_to_host_siginfo(&uinfo, p);
9065 unlock_user(p, arg3, 0);
9066 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
9068 break;
9069 case TARGET_NR_rt_tgsigqueueinfo:
9071 siginfo_t uinfo;
9073 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
9074 if (!p) {
9075 goto efault;
9077 target_to_host_siginfo(&uinfo, p);
9078 unlock_user(p, arg4, 0);
9079 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
9081 break;
9082 #ifdef TARGET_NR_sigreturn
9083 case TARGET_NR_sigreturn:
9084 if (block_signals()) {
9085 ret = -TARGET_ERESTARTSYS;
9086 } else {
9087 ret = do_sigreturn(cpu_env);
9089 break;
9090 #endif
9091 case TARGET_NR_rt_sigreturn:
9092 if (block_signals()) {
9093 ret = -TARGET_ERESTARTSYS;
9094 } else {
9095 ret = do_rt_sigreturn(cpu_env);
9097 break;
9098 case TARGET_NR_sethostname:
9099 if (!(p = lock_user_string(arg1)))
9100 goto efault;
9101 ret = get_errno(sethostname(p, arg2));
9102 unlock_user(p, arg1, 0);
9103 break;
9104 case TARGET_NR_setrlimit:
9106 int resource = target_to_host_resource(arg1);
9107 struct target_rlimit *target_rlim;
9108 struct rlimit rlim;
9109 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
9110 goto efault;
9111 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
9112 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
9113 unlock_user_struct(target_rlim, arg2, 0);
9114 ret = get_errno(setrlimit(resource, &rlim));
9116 break;
9117 case TARGET_NR_getrlimit:
9119 int resource = target_to_host_resource(arg1);
9120 struct target_rlimit *target_rlim;
9121 struct rlimit rlim;
9123 ret = get_errno(getrlimit(resource, &rlim));
9124 if (!is_error(ret)) {
9125 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
9126 goto efault;
9127 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
9128 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
9129 unlock_user_struct(target_rlim, arg2, 1);
9132 break;
9133 case TARGET_NR_getrusage:
9135 struct rusage rusage;
9136 ret = get_errno(getrusage(arg1, &rusage));
9137 if (!is_error(ret)) {
9138 ret = host_to_target_rusage(arg2, &rusage);
9141 break;
9142 case TARGET_NR_gettimeofday:
9144 struct timeval tv;
9145 ret = get_errno(gettimeofday(&tv, NULL));
9146 if (!is_error(ret)) {
9147 if (copy_to_user_timeval(arg1, &tv))
9148 goto efault;
9151 break;
9152 case TARGET_NR_settimeofday:
9154 struct timeval tv, *ptv = NULL;
9155 struct timezone tz, *ptz = NULL;
9157 if (arg1) {
9158 if (copy_from_user_timeval(&tv, arg1)) {
9159 goto efault;
9161 ptv = &tv;
9164 if (arg2) {
9165 if (copy_from_user_timezone(&tz, arg2)) {
9166 goto efault;
9168 ptz = &tz;
9171 ret = get_errno(settimeofday(ptv, ptz));
9173 break;
9174 #if defined(TARGET_NR_select)
9175 case TARGET_NR_select:
9176 #if defined(TARGET_WANT_NI_OLD_SELECT)
9177 /* some architectures used to have old_select here
9178 * but now ENOSYS it.
9180 ret = -TARGET_ENOSYS;
9181 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9182 ret = do_old_select(arg1);
9183 #else
9184 ret = do_select(arg1, arg2, arg3, arg4, arg5);
9185 #endif
9186 break;
9187 #endif
9188 #ifdef TARGET_NR_pselect6
9189 case TARGET_NR_pselect6:
9191 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
9192 fd_set rfds, wfds, efds;
9193 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
9194 struct timespec ts, *ts_ptr;
9197 * The 6th arg is actually two args smashed together,
9198 * so we cannot use the C library.
9200 sigset_t set;
9201 struct {
9202 sigset_t *set;
9203 size_t size;
9204 } sig, *sig_ptr;
9206 abi_ulong arg_sigset, arg_sigsize, *arg7;
9207 target_sigset_t *target_sigset;
9209 n = arg1;
9210 rfd_addr = arg2;
9211 wfd_addr = arg3;
9212 efd_addr = arg4;
9213 ts_addr = arg5;
9215 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
9216 if (ret) {
9217 goto fail;
9219 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
9220 if (ret) {
9221 goto fail;
9223 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
9224 if (ret) {
9225 goto fail;
9229 * This takes a timespec, and not a timeval, so we cannot
9230 * use the do_select() helper ...
9232 if (ts_addr) {
9233 if (target_to_host_timespec(&ts, ts_addr)) {
9234 goto efault;
9236 ts_ptr = &ts;
9237 } else {
9238 ts_ptr = NULL;
9241 /* Extract the two packed args for the sigset */
9242 if (arg6) {
9243 sig_ptr = &sig;
9244 sig.size = SIGSET_T_SIZE;
9246 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
9247 if (!arg7) {
9248 goto efault;
9250 arg_sigset = tswapal(arg7[0]);
9251 arg_sigsize = tswapal(arg7[1]);
9252 unlock_user(arg7, arg6, 0);
9254 if (arg_sigset) {
9255 sig.set = &set;
9256 if (arg_sigsize != sizeof(*target_sigset)) {
9257 /* Like the kernel, we enforce correct size sigsets */
9258 ret = -TARGET_EINVAL;
9259 goto fail;
9261 target_sigset = lock_user(VERIFY_READ, arg_sigset,
9262 sizeof(*target_sigset), 1);
9263 if (!target_sigset) {
9264 goto efault;
9266 target_to_host_sigset(&set, target_sigset);
9267 unlock_user(target_sigset, arg_sigset, 0);
9268 } else {
9269 sig.set = NULL;
9271 } else {
9272 sig_ptr = NULL;
9275 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
9276 ts_ptr, sig_ptr));
9278 if (!is_error(ret)) {
9279 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
9280 goto efault;
9281 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
9282 goto efault;
9283 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
9284 goto efault;
9286 if (ts_addr && host_to_target_timespec(ts_addr, &ts))
9287 goto efault;
9290 break;
9291 #endif
9292 #ifdef TARGET_NR_symlink
9293 case TARGET_NR_symlink:
9295 void *p2;
9296 p = lock_user_string(arg1);
9297 p2 = lock_user_string(arg2);
9298 if (!p || !p2)
9299 ret = -TARGET_EFAULT;
9300 else
9301 ret = get_errno(symlink(p, p2));
9302 unlock_user(p2, arg2, 0);
9303 unlock_user(p, arg1, 0);
9305 break;
9306 #endif
9307 #if defined(TARGET_NR_symlinkat)
9308 case TARGET_NR_symlinkat:
9310 void *p2;
9311 p = lock_user_string(arg1);
9312 p2 = lock_user_string(arg3);
9313 if (!p || !p2)
9314 ret = -TARGET_EFAULT;
9315 else
9316 ret = get_errno(symlinkat(p, arg2, p2));
9317 unlock_user(p2, arg3, 0);
9318 unlock_user(p, arg1, 0);
9320 break;
9321 #endif
9322 #ifdef TARGET_NR_oldlstat
9323 case TARGET_NR_oldlstat:
9324 goto unimplemented;
9325 #endif
9326 #ifdef TARGET_NR_readlink
9327 case TARGET_NR_readlink:
9329 void *p2;
9330 p = lock_user_string(arg1);
9331 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9332 if (!p || !p2) {
9333 ret = -TARGET_EFAULT;
9334 } else if (!arg3) {
9335 /* Short circuit this for the magic exe check. */
9336 ret = -TARGET_EINVAL;
9337 } else if (is_proc_myself((const char *)p, "exe")) {
9338 char real[PATH_MAX], *temp;
9339 temp = realpath(exec_path, real);
9340 /* Return value is # of bytes that we wrote to the buffer. */
9341 if (temp == NULL) {
9342 ret = get_errno(-1);
9343 } else {
9344 /* Don't worry about sign mismatch as earlier mapping
9345 * logic would have thrown a bad address error. */
9346 ret = MIN(strlen(real), arg3);
9347 /* We cannot NUL terminate the string. */
9348 memcpy(p2, real, ret);
9350 } else {
9351 ret = get_errno(readlink(path(p), p2, arg3));
9353 unlock_user(p2, arg2, ret);
9354 unlock_user(p, arg1, 0);
9356 break;
9357 #endif
9358 #if defined(TARGET_NR_readlinkat)
9359 case TARGET_NR_readlinkat:
9361 void *p2;
9362 p = lock_user_string(arg2);
9363 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9364 if (!p || !p2) {
9365 ret = -TARGET_EFAULT;
9366 } else if (is_proc_myself((const char *)p, "exe")) {
9367 char real[PATH_MAX], *temp;
9368 temp = realpath(exec_path, real);
9369 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9370 snprintf((char *)p2, arg4, "%s", real);
9371 } else {
9372 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9374 unlock_user(p2, arg3, ret);
9375 unlock_user(p, arg2, 0);
9377 break;
9378 #endif
9379 #ifdef TARGET_NR_uselib
9380 case TARGET_NR_uselib:
9381 goto unimplemented;
9382 #endif
9383 #ifdef TARGET_NR_swapon
9384 case TARGET_NR_swapon:
9385 if (!(p = lock_user_string(arg1)))
9386 goto efault;
9387 ret = get_errno(swapon(p, arg2));
9388 unlock_user(p, arg1, 0);
9389 break;
9390 #endif
9391 case TARGET_NR_reboot:
9392 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9393 /* arg4 must be ignored in all other cases */
9394 p = lock_user_string(arg4);
9395 if (!p) {
9396 goto efault;
9398 ret = get_errno(reboot(arg1, arg2, arg3, p));
9399 unlock_user(p, arg4, 0);
9400 } else {
9401 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9403 break;
9404 #ifdef TARGET_NR_readdir
9405 case TARGET_NR_readdir:
9406 goto unimplemented;
9407 #endif
9408 #ifdef TARGET_NR_mmap
9409 case TARGET_NR_mmap:
9410 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9411 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9412 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9413 || defined(TARGET_S390X)
9415 abi_ulong *v;
9416 abi_ulong v1, v2, v3, v4, v5, v6;
9417 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9418 goto efault;
9419 v1 = tswapal(v[0]);
9420 v2 = tswapal(v[1]);
9421 v3 = tswapal(v[2]);
9422 v4 = tswapal(v[3]);
9423 v5 = tswapal(v[4]);
9424 v6 = tswapal(v[5]);
9425 unlock_user(v, arg1, 0);
9426 ret = get_errno(target_mmap(v1, v2, v3,
9427 target_to_host_bitmask(v4, mmap_flags_tbl),
9428 v5, v6));
9430 #else
9431 ret = get_errno(target_mmap(arg1, arg2, arg3,
9432 target_to_host_bitmask(arg4, mmap_flags_tbl),
9433 arg5,
9434 arg6));
9435 #endif
9436 break;
9437 #endif
9438 #ifdef TARGET_NR_mmap2
9439 case TARGET_NR_mmap2:
9440 #ifndef MMAP_SHIFT
9441 #define MMAP_SHIFT 12
9442 #endif
9443 ret = get_errno(target_mmap(arg1, arg2, arg3,
9444 target_to_host_bitmask(arg4, mmap_flags_tbl),
9445 arg5,
9446 arg6 << MMAP_SHIFT));
9447 break;
9448 #endif
9449 case TARGET_NR_munmap:
9450 ret = get_errno(target_munmap(arg1, arg2));
9451 break;
9452 case TARGET_NR_mprotect:
9454 TaskState *ts = cpu->opaque;
9455 /* Special hack to detect libc making the stack executable. */
9456 if ((arg3 & PROT_GROWSDOWN)
9457 && arg1 >= ts->info->stack_limit
9458 && arg1 <= ts->info->start_stack) {
9459 arg3 &= ~PROT_GROWSDOWN;
9460 arg2 = arg2 + arg1 - ts->info->stack_limit;
9461 arg1 = ts->info->stack_limit;
9464 ret = get_errno(target_mprotect(arg1, arg2, arg3));
9465 break;
9466 #ifdef TARGET_NR_mremap
9467 case TARGET_NR_mremap:
9468 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
9469 break;
9470 #endif
9471 /* ??? msync/mlock/munlock are broken for softmmu. */
9472 #ifdef TARGET_NR_msync
9473 case TARGET_NR_msync:
9474 ret = get_errno(msync(g2h(arg1), arg2, arg3));
9475 break;
9476 #endif
9477 #ifdef TARGET_NR_mlock
9478 case TARGET_NR_mlock:
9479 ret = get_errno(mlock(g2h(arg1), arg2));
9480 break;
9481 #endif
9482 #ifdef TARGET_NR_munlock
9483 case TARGET_NR_munlock:
9484 ret = get_errno(munlock(g2h(arg1), arg2));
9485 break;
9486 #endif
9487 #ifdef TARGET_NR_mlockall
9488 case TARGET_NR_mlockall:
9489 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
9490 break;
9491 #endif
9492 #ifdef TARGET_NR_munlockall
9493 case TARGET_NR_munlockall:
9494 ret = get_errno(munlockall());
9495 break;
9496 #endif
9497 case TARGET_NR_truncate:
9498 if (!(p = lock_user_string(arg1)))
9499 goto efault;
9500 ret = get_errno(truncate(p, arg2));
9501 unlock_user(p, arg1, 0);
9502 break;
9503 case TARGET_NR_ftruncate:
9504 ret = get_errno(ftruncate(arg1, arg2));
9505 break;
9506 case TARGET_NR_fchmod:
9507 ret = get_errno(fchmod(arg1, arg2));
9508 break;
9509 #if defined(TARGET_NR_fchmodat)
9510 case TARGET_NR_fchmodat:
9511 if (!(p = lock_user_string(arg2)))
9512 goto efault;
9513 ret = get_errno(fchmodat(arg1, p, arg3, 0));
9514 unlock_user(p, arg2, 0);
9515 break;
9516 #endif
9517 case TARGET_NR_getpriority:
9518 /* Note that negative values are valid for getpriority, so we must
9519 differentiate based on errno settings. */
9520 errno = 0;
9521 ret = getpriority(arg1, arg2);
9522 if (ret == -1 && errno != 0) {
9523 ret = -host_to_target_errno(errno);
9524 break;
9526 #ifdef TARGET_ALPHA
9527 /* Return value is the unbiased priority. Signal no error. */
9528 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
9529 #else
9530 /* Return value is a biased priority to avoid negative numbers. */
9531 ret = 20 - ret;
9532 #endif
9533 break;
9534 case TARGET_NR_setpriority:
9535 ret = get_errno(setpriority(arg1, arg2, arg3));
9536 break;
9537 #ifdef TARGET_NR_profil
9538 case TARGET_NR_profil:
9539 goto unimplemented;
9540 #endif
9541 case TARGET_NR_statfs:
9542 if (!(p = lock_user_string(arg1)))
9543 goto efault;
9544 ret = get_errno(statfs(path(p), &stfs));
9545 unlock_user(p, arg1, 0);
9546 convert_statfs:
9547 if (!is_error(ret)) {
9548 struct target_statfs *target_stfs;
9550 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
9551 goto efault;
9552 __put_user(stfs.f_type, &target_stfs->f_type);
9553 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9554 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9555 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9556 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9557 __put_user(stfs.f_files, &target_stfs->f_files);
