ppc/kvm: drop kvmppc_has_cap_htab_fd()
[qemu/ar7.git] / migration / ram.c
blob88ca69e7b2e62d4c74cea2894f3a9145e7f4a8ff
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
28 #include "qemu/osdep.h"
29 #include "cpu.h"
30 #include <zlib.h>
31 #include "qapi-event.h"
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "xbzrle.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration/register.h"
40 #include "migration/misc.h"
41 #include "qemu-file.h"
42 #include "postcopy-ram.h"
43 #include "migration/page_cache.h"
44 #include "qemu/error-report.h"
45 #include "trace.h"
46 #include "exec/ram_addr.h"
47 #include "qemu/rcu_queue.h"
48 #include "migration/colo.h"
50 /***********************************************************/
51 /* ram save/restore */
53 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
54 * worked for pages that where filled with the same char. We switched
55 * it to only search for the zero value. And to avoid confusion with
56 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
59 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
60 #define RAM_SAVE_FLAG_ZERO 0x02
61 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
62 #define RAM_SAVE_FLAG_PAGE 0x08
63 #define RAM_SAVE_FLAG_EOS 0x10
64 #define RAM_SAVE_FLAG_CONTINUE 0x20
65 #define RAM_SAVE_FLAG_XBZRLE 0x40
66 /* 0x80 is reserved in migration.h start with 0x100 next */
67 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
69 static inline bool is_zero_range(uint8_t *p, uint64_t size)
71 return buffer_is_zero(p, size);
74 XBZRLECacheStats xbzrle_counters;
76 /* struct contains XBZRLE cache and a static page
77 used by the compression */
78 static struct {
79 /* buffer used for XBZRLE encoding */
80 uint8_t *encoded_buf;
81 /* buffer for storing page content */
82 uint8_t *current_buf;
83 /* Cache for XBZRLE, Protected by lock. */
84 PageCache *cache;
85 QemuMutex lock;
86 /* it will store a page full of zeros */
87 uint8_t *zero_target_page;
88 /* buffer used for XBZRLE decoding */
89 uint8_t *decoded_buf;
90 } XBZRLE;
92 static void XBZRLE_cache_lock(void)
94 if (migrate_use_xbzrle())
95 qemu_mutex_lock(&XBZRLE.lock);
98 static void XBZRLE_cache_unlock(void)
100 if (migrate_use_xbzrle())
101 qemu_mutex_unlock(&XBZRLE.lock);
105 * xbzrle_cache_resize: resize the xbzrle cache
107 * This function is called from qmp_migrate_set_cache_size in main
108 * thread, possibly while a migration is in progress. A running
109 * migration may be using the cache and might finish during this call,
110 * hence changes to the cache are protected by XBZRLE.lock().
112 * Returns the new_size or negative in case of error.
114 * @new_size: new cache size
116 int64_t xbzrle_cache_resize(int64_t new_size)
118 PageCache *new_cache;
119 int64_t ret;
121 if (new_size < TARGET_PAGE_SIZE) {
122 return -1;
125 XBZRLE_cache_lock();
127 if (XBZRLE.cache != NULL) {
128 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
129 goto out_new_size;
131 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
132 TARGET_PAGE_SIZE);
133 if (!new_cache) {
134 error_report("Error creating cache");
135 ret = -1;
136 goto out;
139 cache_fini(XBZRLE.cache);
140 XBZRLE.cache = new_cache;
143 out_new_size:
144 ret = pow2floor(new_size);
145 out:
146 XBZRLE_cache_unlock();
147 return ret;
151 * An outstanding page request, on the source, having been received
152 * and queued
154 struct RAMSrcPageRequest {
155 RAMBlock *rb;
156 hwaddr offset;
157 hwaddr len;
159 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
162 /* State of RAM for migration */
163 struct RAMState {
164 /* QEMUFile used for this migration */
165 QEMUFile *f;
166 /* Last block that we have visited searching for dirty pages */
167 RAMBlock *last_seen_block;
168 /* Last block from where we have sent data */
169 RAMBlock *last_sent_block;
170 /* Last dirty target page we have sent */
171 ram_addr_t last_page;
172 /* last ram version we have seen */
173 uint32_t last_version;
174 /* We are in the first round */
175 bool ram_bulk_stage;
176 /* How many times we have dirty too many pages */
177 int dirty_rate_high_cnt;
178 /* these variables are used for bitmap sync */
179 /* last time we did a full bitmap_sync */
180 int64_t time_last_bitmap_sync;
181 /* bytes transferred at start_time */
182 uint64_t bytes_xfer_prev;
183 /* number of dirty pages since start_time */
184 uint64_t num_dirty_pages_period;
185 /* xbzrle misses since the beginning of the period */
186 uint64_t xbzrle_cache_miss_prev;
187 /* number of iterations at the beginning of period */
188 uint64_t iterations_prev;
189 /* Iterations since start */
190 uint64_t iterations;
191 /* number of dirty bits in the bitmap */
192 uint64_t migration_dirty_pages;
193 /* protects modification of the bitmap */
194 QemuMutex bitmap_mutex;
195 /* The RAMBlock used in the last src_page_requests */
196 RAMBlock *last_req_rb;
197 /* Queue of outstanding page requests from the destination */
198 QemuMutex src_page_req_mutex;
199 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
201 typedef struct RAMState RAMState;
203 static RAMState *ram_state;
205 uint64_t ram_bytes_remaining(void)
207 return ram_state->migration_dirty_pages * TARGET_PAGE_SIZE;
210 MigrationStats ram_counters;
212 /* used by the search for pages to send */
213 struct PageSearchStatus {
214 /* Current block being searched */
215 RAMBlock *block;
216 /* Current page to search from */
217 unsigned long page;
218 /* Set once we wrap around */
219 bool complete_round;
221 typedef struct PageSearchStatus PageSearchStatus;
223 struct CompressParam {
224 bool done;
225 bool quit;
226 QEMUFile *file;
227 QemuMutex mutex;
228 QemuCond cond;
229 RAMBlock *block;
230 ram_addr_t offset;
232 typedef struct CompressParam CompressParam;
234 struct DecompressParam {
235 bool done;
236 bool quit;
237 QemuMutex mutex;
238 QemuCond cond;
239 void *des;
240 uint8_t *compbuf;
241 int len;
243 typedef struct DecompressParam DecompressParam;
245 static CompressParam *comp_param;
246 static QemuThread *compress_threads;
247 /* comp_done_cond is used to wake up the migration thread when
248 * one of the compression threads has finished the compression.
