kvm-all: remove useless typedef
[qemu/ar7.git] / kvm-all.c
blob46b201591872662a6f8adc9f410148db79d3ec70
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
44 #ifdef CONFIG_EVENTFD
45 #include <sys/eventfd.h>
46 #endif
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
51 //#define DEBUG_KVM
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
65 hwaddr start_addr;
66 ram_addr_t memory_size;
67 void *ram;
68 int slot;
69 int flags;
70 } KVMSlot;
72 struct KVMState
74 AccelState parent_obj;
76 KVMSlot *slots;
77 int nr_slots;
78 int fd;
79 int vmfd;
80 int coalesced_mmio;
81 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
82 bool coalesced_flush_in_progress;
83 int broken_set_mem_region;
84 int vcpu_events;
85 int robust_singlestep;
86 int debugregs;
87 #ifdef KVM_CAP_SET_GUEST_DEBUG
88 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
89 #endif
90 int pit_state2;
91 int xsave, xcrs;
92 int many_ioeventfds;
93 int intx_set_mask;
94 /* The man page (and posix) say ioctl numbers are signed int, but
95 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
96 * unsigned, and treating them as signed here can break things */
97 unsigned irq_set_ioctl;
98 unsigned int sigmask_len;
99 #ifdef KVM_CAP_IRQ_ROUTING
100 struct kvm_irq_routing *irq_routes;
101 int nr_allocated_irq_routes;
102 uint32_t *used_gsi_bitmap;
103 unsigned int gsi_count;
104 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
105 bool direct_msi;
106 #endif
109 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
111 #define KVM_STATE(obj) \
112 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
114 KVMState *kvm_state;
115 bool kvm_kernel_irqchip;
116 bool kvm_async_interrupts_allowed;
117 bool kvm_halt_in_kernel_allowed;
118 bool kvm_eventfds_allowed;
119 bool kvm_irqfds_allowed;
120 bool kvm_resamplefds_allowed;
121 bool kvm_msi_via_irqfd_allowed;
122 bool kvm_gsi_routing_allowed;
123 bool kvm_gsi_direct_mapping;
124 bool kvm_allowed;
125 bool kvm_readonly_mem_allowed;
126 bool kvm_vm_attributes_allowed;
128 static const KVMCapabilityInfo kvm_required_capabilites[] = {
129 KVM_CAP_INFO(USER_MEMORY),
130 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
131 KVM_CAP_LAST_INFO
134 static KVMSlot *kvm_get_free_slot(KVMState *s)
136 int i;
138 for (i = 0; i < s->nr_slots; i++) {
139 if (s->slots[i].memory_size == 0) {
140 return &s->slots[i];
144 return NULL;
147 bool kvm_has_free_slot(MachineState *ms)
149 return kvm_get_free_slot(KVM_STATE(ms->accelerator));
152 static KVMSlot *kvm_alloc_slot(KVMState *s)
154 KVMSlot *slot = kvm_get_free_slot(s);
156 if (slot) {
157 return slot;
160 fprintf(stderr, "%s: no free slot available\n", __func__);
161 abort();
164 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
165 hwaddr start_addr,
166 hwaddr end_addr)
168 int i;
170 for (i = 0; i < s->nr_slots; i++) {
171 KVMSlot *mem = &s->slots[i];
173 if (start_addr == mem->start_addr &&
174 end_addr == mem->start_addr + mem->memory_size) {
175 return mem;
179 return NULL;
183 * Find overlapping slot with lowest start address
185 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
186 hwaddr start_addr,
187 hwaddr end_addr)
189 KVMSlot *found = NULL;
190 int i;
192 for (i = 0; i < s->nr_slots; i++) {
193 KVMSlot *mem = &s->slots[i];
195 if (mem->memory_size == 0 ||
196 (found && found->start_addr < mem->start_addr)) {
197 continue;
200 if (end_addr > mem->start_addr &&
201 start_addr < mem->start_addr + mem->memory_size) {
202 found = mem;
206 return found;
209 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
210 hwaddr *phys_addr)
212 int i;
214 for (i = 0; i < s->nr_slots; i++) {
215 KVMSlot *mem = &s->slots[i];
217 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
218 *phys_addr = mem->start_addr + (ram - mem->ram);
219 return 1;
223 return 0;
226 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
228 struct kvm_userspace_memory_region mem;
230 mem.slot = slot->slot;
231 mem.guest_phys_addr = slot->start_addr;
232 mem.userspace_addr = (unsigned long)slot->ram;
233 mem.flags = slot->flags;
235 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
236 /* Set the slot size to 0 before setting the slot to the desired
237 * value. This is needed based on KVM commit 75d61fbc. */
238 mem.memory_size = 0;
239 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
241 mem.memory_size = slot->memory_size;
242 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
245 int kvm_init_vcpu(CPUState *cpu)
247 KVMState *s = kvm_state;
248 long mmap_size;
249 int ret;
251 DPRINTF("kvm_init_vcpu\n");
253 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
254 if (ret < 0) {
255 DPRINTF("kvm_create_vcpu failed\n");
256 goto err;
259 cpu->kvm_fd = ret;
260 cpu->kvm_state = s;
261 cpu->kvm_vcpu_dirty = true;
263 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
264 if (mmap_size < 0) {
265 ret = mmap_size;
266 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
267 goto err;
270 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
271 cpu->kvm_fd, 0);
272 if (cpu->kvm_run == MAP_FAILED) {
273 ret = -errno;
274 DPRINTF("mmap'ing vcpu state failed\n");
275 goto err;
278 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
279 s->coalesced_mmio_ring =
280 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
283 ret = kvm_arch_init_vcpu(cpu);
284 err:
285 return ret;
289 * dirty pages logging control
292 static int kvm_mem_flags(MemoryRegion *mr)
294 bool readonly = mr->readonly || memory_region_is_romd(mr);
295 int flags = 0;
297 if (memory_region_get_dirty_log_mask(mr) != 0) {
298 flags |= KVM_MEM_LOG_DIRTY_PAGES;
300 if (readonly && kvm_readonly_mem_allowed) {
301 flags |= KVM_MEM_READONLY;
303 return flags;
306 static int kvm_slot_update_flags(KVMSlot *mem, MemoryRegion *mr)
308 KVMState *s = kvm_state;
309 int old_flags;
311 old_flags = mem->flags;
312 mem->flags = kvm_mem_flags(mr);
314 /* If nothing changed effectively, no need to issue ioctl */
315 if (mem->flags == old_flags) {
316 return 0;
319 return kvm_set_user_memory_region(s, mem);
322 static int kvm_section_update_flags(MemoryRegionSection *section)
324 KVMState *s = kvm_state;
325 hwaddr phys_addr = section->offset_within_address_space;
326 ram_addr_t size = int128_get64(section->size);
327 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
329 if (mem == NULL) {
330 return 0;
331 } else {
332 return kvm_slot_update_flags(mem, section->mr);
336 static void kvm_log_start(MemoryListener *listener,
337 MemoryRegionSection *section,
338 int old, int new)
340 int r;
342 if (old != 0) {
343 return;
346 r = kvm_section_update_flags(section);
347 if (r < 0) {
348 abort();
352 static void kvm_log_stop(MemoryListener *listener,
353 MemoryRegionSection *section,
354 int old, int new)
356 int r;
358 if (new != 0) {
359 return;
362 r = kvm_section_update_flags(section);
363 if (r < 0) {
364 abort();
368 /* get kvm's dirty pages bitmap and update qemu's */
369 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
370 unsigned long *bitmap)
372 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
373 ram_addr_t pages = int128_get64(section->size) / getpagesize();
375 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
376 return 0;
379 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
382 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
383 * This function updates qemu's dirty bitmap using
384 * memory_region_set_dirty(). This means all bits are set
385 * to dirty.