9558 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9559 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9560 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9561 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9562 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9563 #ifdef _STATFS_F_FLAGS
9564 __put_user(stfs.f_flags, &target_stfs->f_flags);
9565 #else
9566 __put_user(0, &target_stfs->f_flags);
9567 #endif
9568 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9569 unlock_user_struct(target_stfs, arg2, 1);
9571 break;
9572 case TARGET_NR_fstatfs:
9573 ret = get_errno(fstatfs(arg1, &stfs));
9574 goto convert_statfs;
9575 #ifdef TARGET_NR_statfs64
9576 case TARGET_NR_statfs64:
9577 if (!(p = lock_user_string(arg1)))
9578 goto efault;
9579 ret = get_errno(statfs(path(p), &stfs));
9580 unlock_user(p, arg1, 0);
9581 convert_statfs64:
9582 if (!is_error(ret)) {
9583 struct target_statfs64 *target_stfs;
9585 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
9586 goto efault;
9587 __put_user(stfs.f_type, &target_stfs->f_type);
9588 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9589 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9590 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9591 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9592 __put_user(stfs.f_files, &target_stfs->f_files);
9593 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9594 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9595 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9596 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9597 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9598 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9599 unlock_user_struct(target_stfs, arg3, 1);
9601 break;
9602 case TARGET_NR_fstatfs64:
9603 ret = get_errno(fstatfs(arg1, &stfs));
9604 goto convert_statfs64;
9605 #endif
9606 #ifdef TARGET_NR_ioperm
9607 case TARGET_NR_ioperm:
9608 goto unimplemented;
9609 #endif
9610 #ifdef TARGET_NR_socketcall
9611 case TARGET_NR_socketcall:
9612 ret = do_socketcall(arg1, arg2);
9613 break;
9614 #endif
9615 #ifdef TARGET_NR_accept
9616 case TARGET_NR_accept:
9617 ret = do_accept4(arg1, arg2, arg3, 0);
9618 break;
9619 #endif
9620 #ifdef TARGET_NR_accept4
9621 case TARGET_NR_accept4:
9622 ret = do_accept4(arg1, arg2, arg3, arg4);
9623 break;
9624 #endif
9625 #ifdef TARGET_NR_bind
9626 case TARGET_NR_bind:
9627 ret = do_bind(arg1, arg2, arg3);
9628 break;
9629 #endif
9630 #ifdef TARGET_NR_connect
9631 case TARGET_NR_connect:
9632 ret = do_connect(arg1, arg2, arg3);
9633 break;
9634 #endif
9635 #ifdef TARGET_NR_getpeername
9636 case TARGET_NR_getpeername:
9637 ret = do_getpeername(arg1, arg2, arg3);
9638 break;
9639 #endif
9640 #ifdef TARGET_NR_getsockname
9641 case TARGET_NR_getsockname:
9642 ret = do_getsockname(arg1, arg2, arg3);
9643 break;
9644 #endif
9645 #ifdef TARGET_NR_getsockopt
9646 case TARGET_NR_getsockopt:
9647 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5);
9648 break;
9649 #endif
9650 #ifdef TARGET_NR_listen
9651 case TARGET_NR_listen:
9652 ret = get_errno(listen(arg1, arg2));
9653 break;
9654 #endif
9655 #ifdef TARGET_NR_recv
9656 case TARGET_NR_recv:
9657 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
9658 break;
9659 #endif
9660 #ifdef TARGET_NR_recvfrom
9661 case TARGET_NR_recvfrom:
9662 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
9663 break;
9664 #endif
9665 #ifdef TARGET_NR_recvmsg
9666 case TARGET_NR_recvmsg:
9667 ret = do_sendrecvmsg(arg1, arg2, arg3, 0);
9668 break;
9669 #endif
9670 #ifdef TARGET_NR_send
9671 case TARGET_NR_send:
9672 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0);
9673 break;
9674 #endif
9675 #ifdef TARGET_NR_sendmsg
9676 case TARGET_NR_sendmsg:
9677 ret = do_sendrecvmsg(arg1, arg2, arg3, 1);
9678 break;
9679 #endif
9680 #ifdef TARGET_NR_sendmmsg
9681 case TARGET_NR_sendmmsg:
9682 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
9683 break;
9684 case TARGET_NR_recvmmsg:
9685 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
9686 break;
9687 #endif
9688 #ifdef TARGET_NR_sendto
9689 case TARGET_NR_sendto:
9690 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
9691 break;
9692 #endif
9693 #ifdef TARGET_NR_shutdown
9694 case TARGET_NR_shutdown:
9695 ret = get_errno(shutdown(arg1, arg2));
9696 break;
9697 #endif
9698 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9699 case TARGET_NR_getrandom:
9700 p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9701 if (!p) {
9702 goto efault;
9704 ret = get_errno(getrandom(p, arg2, arg3));
9705 unlock_user(p, arg1, ret);
9706 break;
9707 #endif
9708 #ifdef TARGET_NR_socket
9709 case TARGET_NR_socket:
9710 ret = do_socket(arg1, arg2, arg3);
9711 break;
9712 #endif
9713 #ifdef TARGET_NR_socketpair
9714 case TARGET_NR_socketpair:
9715 ret = do_socketpair(arg1, arg2, arg3, arg4);
9716 break;
9717 #endif
9718 #ifdef TARGET_NR_setsockopt
9719 case TARGET_NR_setsockopt:
9720 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
9721 break;
9722 #endif
9723 #if defined(TARGET_NR_syslog)
9724 case TARGET_NR_syslog:
9726 int len = arg2;
9728 switch (arg1) {
9729 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */
9730 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */
9731 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
9732 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */
9733 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */
9734 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
9735 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */
9736 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */
9738 ret = get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
9740 break;
9741 case TARGET_SYSLOG_ACTION_READ: /* Read from log */
9742 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */
9743 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */
9745 ret = -TARGET_EINVAL;
9746 if (len < 0) {
9747 goto fail;
9749 ret = 0;
9750 if (len == 0) {
9751 break;
9753 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9754 if (!p) {
9755 ret = -TARGET_EFAULT;
9756 goto fail;
9758 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
9759 unlock_user(p, arg2, arg3);
9761 break;
9762 default:
9763 ret = -EINVAL;
9764 break;
9767 break;
9768 #endif
9769 case TARGET_NR_setitimer:
9771 struct itimerval value, ovalue, *pvalue;
9773 if (arg2) {
9774 pvalue = &value;
9775 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
9776 || copy_from_user_timeval(&pvalue->it_value,
9777 arg2 + sizeof(struct target_timeval)))
9778 goto efault;
9779 } else {
9780 pvalue = NULL;
9782 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
9783 if (!is_error(ret) && arg3) {
9784 if (copy_to_user_timeval(arg3,
9785 &ovalue.it_interval)
9786 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
9787 &ovalue.it_value))
9788 goto efault;
9791 break;
9792 case TARGET_NR_getitimer:
9794 struct itimerval value;
9796 ret = get_errno(getitimer(arg1, &value));
9797 if (!is_error(ret) && arg2) {
9798 if (copy_to_user_timeval(arg2,
9799 &value.it_interval)
9800 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
9801 &value.it_value))
9802 goto efault;
9805 break;
9806 #ifdef TARGET_NR_stat
9807 case TARGET_NR_stat:
9808 if (!(p = lock_user_string(arg1)))
9809 goto efault;
9810 ret = get_errno(stat(path(p), &st));
9811 unlock_user(p, arg1, 0);
9812 goto do_stat;
9813 #endif
9814 #ifdef TARGET_NR_lstat
9815 case TARGET_NR_lstat:
9816 if (!(p = lock_user_string(arg1)))
9817 goto efault;
9818 ret = get_errno(lstat(path(p), &st));
9819 unlock_user(p, arg1, 0);
9820 goto do_stat;
9821 #endif
9822 case TARGET_NR_fstat:
9824 ret = get_errno(fstat(arg1, &st));
9825 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9826 do_stat:
9827 #endif
9828 if (!is_error(ret)) {
9829 struct target_stat *target_st;
9831 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
9832 goto efault;
9833 memset(target_st, 0, sizeof(*target_st));
9834 __put_user(st.st_dev, &target_st->st_dev);
9835 __put_user(st.st_ino, &target_st->st_ino);
9836 __put_user(st.st_mode, &target_st->st_mode);
9837 __put_user(st.st_uid, &target_st->st_uid);
9838 __put_user(st.st_gid, &target_st->st_gid);
9839 __put_user(st.st_nlink, &target_st->st_nlink);
9840 __put_user(st.st_rdev, &target_st->st_rdev);
9841 __put_user(st.st_size, &target_st->st_size);
9842 __put_user(st.st_blksize, &target_st->st_blksize);
9843 __put_user(st.st_blocks, &target_st->st_blocks);
9844 __put_user(st.st_atime, &target_st->target_st_atime);
9845 __put_user(st.st_mtime, &target_st->target_st_mtime);
9846 __put_user(st.st_ctime, &target_st->target_st_ctime);
9847 unlock_user_struct(target_st, arg2, 1);
9850 break;
9851 #ifdef TARGET_NR_olduname
9852 case TARGET_NR_olduname:
9853 goto unimplemented;
9854 #endif
9855 #ifdef TARGET_NR_iopl
9856 case TARGET_NR_iopl:
9857 goto unimplemented;
9858 #endif
9859 case TARGET_NR_vhangup:
9860 ret = get_errno(vhangup());
9861 break;
9862 #ifdef TARGET_NR_idle
9863 case TARGET_NR_idle:
9864 goto unimplemented;
9865 #endif
9866 #ifdef TARGET_NR_syscall
9867 case TARGET_NR_syscall:
9868 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
9869 arg6, arg7, arg8, 0);
9870 break;
9871 #endif
9872 case TARGET_NR_wait4:
9874 int status;
9875 abi_long status_ptr = arg2;
9876 struct rusage rusage, *rusage_ptr;
9877 abi_ulong target_rusage = arg4;
9878 abi_long rusage_err;
9879 if (target_rusage)
9880 rusage_ptr = &rusage;
9881 else
9882 rusage_ptr = NULL;
9883 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
9884 if (!is_error(ret)) {
9885 if (status_ptr && ret) {
9886 status = host_to_target_waitstatus(status);
9887 if (put_user_s32(status, status_ptr))
9888 goto efault;
9890 if (target_rusage) {
9891 rusage_err = host_to_target_rusage(target_rusage, &rusage);
9892 if (rusage_err) {
9893 ret = rusage_err;
9898 break;
9899 #ifdef TARGET_NR_swapoff
9900 case TARGET_NR_swapoff:
9901 if (!(p = lock_user_string(arg1)))
9902 goto efault;
9903 ret = get_errno(swapoff(p));
9904 unlock_user(p, arg1, 0);
9905 break;
9906 #endif
9907 case TARGET_NR_sysinfo:
9909 struct target_sysinfo *target_value;
9910 struct sysinfo value;
9911 ret = get_errno(sysinfo(&value));
9912 if (!is_error(ret) && arg1)
9914 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
9915 goto efault;
9916 __put_user(value.uptime, &target_value->uptime);
9917 __put_user(value.loads[0], &target_value->loads[0]);
9918 __put_user(value.loads[1], &target_value->loads[1]);
9919 __put_user(value.loads[2], &target_value->loads[2]);
9920 __put_user(value.totalram, &target_value->totalram);
9921 __put_user(value.freeram, &target_value->freeram);
9922 __put_user(value.sharedram, &target_value->sharedram);
9923 __put_user(value.bufferram, &target_value->bufferram);
9924 __put_user(value.totalswap, &target_value->totalswap);
9925 __put_user(value.freeswap, &target_value->freeswap);
9926 __put_user(value.procs, &target_value->procs);
9927 __put_user(value.totalhigh, &target_value->totalhigh);
9928 __put_user(value.freehigh, &target_value->freehigh);
9929 __put_user(value.mem_unit, &target_value->mem_unit);
9930 unlock_user_struct(target_value, arg1, 1);
9933 break;
9934 #ifdef TARGET_NR_ipc
9935 case TARGET_NR_ipc:
9936 ret = do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
9937 break;
9938 #endif
9939 #ifdef TARGET_NR_semget
9940 case TARGET_NR_semget:
9941 ret = get_errno(semget(arg1, arg2, arg3));
9942 break;
9943 #endif
9944 #ifdef TARGET_NR_semop
9945 case TARGET_NR_semop:
9946 ret = do_semop(arg1, arg2, arg3);
9947 break;
9948 #endif
9949 #ifdef TARGET_NR_semctl
9950 case TARGET_NR_semctl:
9951 ret = do_semctl(arg1, arg2, arg3, arg4);
9952 break;
9953 #endif
9954 #ifdef TARGET_NR_msgctl
9955 case TARGET_NR_msgctl:
9956 ret = do_msgctl(arg1, arg2, arg3);
9957 break;
9958 #endif
9959 #ifdef TARGET_NR_msgget
9960 case TARGET_NR_msgget:
9961 ret = get_errno(msgget(arg1, arg2));
9962 break;
9963 #endif
9964 #ifdef TARGET_NR_msgrcv
9965 case TARGET_NR_msgrcv:
9966 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5);
9967 break;
9968 #endif
9969 #ifdef TARGET_NR_msgsnd
9970 case TARGET_NR_msgsnd:
9971 ret = do_msgsnd(arg1, arg2, arg3, arg4);
9972 break;
9973 #endif
9974 #ifdef TARGET_NR_shmget
9975 case TARGET_NR_shmget:
9976 ret = get_errno(shmget(arg1, arg2, arg3));
9977 break;
9978 #endif
9979 #ifdef TARGET_NR_shmctl
9980 case TARGET_NR_shmctl:
9981 ret = do_shmctl(arg1, arg2, arg3);
9982 break;
9983 #endif
9984 #ifdef TARGET_NR_shmat
9985 case TARGET_NR_shmat:
9986 ret = do_shmat(cpu_env, arg1, arg2, arg3);
9987 break;
9988 #endif
9989 #ifdef TARGET_NR_shmdt
9990 case TARGET_NR_shmdt:
9991 ret = do_shmdt(arg1);
9992 break;
9993 #endif
9994 case TARGET_NR_fsync:
9995 ret = get_errno(fsync(arg1));
9996 break;
9997 case TARGET_NR_clone:
9998 /* Linux manages to have three different orderings for its
9999 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10000 * match the kernel's CONFIG_CLONE_* settings.