249 * comp_done_lock is used to co-work with comp_done_cond.
251 static QemuMutex comp_done_lock;
252 static QemuCond comp_done_cond;
253 /* The empty QEMUFileOps will be used by file in CompressParam */
254 static const QEMUFileOps empty_ops = { };
256 static DecompressParam *decomp_param;
257 static QemuThread *decompress_threads;
258 static QemuMutex decomp_done_lock;
259 static QemuCond decomp_done_cond;
261 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
262 ram_addr_t offset);
264 static void *do_data_compress(void *opaque)
266 CompressParam *param = opaque;
267 RAMBlock *block;
268 ram_addr_t offset;
270 qemu_mutex_lock(&param->mutex);
271 while (!param->quit) {
272 if (param->block) {
273 block = param->block;
274 offset = param->offset;
275 param->block = NULL;
276 qemu_mutex_unlock(&param->mutex);
278 do_compress_ram_page(param->file, block, offset);
280 qemu_mutex_lock(&comp_done_lock);
281 param->done = true;
282 qemu_cond_signal(&comp_done_cond);
283 qemu_mutex_unlock(&comp_done_lock);
285 qemu_mutex_lock(&param->mutex);
286 } else {
287 qemu_cond_wait(&param->cond, &param->mutex);
290 qemu_mutex_unlock(&param->mutex);
292 return NULL;
295 static inline void terminate_compression_threads(void)
297 int idx, thread_count;
299 thread_count = migrate_compress_threads();
301 for (idx = 0; idx < thread_count; idx++) {
302 qemu_mutex_lock(&comp_param[idx].mutex);
303 comp_param[idx].quit = true;
304 qemu_cond_signal(&comp_param[idx].cond);
305 qemu_mutex_unlock(&comp_param[idx].mutex);
309 static void compress_threads_save_cleanup(void)
311 int i, thread_count;
313 if (!migrate_use_compression()) {
314 return;
316 terminate_compression_threads();
317 thread_count = migrate_compress_threads();
318 for (i = 0; i < thread_count; i++) {
319 qemu_thread_join(compress_threads + i);
320 qemu_fclose(comp_param[i].file);
321 qemu_mutex_destroy(&comp_param[i].mutex);
322 qemu_cond_destroy(&comp_param[i].cond);
324 qemu_mutex_destroy(&comp_done_lock);
325 qemu_cond_destroy(&comp_done_cond);
326 g_free(compress_threads);
327 g_free(comp_param);
328 compress_threads = NULL;
329 comp_param = NULL;
332 static void compress_threads_save_setup(void)
334 int i, thread_count;
336 if (!migrate_use_compression()) {
337 return;
339 thread_count = migrate_compress_threads();
340 compress_threads = g_new0(QemuThread, thread_count);
341 comp_param = g_new0(CompressParam, thread_count);
342 qemu_cond_init(&comp_done_cond);
343 qemu_mutex_init(&comp_done_lock);
344 for (i = 0; i < thread_count; i++) {
345 /* comp_param[i].file is just used as a dummy buffer to save data,
346 * set its ops to empty.
348 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
349 comp_param[i].done = true;
350 comp_param[i].quit = false;
351 qemu_mutex_init(&comp_param[i].mutex);
352 qemu_cond_init(&comp_param[i].cond);
353 qemu_thread_create(compress_threads + i, "compress",
354 do_data_compress, comp_param + i,
355 QEMU_THREAD_JOINABLE);
359 /* Multiple fd's */
361 struct MultiFDSendParams {
362 uint8_t id;
363 char *name;
364 QemuThread thread;
365 QemuSemaphore sem;
366 QemuMutex mutex;
367 bool quit;
369 typedef struct MultiFDSendParams MultiFDSendParams;
371 struct {
372 MultiFDSendParams *params;
373 /* number of created threads */
374 int count;
375 } *multifd_send_state;
377 static void terminate_multifd_send_threads(Error *errp)
379 int i;
381 for (i = 0; i < multifd_send_state->count; i++) {
382 MultiFDSendParams *p = &multifd_send_state->params[i];
384 qemu_mutex_lock(&p->mutex);
385 p->quit = true;
386 qemu_sem_post(&p->sem);
387 qemu_mutex_unlock(&p->mutex);
391 int multifd_save_cleanup(Error **errp)
393 int i;
394 int ret = 0;
396 if (!migrate_use_multifd()) {
397 return 0;
399 terminate_multifd_send_threads(NULL);
400 for (i = 0; i < multifd_send_state->count; i++) {
401 MultiFDSendParams *p = &multifd_send_state->params[i];
403 qemu_thread_join(&p->thread);
404 qemu_mutex_destroy(&p->mutex);
405 qemu_sem_destroy(&p->sem);
406 g_free(p->name);
407 p->name = NULL;
409 g_free(multifd_send_state->params);
410 multifd_send_state->params = NULL;
411 g_free(multifd_send_state);
412 multifd_send_state = NULL;
413 return ret;
416 static void *multifd_send_thread(void *opaque)
418 MultiFDSendParams *p = opaque;
420 while (true) {
421 qemu_mutex_lock(&p->mutex);
422 if (p->quit) {
423 qemu_mutex_unlock(&p->mutex);
424 break;
426 qemu_mutex_unlock(&p->mutex);
427 qemu_sem_wait(&p->sem);
430 return NULL;
433 int multifd_save_setup(void)
435 int thread_count;
436 uint8_t i;
438 if (!migrate_use_multifd()) {
439 return 0;
441 thread_count = migrate_multifd_channels();
442 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
443 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