387 * @start_add: start of logged region.
388 * @end_addr: end of logged region.
390 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
392 KVMState *s = kvm_state;
393 unsigned long size, allocated_size = 0;
394 struct kvm_dirty_log d = {};
395 KVMSlot *mem;
396 int ret = 0;
397 hwaddr start_addr = section->offset_within_address_space;
398 hwaddr end_addr = start_addr + int128_get64(section->size);
400 d.dirty_bitmap = NULL;
401 while (start_addr < end_addr) {
402 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
403 if (mem == NULL) {
404 break;
407 /* XXX bad kernel interface alert
408 * For dirty bitmap, kernel allocates array of size aligned to
409 * bits-per-long. But for case when the kernel is 64bits and
410 * the userspace is 32bits, userspace can't align to the same
411 * bits-per-long, since sizeof(long) is different between kernel
412 * and user space. This way, userspace will provide buffer which
413 * may be 4 bytes less than the kernel will use, resulting in
414 * userspace memory corruption (which is not detectable by valgrind
415 * too, in most cases).
416 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
417 * a hope that sizeof(long) wont become >8 any time soon.
419 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
420 /*HOST_LONG_BITS*/ 64) / 8;
421 if (!d.dirty_bitmap) {
422 d.dirty_bitmap = g_malloc(size);
423 } else if (size > allocated_size) {
424 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
426 allocated_size = size;
427 memset(d.dirty_bitmap, 0, allocated_size);
429 d.slot = mem->slot;
431 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
432 DPRINTF("ioctl failed %d\n", errno);
433 ret = -1;
434 break;
437 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
438 start_addr = mem->start_addr + mem->memory_size;
440 g_free(d.dirty_bitmap);
442 return ret;
445 static void kvm_coalesce_mmio_region(MemoryListener *listener,
446 MemoryRegionSection *secion,
447 hwaddr start, hwaddr size)
449 KVMState *s = kvm_state;
451 if (s->coalesced_mmio) {
452 struct kvm_coalesced_mmio_zone zone;
454 zone.addr = start;
455 zone.size = size;
456 zone.pad = 0;
458 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
462 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
463 MemoryRegionSection *secion,
464 hwaddr start, hwaddr size)
466 KVMState *s = kvm_state;
468 if (s->coalesced_mmio) {
469 struct kvm_coalesced_mmio_zone zone;
471 zone.addr = start;
472 zone.size = size;
473 zone.pad = 0;
475 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
479 int kvm_check_extension(KVMState *s, unsigned int extension)
481 int ret;
483 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
484 if (ret < 0) {
485 ret = 0;
488 return ret;
491 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
493 int ret;
495 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
496 if (ret < 0) {
497 /* VM wide version not implemented, use global one instead */
498 ret = kvm_check_extension(s, extension);
501 return ret;
504 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
506 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
507 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
508 * endianness, but the memory core hands them in target endianness.
509 * For example, PPC is always treated as big-endian even if running
510 * on KVM and on PPC64LE. Correct here.
512 switch (size) {
513 case 2:
514 val = bswap16(val);
515 break;
516 case 4:
517 val = bswap32(val);
518 break;
520 #endif
521 return val;
524 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
525 bool assign, uint32_t size, bool datamatch)
527 int ret;
528 struct kvm_ioeventfd iofd = {
529 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
530 .addr = addr,
531 .len = size,
532 .flags = 0,
533 .fd = fd,
536 if (!kvm_enabled()) {
537 return -ENOSYS;
540 if (datamatch) {
541 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
543 if (!assign) {
544 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
547 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
549 if (ret < 0) {
550 return -errno;
553 return 0;
556 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
557 bool assign, uint32_t size, bool datamatch)
559 struct kvm_ioeventfd kick = {
560 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
561 .addr = addr,
562 .flags = KVM_IOEVENTFD_FLAG_PIO,
563 .len = size,
564 .fd = fd,
566 int r;
567 if (!kvm_enabled()) {
568 return -ENOSYS;
570 if (datamatch) {
571 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
573 if (!assign) {
574 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
576 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
577 if (r < 0) {
578 return r;
580 return 0;
584 static int kvm_check_many_ioeventfds(void)
586 /* Userspace can use ioeventfd for io notification. This requires a host
587 * that supports eventfd(2) and an I/O thread; since eventfd does not
588 * support SIGIO it cannot interrupt the vcpu.
590 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
591 * can avoid creating too many ioeventfds.