10001 * Microblaze is further special in that it uses a sixth
10002 * implicit argument to clone for the TLS pointer.
10004 #if defined(TARGET_MICROBLAZE)
10005 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10006 #elif defined(TARGET_CLONE_BACKWARDS)
10007 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10008 #elif defined(TARGET_CLONE_BACKWARDS2)
10009 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10010 #else
10011 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10012 #endif
10013 break;
10014 #ifdef __NR_exit_group
10015 /* new thread calls */
10016 case TARGET_NR_exit_group:
10017 #ifdef TARGET_GPROF
10018 _mcleanup();
10019 #endif
10020 gdb_exit(cpu_env, arg1);
10021 ret = get_errno(exit_group(arg1));
10022 break;
10023 #endif
10024 case TARGET_NR_setdomainname:
10025 if (!(p = lock_user_string(arg1)))
10026 goto efault;
10027 ret = get_errno(setdomainname(p, arg2));
10028 unlock_user(p, arg1, 0);
10029 break;
10030 case TARGET_NR_uname:
10031 /* no need to transcode because we use the linux syscall */
10033 struct new_utsname * buf;
10035 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10036 goto efault;
10037 ret = get_errno(sys_uname(buf));
10038 if (!is_error(ret)) {
10039 /* Overwrite the native machine name with whatever is being
10040 emulated. */
10041 strcpy (buf->machine, cpu_to_uname_machine(cpu_env));
10042 /* Allow the user to override the reported release. */
10043 if (qemu_uname_release && *qemu_uname_release) {
10044 g_strlcpy(buf->release, qemu_uname_release,
10045 sizeof(buf->release));
10048 unlock_user_struct(buf, arg1, 1);
10050 break;
10051 #ifdef TARGET_I386
10052 case TARGET_NR_modify_ldt:
10053 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3);
10054 break;
10055 #if !defined(TARGET_X86_64)
10056 case TARGET_NR_vm86old:
10057 goto unimplemented;
10058 case TARGET_NR_vm86:
10059 ret = do_vm86(cpu_env, arg1, arg2);
10060 break;
10061 #endif
10062 #endif
10063 case TARGET_NR_adjtimex:
10065 struct timex host_buf;
10067 if (target_to_host_timex(&host_buf, arg1) != 0) {
10068 goto efault;
10070 ret = get_errno(adjtimex(&host_buf));
10071 if (!is_error(ret)) {
10072 if (host_to_target_timex(arg1, &host_buf) != 0) {
10073 goto efault;
10077 break;
10078 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10079 case TARGET_NR_clock_adjtime:
10081 struct timex htx, *phtx = &htx;
10083 if (target_to_host_timex(phtx, arg2) != 0) {
10084 goto efault;
10086 ret = get_errno(clock_adjtime(arg1, phtx));
10087 if (!is_error(ret) && phtx) {
10088 if (host_to_target_timex(arg2, phtx) != 0) {
10089 goto efault;
10093 break;
10094 #endif
10095 #ifdef TARGET_NR_create_module
10096 case TARGET_NR_create_module:
10097 #endif
10098 case TARGET_NR_init_module:
10099 case TARGET_NR_delete_module:
10100 #ifdef TARGET_NR_get_kernel_syms
10101 case TARGET_NR_get_kernel_syms:
10102 #endif
10103 goto unimplemented;
10104 case TARGET_NR_quotactl:
10105 goto unimplemented;
10106 case TARGET_NR_getpgid:
10107 ret = get_errno(getpgid(arg1));
10108 break;
10109 case TARGET_NR_fchdir:
10110 ret = get_errno(fchdir(arg1));
10111 break;
10112 #ifdef TARGET_NR_bdflush /* not on x86_64 */
10113 case TARGET_NR_bdflush:
10114 goto unimplemented;
10115 #endif
10116 #ifdef TARGET_NR_sysfs
10117 case TARGET_NR_sysfs:
10118 goto unimplemented;
10119 #endif
10120 case TARGET_NR_personality:
10121 ret = get_errno(personality(arg1));
10122 break;
10123 #ifdef TARGET_NR_afs_syscall
10124 case TARGET_NR_afs_syscall:
10125 goto unimplemented;
10126 #endif
10127 #ifdef TARGET_NR__llseek /* Not on alpha */
10128 case TARGET_NR__llseek:
10130 int64_t res;
10131 #if !defined(__NR_llseek)
10132 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
10133 if (res == -1) {
10134 ret = get_errno(res);
10135 } else {
10136 ret = 0;
10138 #else
10139 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
10140 #endif
10141 if ((ret == 0) && put_user_s64(res, arg4)) {
10142 goto efault;
10145 break;
10146 #endif
10147 #ifdef TARGET_NR_getdents
10148 case TARGET_NR_getdents:
10149 #ifdef __NR_getdents
10150 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
10152 struct target_dirent *target_dirp;
10153 struct linux_dirent *dirp;
10154 abi_long count = arg3;
10156 dirp = g_try_malloc(count);
10157 if (!dirp) {
10158 ret = -TARGET_ENOMEM;
10159 goto fail;
10162 ret = get_errno(sys_getdents(arg1, dirp, count));
10163 if (!is_error(ret)) {
10164 struct linux_dirent *de;
10165 struct target_dirent *tde;
10166 int len = ret;
10167 int reclen, treclen;
10168 int count1, tnamelen;
10170 count1 = 0;
10171 de = dirp;
10172 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10173 goto efault;
10174 tde = target_dirp;
10175 while (len > 0) {
10176 reclen = de->d_reclen;
10177 tnamelen = reclen - offsetof(struct linux_dirent, d_name);
10178 assert(tnamelen >= 0);
10179 treclen = tnamelen + offsetof(struct target_dirent, d_name);
10180 assert(count1 + treclen <= count);
10181 tde->d_reclen = tswap16(treclen);
10182 tde->d_ino = tswapal(de->d_ino);
10183 tde->d_off = tswapal(de->d_off);
10184 memcpy(tde->d_name, de->d_name, tnamelen);
10185 de = (struct linux_dirent *)((char *)de + reclen);
10186 len -= reclen;
10187 tde = (struct target_dirent *)((char *)tde + treclen);
10188 count1 += treclen;
10190 ret = count1;
10191 unlock_user(target_dirp, arg2, ret);
10193 g_free(dirp);
10195 #else
10197 struct linux_dirent *dirp;
10198 abi_long count = arg3;
10200 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10201 goto efault;
10202 ret = get_errno(sys_getdents(arg1, dirp, count));
10203 if (!is_error(ret)) {
10204 struct linux_dirent *de;
10205 int len = ret;
10206 int reclen;
10207 de = dirp;
10208 while (len > 0) {
10209 reclen = de->d_reclen;
10210 if (reclen > len)
10211 break;
10212 de->d_reclen = tswap16(reclen);
10213 tswapls(&de->d_ino);
10214 tswapls(&de->d_off);
10215 de = (struct linux_dirent *)((char *)de + reclen);
10216 len -= reclen;
10219 unlock_user(dirp, arg2, ret);
10221 #endif
10222 #else
10223 /* Implement getdents in terms of getdents64 */
10225 struct linux_dirent64 *dirp;
10226 abi_long count = arg3;
10228 dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
10229 if (!dirp) {
10230 goto efault;
10232 ret = get_errno(sys_getdents64(arg1, dirp, count));
10233 if (!is_error(ret)) {
10234 /* Convert the dirent64 structs to target dirent. We do this
10235 * in-place, since we can guarantee that a target_dirent is no
10236 * larger than a dirent64; however this means we have to be
10237 * careful to read everything before writing in the new format.