444 multifd_send_state->count = 0;
445 for (i = 0; i < thread_count; i++) {
446 MultiFDSendParams *p = &multifd_send_state->params[i];
448 qemu_mutex_init(&p->mutex);
449 qemu_sem_init(&p->sem, 0);
450 p->quit = false;
451 p->id = i;
452 p->name = g_strdup_printf("multifdsend_%d", i);
453 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
454 QEMU_THREAD_JOINABLE);
456 multifd_send_state->count++;
458 return 0;
461 struct MultiFDRecvParams {
462 uint8_t id;
463 char *name;
464 QemuThread thread;
465 QemuSemaphore sem;
466 QemuMutex mutex;
467 bool quit;
469 typedef struct MultiFDRecvParams MultiFDRecvParams;
471 struct {
472 MultiFDRecvParams *params;
473 /* number of created threads */
474 int count;
475 } *multifd_recv_state;
477 static void terminate_multifd_recv_threads(Error *errp)
479 int i;
481 for (i = 0; i < multifd_recv_state->count; i++) {
482 MultiFDRecvParams *p = &multifd_recv_state->params[i];
484 qemu_mutex_lock(&p->mutex);
485 p->quit = true;
486 qemu_sem_post(&p->sem);
487 qemu_mutex_unlock(&p->mutex);
491 int multifd_load_cleanup(Error **errp)
493 int i;
494 int ret = 0;
496 if (!migrate_use_multifd()) {
497 return 0;
499 terminate_multifd_recv_threads(NULL);
500 for (i = 0; i < multifd_recv_state->count; i++) {
501 MultiFDRecvParams *p = &multifd_recv_state->params[i];
503 qemu_thread_join(&p->thread);
504 qemu_mutex_destroy(&p->mutex);
505 qemu_sem_destroy(&p->sem);
506 g_free(p->name);
507 p->name = NULL;
509 g_free(multifd_recv_state->params);
510 multifd_recv_state->params = NULL;
511 g_free(multifd_recv_state);
512 multifd_recv_state = NULL;
514 return ret;
517 static void *multifd_recv_thread(void *opaque)
519 MultiFDRecvParams *p = opaque;
521 while (true) {
522 qemu_mutex_lock(&p->mutex);
523 if (p->quit) {
524 qemu_mutex_unlock(&p->mutex);
525 break;
527 qemu_mutex_unlock(&p->mutex);
528 qemu_sem_wait(&p->sem);
531 return NULL;
534 int multifd_load_setup(void)
536 int thread_count;
537 uint8_t i;
539 if (!migrate_use_multifd()) {
540 return 0;
542 thread_count = migrate_multifd_channels();
543 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
544 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
545 multifd_recv_state->count = 0;
546 for (i = 0; i < thread_count; i++) {
547 MultiFDRecvParams *p = &multifd_recv_state->params[i];
549 qemu_mutex_init(&p->mutex);
550 qemu_sem_init(&p->sem, 0);
551 p->quit = false;
552 p->id = i;
553 p->name = g_strdup_printf("multifdrecv_%d", i);
554 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
555 QEMU_THREAD_JOINABLE);
556 multifd_recv_state->count++;
558 return 0;
562 * save_page_header: write page header to wire
564 * If this is the 1st block, it also writes the block identification
566 * Returns the number of bytes written
568 * @f: QEMUFile where to send the data
569 * @block: block that contains the page we want to send
570 * @offset: offset inside the block for the page
571 * in the lower bits, it contains flags
573 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
574 ram_addr_t offset)
576 size_t size, len;
578 if (block == rs->last_sent_block) {
579 offset |= RAM_SAVE_FLAG_CONTINUE;
581 qemu_put_be64(f, offset);
582 size = 8;
584 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
585 len = strlen(block->idstr);
586 qemu_put_byte(f, len);
587 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
588 size += 1 + len;
589 rs->last_sent_block = block;
591 return size;
595 * mig_throttle_guest_down: throotle down the guest
597 * Reduce amount of guest cpu execution to hopefully slow down memory
598 * writes. If guest dirty memory rate is reduced below the rate at
599 * which we can transfer pages to the destination then we should be
600 * able to complete migration. Some workloads dirty memory way too
601 * fast and will not effectively converge, even with auto-converge.
603 static void mig_throttle_guest_down(void)
605 MigrationState *s = migrate_get_current();
606 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
607 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
609 /* We have not started throttling yet. Let's start it. */
610 if (!cpu_throttle_active()) {
611 cpu_throttle_set(pct_initial);
612 } else {
613 /* Throttling already on, just increase the rate */
614 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
619 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
621 * @rs: current RAM state
622 * @current_addr: address for the zero page
624 * Update the xbzrle cache to reflect a page that's been sent as all 0.
625 * The important thing is that a stale (not-yet-0'd) page be replaced
626 * by the new data.
627 * As a bonus, if the page wasn't in the cache it gets added so that
628 * when a small write is made into the 0'd page it gets XBZRLE sent.