593 #if defined(CONFIG_EVENTFD)
594 int ioeventfds[7];
595 int i, ret = 0;
596 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
597 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
598 if (ioeventfds[i] < 0) {
599 break;
601 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
602 if (ret < 0) {
603 close(ioeventfds[i]);
604 break;
608 /* Decide whether many devices are supported or not */
609 ret = i == ARRAY_SIZE(ioeventfds);
611 while (i-- > 0) {
612 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
613 close(ioeventfds[i]);
615 return ret;
616 #else
617 return 0;
618 #endif
621 static const KVMCapabilityInfo *
622 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
624 while (list->name) {
625 if (!kvm_check_extension(s, list->value)) {
626 return list;
628 list++;
630 return NULL;
633 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
635 KVMState *s = kvm_state;
636 KVMSlot *mem, old;
637 int err;
638 MemoryRegion *mr = section->mr;
639 bool writeable = !mr->readonly && !mr->rom_device;
640 hwaddr start_addr = section->offset_within_address_space;
641 ram_addr_t size = int128_get64(section->size);
642 void *ram = NULL;
643 unsigned delta;
645 /* kvm works in page size chunks, but the function may be called
646 with sub-page size and unaligned start address. Pad the start
647 address to next and truncate size to previous page boundary. */
648 delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
649 delta &= ~TARGET_PAGE_MASK;
650 if (delta > size) {
651 return;
653 start_addr += delta;
654 size -= delta;
655 size &= TARGET_PAGE_MASK;
656 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
657 return;
660 if (!memory_region_is_ram(mr)) {
661 if (writeable || !kvm_readonly_mem_allowed) {
662 return;
663 } else if (!mr->romd_mode) {
664 /* If the memory device is not in romd_mode, then we actually want
665 * to remove the kvm memory slot so all accesses will trap. */
666 add = false;
670 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
672 while (1) {
673 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
674 if (!mem) {
675 break;
678 if (add && start_addr >= mem->start_addr &&
679 (start_addr + size <= mem->start_addr + mem->memory_size) &&
680 (ram - start_addr == mem->ram - mem->start_addr)) {
681 /* The new slot fits into the existing one and comes with
682 * identical parameters - update flags and done. */
683 kvm_slot_update_flags(mem, mr);
684 return;
687 old = *mem;
689 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
690 kvm_physical_sync_dirty_bitmap(section);
693 /* unregister the overlapping slot */
694 mem->memory_size = 0;
695 err = kvm_set_user_memory_region(s, mem);
696 if (err) {
697 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
698 __func__, strerror(-err));
699 abort();
702 /* Workaround for older KVM versions: we can't join slots, even not by
703 * unregistering the previous ones and then registering the larger
704 * slot. We have to maintain the existing fragmentation. Sigh.
706 * This workaround assumes that the new slot starts at the same
707 * address as the first existing one. If not or if some overlapping
708 * slot comes around later, we will fail (not seen in practice so far)
709 * - and actually require a recent KVM version. */
710 if (s->broken_set_mem_region &&
711 old.start_addr == start_addr && old.memory_size < size && add) {
712 mem = kvm_alloc_slot(s);
713 mem->memory_size = old.memory_size;
714 mem->start_addr = old.start_addr;
715 mem->ram = old.ram;
716 mem->flags = kvm_mem_flags(mr);
718 err = kvm_set_user_memory_region(s, mem);
719 if (err) {
720 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
721 strerror(-err));
722 abort();
725 start_addr += old.memory_size;
726 ram += old.memory_size;
727 size -= old.memory_size;
728 continue;
731 /* register prefix slot */
732 if (old.start_addr < start_addr) {
733 mem = kvm_alloc_slot(s);
734 mem->memory_size = start_addr - old.start_addr;
735 mem->start_addr = old.start_addr;
736 mem->ram = old.ram;
737 mem->flags = kvm_mem_flags(mr);
739 err = kvm_set_user_memory_region(s, mem);
740 if (err) {
741 fprintf(stderr, "%s: error registering prefix slot: %s\n",
742 __func__, strerror(-err));
743 #ifdef TARGET_PPC
744 fprintf(stderr, "%s: This is probably because your kernel's " \
745 "PAGE_SIZE is too big. Please try to use 4k " \
746 "PAGE_SIZE!\n", __func__);
747 #endif
748 abort();
752 /* register suffix slot */
753 if (old.start_addr + old.memory_size > start_addr + size) {
754 ram_addr_t size_delta;
756 mem = kvm_alloc_slot(s);
757 mem->start_addr = start_addr + size;
758 size_delta = mem->start_addr - old.start_addr;
759 mem->memory_size = old.memory_size - size_delta;
760 mem->ram = old.ram + size_delta;
761 mem->flags = kvm_mem_flags(mr);
763 err = kvm_set_user_memory_region(s, mem);
764 if (err) {
765 fprintf(stderr, "%s: error registering suffix slot: %s\n",
766 __func__, strerror(-err));
767 abort();
772 /* in case the KVM bug workaround already "consumed" the new slot */
773 if (!size) {
774 return;
776 if (!add) {
777 return;
779 mem = kvm_alloc_slot(s);
780 mem->memory_size = size;
781 mem->start_addr = start_addr;
782 mem->ram = ram;
783 mem->flags = kvm_mem_flags(mr);
785 err = kvm_set_user_memory_region(s, mem);
786 if (err) {
787 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
788 strerror(-err));
789 abort();
793 static void kvm_region_add(MemoryListener *listener,
794 MemoryRegionSection *section)
796 memory_region_ref(section->mr);
797 kvm_set_phys_mem(section, true);
800 static void kvm_region_del(MemoryListener *listener,
801 MemoryRegionSection *section)
803 kvm_set_phys_mem(section, false);
804 memory_region_unref(section->mr);
807 static void kvm_log_sync(MemoryListener *listener,
808 MemoryRegionSection *section)
810 int r;
812 r = kvm_physical_sync_dirty_bitmap(section);
813 if (r < 0) {
814 abort();
818 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
819 MemoryRegionSection *section,
820 bool match_data, uint64_t data,
821 EventNotifier *e)
823 int fd = event_notifier_get_fd(e);
824 int r;
826 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
827 data, true, int128_get64(section->size),
828 match_data);
829 if (r < 0) {
830 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