10239 struct linux_dirent64 *de;
10240 struct target_dirent *tde;
10241 int len = ret;
10242 int tlen = 0;
10244 de = dirp;
10245 tde = (struct target_dirent *)dirp;
10246 while (len > 0) {
10247 int namelen, treclen;
10248 int reclen = de->d_reclen;
10249 uint64_t ino = de->d_ino;
10250 int64_t off = de->d_off;
10251 uint8_t type = de->d_type;
10253 namelen = strlen(de->d_name);
10254 treclen = offsetof(struct target_dirent, d_name)
10255 + namelen + 2;
10256 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
10258 memmove(tde->d_name, de->d_name, namelen + 1);
10259 tde->d_ino = tswapal(ino);
10260 tde->d_off = tswapal(off);
10261 tde->d_reclen = tswap16(treclen);
10262 /* The target_dirent type is in what was formerly a padding
10263 * byte at the end of the structure:
10265 *(((char *)tde) + treclen - 1) = type;
10267 de = (struct linux_dirent64 *)((char *)de + reclen);
10268 tde = (struct target_dirent *)((char *)tde + treclen);
10269 len -= reclen;
10270 tlen += treclen;
10272 ret = tlen;
10274 unlock_user(dirp, arg2, ret);
10276 #endif
10277 break;
10278 #endif /* TARGET_NR_getdents */
10279 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10280 case TARGET_NR_getdents64:
10282 struct linux_dirent64 *dirp;
10283 abi_long count = arg3;
10284 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10285 goto efault;
10286 ret = get_errno(sys_getdents64(arg1, dirp, count));
10287 if (!is_error(ret)) {
10288 struct linux_dirent64 *de;
10289 int len = ret;
10290 int reclen;
10291 de = dirp;
10292 while (len > 0) {
10293 reclen = de->d_reclen;
10294 if (reclen > len)
10295 break;
10296 de->d_reclen = tswap16(reclen);
10297 tswap64s((uint64_t *)&de->d_ino);
10298 tswap64s((uint64_t *)&de->d_off);
10299 de = (struct linux_dirent64 *)((char *)de + reclen);
10300 len -= reclen;
10303 unlock_user(dirp, arg2, ret);
10305 break;
10306 #endif /* TARGET_NR_getdents64 */
10307 #if defined(TARGET_NR__newselect)
10308 case TARGET_NR__newselect:
10309 ret = do_select(arg1, arg2, arg3, arg4, arg5);
10310 break;
10311 #endif
10312 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
10313 # ifdef TARGET_NR_poll
10314 case TARGET_NR_poll:
10315 # endif
10316 # ifdef TARGET_NR_ppoll
10317 case TARGET_NR_ppoll:
10318 # endif
10320 struct target_pollfd *target_pfd;
10321 unsigned int nfds = arg2;
10322 struct pollfd *pfd;
10323 unsigned int i;
10325 pfd = NULL;
10326 target_pfd = NULL;
10327 if (nfds) {
10328 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
10329 ret = -TARGET_EINVAL;
10330 break;
10333 target_pfd = lock_user(VERIFY_WRITE, arg1,
10334 sizeof(struct target_pollfd) * nfds, 1);
10335 if (!target_pfd) {
10336 goto efault;
10339 pfd = alloca(sizeof(struct pollfd) * nfds);
10340 for (i = 0; i < nfds; i++) {
10341 pfd[i].fd = tswap32(target_pfd[i].fd);
10342 pfd[i].events = tswap16(target_pfd[i].events);
10346 switch (num) {
10347 # ifdef TARGET_NR_ppoll
10348 case TARGET_NR_ppoll:
10350 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
10351 target_sigset_t *target_set;
10352 sigset_t _set, *set = &_set;
10354 if (arg3) {
10355 if (target_to_host_timespec(timeout_ts, arg3)) {
10356 unlock_user(target_pfd, arg1, 0);
10357 goto efault;
10359 } else {
10360 timeout_ts = NULL;
10363 if (arg4) {
10364 if (arg5 != sizeof(target_sigset_t)) {
10365 unlock_user(target_pfd, arg1, 0);
10366 ret = -TARGET_EINVAL;
10367 break;
10370 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
10371 if (!target_set) {
10372 unlock_user(target_pfd, arg1, 0);
10373 goto efault;
10375 target_to_host_sigset(set, target_set);
10376 } else {
10377 set = NULL;
10380 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
10381 set, SIGSET_T_SIZE));
10383 if (!is_error(ret) && arg3) {
10384 host_to_target_timespec(arg3, timeout_ts);
10386 if (arg4) {
10387 unlock_user(target_set, arg4, 0);
10389 break;
10391 # endif
10392 # ifdef TARGET_NR_poll
10393 case TARGET_NR_poll:
10395 struct timespec ts, *pts;
10397 if (arg3 >= 0) {
10398 /* Convert ms to secs, ns */
10399 ts.tv_sec = arg3 / 1000;
10400 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
10401 pts = &ts;
10402 } else {
10403 /* -ve poll() timeout means "infinite" */
10404 pts = NULL;
10406 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
10407 break;
10409 # endif
10410 default:
10411 g_assert_not_reached();
10414 if (!is_error(ret)) {
10415 for(i = 0; i < nfds; i++) {
10416 target_pfd[i].revents = tswap16(pfd[i].revents);
10419 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
10421 break;
10422 #endif
10423 case TARGET_NR_flock:
10424 /* NOTE: the flock constant seems to be the same for every
10425 Linux platform */
10426 ret = get_errno(safe_flock(arg1, arg2));
10427 break;
10428 case TARGET_NR_readv:
10430 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10431 if (vec != NULL) {
10432 ret = get_errno(safe_readv(arg1, vec, arg3));
10433 unlock_iovec(vec, arg2, arg3, 1);
10434 } else {
10435 ret = -host_to_target_errno(errno);
10438 break;
10439 case TARGET_NR_writev:
10441 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10442 if (vec != NULL) {
10443 ret = get_errno(safe_writev(arg1, vec, arg3));
10444 unlock_iovec(vec, arg2, arg3, 0);
10445 } else {
10446 ret = -host_to_target_errno(errno);
10449 break;
10450 #if defined(TARGET_NR_preadv)
10451 case TARGET_NR_preadv:
10453 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10454 if (vec != NULL) {
10455 ret = get_errno(safe_preadv(arg1, vec, arg3, arg4, arg5));
10456 unlock_iovec(vec, arg2, arg3, 1);
10457 } else {
10458 ret = -host_to_target_errno(errno);
10461 break;
10462 #endif
10463 #if defined(TARGET_NR_pwritev)
10464 case TARGET_NR_pwritev:
10466 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10467 if (vec != NULL) {
10468 ret = get_errno(safe_pwritev(arg1, vec, arg3, arg4, arg5));
10469 unlock_iovec(vec, arg2, arg3, 0);
10470 } else {
10471 ret = -host_to_target_errno(errno);
10474 break;
10475 #endif
10476 case TARGET_NR_getsid:
10477 ret = get_errno(getsid(arg1));
10478 break;
10479 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10480 case TARGET_NR_fdatasync:
10481 ret = get_errno(fdatasync(arg1));
10482 break;
10483 #endif
10484 #ifdef TARGET_NR__sysctl
10485 case TARGET_NR__sysctl:
10486 /* We don't implement this, but ENOTDIR is always a safe
10487 return value. */
10488 ret = -TARGET_ENOTDIR;
10489 break;
10490 #endif
10491 case TARGET_NR_sched_getaffinity:
10493 unsigned int mask_size;
10494 unsigned long *mask;
10497 * sched_getaffinity needs multiples of ulong, so need to take
10498 * care of mismatches between target ulong and host ulong sizes.
10500 if (arg2 & (sizeof(abi_ulong) - 1)) {
10501 ret = -TARGET_EINVAL;
10502 break;
10504 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10506 mask = alloca(mask_size);
10507 memset(mask, 0, mask_size);
10508 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10510 if (!is_error(ret)) {
10511 if (ret > arg2) {
10512 /* More data returned than the caller's buffer will fit.
10513 * This only happens if sizeof(abi_long) < sizeof(long)
10514 * and the caller passed us a buffer holding an odd number
10515 * of abi_longs. If the host kernel is actually using the
10516 * extra 4 bytes then fail EINVAL; otherwise we can just
10517 * ignore them and only copy the interesting part.
10519 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10520 if (numcpus > arg2 * 8) {
10521 ret = -TARGET_EINVAL;
10522 break;
10524 ret = arg2;
10527 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10528 goto efault;
10532 break;
10533 case TARGET_NR_sched_setaffinity:
10535 unsigned int mask_size;
10536 unsigned long *mask;
10539 * sched_setaffinity needs multiples of ulong, so need to take
10540 * care of mismatches between target ulong and host ulong sizes.
10542 if (arg2 & (sizeof(abi_ulong) - 1)) {
10543 ret = -TARGET_EINVAL;
10544 break;
10546 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10547 mask = alloca(mask_size);
10549 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10550 if (ret) {
10551 break;
10554 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10556 break;
10557 case TARGET_NR_getcpu:
10559 unsigned cpu, node;
10560 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10561 arg2 ? &node : NULL,
10562 NULL));
10563 if (is_error(ret)) {
10564 goto fail;
10566 if (arg1 && put_user_u32(cpu, arg1)) {
10567 goto efault;
10569 if (arg2 && put_user_u32(node, arg2)) {
10570 goto efault;
10573 break;
10574 case TARGET_NR_sched_setparam:
10576 struct sched_param *target_schp;
10577 struct sched_param schp;
10579 if (arg2 == 0) {
10580 return -TARGET_EINVAL;
10582 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
10583 goto efault;
10584 schp.sched_priority = tswap32(target_schp->sched_priority);
10585 unlock_user_struct(target_schp, arg2, 0);
10586 ret = get_errno(sched_setparam(arg1, &schp));
10588 break;
10589 case TARGET_NR_sched_getparam:
10591 struct sched_param *target_schp;
10592 struct sched_param schp;
10594 if (arg2 == 0) {
10595 return -TARGET_EINVAL;
10597 ret = get_errno(sched_getparam(arg1, &schp));
10598 if (!is_error(ret)) {
10599 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
10600 goto efault;
10601 target_schp->sched_priority = tswap32(schp.sched_priority);
10602 unlock_user_struct(target_schp, arg2, 1);
10605 break;
10606 case TARGET_NR_sched_setscheduler:
10608 struct sched_param *target_schp;
10609 struct sched_param schp;
10610 if (arg3 == 0) {
10611 return -TARGET_EINVAL;
10613 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
10614 goto efault;
10615 schp.sched_priority = tswap32(target_schp->sched_priority);
10616 unlock_user_struct(target_schp, arg3, 0);
10617 ret = get_errno(sched_setscheduler(arg1, arg2, &schp));
10619 break;
10620 case TARGET_NR_sched_getscheduler:
10621 ret = get_errno(sched_getscheduler(arg1));
10622 break;
10623 case TARGET_NR_sched_yield:
10624 ret = get_errno(sched_yield());
10625 break;
10626 case TARGET_NR_sched_get_priority_max:
10627 ret = get_errno(sched_get_priority_max(arg1));
10628 break;
10629 case TARGET_NR_sched_get_priority_min:
10630 ret = get_errno(sched_get_priority_min(arg1));
10631 break;
10632 case TARGET_NR_sched_rr_get_interval:
10634 struct timespec ts;
10635 ret = get_errno(sched_rr_get_interval(arg1, &ts));
10636 if (!is_error(ret)) {
10637 ret = host_to_target_timespec(arg2, &ts);
10640 break;
10641 case TARGET_NR_nanosleep:
10643 struct timespec req, rem;
10644 target_to_host_timespec(&req, arg1);
10645 ret = get_errno(safe_nanosleep(&req, &rem));
10646 if (is_error(ret) && arg2) {
10647 host_to_target_timespec(arg2, &rem);
10650 break;
10651 #ifdef TARGET_NR_query_module
10652 case TARGET_NR_query_module:
10653 goto unimplemented;
10654 #endif
10655 #ifdef TARGET_NR_nfsservctl
10656 case TARGET_NR_nfsservctl:
10657 goto unimplemented;
10658 #endif
10659 case TARGET_NR_prctl:
10660 switch (arg1) {
10661 case PR_GET_PDEATHSIG:
10663 int deathsig;
10664 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
10665 if (!is_error(ret) && arg2
10666 && put_user_ual(deathsig, arg2)) {
10667 goto efault;
10669 break;
10671 #ifdef PR_GET_NAME
10672 case PR_GET_NAME:
10674 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
10675 if (!name) {
10676 goto efault;
10678 ret = get_errno(prctl(arg1, (unsigned long)name,
10679 arg3, arg4, arg5));
10680 unlock_user(name, arg2, 16);
10681 break;
10683 case PR_SET_NAME:
10685 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
10686 if (!name) {
10687 goto efault;
10689 ret = get_errno(prctl(arg1, (unsigned long)name,
10690 arg3, arg4, arg5));
10691 unlock_user(name, arg2, 0);
10692 break;
10694 #endif
10695 #ifdef TARGET_AARCH64
10696 case TARGET_PR_SVE_SET_VL:
10697 /* We cannot support either PR_SVE_SET_VL_ONEXEC
10698 or PR_SVE_VL_INHERIT. Therefore, anything above
10699 ARM_MAX_VQ results in EINVAL. */
10700 ret = -TARGET_EINVAL;
10701 if (arm_feature(cpu_env, ARM_FEATURE_SVE)
10702 && arg2 >= 0 && arg2 <= ARM_MAX_VQ * 16 && !(arg2 & 15)) {
10703 CPUARMState *env = cpu_env;
10704 int old_vq = (env->vfp.zcr_el[1] & 0xf) + 1;
10705 int vq = MAX(arg2 / 16, 1);
10707 if (vq < old_vq) {
10708 aarch64_sve_narrow_vq(env, vq);
10710 env->vfp.zcr_el[1] = vq - 1;
10711 ret = vq * 16;
10713 break;
10714 case TARGET_PR_SVE_GET_VL:
10715 ret = -TARGET_EINVAL;
10716 if (arm_feature(cpu_env, ARM_FEATURE_SVE)) {
10717 CPUARMState *env = cpu_env;
10718 ret = ((env->vfp.zcr_el[1] & 0xf) + 1) * 16;
10720 break;
10721 #endif /* AARCH64 */
10722 case PR_GET_SECCOMP:
10723 case PR_SET_SECCOMP:
10724 /* Disable seccomp to prevent the target disabling syscalls we
10725 * need. */
10726 ret = -TARGET_EINVAL;
10727 break;
10728 default:
10729 /* Most prctl options have no pointer arguments */
10730 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
10731 break;
10733 break;
10734 #ifdef TARGET_NR_arch_prctl
10735 case TARGET_NR_arch_prctl:
10736 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
10737 ret = do_arch_prctl(cpu_env, arg1, arg2);
10738 break;
10739 #else
10740 goto unimplemented;
10741 #endif
10742 #endif
10743 #ifdef TARGET_NR_pread64
10744 case TARGET_NR_pread64:
10745 if (regpairs_aligned(cpu_env, num)) {
10746 arg4 = arg5;
10747 arg5 = arg6;
10749 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
10750 goto efault;
10751 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
10752 unlock_user(p, arg2, ret);
10753 break;
10754 case TARGET_NR_pwrite64:
10755 if (regpairs_aligned(cpu_env, num)) {
10756 arg4 = arg5;
10757 arg5 = arg6;
10759 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
10760 goto efault;
10761 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
10762 unlock_user(p, arg2, 0);
10763 break;
10764 #endif
10765 case TARGET_NR_getcwd:
10766 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
10767 goto efault;
10768 ret = get_errno(sys_getcwd1(p, arg2));
10769 unlock_user(p, arg1, ret);
10770 break;
10771 case TARGET_NR_capget:
10772 case TARGET_NR_capset:
10774 struct target_user_cap_header *target_header;
10775 struct target_user_cap_data *target_data = NULL;
10776 struct __user_cap_header_struct header;
10777 struct __user_cap_data_struct data[2];
10778 struct __user_cap_data_struct *dataptr = NULL;
10779 int i, target_datalen;