630 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
632 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
633 return;
636 /* We don't care if this fails to allocate a new cache page
637 * as long as it updated an old one */
638 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
639 ram_counters.dirty_sync_count);
642 #define ENCODING_FLAG_XBZRLE 0x1
645 * save_xbzrle_page: compress and send current page
647 * Returns: 1 means that we wrote the page
648 * 0 means that page is identical to the one already sent
649 * -1 means that xbzrle would be longer than normal
651 * @rs: current RAM state
652 * @current_data: pointer to the address of the page contents
653 * @current_addr: addr of the page
654 * @block: block that contains the page we want to send
655 * @offset: offset inside the block for the page
656 * @last_stage: if we are at the completion stage
658 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
659 ram_addr_t current_addr, RAMBlock *block,
660 ram_addr_t offset, bool last_stage)
662 int encoded_len = 0, bytes_xbzrle;
663 uint8_t *prev_cached_page;
665 if (!cache_is_cached(XBZRLE.cache, current_addr,
666 ram_counters.dirty_sync_count)) {
667 xbzrle_counters.cache_miss++;
668 if (!last_stage) {
669 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
670 ram_counters.dirty_sync_count) == -1) {
671 return -1;
672 } else {
673 /* update *current_data when the page has been
674 inserted into cache */
675 *current_data = get_cached_data(XBZRLE.cache, current_addr);
678 return -1;
681 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
683 /* save current buffer into memory */
684 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
686 /* XBZRLE encoding (if there is no overflow) */
687 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
688 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
689 TARGET_PAGE_SIZE);
690 if (encoded_len == 0) {
691 trace_save_xbzrle_page_skipping();
692 return 0;
693 } else if (encoded_len == -1) {
694 trace_save_xbzrle_page_overflow();
695 xbzrle_counters.overflow++;
696 /* update data in the cache */
697 if (!last_stage) {
698 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
699 *current_data = prev_cached_page;
701 return -1;
704 /* we need to update the data in the cache, in order to get the same data */
705 if (!last_stage) {
706 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
709 /* Send XBZRLE based compressed page */
710 bytes_xbzrle = save_page_header(rs, rs->f, block,
711 offset | RAM_SAVE_FLAG_XBZRLE);
712 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
713 qemu_put_be16(rs->f, encoded_len);
714 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
715 bytes_xbzrle += encoded_len + 1 + 2;
716 xbzrle_counters.pages++;
717 xbzrle_counters.bytes += bytes_xbzrle;
718 ram_counters.transferred += bytes_xbzrle;
720 return 1;
724 * migration_bitmap_find_dirty: find the next dirty page from start
726 * Called with rcu_read_lock() to protect migration_bitmap
728 * Returns the byte offset within memory region of the start of a dirty page
730 * @rs: current RAM state
731 * @rb: RAMBlock where to search for dirty pages
732 * @start: page where we start the search
734 static inline
735 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
736 unsigned long start)
738 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
739 unsigned long *bitmap = rb->bmap;
740 unsigned long next;
742 if (rs->ram_bulk_stage && start > 0) {
743 next = start + 1;
744 } else {
745 next = find_next_bit(bitmap, size, start);
748 return next;
751 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
752 RAMBlock *rb,
753 unsigned long page)
755 bool ret;
757 ret = test_and_clear_bit(page, rb->bmap);
759 if (ret) {
760 rs->migration_dirty_pages--;
762 return ret;
765 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
766 ram_addr_t start, ram_addr_t length)
768 rs->migration_dirty_pages +=
769 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
770 &rs->num_dirty_pages_period);
774 * ram_pagesize_summary: calculate all the pagesizes of a VM
776 * Returns a summary bitmap of the page sizes of all RAMBlocks
778 * For VMs with just normal pages this is equivalent to the host page
779 * size. If it's got some huge pages then it's the OR of all the
780 * different page sizes.
782 uint64_t ram_pagesize_summary(void)
784 RAMBlock *block;
785 uint64_t summary = 0;
787 RAMBLOCK_FOREACH(block) {
788 summary |= block->page_size;
791 return summary;
794 static void migration_bitmap_sync(RAMState *rs)
796 RAMBlock *block;
797 int64_t end_time;
798 uint64_t bytes_xfer_now;
800 ram_counters.dirty_sync_count++;
802 if (!rs->time_last_bitmap_sync) {
803 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
806 trace_migration_bitmap_sync_start();
807 memory_global_dirty_log_sync();
809 qemu_mutex_lock(&rs->bitmap_mutex);
810 rcu_read_lock();
811 RAMBLOCK_FOREACH(block) {
812 migration_bitmap_sync_range(rs, block, 0, block->used_length);
814 rcu_read_unlock();
815 qemu_mutex_unlock(&rs->bitmap_mutex);
817 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
819 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
821 /* more than 1 second = 1000 millisecons */
822 if (end_time > rs->time_last_bitmap_sync + 1000) {
823 /* calculate period counters */
824 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
825 / (end_time - rs->time_last_bitmap_sync);
826 bytes_xfer_now = ram_counters.transferred;
828 if (migrate_auto_converge()) {
829 /* The following detection logic can be refined later. For now:
830 Check to see if the dirtied bytes is 50% more than the approx.
831 amount of bytes that just got transferred since the last time we
832 were in this routine. If that happens twice, start or increase
833 throttling */
835 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
836 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
837 (++rs->dirty_rate_high_cnt >= 2)) {
838 trace_migration_throttle();
839 rs->dirty_rate_high_cnt = 0;
840 mig_throttle_guest_down();
844 if (migrate_use_xbzrle()) {
845 if (rs->iterations_prev != rs->iterations) {
846 xbzrle_counters.cache_miss_rate =
847 (double)(xbzrle_counters.cache_miss -
848 rs->xbzrle_cache_miss_prev) /
849 (rs->iterations - rs->iterations_prev);
851 rs->iterations_prev = rs->iterations;
852 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
855 /* reset period counters */
856 rs->time_last_bitmap_sync = end_time;
857 rs->num_dirty_pages_period = 0;
858 rs->bytes_xfer_prev = bytes_xfer_now;
860 if (migrate_use_events()) {
861 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL);
866 * save_zero_page: send the zero page to the stream
868 * Returns the number of pages written.
870 * @rs: current RAM state
871 * @block: block that contains the page we want to send
872 * @offset: offset inside the block for the page
873 * @p: pointer to the page
875 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
876 uint8_t *p)
878 int pages = -1;
880 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
881 ram_counters.duplicate++;
882 ram_counters.transferred +=
883 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO);
884 qemu_put_byte(rs->f, 0);
885 ram_counters.transferred += 1;
886 pages = 1;
889 return pages;
892 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
894 if (!migrate_release_ram() || !migration_in_postcopy()) {
895 return;
898 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
902 * ram_save_page: send the given page to the stream
904 * Returns the number of pages written.
905 * < 0 - error
906 * >=0 - Number of pages written - this might legally be 0
907 * if xbzrle noticed the page was the same.