831 __func__, strerror(-r));
832 abort();
836 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
837 MemoryRegionSection *section,
838 bool match_data, uint64_t data,
839 EventNotifier *e)
841 int fd = event_notifier_get_fd(e);
842 int r;
844 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
845 data, false, int128_get64(section->size),
846 match_data);
847 if (r < 0) {
848 abort();
852 static void kvm_io_ioeventfd_add(MemoryListener *listener,
853 MemoryRegionSection *section,
854 bool match_data, uint64_t data,
855 EventNotifier *e)
857 int fd = event_notifier_get_fd(e);
858 int r;
860 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
861 data, true, int128_get64(section->size),
862 match_data);
863 if (r < 0) {
864 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
865 __func__, strerror(-r));
866 abort();
870 static void kvm_io_ioeventfd_del(MemoryListener *listener,
871 MemoryRegionSection *section,
872 bool match_data, uint64_t data,
873 EventNotifier *e)
876 int fd = event_notifier_get_fd(e);
877 int r;
879 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
880 data, false, int128_get64(section->size),
881 match_data);
882 if (r < 0) {
883 abort();
887 static MemoryListener kvm_memory_listener = {
888 .region_add = kvm_region_add,
889 .region_del = kvm_region_del,
890 .log_start = kvm_log_start,
891 .log_stop = kvm_log_stop,
892 .log_sync = kvm_log_sync,
893 .eventfd_add = kvm_mem_ioeventfd_add,
894 .eventfd_del = kvm_mem_ioeventfd_del,
895 .coalesced_mmio_add = kvm_coalesce_mmio_region,
896 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
897 .priority = 10,
900 static MemoryListener kvm_io_listener = {
901 .eventfd_add = kvm_io_ioeventfd_add,
902 .eventfd_del = kvm_io_ioeventfd_del,
903 .priority = 10,
906 static void kvm_handle_interrupt(CPUState *cpu, int mask)
908 cpu->interrupt_request |= mask;
910 if (!qemu_cpu_is_self(cpu)) {
911 qemu_cpu_kick(cpu);
915 int kvm_set_irq(KVMState *s, int irq, int level)
917 struct kvm_irq_level event;
918 int ret;
920 assert(kvm_async_interrupts_enabled());
922 event.level = level;
923 event.irq = irq;
924 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
925 if (ret < 0) {
926 perror("kvm_set_irq");
927 abort();
930 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
933 #ifdef KVM_CAP_IRQ_ROUTING
934 typedef struct KVMMSIRoute {
935 struct kvm_irq_routing_entry kroute;
936 QTAILQ_ENTRY(KVMMSIRoute) entry;
937 } KVMMSIRoute;
939 static void set_gsi(KVMState *s, unsigned int gsi)
941 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
944 static void clear_gsi(KVMState *s, unsigned int gsi)
946 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
949 void kvm_init_irq_routing(KVMState *s)
951 int gsi_count, i;
953 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
954 if (gsi_count > 0) {
955 unsigned int gsi_bits, i;
957 /* Round up so we can search ints using ffs */
958 gsi_bits = ALIGN(gsi_count, 32);
959 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
960 s->gsi_count = gsi_count;
962 /* Mark any over-allocated bits as already in use */
963 for (i = gsi_count; i < gsi_bits; i++) {
964 set_gsi(s, i);
968 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
969 s->nr_allocated_irq_routes = 0;
971 if (!s->direct_msi) {
972 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
973 QTAILQ_INIT(&s->msi_hashtab[i]);
977 kvm_arch_init_irq_routing(s);
980 void kvm_irqchip_commit_routes(KVMState *s)
982 int ret;
984 s->irq_routes->flags = 0;
985 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
986 assert(ret == 0);
989 static void kvm_add_routing_entry(KVMState *s,
990 struct kvm_irq_routing_entry *entry)
992 struct kvm_irq_routing_entry *new;
993 int n, size;
995 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
996 n = s->nr_allocated_irq_routes * 2;
997 if (n < 64) {
998 n = 64;
1000 size = sizeof(struct kvm_irq_routing);
1001 size += n * sizeof(*new);
1002 s->irq_routes = g_realloc(s->irq_routes, size);
1003 s->nr_allocated_irq_routes = n;
1005 n = s->irq_routes->nr++;
1006 new = &s->irq_routes->entries[n];
1008 *new = *entry;
1010 set_gsi(s, entry->gsi);
1013 static int kvm_update_routing_entry(KVMState *s,
1014 struct kvm_irq_routing_entry *new_entry)
1016 struct kvm_irq_routing_entry *entry;
1017 int n;
1019 for (n = 0; n < s->irq_routes->nr; n++) {
1020 entry = &s->irq_routes->entries[n];
1021 if (entry->gsi != new_entry->gsi) {
1022 continue;
1025 if(!memcmp(entry, new_entry, sizeof *entry)) {
1026 return 0;
1029 *entry = *new_entry;
1031 kvm_irqchip_commit_routes(s);
1033 return 0;
1036 return -ESRCH;
1039 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1041 struct kvm_irq_routing_entry e = {};
1043 assert(pin < s->gsi_count);
1045 e.gsi = irq;
1046 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1047 e.flags = 0;
1048 e.u.irqchip.irqchip = irqchip;
1049 e.u.irqchip.pin = pin;
1050 kvm_add_routing_entry(s, &e);
1053 void kvm_irqchip_release_virq(KVMState *s, int virq)
1055 struct kvm_irq_routing_entry *e;
1056 int i;
1058 if (kvm_gsi_direct_mapping()) {
1059 return;
1062 for (i = 0; i < s->irq_routes->nr; i++) {
1063 e = &s->irq_routes->entries[i];
1064 if (e->gsi == virq) {
1065 s->irq_routes->nr--;
1066 *e = s->irq_routes->entries[s->irq_routes->nr];
1069 clear_gsi(s, virq);
1072 static unsigned int kvm_hash_msi(uint32_t data)
1074 /* This is optimized for IA32 MSI layout. However, no other arch shall
1075 * repeat the mistake of not providing a direct MSI injection API. */
1076 return data & 0xff;
1079 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1081 KVMMSIRoute *route, *next;
1082 unsigned int hash;
1084 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1085 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1086 kvm_irqchip_release_virq(s, route->kroute.gsi);
1087 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1088 g_free(route);
1093 static int kvm_irqchip_get_virq(KVMState *s)
1095 uint32_t *word = s->used_gsi_bitmap;
1096 int max_words = ALIGN(s->gsi_count, 32) / 32;
1097 int i, zeroes;
1100 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1101 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1102 * number can succeed even though a new route entry cannot be added.