10780 int data_items = 1;
10782 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
10783 goto efault;
10785 header.version = tswap32(target_header->version);
10786 header.pid = tswap32(target_header->pid);
10788 if (header.version != _LINUX_CAPABILITY_VERSION) {
10789 /* Version 2 and up takes pointer to two user_data structs */
10790 data_items = 2;
10793 target_datalen = sizeof(*target_data) * data_items;
10795 if (arg2) {
10796 if (num == TARGET_NR_capget) {
10797 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
10798 } else {
10799 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
10801 if (!target_data) {
10802 unlock_user_struct(target_header, arg1, 0);
10803 goto efault;
10806 if (num == TARGET_NR_capset) {
10807 for (i = 0; i < data_items; i++) {
10808 data[i].effective = tswap32(target_data[i].effective);
10809 data[i].permitted = tswap32(target_data[i].permitted);
10810 data[i].inheritable = tswap32(target_data[i].inheritable);
10814 dataptr = data;
10817 if (num == TARGET_NR_capget) {
10818 ret = get_errno(capget(&header, dataptr));
10819 } else {
10820 ret = get_errno(capset(&header, dataptr));
10823 /* The kernel always updates version for both capget and capset */
10824 target_header->version = tswap32(header.version);
10825 unlock_user_struct(target_header, arg1, 1);
10827 if (arg2) {
10828 if (num == TARGET_NR_capget) {
10829 for (i = 0; i < data_items; i++) {
10830 target_data[i].effective = tswap32(data[i].effective);
10831 target_data[i].permitted = tswap32(data[i].permitted);
10832 target_data[i].inheritable = tswap32(data[i].inheritable);
10834 unlock_user(target_data, arg2, target_datalen);
10835 } else {
10836 unlock_user(target_data, arg2, 0);
10839 break;
10841 case TARGET_NR_sigaltstack:
10842 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env));
10843 break;
10845 #ifdef CONFIG_SENDFILE
10846 case TARGET_NR_sendfile:
10848 off_t *offp = NULL;
10849 off_t off;
10850 if (arg3) {
10851 ret = get_user_sal(off, arg3);
10852 if (is_error(ret)) {
10853 break;
10855 offp = &off;
10857 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10858 if (!is_error(ret) && arg3) {
10859 abi_long ret2 = put_user_sal(off, arg3);
10860 if (is_error(ret2)) {
10861 ret = ret2;
10864 break;
10866 #ifdef TARGET_NR_sendfile64
10867 case TARGET_NR_sendfile64:
10869 off_t *offp = NULL;
10870 off_t off;
10871 if (arg3) {
10872 ret = get_user_s64(off, arg3);
10873 if (is_error(ret)) {
10874 break;
10876 offp = &off;
10878 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10879 if (!is_error(ret) && arg3) {
10880 abi_long ret2 = put_user_s64(off, arg3);
10881 if (is_error(ret2)) {
10882 ret = ret2;
10885 break;
10887 #endif
10888 #else
10889 case TARGET_NR_sendfile:
10890 #ifdef TARGET_NR_sendfile64
10891 case TARGET_NR_sendfile64:
10892 #endif
10893 goto unimplemented;
10894 #endif
10896 #ifdef TARGET_NR_getpmsg
10897 case TARGET_NR_getpmsg:
10898 goto unimplemented;
10899 #endif
10900 #ifdef TARGET_NR_putpmsg
10901 case TARGET_NR_putpmsg:
10902 goto unimplemented;
10903 #endif
10904 #ifdef TARGET_NR_vfork
10905 case TARGET_NR_vfork:
10906 ret = get_errno(do_fork(cpu_env,
10907 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
10908 0, 0, 0, 0));
10909 break;
10910 #endif
10911 #ifdef TARGET_NR_ugetrlimit
10912 case TARGET_NR_ugetrlimit:
10914 struct rlimit rlim;
10915 int resource = target_to_host_resource(arg1);
10916 ret = get_errno(getrlimit(resource, &rlim));
10917 if (!is_error(ret)) {
10918 struct target_rlimit *target_rlim;
10919 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10920 goto efault;
10921 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10922 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10923 unlock_user_struct(target_rlim, arg2, 1);
10925 break;
10927 #endif
10928 #ifdef TARGET_NR_truncate64
10929 case TARGET_NR_truncate64:
10930 if (!(p = lock_user_string(arg1)))
10931 goto efault;
10932 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
10933 unlock_user(p, arg1, 0);
10934 break;
10935 #endif
10936 #ifdef TARGET_NR_ftruncate64
10937 case TARGET_NR_ftruncate64:
10938 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
10939 break;
10940 #endif
10941 #ifdef TARGET_NR_stat64
10942 case TARGET_NR_stat64:
10943 if (!(p = lock_user_string(arg1)))
10944 goto efault;
10945 ret = get_errno(stat(path(p), &st));
10946 unlock_user(p, arg1, 0);
10947 if (!is_error(ret))
10948 ret = host_to_target_stat64(cpu_env, arg2, &st);
10949 break;
10950 #endif
10951 #ifdef TARGET_NR_lstat64
10952 case TARGET_NR_lstat64:
10953 if (!(p = lock_user_string(arg1)))
10954 goto efault;
10955 ret = get_errno(lstat(path(p), &st));
10956 unlock_user(p, arg1, 0);
10957 if (!is_error(ret))
10958 ret = host_to_target_stat64(cpu_env, arg2, &st);
10959 break;
10960 #endif
10961 #ifdef TARGET_NR_fstat64
10962 case TARGET_NR_fstat64:
10963 ret = get_errno(fstat(arg1, &st));
10964 if (!is_error(ret))
10965 ret = host_to_target_stat64(cpu_env, arg2, &st);
10966 break;
10967 #endif
10968 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
10969 #ifdef TARGET_NR_fstatat64
10970 case TARGET_NR_fstatat64:
10971 #endif
10972 #ifdef TARGET_NR_newfstatat
10973 case TARGET_NR_newfstatat:
10974 #endif
10975 if (!(p = lock_user_string(arg2)))
10976 goto efault;
10977 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
10978 if (!is_error(ret))
10979 ret = host_to_target_stat64(cpu_env, arg3, &st);
10980 break;
10981 #endif
10982 #ifdef TARGET_NR_lchown
10983 case TARGET_NR_lchown:
10984 if (!(p = lock_user_string(arg1)))
10985 goto efault;
10986 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
10987 unlock_user(p, arg1, 0);
10988 break;
10989 #endif
10990 #ifdef TARGET_NR_getuid
10991 case TARGET_NR_getuid:
10992 ret = get_errno(high2lowuid(getuid()));
10993 break;
10994 #endif
10995 #ifdef TARGET_NR_getgid
10996 case TARGET_NR_getgid:
10997 ret = get_errno(high2lowgid(getgid()));
10998 break;
10999 #endif
11000 #ifdef TARGET_NR_geteuid
11001 case TARGET_NR_geteuid:
11002 ret = get_errno(high2lowuid(geteuid()));
11003 break;
11004 #endif
11005 #ifdef TARGET_NR_getegid
11006 case TARGET_NR_getegid:
11007 ret = get_errno(high2lowgid(getegid()));
11008 break;
11009 #endif
11010 case TARGET_NR_setreuid:
11011 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11012 break;
11013 case TARGET_NR_setregid:
11014 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11015 break;
11016 case TARGET_NR_getgroups:
11018 int gidsetsize = arg1;
11019 target_id *target_grouplist;
11020 gid_t *grouplist;
11021 int i;
11023 grouplist = alloca(gidsetsize * sizeof(gid_t));
11024 ret = get_errno(getgroups(gidsetsize, grouplist));
11025 if (gidsetsize == 0)
11026 break;
11027 if (!is_error(ret)) {
11028 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
11029 if (!target_grouplist)
11030 goto efault;
11031 for(i = 0;i < ret; i++)
11032 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11033 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
11036 break;
11037 case TARGET_NR_setgroups:
11039 int gidsetsize = arg1;
11040 target_id *target_grouplist;
11041 gid_t *grouplist = NULL;
11042 int i;
11043 if (gidsetsize) {
11044 grouplist = alloca(gidsetsize * sizeof(gid_t));
11045 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
11046 if (!target_grouplist) {
11047 ret = -TARGET_EFAULT;
11048 goto fail;
11050 for (i = 0; i < gidsetsize; i++) {
11051 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11053 unlock_user(target_grouplist, arg2, 0);
11055 ret = get_errno(setgroups(gidsetsize, grouplist));
11057 break;
11058 case TARGET_NR_fchown:
11059 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11060 break;
11061 #if defined(TARGET_NR_fchownat)
11062 case TARGET_NR_fchownat:
11063 if (!(p = lock_user_string(arg2)))
11064 goto efault;
11065 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11066 low2highgid(arg4), arg5));
11067 unlock_user(p, arg2, 0);
11068 break;
11069 #endif
11070 #ifdef TARGET_NR_setresuid
11071 case TARGET_NR_setresuid:
11072 ret = get_errno(sys_setresuid(low2highuid(arg1),
11073 low2highuid(arg2),
11074 low2highuid(arg3)));
11075 break;
11076 #endif
11077 #ifdef TARGET_NR_getresuid
11078 case TARGET_NR_getresuid:
11080 uid_t ruid, euid, suid;
11081 ret = get_errno(getresuid(&ruid, &euid, &suid));
11082 if (!is_error(ret)) {
11083 if (put_user_id(high2lowuid(ruid), arg1)
11084 || put_user_id(high2lowuid(euid), arg2)
11085 || put_user_id(high2lowuid(suid), arg3))
11086 goto efault;
11089 break;
11090 #endif
11091 #ifdef TARGET_NR_getresgid
11092 case TARGET_NR_setresgid:
11093 ret = get_errno(sys_setresgid(low2highgid(arg1),
11094 low2highgid(arg2),
11095 low2highgid(arg3)));
11096 break;
11097 #endif
11098 #ifdef TARGET_NR_getresgid
11099 case TARGET_NR_getresgid:
11101 gid_t rgid, egid, sgid;
11102 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11103 if (!is_error(ret)) {
11104 if (put_user_id(high2lowgid(rgid), arg1)
11105 || put_user_id(high2lowgid(egid), arg2)
11106 || put_user_id(high2lowgid(sgid), arg3))
11107 goto efault;
11110 break;
11111 #endif
11112 #ifdef TARGET_NR_chown
11113 case TARGET_NR_chown:
11114 if (!(p = lock_user_string(arg1)))
11115 goto efault;
11116 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11117 unlock_user(p, arg1, 0);
11118 break;
11119 #endif
11120 case TARGET_NR_setuid:
11121 ret = get_errno(sys_setuid(low2highuid(arg1)));
11122 break;
11123 case TARGET_NR_setgid:
11124 ret = get_errno(sys_setgid(low2highgid(arg1)));
11125 break;
11126 case TARGET_NR_setfsuid:
11127 ret = get_errno(setfsuid(arg1));
11128 break;
11129 case TARGET_NR_setfsgid:
11130 ret = get_errno(setfsgid(arg1));
11131 break;
11133 #ifdef TARGET_NR_lchown32
11134 case TARGET_NR_lchown32:
11135 if (!(p = lock_user_string(arg1)))
11136 goto efault;
11137 ret = get_errno(lchown(p, arg2, arg3));
11138 unlock_user(p, arg1, 0);
11139 break;
11140 #endif
11141 #ifdef TARGET_NR_getuid32
11142 case TARGET_NR_getuid32:
11143 ret = get_errno(getuid());
11144 break;
11145 #endif
11147 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11148 /* Alpha specific */
11149 case TARGET_NR_getxuid:
11151 uid_t euid;
11152 euid=geteuid();
11153 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
11155 ret = get_errno(getuid());
11156 break;
11157 #endif
11158 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11159 /* Alpha specific */
11160 case TARGET_NR_getxgid:
11162 uid_t egid;
11163 egid=getegid();
11164 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
11166 ret = get_errno(getgid());
11167 break;
11168 #endif
11169 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11170 /* Alpha specific */
11171 case TARGET_NR_osf_getsysinfo:
11172 ret = -TARGET_EOPNOTSUPP;
11173 switch (arg1) {
11174 case TARGET_GSI_IEEE_FP_CONTROL:
11176 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env);
11178 /* Copied from linux ieee_fpcr_to_swcr. */
11179 swcr = (fpcr >> 35) & SWCR_STATUS_MASK;
11180 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ;
11181 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV
11182 | SWCR_TRAP_ENABLE_DZE
11183 | SWCR_TRAP_ENABLE_OVF);
11184 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF
11185 | SWCR_TRAP_ENABLE_INE);
11186 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ;
11187 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO;
11189 if (put_user_u64 (swcr, arg2))
11190 goto efault;
11191 ret = 0;
11193 break;
11195 /* case GSI_IEEE_STATE_AT_SIGNAL:
11196 -- Not implemented in linux kernel.
11197 case GSI_UACPROC:
11198 -- Retrieves current unaligned access state; not much used.
11199 case GSI_PROC_TYPE:
11200 -- Retrieves implver information; surely not used.
11201 case GSI_GET_HWRPB:
11202 -- Grabs a copy of the HWRPB; surely not used.
11205 break;
11206 #endif
11207 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11208 /* Alpha specific */
11209 case TARGET_NR_osf_setsysinfo:
11210 ret = -TARGET_EOPNOTSUPP;
11211 switch (arg1) {
11212 case TARGET_SSI_IEEE_FP_CONTROL:
11214 uint64_t swcr, fpcr, orig_fpcr;
11216 if (get_user_u64 (swcr, arg2)) {
11217 goto efault;
11219 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
11220 fpcr = orig_fpcr & FPCR_DYN_MASK;
11222 /* Copied from linux ieee_swcr_to_fpcr. */
11223 fpcr |= (swcr & SWCR_STATUS_MASK) << 35;
11224 fpcr |= (swcr & SWCR_MAP_DMZ) << 36;
11225 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV
11226 | SWCR_TRAP_ENABLE_DZE
11227 | SWCR_TRAP_ENABLE_OVF)) << 48;
11228 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF
11229 | SWCR_TRAP_ENABLE_INE)) << 57;
11230 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0);
11231 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41;
11233 cpu_alpha_store_fpcr(cpu_env, fpcr);
11234 ret = 0;
11236 break;
11238 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11240 uint64_t exc, fpcr, orig_fpcr;
11241 int si_code;
11243 if (get_user_u64(exc, arg2)) {
11244 goto efault;
11247 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
11249 /* We only add to the exception status here. */
11250 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35);
11252 cpu_alpha_store_fpcr(cpu_env, fpcr);
11253 ret = 0;
11255 /* Old exceptions are not signaled. */
11256 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK);
11258 /* If any exceptions set by this call,
11259 and are unmasked, send a signal. */
11260 si_code = 0;
11261 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) {
11262 si_code = TARGET_FPE_FLTRES;
11264 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) {
11265 si_code = TARGET_FPE_FLTUND;
11267 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) {
11268 si_code = TARGET_FPE_FLTOVF;
11270 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) {
11271 si_code = TARGET_FPE_FLTDIV;
11273 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) {
11274 si_code = TARGET_FPE_FLTINV;
11276 if (si_code != 0) {
11277 target_siginfo_t info;
11278 info.si_signo = SIGFPE;
11279 info.si_errno = 0;
11280 info.si_code = si_code;
11281 info._sifields._sigfault._addr
11282 = ((CPUArchState *)cpu_env)->pc;
11283 queue_signal((CPUArchState *)cpu_env, info.si_signo,
11284 QEMU_SI_FAULT, &info);
11287 break;
11289 /* case SSI_NVPAIRS:
11290 -- Used with SSIN_UACPROC to enable unaligned accesses.