909 * @rs: current RAM state
910 * @block: block that contains the page we want to send
911 * @offset: offset inside the block for the page
912 * @last_stage: if we are at the completion stage
914 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
916 int pages = -1;
917 uint64_t bytes_xmit;
918 ram_addr_t current_addr;
919 uint8_t *p;
920 int ret;
921 bool send_async = true;
922 RAMBlock *block = pss->block;
923 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
925 p = block->host + offset;
926 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
928 /* In doubt sent page as normal */
929 bytes_xmit = 0;
930 ret = ram_control_save_page(rs->f, block->offset,
931 offset, TARGET_PAGE_SIZE, &bytes_xmit);
932 if (bytes_xmit) {
933 ram_counters.transferred += bytes_xmit;
934 pages = 1;
937 XBZRLE_cache_lock();
939 current_addr = block->offset + offset;
941 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
942 if (ret != RAM_SAVE_CONTROL_DELAYED) {
943 if (bytes_xmit > 0) {
944 ram_counters.normal++;
945 } else if (bytes_xmit == 0) {
946 ram_counters.duplicate++;
949 } else {
950 pages = save_zero_page(rs, block, offset, p);
951 if (pages > 0) {
952 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
953 * page would be stale
955 xbzrle_cache_zero_page(rs, current_addr);
956 ram_release_pages(block->idstr, offset, pages);
957 } else if (!rs->ram_bulk_stage &&
958 !migration_in_postcopy() && migrate_use_xbzrle()) {
959 pages = save_xbzrle_page(rs, &p, current_addr, block,
960 offset, last_stage);
961 if (!last_stage) {
962 /* Can't send this cached data async, since the cache page
963 * might get updated before it gets to the wire
965 send_async = false;
970 /* XBZRLE overflow or normal page */
971 if (pages == -1) {
972 ram_counters.transferred +=
973 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_PAGE);
974 if (send_async) {
975 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE,
976 migrate_release_ram() &
977 migration_in_postcopy());
978 } else {
979 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE);
981 ram_counters.transferred += TARGET_PAGE_SIZE;
982 pages = 1;
983 ram_counters.normal++;
986 XBZRLE_cache_unlock();
988 return pages;
991 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
992 ram_addr_t offset)
994 RAMState *rs = ram_state;
995 int bytes_sent, blen;
996 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
998 bytes_sent = save_page_header(rs, f, block, offset |
999 RAM_SAVE_FLAG_COMPRESS_PAGE);
1000 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
1001 migrate_compress_level());
1002 if (blen < 0) {
1003 bytes_sent = 0;
1004 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
1005 error_report("compressed data failed!");
1006 } else {
1007 bytes_sent += blen;
1008 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
1011 return bytes_sent;
1014 static void flush_compressed_data(RAMState *rs)
1016 int idx, len, thread_count;
1018 if (!migrate_use_compression()) {
1019 return;
1021 thread_count = migrate_compress_threads();
1023 qemu_mutex_lock(&comp_done_lock);
1024 for (idx = 0; idx < thread_count; idx++) {
1025 while (!comp_param[idx].done) {
1026 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1029 qemu_mutex_unlock(&comp_done_lock);
1031 for (idx = 0; idx < thread_count; idx++) {
1032 qemu_mutex_lock(&comp_param[idx].mutex);
1033 if (!comp_param[idx].quit) {
1034 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1035 ram_counters.transferred += len;
1037 qemu_mutex_unlock(&comp_param[idx].mutex);
1041 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1042 ram_addr_t offset)
1044 param->block = block;
1045 param->offset = offset;
1048 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1049 ram_addr_t offset)
1051 int idx, thread_count, bytes_xmit = -1, pages = -1;
1053 thread_count = migrate_compress_threads();
1054 qemu_mutex_lock(&comp_done_lock);
1055 while (true) {
1056 for (idx = 0; idx < thread_count; idx++) {
1057 if (comp_param[idx].done) {
1058 comp_param[idx].done = false;
1059 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1060 qemu_mutex_lock(&comp_param[idx].mutex);
1061 set_compress_params(&comp_param[idx], block, offset);
1062 qemu_cond_signal(&comp_param[idx].cond);
1063 qemu_mutex_unlock(&comp_param[idx].mutex);
1064 pages = 1;
1065 ram_counters.normal++;
1066 ram_counters.transferred += bytes_xmit;
1067 break;
1070 if (pages > 0) {
1071 break;
1072 } else {
1073 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1076 qemu_mutex_unlock(&comp_done_lock);
1078 return pages;
1082 * ram_save_compressed_page: compress the given page and send it to the stream
1084 * Returns the number of pages written.
1086 * @rs: current RAM state
1087 * @block: block that contains the page we want to send
1088 * @offset: offset inside the block for the page
1089 * @last_stage: if we are at the completion stage
1091 static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss,
1092 bool last_stage)
1094 int pages = -1;
1095 uint64_t bytes_xmit = 0;
1096 uint8_t *p;
1097 int ret, blen;
1098 RAMBlock *block = pss->block;
1099 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1101 p = block->host + offset;
1103 ret = ram_control_save_page(rs->f, block->offset,
1104 offset, TARGET_PAGE_SIZE, &bytes_xmit);
1105 if (bytes_xmit) {
1106 ram_counters.transferred += bytes_xmit;
1107 pages = 1;
1109 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
1110 if (ret != RAM_SAVE_CONTROL_DELAYED) {
1111 if (bytes_xmit > 0) {
1112 ram_counters.normal++;
1113 } else if (bytes_xmit == 0) {
1114 ram_counters.duplicate++;
1117 } else {
1118 /* When starting the process of a new block, the first page of
1119 * the block should be sent out before other pages in the same
1120 * block, and all the pages in last block should have been sent
1121 * out, keeping this order is important, because the 'cont' flag
1122 * is used to avoid resending the block name.
1124 if (block != rs->last_sent_block) {
1125 flush_compressed_data(rs);
1126 pages = save_zero_page(rs, block, offset, p);
1127 if (pages == -1) {
1128 /* Make sure the first page is sent out before other pages */
1129 bytes_xmit = save_page_header(rs, rs->f, block, offset |
1130 RAM_SAVE_FLAG_COMPRESS_PAGE);
1131 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE,
1132 migrate_compress_level());
1133 if (blen > 0) {
1134 ram_counters.transferred += bytes_xmit + blen;
1135 ram_counters.normal++;
1136 pages = 1;
1137 } else {
1138 qemu_file_set_error(rs->f, blen);
1139 error_report("compressed data failed!");
1142 if (pages > 0) {
1143 ram_release_pages(block->idstr, offset, pages);
1145 } else {
1146 pages = save_zero_page(rs, block, offset, p);
1147 if (pages == -1) {
1148 pages = compress_page_with_multi_thread(rs, block, offset);
1149 } else {
1150 ram_release_pages(block->idstr, offset, pages);
1155 return pages;
1159 * find_dirty_block: find the next dirty page and update any state
1160 * associated with the search process.
1162 * Returns if a page is found
1164 * @rs: current RAM state
1165 * @pss: data about the state of the current dirty page scan
1166 * @again: set to false if the search has scanned the whole of RAM
1168 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1170 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1171 if (pss->complete_round && pss->block == rs->last_seen_block &&
1172 pss->page >= rs->last_page) {
1174 * We've been once around the RAM and haven't found anything.