1103 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1105 if (!s->direct_msi && s->irq_routes->nr == s->gsi_count) {
1106 kvm_flush_dynamic_msi_routes(s);
1109 /* Return the lowest unused GSI in the bitmap */
1110 for (i = 0; i < max_words; i++) {
1111 zeroes = ctz32(~word[i]);
1112 if (zeroes == 32) {
1113 continue;
1116 return zeroes + i * 32;
1118 return -ENOSPC;
1122 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1124 unsigned int hash = kvm_hash_msi(msg.data);
1125 KVMMSIRoute *route;
1127 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1128 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1129 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1130 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1131 return route;
1134 return NULL;
1137 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1139 struct kvm_msi msi;
1140 KVMMSIRoute *route;
1142 if (s->direct_msi) {
1143 msi.address_lo = (uint32_t)msg.address;
1144 msi.address_hi = msg.address >> 32;
1145 msi.data = le32_to_cpu(msg.data);
1146 msi.flags = 0;
1147 memset(msi.pad, 0, sizeof(msi.pad));
1149 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1152 route = kvm_lookup_msi_route(s, msg);
1153 if (!route) {
1154 int virq;
1156 virq = kvm_irqchip_get_virq(s);
1157 if (virq < 0) {
1158 return virq;
1161 route = g_malloc0(sizeof(KVMMSIRoute));
1162 route->kroute.gsi = virq;
1163 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1164 route->kroute.flags = 0;
1165 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1166 route->kroute.u.msi.address_hi = msg.address >> 32;
1167 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1169 kvm_add_routing_entry(s, &route->kroute);
1170 kvm_irqchip_commit_routes(s);
1172 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1173 entry);
1176 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1178 return kvm_set_irq(s, route->kroute.gsi, 1);
1181 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1183 struct kvm_irq_routing_entry kroute = {};
1184 int virq;
1186 if (kvm_gsi_direct_mapping()) {
1187 return kvm_arch_msi_data_to_gsi(msg.data);
1190 if (!kvm_gsi_routing_enabled()) {
1191 return -ENOSYS;
1194 virq = kvm_irqchip_get_virq(s);
1195 if (virq < 0) {
1196 return virq;
1199 kroute.gsi = virq;
1200 kroute.type = KVM_IRQ_ROUTING_MSI;
1201 kroute.flags = 0;
1202 kroute.u.msi.address_lo = (uint32_t)msg.address;
1203 kroute.u.msi.address_hi = msg.address >> 32;
1204 kroute.u.msi.data = le32_to_cpu(msg.data);
1205 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1206 kvm_irqchip_release_virq(s, virq);
1207 return -EINVAL;
1210 kvm_add_routing_entry(s, &kroute);
1211 kvm_irqchip_commit_routes(s);
1213 return virq;
1216 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1218 struct kvm_irq_routing_entry kroute = {};
1220 if (kvm_gsi_direct_mapping()) {
1221 return 0;
1224 if (!kvm_irqchip_in_kernel()) {
1225 return -ENOSYS;
1228 kroute.gsi = virq;
1229 kroute.type = KVM_IRQ_ROUTING_MSI;
1230 kroute.flags = 0;
1231 kroute.u.msi.address_lo = (uint32_t)msg.address;
1232 kroute.u.msi.address_hi = msg.address >> 32;
1233 kroute.u.msi.data = le32_to_cpu(msg.data);
1234 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1235 return -EINVAL;
1238 return kvm_update_routing_entry(s, &kroute);
1241 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1242 bool assign)
1244 struct kvm_irqfd irqfd = {
1245 .fd = fd,
1246 .gsi = virq,
1247 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1250 if (rfd != -1) {
1251 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1252 irqfd.resamplefd = rfd;
1255 if (!kvm_irqfds_enabled()) {
1256 return -ENOSYS;
1259 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1262 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1264 struct kvm_irq_routing_entry kroute = {};
1265 int virq;
1267 if (!kvm_gsi_routing_enabled()) {
1268 return -ENOSYS;
1271 virq = kvm_irqchip_get_virq(s);
1272 if (virq < 0) {
1273 return virq;
1276 kroute.gsi = virq;
1277 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1278 kroute.flags = 0;
1279 kroute.u.adapter.summary_addr = adapter->summary_addr;
1280 kroute.u.adapter.ind_addr = adapter->ind_addr;
1281 kroute.u.adapter.summary_offset = adapter->summary_offset;
1282 kroute.u.adapter.ind_offset = adapter->ind_offset;
1283 kroute.u.adapter.adapter_id = adapter->adapter_id;
1285 kvm_add_routing_entry(s, &kroute);
1286 kvm_irqchip_commit_routes(s);
1288 return virq;
1291 #else /* !KVM_CAP_IRQ_ROUTING */
1293 void kvm_init_irq_routing(KVMState *s)
1297 void kvm_irqchip_release_virq(KVMState *s, int virq)
1301 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1303 abort();
1306 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1308 return -ENOSYS;
1311 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1313 return -ENOSYS;
1316 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1318 abort();
1321 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1323 return -ENOSYS;
1325 #endif /* !KVM_CAP_IRQ_ROUTING */
1327 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1328 EventNotifier *rn, int virq)
1330 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1331 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1334 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1336 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1337 false);
1340 static int kvm_irqchip_create(MachineState *machine, KVMState *s)
1342 int ret;
1344 if (!machine_kernel_irqchip_allowed(machine) ||
1345 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1346 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1347 return 0;
1350 /* First probe and see if there's a arch-specific hook to create the
1351 * in-kernel irqchip for us */
1352 ret = kvm_arch_irqchip_create(s);
1353 if (ret < 0) {
1354 return ret;
1355 } else if (ret == 0) {
1356 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1357 if (ret < 0) {
1358 fprintf(stderr, "Create kernel irqchip failed\n");
1359 return ret;
1363 kvm_kernel_irqchip = true;
1364 /* If we have an in-kernel IRQ chip then we must have asynchronous
1365 * interrupt delivery (though the reverse is not necessarily true)
1367 kvm_async_interrupts_allowed = true;
1368 kvm_halt_in_kernel_allowed = true;
1370 kvm_init_irq_routing(s);
1372 return 0;
1375 /* Find number of supported CPUs using the recommended
1376 * procedure from the kernel API documentation to cope with
1377 * older kernels that may be missing capabilities.
1379 static int kvm_recommended_vcpus(KVMState *s)
1381 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1382 return (ret) ? ret : 4;
1385 static int kvm_max_vcpus(KVMState *s)
1387 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1388 return (ret) ? ret : kvm_recommended_vcpus(s);
1391 static int kvm_init(MachineState *ms)
1393 MachineClass *mc = MACHINE_GET_CLASS(ms);
1394 static const char upgrade_note[] =
1395 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1396 "(see http://sourceforge.net/projects/kvm).\n";
1397 struct {
1398 const char *name;
1399 int num;
1400 } num_cpus[] = {
1401 { "SMP", smp_cpus },
1402 { "hotpluggable", max_cpus },
1403 { NULL, }
1404 }, *nc = num_cpus;
1405 int soft_vcpus_limit, hard_vcpus_limit;
1406 KVMState *s;
1407 const KVMCapabilityInfo *missing_cap;
1408 int ret;
1409 int i, type = 0;
1410 const char *kvm_type;
1412 s = KVM_STATE(ms->accelerator);
1415 * On systems where the kernel can support different base page
1416 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1417 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1418 * page size for the system though.