11291 case SSI_IEEE_STATE_AT_SIGNAL:
11292 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11293 -- Not implemented in linux kernel
11296 break;
11297 #endif
11298 #ifdef TARGET_NR_osf_sigprocmask
11299 /* Alpha specific. */
11300 case TARGET_NR_osf_sigprocmask:
11302 abi_ulong mask;
11303 int how;
11304 sigset_t set, oldset;
11306 switch(arg1) {
11307 case TARGET_SIG_BLOCK:
11308 how = SIG_BLOCK;
11309 break;
11310 case TARGET_SIG_UNBLOCK:
11311 how = SIG_UNBLOCK;
11312 break;
11313 case TARGET_SIG_SETMASK:
11314 how = SIG_SETMASK;
11315 break;
11316 default:
11317 ret = -TARGET_EINVAL;
11318 goto fail;
11320 mask = arg2;
11321 target_to_host_old_sigset(&set, &mask);
11322 ret = do_sigprocmask(how, &set, &oldset);
11323 if (!ret) {
11324 host_to_target_old_sigset(&mask, &oldset);
11325 ret = mask;
11328 break;
11329 #endif
11331 #ifdef TARGET_NR_getgid32
11332 case TARGET_NR_getgid32:
11333 ret = get_errno(getgid());
11334 break;
11335 #endif
11336 #ifdef TARGET_NR_geteuid32
11337 case TARGET_NR_geteuid32:
11338 ret = get_errno(geteuid());
11339 break;
11340 #endif
11341 #ifdef TARGET_NR_getegid32
11342 case TARGET_NR_getegid32:
11343 ret = get_errno(getegid());
11344 break;
11345 #endif
11346 #ifdef TARGET_NR_setreuid32
11347 case TARGET_NR_setreuid32:
11348 ret = get_errno(setreuid(arg1, arg2));
11349 break;
11350 #endif
11351 #ifdef TARGET_NR_setregid32
11352 case TARGET_NR_setregid32:
11353 ret = get_errno(setregid(arg1, arg2));
11354 break;
11355 #endif
11356 #ifdef TARGET_NR_getgroups32
11357 case TARGET_NR_getgroups32:
11359 int gidsetsize = arg1;
11360 uint32_t *target_grouplist;
11361 gid_t *grouplist;
11362 int i;
11364 grouplist = alloca(gidsetsize * sizeof(gid_t));
11365 ret = get_errno(getgroups(gidsetsize, grouplist));
11366 if (gidsetsize == 0)
11367 break;
11368 if (!is_error(ret)) {
11369 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11370 if (!target_grouplist) {
11371 ret = -TARGET_EFAULT;
11372 goto fail;
11374 for(i = 0;i < ret; i++)
11375 target_grouplist[i] = tswap32(grouplist[i]);
11376 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11379 break;
11380 #endif
11381 #ifdef TARGET_NR_setgroups32
11382 case TARGET_NR_setgroups32:
11384 int gidsetsize = arg1;
11385 uint32_t *target_grouplist;
11386 gid_t *grouplist;
11387 int i;
11389 grouplist = alloca(gidsetsize * sizeof(gid_t));
11390 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11391 if (!target_grouplist) {
11392 ret = -TARGET_EFAULT;
11393 goto fail;
11395 for(i = 0;i < gidsetsize; i++)
11396 grouplist[i] = tswap32(target_grouplist[i]);
11397 unlock_user(target_grouplist, arg2, 0);
11398 ret = get_errno(setgroups(gidsetsize, grouplist));
11400 break;
11401 #endif
11402 #ifdef TARGET_NR_fchown32
11403 case TARGET_NR_fchown32:
11404 ret = get_errno(fchown(arg1, arg2, arg3));
11405 break;
11406 #endif
11407 #ifdef TARGET_NR_setresuid32
11408 case TARGET_NR_setresuid32:
11409 ret = get_errno(sys_setresuid(arg1, arg2, arg3));
11410 break;
11411 #endif
11412 #ifdef TARGET_NR_getresuid32
11413 case TARGET_NR_getresuid32:
11415 uid_t ruid, euid, suid;
11416 ret = get_errno(getresuid(&ruid, &euid, &suid));
11417 if (!is_error(ret)) {
11418 if (put_user_u32(ruid, arg1)
11419 || put_user_u32(euid, arg2)
11420 || put_user_u32(suid, arg3))
11421 goto efault;
11424 break;
11425 #endif
11426 #ifdef TARGET_NR_setresgid32
11427 case TARGET_NR_setresgid32:
11428 ret = get_errno(sys_setresgid(arg1, arg2, arg3));
11429 break;
11430 #endif
11431 #ifdef TARGET_NR_getresgid32
11432 case TARGET_NR_getresgid32:
11434 gid_t rgid, egid, sgid;
11435 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11436 if (!is_error(ret)) {
11437 if (put_user_u32(rgid, arg1)
11438 || put_user_u32(egid, arg2)
11439 || put_user_u32(sgid, arg3))
11440 goto efault;
11443 break;
11444 #endif
11445 #ifdef TARGET_NR_chown32
11446 case TARGET_NR_chown32:
11447 if (!(p = lock_user_string(arg1)))
11448 goto efault;
11449 ret = get_errno(chown(p, arg2, arg3));
11450 unlock_user(p, arg1, 0);
11451 break;
11452 #endif
11453 #ifdef TARGET_NR_setuid32
11454 case TARGET_NR_setuid32:
11455 ret = get_errno(sys_setuid(arg1));
11456 break;
11457 #endif
11458 #ifdef TARGET_NR_setgid32
11459 case TARGET_NR_setgid32:
11460 ret = get_errno(sys_setgid(arg1));
11461 break;
11462 #endif
11463 #ifdef TARGET_NR_setfsuid32
11464 case TARGET_NR_setfsuid32:
11465 ret = get_errno(setfsuid(arg1));
11466 break;
11467 #endif
11468 #ifdef TARGET_NR_setfsgid32
11469 case TARGET_NR_setfsgid32:
11470 ret = get_errno(setfsgid(arg1));
11471 break;
11472 #endif
11474 case TARGET_NR_pivot_root:
11475 goto unimplemented;
11476 #ifdef TARGET_NR_mincore
11477 case TARGET_NR_mincore:
11479 void *a;
11480 ret = -TARGET_ENOMEM;
11481 a = lock_user(VERIFY_READ, arg1, arg2, 0);
11482 if (!a) {
11483 goto fail;
11485 ret = -TARGET_EFAULT;
11486 p = lock_user_string(arg3);
11487 if (!p) {
11488 goto mincore_fail;
11490 ret = get_errno(mincore(a, arg2, p));
11491 unlock_user(p, arg3, ret);
11492 mincore_fail:
11493 unlock_user(a, arg1, 0);
11495 break;
11496 #endif
11497 #ifdef TARGET_NR_arm_fadvise64_64
11498 case TARGET_NR_arm_fadvise64_64:
11499 /* arm_fadvise64_64 looks like fadvise64_64 but
11500 * with different argument order: fd, advice, offset, len
11501 * rather than the usual fd, offset, len, advice.
11502 * Note that offset and len are both 64-bit so appear as
11503 * pairs of 32-bit registers.
11505 ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11506 target_offset64(arg5, arg6), arg2);
11507 ret = -host_to_target_errno(ret);
11508 break;
11509 #endif
11511 #if TARGET_ABI_BITS == 32
11513 #ifdef TARGET_NR_fadvise64_64
11514 case TARGET_NR_fadvise64_64:
11515 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11516 /* 6 args: fd, advice, offset (high, low), len (high, low) */
11517 ret = arg2;
11518 arg2 = arg3;
11519 arg3 = arg4;
11520 arg4 = arg5;
11521 arg5 = arg6;
11522 arg6 = ret;
11523 #else
11524 /* 6 args: fd, offset (high, low), len (high, low), advice */
11525 if (regpairs_aligned(cpu_env, num)) {
11526 /* offset is in (3,4), len in (5,6) and advice in 7 */
11527 arg2 = arg3;
11528 arg3 = arg4;
11529 arg4 = arg5;
11530 arg5 = arg6;
11531 arg6 = arg7;
11533 #endif
11534 ret = -host_to_target_errno(posix_fadvise(arg1,
11535 target_offset64(arg2, arg3),
11536 target_offset64(arg4, arg5),
11537 arg6));
11538 break;
11539 #endif
11541 #ifdef TARGET_NR_fadvise64
11542 case TARGET_NR_fadvise64:
11543 /* 5 args: fd, offset (high, low), len, advice */
11544 if (regpairs_aligned(cpu_env, num)) {
11545 /* offset is in (3,4), len in 5 and advice in 6 */
11546 arg2 = arg3;
11547 arg3 = arg4;
11548 arg4 = arg5;
11549 arg5 = arg6;
11551 ret = -host_to_target_errno(posix_fadvise(arg1,
11552 target_offset64(arg2, arg3),
11553 arg4, arg5));
11554 break;
11555 #endif
11557 #else /* not a 32-bit ABI */
11558 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11559 #ifdef TARGET_NR_fadvise64_64
11560 case TARGET_NR_fadvise64_64:
11561 #endif
11562 #ifdef TARGET_NR_fadvise64
11563 case TARGET_NR_fadvise64:
11564 #endif
11565 #ifdef TARGET_S390X
11566 switch (arg4) {
11567 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11568 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11569 case 6: arg4 = POSIX_FADV_DONTNEED; break;
11570 case 7: arg4 = POSIX_FADV_NOREUSE; break;
11571 default: break;
11573 #endif
11574 ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11575 break;
11576 #endif
11577 #endif /* end of 64-bit ABI fadvise handling */
11579 #ifdef TARGET_NR_madvise
11580 case TARGET_NR_madvise:
11581 /* A straight passthrough may not be safe because qemu sometimes
11582 turns private file-backed mappings into anonymous mappings.