1175 * Give up.
1177 *again = false;
1178 return false;
1180 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
1181 /* Didn't find anything in this RAM Block */
1182 pss->page = 0;
1183 pss->block = QLIST_NEXT_RCU(pss->block, next);
1184 if (!pss->block) {
1185 /* Hit the end of the list */
1186 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1187 /* Flag that we've looped */
1188 pss->complete_round = true;
1189 rs->ram_bulk_stage = false;
1190 if (migrate_use_xbzrle()) {
1191 /* If xbzrle is on, stop using the data compression at this
1192 * point. In theory, xbzrle can do better than compression.
1194 flush_compressed_data(rs);
1197 /* Didn't find anything this time, but try again on the new block */
1198 *again = true;
1199 return false;
1200 } else {
1201 /* Can go around again, but... */
1202 *again = true;
1203 /* We've found something so probably don't need to */
1204 return true;
1209 * unqueue_page: gets a page of the queue
1211 * Helper for 'get_queued_page' - gets a page off the queue
1213 * Returns the block of the page (or NULL if none available)
1215 * @rs: current RAM state
1216 * @offset: used to return the offset within the RAMBlock
1218 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1220 RAMBlock *block = NULL;
1222 qemu_mutex_lock(&rs->src_page_req_mutex);
1223 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1224 struct RAMSrcPageRequest *entry =
1225 QSIMPLEQ_FIRST(&rs->src_page_requests);
1226 block = entry->rb;
1227 *offset = entry->offset;
1229 if (entry->len > TARGET_PAGE_SIZE) {
1230 entry->len -= TARGET_PAGE_SIZE;
1231 entry->offset += TARGET_PAGE_SIZE;
1232 } else {
1233 memory_region_unref(block->mr);
1234 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1235 g_free(entry);
1238 qemu_mutex_unlock(&rs->src_page_req_mutex);
1240 return block;
1244 * get_queued_page: unqueue a page from the postocpy requests
1246 * Skips pages that are already sent (!dirty)
1248 * Returns if a queued page is found
1250 * @rs: current RAM state
1251 * @pss: data about the state of the current dirty page scan
1253 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1255 RAMBlock *block;
1256 ram_addr_t offset;
1257 bool dirty;
1259 do {
1260 block = unqueue_page(rs, &offset);
1262 * We're sending this page, and since it's postcopy nothing else
1263 * will dirty it, and we must make sure it doesn't get sent again
1264 * even if this queue request was received after the background
1265 * search already sent it.
1267 if (block) {
1268 unsigned long page;
1270 page = offset >> TARGET_PAGE_BITS;
1271 dirty = test_bit(page, block->bmap);
1272 if (!dirty) {
1273 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1274 page, test_bit(page, block->unsentmap));
1275 } else {
1276 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1280 } while (block && !dirty);
1282 if (block) {
1284 * As soon as we start servicing pages out of order, then we have
1285 * to kill the bulk stage, since the bulk stage assumes
1286 * in (migration_bitmap_find_and_reset_dirty) that every page is
1287 * dirty, that's no longer true.
1289 rs->ram_bulk_stage = false;
1292 * We want the background search to continue from the queued page
1293 * since the guest is likely to want other pages near to the page
1294 * it just requested.
1296 pss->block = block;
1297 pss->page = offset >> TARGET_PAGE_BITS;
1300 return !!block;
1304 * migration_page_queue_free: drop any remaining pages in the ram
1305 * request queue
1307 * It should be empty at the end anyway, but in error cases there may
1308 * be some left. in case that there is any page left, we drop it.
1311 static void migration_page_queue_free(RAMState *rs)
1313 struct RAMSrcPageRequest *mspr, *next_mspr;
1314 /* This queue generally should be empty - but in the case of a failed
1315 * migration might have some droppings in.
1317 rcu_read_lock();
1318 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1319 memory_region_unref(mspr->rb->mr);
1320 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1321 g_free(mspr);
1323 rcu_read_unlock();
1327 * ram_save_queue_pages: queue the page for transmission
1329 * A request from postcopy destination for example.
1331 * Returns zero on success or negative on error
1333 * @rbname: Name of the RAMBLock of the request. NULL means the
1334 * same that last one.
1335 * @start: starting address from the start of the RAMBlock
1336 * @len: length (in bytes) to send
1338 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1340 RAMBlock *ramblock;
1341 RAMState *rs = ram_state;
1343 ram_counters.postcopy_requests++;
1344 rcu_read_lock();
1345 if (!rbname) {
1346 /* Reuse last RAMBlock */
1347 ramblock = rs->last_req_rb;
1349 if (!ramblock) {
1351 * Shouldn't happen, we can't reuse the last RAMBlock if
1352 * it's the 1st request.
1354 error_report("ram_save_queue_pages no previous block");
1355 goto err;
1357 } else {
1358 ramblock = qemu_ram_block_by_name(rbname);
1360 if (!ramblock) {
1361 /* We shouldn't be asked for a non-existent RAMBlock */
1362 error_report("ram_save_queue_pages no block '%s'", rbname);
1363 goto err;
1365 rs->last_req_rb = ramblock;
1367 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1368 if (start+len > ramblock->used_length) {
1369 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1370 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1371 __func__, start, len, ramblock->used_length);
1372 goto err;
1375 struct RAMSrcPageRequest *new_entry =
1376 g_malloc0(sizeof(struct RAMSrcPageRequest));
1377 new_entry->rb = ramblock;
1378 new_entry->offset = start;
1379 new_entry->len = len;
1381 memory_region_ref(ramblock->mr);
1382 qemu_mutex_lock(&rs->src_page_req_mutex);
1383 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1384 qemu_mutex_unlock(&rs->src_page_req_mutex);
1385 rcu_read_unlock();
1387 return 0;
1389 err:
1390 rcu_read_unlock();
1391 return -1;
1395 * ram_save_target_page: save one target page
1397 * Returns the number of pages written
1399 * @rs: current RAM state
1400 * @ms: current migration state
1401 * @pss: data about the page we want to send
1402 * @last_stage: if we are at the completion stage
1404 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
1405 bool last_stage)
1407 int res = 0;
1409 /* Check the pages is dirty and if it is send it */
1410 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
1412 * If xbzrle is on, stop using the data compression after first
1413 * round of migration even if compression is enabled. In theory,
1414 * xbzrle can do better than compression.