1420 assert(TARGET_PAGE_SIZE <= getpagesize());
1421 page_size_init();
1423 s->sigmask_len = 8;
1425 #ifdef KVM_CAP_SET_GUEST_DEBUG
1426 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1427 #endif
1428 s->vmfd = -1;
1429 s->fd = qemu_open("/dev/kvm", O_RDWR);
1430 if (s->fd == -1) {
1431 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1432 ret = -errno;
1433 goto err;
1436 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1437 if (ret < KVM_API_VERSION) {
1438 if (ret >= 0) {
1439 ret = -EINVAL;
1441 fprintf(stderr, "kvm version too old\n");
1442 goto err;
1445 if (ret > KVM_API_VERSION) {
1446 ret = -EINVAL;
1447 fprintf(stderr, "kvm version not supported\n");
1448 goto err;
1451 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1453 /* If unspecified, use the default value */
1454 if (!s->nr_slots) {
1455 s->nr_slots = 32;
1458 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1460 for (i = 0; i < s->nr_slots; i++) {
1461 s->slots[i].slot = i;
1464 /* check the vcpu limits */
1465 soft_vcpus_limit = kvm_recommended_vcpus(s);
1466 hard_vcpus_limit = kvm_max_vcpus(s);
1468 while (nc->name) {
1469 if (nc->num > soft_vcpus_limit) {
1470 fprintf(stderr,
1471 "Warning: Number of %s cpus requested (%d) exceeds "
1472 "the recommended cpus supported by KVM (%d)\n",
1473 nc->name, nc->num, soft_vcpus_limit);
1475 if (nc->num > hard_vcpus_limit) {
1476 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1477 "the maximum cpus supported by KVM (%d)\n",
1478 nc->name, nc->num, hard_vcpus_limit);
1479 exit(1);
1482 nc++;
1485 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1486 if (mc->kvm_type) {
1487 type = mc->kvm_type(kvm_type);
1488 } else if (kvm_type) {
1489 ret = -EINVAL;
1490 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1491 goto err;
1494 do {
1495 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1496 } while (ret == -EINTR);
1498 if (ret < 0) {
1499 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1500 strerror(-ret));
1502 #ifdef TARGET_S390X
1503 if (ret == -EINVAL) {
1504 fprintf(stderr,
1505 "Host kernel setup problem detected. Please verify:\n");
1506 fprintf(stderr, "- for kernels supporting the switch_amode or"
1507 " user_mode parameters, whether\n");
1508 fprintf(stderr,
1509 " user space is running in primary address space\n");
1510 fprintf(stderr,
1511 "- for kernels supporting the vm.allocate_pgste sysctl, "
1512 "whether it is enabled\n");
1514 #endif
1515 goto err;
1518 s->vmfd = ret;
1519 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1520 if (!missing_cap) {
1521 missing_cap =
1522 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1524 if (missing_cap) {
1525 ret = -EINVAL;
1526 fprintf(stderr, "kvm does not support %s\n%s",
1527 missing_cap->name, upgrade_note);
1528 goto err;
1531 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1533 s->broken_set_mem_region = 1;
1534 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1535 if (ret > 0) {
1536 s->broken_set_mem_region = 0;
1539 #ifdef KVM_CAP_VCPU_EVENTS
1540 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1541 #endif
1543 s->robust_singlestep =
1544 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1546 #ifdef KVM_CAP_DEBUGREGS
1547 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1548 #endif
1550 #ifdef KVM_CAP_XSAVE
1551 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1552 #endif
1554 #ifdef KVM_CAP_XCRS
1555 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1556 #endif
1558 #ifdef KVM_CAP_PIT_STATE2
1559 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1560 #endif
1562 #ifdef KVM_CAP_IRQ_ROUTING
1563 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1564 #endif
1566 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1568 s->irq_set_ioctl = KVM_IRQ_LINE;
1569 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1570 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1573 #ifdef KVM_CAP_READONLY_MEM
1574 kvm_readonly_mem_allowed =
1575 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1576 #endif
1578 kvm_eventfds_allowed =
1579 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1581 kvm_irqfds_allowed =
1582 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1584 kvm_resamplefds_allowed =
1585 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1587 kvm_vm_attributes_allowed =
1588 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1590 ret = kvm_arch_init(ms, s);
1591 if (ret < 0) {
1592 goto err;
1595 ret = kvm_irqchip_create(ms, s);
1596 if (ret < 0) {
1597 goto err;
1600 kvm_state = s;
1601 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1602 memory_listener_register(&kvm_io_listener, &address_space_io);
1604 s->many_ioeventfds = kvm_check_many_ioeventfds();
1606 cpu_interrupt_handler = kvm_handle_interrupt;
1608 return 0;
1610 err:
1611 assert(ret < 0);
1612 if (s->vmfd >= 0) {
1613 close(s->vmfd);
1615 if (s->fd != -1) {
1616 close(s->fd);
1618 g_free(s->slots);
1620 return ret;
1623 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1625 s->sigmask_len = sigmask_len;
1628 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1629 int size, uint32_t count)
1631 int i;
1632 uint8_t *ptr = data;
1634 for (i = 0; i < count; i++) {
1635 address_space_rw(&address_space_io, port, attrs,
1636 ptr, size,
1637 direction == KVM_EXIT_IO_OUT);
1638 ptr += size;
1642 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1644 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1645 run->internal.suberror);
1647 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1648 int i;
1650 for (i = 0; i < run->internal.ndata; ++i) {
1651 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1652 i, (uint64_t)run->internal.data[i]);
1655 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1656 fprintf(stderr, "emulation failure\n");
1657 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1658 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1659 return EXCP_INTERRUPT;
1662 /* FIXME: Should trigger a qmp message to let management know
1663 * something went wrong.