11583 This will break MADV_DONTNEED.
11584 This is a hint, so ignoring and returning success is ok. */
11585 ret = get_errno(0);
11586 break;
11587 #endif
11588 #if TARGET_ABI_BITS == 32
11589 case TARGET_NR_fcntl64:
11591 int cmd;
11592 struct flock64 fl;
11593 from_flock64_fn *copyfrom = copy_from_user_flock64;
11594 to_flock64_fn *copyto = copy_to_user_flock64;
11596 #ifdef TARGET_ARM
11597 if (((CPUARMState *)cpu_env)->eabi) {
11598 copyfrom = copy_from_user_eabi_flock64;
11599 copyto = copy_to_user_eabi_flock64;
11601 #endif
11603 cmd = target_to_host_fcntl_cmd(arg2);
11604 if (cmd == -TARGET_EINVAL) {
11605 ret = cmd;
11606 break;
11609 switch(arg2) {
11610 case TARGET_F_GETLK64:
11611 ret = copyfrom(&fl, arg3);
11612 if (ret) {
11613 break;
11615 ret = get_errno(fcntl(arg1, cmd, &fl));
11616 if (ret == 0) {
11617 ret = copyto(arg3, &fl);
11619 break;
11621 case TARGET_F_SETLK64:
11622 case TARGET_F_SETLKW64:
11623 ret = copyfrom(&fl, arg3);
11624 if (ret) {
11625 break;
11627 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11628 break;
11629 default:
11630 ret = do_fcntl(arg1, arg2, arg3);
11631 break;
11633 break;
11635 #endif
11636 #ifdef TARGET_NR_cacheflush
11637 case TARGET_NR_cacheflush:
11638 /* self-modifying code is handled automatically, so nothing needed */
11639 ret = 0;
11640 break;
11641 #endif
11642 #ifdef TARGET_NR_security
11643 case TARGET_NR_security:
11644 goto unimplemented;
11645 #endif
11646 #ifdef TARGET_NR_getpagesize
11647 case TARGET_NR_getpagesize:
11648 ret = TARGET_PAGE_SIZE;
11649 break;
11650 #endif
11651 case TARGET_NR_gettid:
11652 ret = get_errno(gettid());
11653 break;
11654 #ifdef TARGET_NR_readahead
11655 case TARGET_NR_readahead:
11656 #if TARGET_ABI_BITS == 32
11657 if (regpairs_aligned(cpu_env, num)) {
11658 arg2 = arg3;
11659 arg3 = arg4;
11660 arg4 = arg5;
11662 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11663 #else
11664 ret = get_errno(readahead(arg1, arg2, arg3));
11665 #endif
11666 break;
11667 #endif
11668 #ifdef CONFIG_ATTR
11669 #ifdef TARGET_NR_setxattr
11670 case TARGET_NR_listxattr:
11671 case TARGET_NR_llistxattr:
11673 void *p, *b = 0;
11674 if (arg2) {
11675 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11676 if (!b) {
11677 ret = -TARGET_EFAULT;
11678 break;
11681 p = lock_user_string(arg1);
11682 if (p) {
11683 if (num == TARGET_NR_listxattr) {
11684 ret = get_errno(listxattr(p, b, arg3));
11685 } else {
11686 ret = get_errno(llistxattr(p, b, arg3));
11688 } else {
11689 ret = -TARGET_EFAULT;
11691 unlock_user(p, arg1, 0);
11692 unlock_user(b, arg2, arg3);
11693 break;
11695 case TARGET_NR_flistxattr:
11697 void *b = 0;
11698 if (arg2) {
11699 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11700 if (!b) {
11701 ret = -TARGET_EFAULT;
11702 break;
11705 ret = get_errno(flistxattr(arg1, b, arg3));
11706 unlock_user(b, arg2, arg3);
11707 break;
11709 case TARGET_NR_setxattr:
11710 case TARGET_NR_lsetxattr:
11712 void *p, *n, *v = 0;
11713 if (arg3) {
11714 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11715 if (!v) {
11716 ret = -TARGET_EFAULT;
11717 break;
11720 p = lock_user_string(arg1);
11721 n = lock_user_string(arg2);
11722 if (p && n) {
11723 if (num == TARGET_NR_setxattr) {
11724 ret = get_errno(setxattr(p, n, v, arg4, arg5));
11725 } else {
11726 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11728 } else {
11729 ret = -TARGET_EFAULT;
11731 unlock_user(p, arg1, 0);
11732 unlock_user(n, arg2, 0);
11733 unlock_user(v, arg3, 0);
11735 break;
11736 case TARGET_NR_fsetxattr:
11738 void *n, *v = 0;
11739 if (arg3) {
11740 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11741 if (!v) {
11742 ret = -TARGET_EFAULT;
11743 break;
11746 n = lock_user_string(arg2);
11747 if (n) {
11748 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
11749 } else {
11750 ret = -TARGET_EFAULT;
11752 unlock_user(n, arg2, 0);
11753 unlock_user(v, arg3, 0);
11755 break;
11756 case TARGET_NR_getxattr:
11757 case TARGET_NR_lgetxattr:
11759 void *p, *n, *v = 0;
11760 if (arg3) {
11761 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11762 if (!v) {
11763 ret = -TARGET_EFAULT;
11764 break;
11767 p = lock_user_string(arg1);
11768 n = lock_user_string(arg2);
11769 if (p && n) {
11770 if (num == TARGET_NR_getxattr) {
11771 ret = get_errno(getxattr(p, n, v, arg4));
11772 } else {
11773 ret = get_errno(lgetxattr(p, n, v, arg4));
11775 } else {
11776 ret = -TARGET_EFAULT;
11778 unlock_user(p, arg1, 0);
11779 unlock_user(n, arg2, 0);
11780 unlock_user(v, arg3, arg4);
11782 break;
11783 case TARGET_NR_fgetxattr:
11785 void *n, *v = 0;
11786 if (arg3) {
11787 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11788 if (!v) {
11789 ret = -TARGET_EFAULT;
11790 break;
11793 n = lock_user_string(arg2);
11794 if (n) {
11795 ret = get_errno(fgetxattr(arg1, n, v, arg4));
11796 } else {
11797 ret = -TARGET_EFAULT;
11799 unlock_user(n, arg2, 0);
11800 unlock_user(v, arg3, arg4);
11802 break;
11803 case TARGET_NR_removexattr:
11804 case TARGET_NR_lremovexattr:
11806 void *p, *n;
11807 p = lock_user_string(arg1);
11808 n = lock_user_string(arg2);
11809 if (p && n) {
11810 if (num == TARGET_NR_removexattr) {
11811 ret = get_errno(removexattr(p, n));
11812 } else {
11813 ret = get_errno(lremovexattr(p, n));
11815 } else {
11816 ret = -TARGET_EFAULT;
11818 unlock_user(p, arg1, 0);
11819 unlock_user(n, arg2, 0);
11821 break;
11822 case TARGET_NR_fremovexattr:
11824 void *n;
11825 n = lock_user_string(arg2);
11826 if (n) {
11827 ret = get_errno(fremovexattr(arg1, n));
11828 } else {
11829 ret = -TARGET_EFAULT;
11831 unlock_user(n, arg2, 0);
11833 break;
11834 #endif
11835 #endif /* CONFIG_ATTR */
11836 #ifdef TARGET_NR_set_thread_area
11837 case TARGET_NR_set_thread_area:
11838 #if defined(TARGET_MIPS)
11839 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
11840 ret = 0;
11841 break;
11842 #elif defined(TARGET_CRIS)
11843 if (arg1 & 0xff)
11844 ret = -TARGET_EINVAL;
11845 else {
11846 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
11847 ret = 0;
11849 break;
11850 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
11851 ret = do_set_thread_area(cpu_env, arg1);
11852 break;
11853 #elif defined(TARGET_M68K)
11855 TaskState *ts = cpu->opaque;
11856 ts->tp_value = arg1;
11857 ret = 0;
11858 break;
11860 #else
11861 goto unimplemented_nowarn;
11862 #endif
11863 #endif
11864 #ifdef TARGET_NR_get_thread_area
11865 case TARGET_NR_get_thread_area:
11866 #if defined(TARGET_I386) && defined(TARGET_ABI32)
11867 ret = do_get_thread_area(cpu_env, arg1);
11868 break;
11869 #elif defined(TARGET_M68K)
11871 TaskState *ts = cpu->opaque;
11872 ret = ts->tp_value;
11873 break;
11875 #else
11876 goto unimplemented_nowarn;
11877 #endif
11878 #endif
11879 #ifdef TARGET_NR_getdomainname
11880 case TARGET_NR_getdomainname:
11881 goto unimplemented_nowarn;
11882 #endif
11884 #ifdef TARGET_NR_clock_settime
11885 case TARGET_NR_clock_settime:
11887 struct timespec ts;
11889 ret = target_to_host_timespec(&ts, arg2);
11890 if (!is_error(ret)) {
11891 ret = get_errno(clock_settime(arg1, &ts));
11893 break;
11895 #endif
11896 #ifdef TARGET_NR_clock_gettime
11897 case TARGET_NR_clock_gettime:
11899 struct timespec ts;
11900 ret = get_errno(clock_gettime(arg1, &ts));
11901 if (!is_error(ret)) {
11902 ret = host_to_target_timespec(arg2, &ts);
11904 break;
11906 #endif
11907 #ifdef TARGET_NR_clock_getres
11908 case TARGET_NR_clock_getres:
11910 struct timespec ts;
11911 ret = get_errno(clock_getres(arg1, &ts));
11912 if (!is_error(ret)) {
11913 host_to_target_timespec(arg2, &ts);
11915 break;
11917 #endif
11918 #ifdef TARGET_NR_clock_nanosleep
11919 case TARGET_NR_clock_nanosleep:
11921 struct timespec ts;
11922 target_to_host_timespec(&ts, arg3);
11923 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
11924 &ts, arg4 ? &ts : NULL));
11925 if (arg4)
11926 host_to_target_timespec(arg4, &ts);
11928 #if defined(TARGET_PPC)
11929 /* clock_nanosleep is odd in that it returns positive errno values.
11930 * On PPC, CR0 bit 3 should be set in such a situation. */
11931 if (ret && ret != -TARGET_ERESTARTSYS) {
11932 ((CPUPPCState *)cpu_env)->crf[0] |= 1;
11934 #endif
11935 break;
11937 #endif
11939 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
11940 case TARGET_NR_set_tid_address:
11941 ret = get_errno(set_tid_address((int *)g2h(arg1)));
11942 break;
11943 #endif
11945 case TARGET_NR_tkill:
11946 ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
11947 break;
11949 case TARGET_NR_tgkill:
11950 ret = get_errno(safe_tgkill((int)arg1, (int)arg2,
11951 target_to_host_signal(arg3)));
11952 break;
11954 #ifdef TARGET_NR_set_robust_list
11955 case TARGET_NR_set_robust_list:
11956 case TARGET_NR_get_robust_list:
11957 /* The ABI for supporting robust futexes has userspace pass
11958 * the kernel a pointer to a linked list which is updated by
11959 * userspace after the syscall; the list is walked by the kernel
11960 * when the thread exits. Since the linked list in QEMU guest
11961 * memory isn't a valid linked list for the host and we have
11962 * no way to reliably intercept the thread-death event, we can't
11963 * support these. Silently return ENOSYS so that guest userspace
11964 * falls back to a non-robust futex implementation (which should
11965 * be OK except in the corner case of the guest crashing while
11966 * holding a mutex that is shared with another process via
11967 * shared memory).
11969 goto unimplemented_nowarn;
11970 #endif
11972 #if defined(TARGET_NR_utimensat)
11973 case TARGET_NR_utimensat:
11975 struct timespec *tsp, ts[2];
11976 if (!arg3) {
11977 tsp = NULL;
11978 } else {
11979 target_to_host_timespec(ts, arg3);
11980 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
11981 tsp = ts;
11983 if (!arg2)
11984 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
11985 else {
11986 if (!(p = lock_user_string(arg2))) {
11987 ret = -TARGET_EFAULT;
11988 goto fail;
11990 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
11991 unlock_user(p, arg2, 0);
11994 break;
11995 #endif
11996 case TARGET_NR_futex:
11997 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
11998 break;
11999 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
12000 case TARGET_NR_inotify_init:
12001 ret = get_errno(sys_inotify_init());
12002 if (ret >= 0) {
12003 fd_trans_register(ret, &target_inotify_trans);
12005 break;
12006 #endif
12007 #ifdef CONFIG_INOTIFY1
12008 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
12009 case TARGET_NR_inotify_init1:
12010 ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
12011 fcntl_flags_tbl)));
12012 if (ret >= 0) {
12013 fd_trans_register(ret, &target_inotify_trans);
12015 break;
12016 #endif
12017 #endif
12018 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
12019 case TARGET_NR_inotify_add_watch:
12020 p = lock_user_string(arg2);
12021 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
12022 unlock_user(p, arg2, 0);
12023 break;
12024 #endif
12025 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
12026 case TARGET_NR_inotify_rm_watch:
12027 ret = get_errno(sys_inotify_rm_watch(arg1, arg2));
12028 break;
12029 #endif
12031 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12032 case TARGET_NR_mq_open:
12034 struct mq_attr posix_mq_attr;
12035 struct mq_attr *pposix_mq_attr;
12036 int host_flags;
12038 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12039 pposix_mq_attr = NULL;
12040 if (arg4) {
12041 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12042 goto efault;
12044 pposix_mq_attr = &posix_mq_attr;
12046 p = lock_user_string(arg1 - 1);
12047 if (!p) {
12048 goto efault;
12050 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12051 unlock_user (p, arg1, 0);
12053 break;
12055 case TARGET_NR_mq_unlink:
12056 p = lock_user_string(arg1 - 1);
12057 if (!p) {
12058 ret = -TARGET_EFAULT;
12059 break;
12061 ret = get_errno(mq_unlink(p));
12062 unlock_user (p, arg1, 0);
12063 break;
12065 case TARGET_NR_mq_timedsend:
12067 struct timespec ts;
12069 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12070 if (arg5 != 0) {
12071 target_to_host_timespec(&ts, arg5);
12072 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12073 host_to_target_timespec(arg5, &ts);
12074 } else {
12075 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12077 unlock_user (p, arg2, arg3);
12079 break;
12081 case TARGET_NR_mq_timedreceive:
12083 struct timespec ts;
12084 unsigned int prio;
12086 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12087 if (arg5 != 0) {
12088 target_to_host_timespec(&ts, arg5);
12089 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12090 &prio, &ts));
12091 host_to_target_timespec(arg5, &ts);
12092 } else {
12093 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12094 &prio, NULL));
12096 unlock_user (p, arg2, arg3);
12097 if (arg4 != 0)
12098 put_user_u32(prio, arg4);
12100 break;
12102 /* Not implemented for now... */
12103 /* case TARGET_NR_mq_notify: */
12104 /* break; */
12106 case TARGET_NR_mq_getsetattr:
12108 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12109 ret = 0;
12110 if (arg2 != 0) {
12111 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12112 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12113 &posix_mq_attr_out));
12114 } else if (arg3 != 0) {
12115 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12117 if (ret == 0 && arg3 != 0) {
12118 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12121 break;
12122 #endif
12124 #ifdef CONFIG_SPLICE
12125 #ifdef TARGET_NR_tee
12126 case TARGET_NR_tee:
12128 ret = get_errno(tee(arg1,arg2,arg3,arg4));
12130 break;
12131 #endif
12132 #ifdef TARGET_NR_splice
12133 case TARGET_NR_splice:
12135 loff_t loff_in, loff_out;
12136 loff_t *ploff_in = NULL, *ploff_out = NULL;
12137 if (arg2) {
12138 if (get_user_u64(loff_in, arg2)) {
12139 goto efault;
12141 ploff_in = &loff_in;
12143 if (arg4) {
12144 if (get_user_u64(loff_out, arg4)) {
12145 goto efault;
12147 ploff_out = &loff_out;
12149 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12150 if (arg2) {
12151 if (put_user_u64(loff_in, arg2)) {
12152 goto efault;
12155 if (arg4) {
12156 if (put_user_u64(loff_out, arg4)) {
12157 goto efault;
12161 break;
12162 #endif
12163 #ifdef TARGET_NR_vmsplice
12164 case TARGET_NR_vmsplice:
12166 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12167 if (vec != NULL) {
12168 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12169 unlock_iovec(vec, arg2, arg3, 0);
12170 } else {
12171 ret = -host_to_target_errno(errno);
12174 break;
12175 #endif
12176 #endif /* CONFIG_SPLICE */
12177 #ifdef CONFIG_EVENTFD
12178 #if defined(TARGET_NR_eventfd)
12179 case TARGET_NR_eventfd:
12180 ret = get_errno(eventfd(arg1, 0));
12181 if (ret >= 0) {
12182 fd_trans_register(ret, &target_eventfd_trans);
12184 break;
12185 #endif
12186 #if defined(TARGET_NR_eventfd2)
12187 case TARGET_NR_eventfd2:
12189 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
12190 if (arg2 & TARGET_O_NONBLOCK) {
12191 host_flags |= O_NONBLOCK;
12193 if (arg2 & TARGET_O_CLOEXEC) {
12194 host_flags |= O_CLOEXEC;
12196 ret = get_errno(eventfd(arg1, host_flags));
12197 if (ret >= 0) {
12198 fd_trans_register(ret, &target_eventfd_trans);
12200 break;
12202 #endif
12203 #endif /* CONFIG_EVENTFD */
12204 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12205 case TARGET_NR_fallocate:
12206 #if TARGET_ABI_BITS == 32
12207 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
12208 target_offset64(arg5, arg6)));
12209 #else
12210 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
12211 #endif
12212 break;
12213 #endif
12214 #if defined(CONFIG_SYNC_FILE_RANGE)
12215 #if defined(TARGET_NR_sync_file_range)
12216 case TARGET_NR_sync_file_range:
12217 #if TARGET_ABI_BITS == 32
12218 #if defined(TARGET_MIPS)
12219 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12220 target_offset64(arg5, arg6), arg7));
12221 #else
12222 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
12223 target_offset64(arg4, arg5), arg6));
12224 #endif /* !TARGET_MIPS */
12225 #else
12226 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
12227 #endif
12228 break;
12229 #endif
12230 #if defined(TARGET_NR_sync_file_range2)
12231 case TARGET_NR_sync_file_range2:
12232 /* This is like sync_file_range but the arguments are reordered */
12233 #if TARGET_ABI_BITS == 32
12234 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12235 target_offset64(arg5, arg6), arg2));
12236 #else
12237 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12238 #endif
12239 break;
12240 #endif
12241 #endif
12242 #if defined(TARGET_NR_signalfd4)
12243 case TARGET_NR_signalfd4:
12244 ret = do_signalfd4(arg1, arg2, arg4);
12245 break;
12246 #endif
12247 #if defined(TARGET_NR_signalfd)
12248 case TARGET_NR_signalfd:
12249 ret = do_signalfd4(arg1, arg2, 0);
12250 break;
12251 #endif
12252 #if defined(CONFIG_EPOLL)
12253 #if defined(TARGET_NR_epoll_create)
12254 case TARGET_NR_epoll_create:
12255 ret = get_errno(epoll_create(arg1));
12256 break;
12257 #endif
12258 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12259 case TARGET_NR_epoll_create1:
12260 ret = get_errno(epoll_create1(arg1));
12261 break;
12262 #endif
12263 #if defined(TARGET_NR_epoll_ctl)
12264 case TARGET_NR_epoll_ctl:
12266 struct epoll_event ep;
12267 struct epoll_event *epp = 0;
12268 if (arg4) {
12269 struct target_epoll_event *target_ep;
12270 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12271 goto efault;
12273 ep.events = tswap32(target_ep->events);
12274 /* The epoll_data_t union is just opaque data to the kernel,
12275 * so we transfer all 64 bits across and need not worry what
12276 * actual data type it is.