1416 if (migrate_use_compression() &&
1417 (rs->ram_bulk_stage || !migrate_use_xbzrle())) {
1418 res = ram_save_compressed_page(rs, pss, last_stage);
1419 } else {
1420 res = ram_save_page(rs, pss, last_stage);
1423 if (res < 0) {
1424 return res;
1426 if (pss->block->unsentmap) {
1427 clear_bit(pss->page, pss->block->unsentmap);
1431 return res;
1435 * ram_save_host_page: save a whole host page
1437 * Starting at *offset send pages up to the end of the current host
1438 * page. It's valid for the initial offset to point into the middle of
1439 * a host page in which case the remainder of the hostpage is sent.
1440 * Only dirty target pages are sent. Note that the host page size may
1441 * be a huge page for this block.
1442 * The saving stops at the boundary of the used_length of the block
1443 * if the RAMBlock isn't a multiple of the host page size.
1445 * Returns the number of pages written or negative on error
1447 * @rs: current RAM state
1448 * @ms: current migration state
1449 * @pss: data about the page we want to send
1450 * @last_stage: if we are at the completion stage
1452 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
1453 bool last_stage)
1455 int tmppages, pages = 0;
1456 size_t pagesize_bits =
1457 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
1459 do {
1460 tmppages = ram_save_target_page(rs, pss, last_stage);
1461 if (tmppages < 0) {
1462 return tmppages;
1465 pages += tmppages;
1466 pss->page++;
1467 } while ((pss->page & (pagesize_bits - 1)) &&
1468 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
1470 /* The offset we leave with is the last one we looked at */
1471 pss->page--;
1472 return pages;
1476 * ram_find_and_save_block: finds a dirty page and sends it to f
1478 * Called within an RCU critical section.
1480 * Returns the number of pages written where zero means no dirty pages
1482 * @rs: current RAM state
1483 * @last_stage: if we are at the completion stage
1485 * On systems where host-page-size > target-page-size it will send all the
1486 * pages in a host page that are dirty.
1489 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
1491 PageSearchStatus pss;
1492 int pages = 0;
1493 bool again, found;
1495 /* No dirty page as there is zero RAM */
1496 if (!ram_bytes_total()) {
1497 return pages;
1500 pss.block = rs->last_seen_block;
1501 pss.page = rs->last_page;
1502 pss.complete_round = false;
1504 if (!pss.block) {
1505 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1508 do {
1509 again = true;
1510 found = get_queued_page(rs, &pss);
1512 if (!found) {
1513 /* priority queue empty, so just search for something dirty */
1514 found = find_dirty_block(rs, &pss, &again);
1517 if (found) {
1518 pages = ram_save_host_page(rs, &pss, last_stage);
1520 } while (!pages && again);
1522 rs->last_seen_block = pss.block;
1523 rs->last_page = pss.page;
1525 return pages;
1528 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1530 uint64_t pages = size / TARGET_PAGE_SIZE;
1532 if (zero) {
1533 ram_counters.duplicate += pages;
1534 } else {
1535 ram_counters.normal += pages;
1536 ram_counters.transferred += size;
1537 qemu_update_position(f, size);
1541 uint64_t ram_bytes_total(void)
1543 RAMBlock *block;
1544 uint64_t total = 0;
1546 rcu_read_lock();
1547 RAMBLOCK_FOREACH(block) {
1548 total += block->used_length;
1550 rcu_read_unlock();
1551 return total;
1554 static void xbzrle_load_setup(void)
1556 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1559 static void xbzrle_load_cleanup(void)
1561 g_free(XBZRLE.decoded_buf);
1562 XBZRLE.decoded_buf = NULL;
1565 static void ram_save_cleanup(void *opaque)
1567 RAMState **rsp = opaque;
1568 RAMBlock *block;
1570 /* caller have hold iothread lock or is in a bh, so there is
1571 * no writing race against this migration_bitmap
1573 memory_global_dirty_log_stop();
1575 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1576 g_free(block->bmap);
1577 block->bmap = NULL;
1578 g_free(block->unsentmap);
1579 block->unsentmap = NULL;
1582 XBZRLE_cache_lock();
1583 if (XBZRLE.cache) {
1584 cache_fini(XBZRLE.cache);
1585 g_free(XBZRLE.encoded_buf);
1586 g_free(XBZRLE.current_buf);
1587 g_free(XBZRLE.zero_target_page);
1588 XBZRLE.cache = NULL;
1589 XBZRLE.encoded_buf = NULL;
1590 XBZRLE.current_buf = NULL;
1591 XBZRLE.zero_target_page = NULL;
1593 XBZRLE_cache_unlock();
1594 migration_page_queue_free(*rsp);
1595 compress_threads_save_cleanup();
1596 g_free(*rsp);
1597 *rsp = NULL;
1600 static void ram_state_reset(RAMState *rs)
1602 rs->last_seen_block = NULL;
1603 rs->last_sent_block = NULL;
1604 rs->last_page = 0;
1605 rs->last_version = ram_list.version;
1606 rs->ram_bulk_stage = true;
1609 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1612 * 'expected' is the value you expect the bitmap mostly to be full
1613 * of; it won't bother printing lines that are all this value.
1614 * If 'todump' is null the migration bitmap is dumped.
1616 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
1617 unsigned long pages)
1619 int64_t cur;
1620 int64_t linelen = 128;
1621 char linebuf[129];
1623 for (cur = 0; cur < pages; cur += linelen) {
1624 int64_t curb;
1625 bool found = false;
1627 * Last line; catch the case where the line length
1628 * is longer than remaining ram
1630 if (cur + linelen > pages) {
1631 linelen = pages - cur;
1633 for (curb = 0; curb < linelen; curb++) {
1634 bool thisbit = test_bit(cur + curb, todump);
1635 linebuf[curb] = thisbit ? '1' : '.';
1636 found = found || (thisbit != expected);
1638 if (found) {
1639 linebuf[curb] = '\0';
1640 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1645 /* **** functions for postcopy ***** */
1647 void ram_postcopy_migrated_memory_release(MigrationState *ms)
1649 struct RAMBlock *block;
1651 RAMBLOCK_FOREACH(block) {
1652 unsigned long *bitmap = block->bmap;
1653 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
1654 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
1656 while (run_start < range) {
1657 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
1658 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
1659 (run_end - run_start) << TARGET_PAGE_BITS);
1660 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1666 * postcopy_send_discard_bm_ram: discard a RAMBlock
1668 * Returns zero on success
1670 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1671 * Note: At this point the 'unsentmap' is the processed bitmap combined
1672 * with the dirtymap; so a '1' means it's either dirty or unsent.