1665 return -1;
1668 void kvm_flush_coalesced_mmio_buffer(void)
1670 KVMState *s = kvm_state;
1672 if (s->coalesced_flush_in_progress) {
1673 return;
1676 s->coalesced_flush_in_progress = true;
1678 if (s->coalesced_mmio_ring) {
1679 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1680 while (ring->first != ring->last) {
1681 struct kvm_coalesced_mmio *ent;
1683 ent = &ring->coalesced_mmio[ring->first];
1685 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1686 smp_wmb();
1687 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1691 s->coalesced_flush_in_progress = false;
1694 static void do_kvm_cpu_synchronize_state(void *arg)
1696 CPUState *cpu = arg;
1698 if (!cpu->kvm_vcpu_dirty) {
1699 kvm_arch_get_registers(cpu);
1700 cpu->kvm_vcpu_dirty = true;
1704 void kvm_cpu_synchronize_state(CPUState *cpu)
1706 if (!cpu->kvm_vcpu_dirty) {
1707 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1711 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1713 CPUState *cpu = arg;
1715 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1716 cpu->kvm_vcpu_dirty = false;
1719 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1721 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1724 static void do_kvm_cpu_synchronize_post_init(void *arg)
1726 CPUState *cpu = arg;
1728 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1729 cpu->kvm_vcpu_dirty = false;
1732 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1734 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1737 void kvm_cpu_clean_state(CPUState *cpu)
1739 cpu->kvm_vcpu_dirty = false;
1742 int kvm_cpu_exec(CPUState *cpu)
1744 struct kvm_run *run = cpu->kvm_run;
1745 int ret, run_ret;
1747 DPRINTF("kvm_cpu_exec()\n");
1749 if (kvm_arch_process_async_events(cpu)) {
1750 cpu->exit_request = 0;
1751 return EXCP_HLT;
1754 qemu_mutex_unlock_iothread();
1756 do {
1757 MemTxAttrs attrs;
1759 if (cpu->kvm_vcpu_dirty) {
1760 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1761 cpu->kvm_vcpu_dirty = false;
1764 kvm_arch_pre_run(cpu, run);
1765 if (cpu->exit_request) {
1766 DPRINTF("interrupt exit requested\n");
1768 * KVM requires us to reenter the kernel after IO exits to complete
1769 * instruction emulation. This self-signal will ensure that we
1770 * leave ASAP again.
1772 qemu_cpu_kick_self();
1775 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1777 attrs = kvm_arch_post_run(cpu, run);
1779 if (run_ret < 0) {
1780 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1781 DPRINTF("io window exit\n");
1782 ret = EXCP_INTERRUPT;
1783 break;
1785 fprintf(stderr, "error: kvm run failed %s\n",
1786 strerror(-run_ret));
1787 #ifdef TARGET_PPC
1788 if (run_ret == -EBUSY) {
1789 fprintf(stderr,
1790 "This is probably because your SMT is enabled.\n"
1791 "VCPU can only run on primary threads with all "
1792 "secondary threads offline.\n");
1794 #endif
1795 ret = -1;
1796 break;
1799 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1800 switch (run->exit_reason) {
1801 case KVM_EXIT_IO:
1802 DPRINTF("handle_io\n");
1803 /* Called outside BQL */
1804 kvm_handle_io(run->io.port, attrs,
1805 (uint8_t *)run + run->io.data_offset,
1806 run->io.direction,
1807 run->io.size,
1808 run->io.count);
1809 ret = 0;
1810 break;
1811 case KVM_EXIT_MMIO:
1812 DPRINTF("handle_mmio\n");
1813 /* Called outside BQL */
1814 address_space_rw(&address_space_memory,
1815 run->mmio.phys_addr, attrs,
1816 run->mmio.data,
1817 run->mmio.len,
1818 run->mmio.is_write);
1819 ret = 0;
1820 break;
1821 case KVM_EXIT_IRQ_WINDOW_OPEN:
1822 DPRINTF("irq_window_open\n");
1823 ret = EXCP_INTERRUPT;
1824 break;
1825 case KVM_EXIT_SHUTDOWN:
1826 DPRINTF("shutdown\n");
1827 qemu_system_reset_request();
1828 ret = EXCP_INTERRUPT;
1829 break;
1830 case KVM_EXIT_UNKNOWN:
1831 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1832 (uint64_t)run->hw.hardware_exit_reason);
1833 ret = -1;
1834 break;
1835 case KVM_EXIT_INTERNAL_ERROR:
1836 ret = kvm_handle_internal_error(cpu, run);
1837 break;
1838 case KVM_EXIT_SYSTEM_EVENT:
1839 switch (run->system_event.type) {
1840 case KVM_SYSTEM_EVENT_SHUTDOWN:
1841 qemu_system_shutdown_request();
1842 ret = EXCP_INTERRUPT;
1843 break;
1844 case KVM_SYSTEM_EVENT_RESET:
1845 qemu_system_reset_request();
1846 ret = EXCP_INTERRUPT;
1847 break;
1848 default:
1849 DPRINTF("kvm_arch_handle_exit\n");
1850 ret = kvm_arch_handle_exit(cpu, run);
1851 break;
1853 break;
1854 default:
1855 DPRINTF("kvm_arch_handle_exit\n");
1856 ret = kvm_arch_handle_exit(cpu, run);
1857 break;
1859 } while (ret == 0);
1861 qemu_mutex_lock_iothread();
1863 if (ret < 0) {
1864 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1865 vm_stop(RUN_STATE_INTERNAL_ERROR);
1868 cpu->exit_request = 0;
1869 return ret;
1872 int kvm_ioctl(KVMState *s, int type, ...)
1874 int ret;
1875 void *arg;
1876 va_list ap;
1878 va_start(ap, type);
1879 arg = va_arg(ap, void *);
1880 va_end(ap);
1882 trace_kvm_ioctl(type, arg);
1883 ret = ioctl(s->fd, type, arg);
1884 if (ret == -1) {
1885 ret = -errno;
1887 return ret;
1890 int kvm_vm_ioctl(KVMState *s, int type, ...)
1892 int ret;
1893 void *arg;
1894 va_list ap;
1896 va_start(ap, type);
1897 arg = va_arg(ap, void *);
1898 va_end(ap);
1900 trace_kvm_vm_ioctl(type, arg);
1901 ret = ioctl(s->vmfd, type, arg);
1902 if (ret == -1) {
1903 ret = -errno;
1905 return ret;
1908 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1910 int ret;
1911 void *arg;
1912 va_list ap;
1914 va_start(ap, type);
1915 arg = va_arg(ap, void *);
1916 va_end(ap);
1918 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1919 ret = ioctl(cpu->kvm_fd, type, arg);
1920 if (ret == -1) {
1921 ret = -errno;
1923 return ret;
1926 int kvm_device_ioctl(int fd, int type, ...)