12278 ep.data.u64 = tswap64(target_ep->data.u64);
12279 unlock_user_struct(target_ep, arg4, 0);
12280 epp = &ep;
12282 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12283 break;
12285 #endif
12287 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12288 #if defined(TARGET_NR_epoll_wait)
12289 case TARGET_NR_epoll_wait:
12290 #endif
12291 #if defined(TARGET_NR_epoll_pwait)
12292 case TARGET_NR_epoll_pwait:
12293 #endif
12295 struct target_epoll_event *target_ep;
12296 struct epoll_event *ep;
12297 int epfd = arg1;
12298 int maxevents = arg3;
12299 int timeout = arg4;
12301 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12302 ret = -TARGET_EINVAL;
12303 break;
12306 target_ep = lock_user(VERIFY_WRITE, arg2,
12307 maxevents * sizeof(struct target_epoll_event), 1);
12308 if (!target_ep) {
12309 goto efault;
12312 ep = g_try_new(struct epoll_event, maxevents);
12313 if (!ep) {
12314 unlock_user(target_ep, arg2, 0);
12315 ret = -TARGET_ENOMEM;
12316 break;
12319 switch (num) {
12320 #if defined(TARGET_NR_epoll_pwait)
12321 case TARGET_NR_epoll_pwait:
12323 target_sigset_t *target_set;
12324 sigset_t _set, *set = &_set;
12326 if (arg5) {
12327 if (arg6 != sizeof(target_sigset_t)) {
12328 ret = -TARGET_EINVAL;
12329 break;
12332 target_set = lock_user(VERIFY_READ, arg5,
12333 sizeof(target_sigset_t), 1);
12334 if (!target_set) {
12335 ret = -TARGET_EFAULT;
12336 break;
12338 target_to_host_sigset(set, target_set);
12339 unlock_user(target_set, arg5, 0);
12340 } else {
12341 set = NULL;
12344 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12345 set, SIGSET_T_SIZE));
12346 break;
12348 #endif
12349 #if defined(TARGET_NR_epoll_wait)
12350 case TARGET_NR_epoll_wait:
12351 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12352 NULL, 0));
12353 break;
12354 #endif
12355 default:
12356 ret = -TARGET_ENOSYS;
12358 if (!is_error(ret)) {
12359 int i;
12360 for (i = 0; i < ret; i++) {
12361 target_ep[i].events = tswap32(ep[i].events);
12362 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12364 unlock_user(target_ep, arg2,
12365 ret * sizeof(struct target_epoll_event));
12366 } else {
12367 unlock_user(target_ep, arg2, 0);
12369 g_free(ep);
12370 break;
12372 #endif
12373 #endif
12374 #ifdef TARGET_NR_prlimit64
12375 case TARGET_NR_prlimit64:
12377 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12378 struct target_rlimit64 *target_rnew, *target_rold;
12379 struct host_rlimit64 rnew, rold, *rnewp = 0;
12380 int resource = target_to_host_resource(arg2);
12381 if (arg3) {
12382 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12383 goto efault;
12385 rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12386 rnew.rlim_max = tswap64(target_rnew->rlim_max);
12387 unlock_user_struct(target_rnew, arg3, 0);
12388 rnewp = &rnew;
12391 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12392 if (!is_error(ret) && arg4) {
12393 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12394 goto efault;
12396 target_rold->rlim_cur = tswap64(rold.rlim_cur);
12397 target_rold->rlim_max = tswap64(rold.rlim_max);
12398 unlock_user_struct(target_rold, arg4, 1);
12400 break;
12402 #endif
12403 #ifdef TARGET_NR_gethostname
12404 case TARGET_NR_gethostname:
12406 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12407 if (name) {
12408 ret = get_errno(gethostname(name, arg2));
12409 unlock_user(name, arg1, arg2);
12410 } else {
12411 ret = -TARGET_EFAULT;
12413 break;
12415 #endif
12416 #ifdef TARGET_NR_atomic_cmpxchg_32
12417 case TARGET_NR_atomic_cmpxchg_32:
12419 /* should use start_exclusive from main.c */
12420 abi_ulong mem_value;
12421 if (get_user_u32(mem_value, arg6)) {
12422 target_siginfo_t info;
12423 info.si_signo = SIGSEGV;
12424 info.si_errno = 0;
12425 info.si_code = TARGET_SEGV_MAPERR;
12426 info._sifields._sigfault._addr = arg6;
12427 queue_signal((CPUArchState *)cpu_env, info.si_signo,
12428 QEMU_SI_FAULT, &info);
12429 ret = 0xdeadbeef;
12432 if (mem_value == arg2)
12433 put_user_u32(arg1, arg6);
12434 ret = mem_value;
12435 break;
12437 #endif
12438 #ifdef TARGET_NR_atomic_barrier
12439 case TARGET_NR_atomic_barrier:
12441 /* Like the kernel implementation and the qemu arm barrier, no-op this? */
12442 ret = 0;
12443 break;
12445 #endif
12447 #ifdef TARGET_NR_timer_create
12448 case TARGET_NR_timer_create:
12450 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12452 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12454 int clkid = arg1;
12455 int timer_index = next_free_host_timer();
12457 if (timer_index < 0) {
12458 ret = -TARGET_EAGAIN;
12459 } else {
12460 timer_t *phtimer = g_posix_timers + timer_index;
12462 if (arg2) {
12463 phost_sevp = &host_sevp;
12464 ret = target_to_host_sigevent(phost_sevp, arg2);
12465 if (ret != 0) {
12466 break;
12470 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12471 if (ret) {
12472 phtimer = NULL;
12473 } else {
12474 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12475 goto efault;
12479 break;
12481 #endif
12483 #ifdef TARGET_NR_timer_settime
12484 case TARGET_NR_timer_settime:
12486 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12487 * struct itimerspec * old_value */
12488 target_timer_t timerid = get_timer_id(arg1);
12490 if (timerid < 0) {
12491 ret = timerid;
12492 } else if (arg3 == 0) {
12493 ret = -TARGET_EINVAL;
12494 } else {
12495 timer_t htimer = g_posix_timers[timerid];
12496 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12498 if (target_to_host_itimerspec(&hspec_new, arg3)) {
12499 goto efault;
12501 ret = get_errno(
12502 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12503 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12504 goto efault;
12507 break;
12509 #endif
12511 #ifdef TARGET_NR_timer_gettime
12512 case TARGET_NR_timer_gettime:
12514 /* args: timer_t timerid, struct itimerspec *curr_value */
12515 target_timer_t timerid = get_timer_id(arg1);
12517 if (timerid < 0) {
12518 ret = timerid;
12519 } else if (!arg2) {
12520 ret = -TARGET_EFAULT;
12521 } else {
12522 timer_t htimer = g_posix_timers[timerid];
12523 struct itimerspec hspec;
12524 ret = get_errno(timer_gettime(htimer, &hspec));
12526 if (host_to_target_itimerspec(arg2, &hspec)) {
12527 ret = -TARGET_EFAULT;
12530 break;
12532 #endif
12534 #ifdef TARGET_NR_timer_getoverrun
12535 case TARGET_NR_timer_getoverrun:
12537 /* args: timer_t timerid */
12538 target_timer_t timerid = get_timer_id(arg1);
12540 if (timerid < 0) {
12541 ret = timerid;
12542 } else {
12543 timer_t htimer = g_posix_timers[timerid];
12544 ret = get_errno(timer_getoverrun(htimer));
12546 fd_trans_unregister(ret);
12547 break;
12549 #endif
12551 #ifdef TARGET_NR_timer_delete
12552 case TARGET_NR_timer_delete:
12554 /* args: timer_t timerid */
12555 target_timer_t timerid = get_timer_id(arg1);
12557 if (timerid < 0) {
12558 ret = timerid;
12559 } else {
12560 timer_t htimer = g_posix_timers[timerid];
12561 ret = get_errno(timer_delete(htimer));
12562 g_posix_timers[timerid] = 0;
12564 break;
12566 #endif
12568 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
12569 case TARGET_NR_timerfd_create:
12570 ret = get_errno(timerfd_create(arg1,
12571 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
12572 break;
12573 #endif
12575 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
12576 case TARGET_NR_timerfd_gettime:
12578 struct itimerspec its_curr;
12580 ret = get_errno(timerfd_gettime(arg1, &its_curr));
12582 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
12583 goto efault;
12586 break;
12587 #endif
12589 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
12590 case TARGET_NR_timerfd_settime:
12592 struct itimerspec its_new, its_old, *p_new;
12594 if (arg3) {
12595 if (target_to_host_itimerspec(&its_new, arg3)) {
12596 goto efault;
12598 p_new = &its_new;
12599 } else {
12600 p_new = NULL;
12603 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
12605 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
12606 goto efault;
12609 break;
12610 #endif
12612 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
12613 case TARGET_NR_ioprio_get:
12614 ret = get_errno(ioprio_get(arg1, arg2));
12615 break;
12616 #endif
12618 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
12619 case TARGET_NR_ioprio_set:
12620 ret = get_errno(ioprio_set(arg1, arg2, arg3));
12621 break;
12622 #endif
12624 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
12625 case TARGET_NR_setns:
12626 ret = get_errno(setns(arg1, arg2));
12627 break;
12628 #endif
12629 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
12630 case TARGET_NR_unshare:
12631 ret = get_errno(unshare(arg1));
12632 break;
12633 #endif
12634 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
12635 case TARGET_NR_kcmp:
12636 ret = get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
12637 break;
12638 #endif
12640 default:
12641 unimplemented:
12642 gemu_log("qemu: Unsupported syscall: %d\n", num);
12643 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
12644 unimplemented_nowarn:
12645 #endif
12646 ret = -TARGET_ENOSYS;
12647 break;
12649 fail:
12650 #ifdef DEBUG
12651 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret);
12652 #endif
12653 if(do_strace)
12654 print_syscall_ret(num, ret);
12655 trace_guest_user_syscall_ret(cpu, num, ret);
12656 return ret;
12657 efault:
12658 ret = -TARGET_EFAULT;
12659 goto fail;