1928 int ret;
1929 void *arg;
1930 va_list ap;
1932 va_start(ap, type);
1933 arg = va_arg(ap, void *);
1934 va_end(ap);
1936 trace_kvm_device_ioctl(fd, type, arg);
1937 ret = ioctl(fd, type, arg);
1938 if (ret == -1) {
1939 ret = -errno;
1941 return ret;
1944 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1946 int ret;
1947 struct kvm_device_attr attribute = {
1948 .group = group,
1949 .attr = attr,
1952 if (!kvm_vm_attributes_allowed) {
1953 return 0;
1956 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
1957 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1958 return ret ? 0 : 1;
1961 int kvm_has_sync_mmu(void)
1963 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1966 int kvm_has_vcpu_events(void)
1968 return kvm_state->vcpu_events;
1971 int kvm_has_robust_singlestep(void)
1973 return kvm_state->robust_singlestep;
1976 int kvm_has_debugregs(void)
1978 return kvm_state->debugregs;
1981 int kvm_has_xsave(void)
1983 return kvm_state->xsave;
1986 int kvm_has_xcrs(void)
1988 return kvm_state->xcrs;
1991 int kvm_has_pit_state2(void)
1993 return kvm_state->pit_state2;
1996 int kvm_has_many_ioeventfds(void)
1998 if (!kvm_enabled()) {
1999 return 0;
2001 return kvm_state->many_ioeventfds;
2004 int kvm_has_gsi_routing(void)
2006 #ifdef KVM_CAP_IRQ_ROUTING
2007 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2008 #else
2009 return false;
2010 #endif
2013 int kvm_has_intx_set_mask(void)
2015 return kvm_state->intx_set_mask;
2018 void kvm_setup_guest_memory(void *start, size_t size)
2020 if (!kvm_has_sync_mmu()) {
2021 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2023 if (ret) {
2024 perror("qemu_madvise");
2025 fprintf(stderr,
2026 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2027 exit(1);
2032 #ifdef KVM_CAP_SET_GUEST_DEBUG
2033 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2034 target_ulong pc)
2036 struct kvm_sw_breakpoint *bp;
2038 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2039 if (bp->pc == pc) {
2040 return bp;
2043 return NULL;
2046 int kvm_sw_breakpoints_active(CPUState *cpu)
2048 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2051 struct kvm_set_guest_debug_data {
2052 struct kvm_guest_debug dbg;
2053 CPUState *cpu;
2054 int err;
2057 static void kvm_invoke_set_guest_debug(void *data)
2059 struct kvm_set_guest_debug_data *dbg_data = data;
2061 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2062 &dbg_data->dbg);
2065 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2067 struct kvm_set_guest_debug_data data;
2069 data.dbg.control = reinject_trap;
2071 if (cpu->singlestep_enabled) {
2072 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2074 kvm_arch_update_guest_debug(cpu, &data.dbg);
2075 data.cpu = cpu;
2077 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2078 return data.err;
2081 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2082 target_ulong len, int type)
2084 struct kvm_sw_breakpoint *bp;
2085 int err;
2087 if (type == GDB_BREAKPOINT_SW) {
2088 bp = kvm_find_sw_breakpoint(cpu, addr);
2089 if (bp) {
2090 bp->use_count++;
2091 return 0;
2094 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2095 bp->pc = addr;
2096 bp->use_count = 1;
2097 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2098 if (err) {
2099 g_free(bp);
2100 return err;
2103 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2104 } else {
2105 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2106 if (err) {
2107 return err;
2111 CPU_FOREACH(cpu) {
2112 err = kvm_update_guest_debug(cpu, 0);
2113 if (err) {
2114 return err;
2117 return 0;
2120 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2121 target_ulong len, int type)
2123 struct kvm_sw_breakpoint *bp;
2124 int err;
2126 if (type == GDB_BREAKPOINT_SW) {
2127 bp = kvm_find_sw_breakpoint(cpu, addr);
2128 if (!bp) {
2129 return -ENOENT;
2132 if (bp->use_count > 1) {
2133 bp->use_count--;
2134 return 0;
2137 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2138 if (err) {
2139 return err;
2142 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2143 g_free(bp);
2144 } else {
2145 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2146 if (err) {
2147 return err;
2151 CPU_FOREACH(cpu) {
2152 err = kvm_update_guest_debug(cpu, 0);
2153 if (err) {
2154 return err;
2157 return 0;
2160 void kvm_remove_all_breakpoints(CPUState *cpu)
2162 struct kvm_sw_breakpoint *bp, *next;
2163 KVMState *s = cpu->kvm_state;
2164 CPUState *tmpcpu;
2166 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2167 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2168 /* Try harder to find a CPU that currently sees the breakpoint. */
2169 CPU_FOREACH(tmpcpu) {
2170 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2171 break;
2175 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2176 g_free(bp);
2178 kvm_arch_remove_all_hw_breakpoints();
2180 CPU_FOREACH(cpu) {
2181 kvm_update_guest_debug(cpu, 0);
2185 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2187 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2189 return -EINVAL;
2192 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2193 target_ulong len, int type)
2195 return -EINVAL;
2198 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2199 target_ulong len, int type)
2201 return -EINVAL;
2204 void kvm_remove_all_breakpoints(CPUState *cpu)
2207 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2209 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2211 KVMState *s = kvm_state;
2212 struct kvm_signal_mask *sigmask;
2213 int r;
2215 if (!sigset) {
2216 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2219 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2221 sigmask->len = s->sigmask_len;
2222 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2223 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2224 g_free(sigmask);
2226 return r;
2228 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2230 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2233 int kvm_on_sigbus(int code, void *addr)
2235 return kvm_arch_on_sigbus(code, addr);
2238 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2240 int ret;
2241 struct kvm_create_device create_dev;
2243 create_dev.type = type;
2244 create_dev.fd = -1;
2245 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2247 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2248 return -ENOTSUP;
2251 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2252 if (ret) {
2253 return ret;
2256 return test ? 0 : create_dev.fd;
2259 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2261 struct kvm_one_reg reg;
2262 int r;
2264 reg.id = id;
2265 reg.addr = (uintptr_t) source;
2266 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2267 if (r) {
2268 trace_kvm_failed_reg_set(id, strerror(r));
2270 return r;
2273 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2275 struct kvm_one_reg reg;
2276 int r;
2278 reg.id = id;
2279 reg.addr = (uintptr_t) target;
2280 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2281 if (r) {
2282 trace_kvm_failed_reg_get(id, strerror(r));
2284 return r;
2287 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2289 AccelClass *ac = ACCEL_CLASS(oc);
2290 ac->name = "KVM";
2291 ac->init_machine = kvm_init;
2292 ac->allowed = &kvm_allowed;
2295 static const TypeInfo kvm_accel_type = {
2296 .name = TYPE_KVM_ACCEL,
2297 .parent = TYPE_ACCEL,
2298 .class_init = kvm_accel_class_init,
2299 .instance_size = sizeof(KVMState),
2302 static void kvm_type_init(void)
2304 type_register_static(&kvm_accel_type);
2307 type_init(kvm_type_init);