1674 * @ms: current migration state
1675 * @pds: state for postcopy
1676 * @start: RAMBlock starting page
1677 * @length: RAMBlock size
1679 static int postcopy_send_discard_bm_ram(MigrationState *ms,
1680 PostcopyDiscardState *pds,
1681 RAMBlock *block)
1683 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
1684 unsigned long current;
1685 unsigned long *unsentmap = block->unsentmap;
1687 for (current = 0; current < end; ) {
1688 unsigned long one = find_next_bit(unsentmap, end, current);
1690 if (one <= end) {
1691 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1692 unsigned long discard_length;
1694 if (zero >= end) {
1695 discard_length = end - one;
1696 } else {
1697 discard_length = zero - one;
1699 if (discard_length) {
1700 postcopy_discard_send_range(ms, pds, one, discard_length);
1702 current = one + discard_length;
1703 } else {
1704 current = one;
1708 return 0;
1712 * postcopy_each_ram_send_discard: discard all RAMBlocks
1714 * Returns 0 for success or negative for error
1716 * Utility for the outgoing postcopy code.
1717 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1718 * passing it bitmap indexes and name.
1719 * (qemu_ram_foreach_block ends up passing unscaled lengths
1720 * which would mean postcopy code would have to deal with target page)
1722 * @ms: current migration state
1724 static int postcopy_each_ram_send_discard(MigrationState *ms)
1726 struct RAMBlock *block;
1727 int ret;
1729 RAMBLOCK_FOREACH(block) {
1730 PostcopyDiscardState *pds =
1731 postcopy_discard_send_init(ms, block->idstr);
1734 * Postcopy sends chunks of bitmap over the wire, but it
1735 * just needs indexes at this point, avoids it having
1736 * target page specific code.
1738 ret = postcopy_send_discard_bm_ram(ms, pds, block);
1739 postcopy_discard_send_finish(ms, pds);
1740 if (ret) {
1741 return ret;
1745 return 0;
1749 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
1751 * Helper for postcopy_chunk_hostpages; it's called twice to
1752 * canonicalize the two bitmaps, that are similar, but one is
1753 * inverted.
1755 * Postcopy requires that all target pages in a hostpage are dirty or
1756 * clean, not a mix. This function canonicalizes the bitmaps.
1758 * @ms: current migration state
1759 * @unsent_pass: if true we need to canonicalize partially unsent host pages
1760 * otherwise we need to canonicalize partially dirty host pages
1761 * @block: block that contains the page we want to canonicalize
1762 * @pds: state for postcopy
1764 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1765 RAMBlock *block,
1766 PostcopyDiscardState *pds)
1768 RAMState *rs = ram_state;
1769 unsigned long *bitmap = block->bmap;
1770 unsigned long *unsentmap = block->unsentmap;
1771 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
1772 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
1773 unsigned long run_start;
1775 if (block->page_size == TARGET_PAGE_SIZE) {
1776 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
1777 return;
1780 if (unsent_pass) {
1781 /* Find a sent page */
1782 run_start = find_next_zero_bit(unsentmap, pages, 0);
1783 } else {
1784 /* Find a dirty page */
1785 run_start = find_next_bit(bitmap, pages, 0);
1788 while (run_start < pages) {
1789 bool do_fixup = false;
1790 unsigned long fixup_start_addr;
1791 unsigned long host_offset;
1794 * If the start of this run of pages is in the middle of a host
1795 * page, then we need to fixup this host page.
1797 host_offset = run_start % host_ratio;
1798 if (host_offset) {
1799 do_fixup = true;
1800 run_start -= host_offset;
1801 fixup_start_addr = run_start;
1802 /* For the next pass */
1803 run_start = run_start + host_ratio;
1804 } else {
1805 /* Find the end of this run */
1806 unsigned long run_end;
1807 if (unsent_pass) {
1808 run_end = find_next_bit(unsentmap, pages, run_start + 1);
1809 } else {
1810 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
1813 * If the end isn't at the start of a host page, then the
1814 * run doesn't finish at the end of a host page
1815 * and we need to discard.
1817 host_offset = run_end % host_ratio;
1818 if (host_offset) {
1819 do_fixup = true;
1820 fixup_start_addr = run_end - host_offset;
1822 * This host page has gone, the next loop iteration starts
1823 * from after the fixup
1825 run_start = fixup_start_addr + host_ratio;
1826 } else {
1828 * No discards on this iteration, next loop starts from
1829 * next sent/dirty page
1831 run_start = run_end + 1;
1835 if (do_fixup) {
1836 unsigned long page;
1838 /* Tell the destination to discard this page */
1839 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1840 /* For the unsent_pass we:
1841 * discard partially sent pages
1842 * For the !unsent_pass (dirty) we:
1843 * discard partially dirty pages that were sent
1844 * (any partially sent pages were already discarded
1845 * by the previous unsent_pass)
1847 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1848 host_ratio);
1851 /* Clean up the bitmap */
1852 for (page = fixup_start_addr;
1853 page < fixup_start_addr + host_ratio; page++) {
1854 /* All pages in this host page are now not sent */
1855 set_bit(page, unsentmap);
1858 * Remark them as dirty, updating the count for any pages
1859 * that weren't previously dirty.
1861 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
1865 if (unsent_pass) {
1866 /* Find the next sent page for the next iteration */
1867 run_start = find_next_zero_bit(unsentmap, pages, run_start);
1868 } else {
1869 /* Find the next dirty page for the next iteration */
1870 run_start = find_next_bit(bitmap, pages, run_start);
1876 * postcopy_chuck_hostpages: discrad any partially sent host page
1878 * Utility for the outgoing postcopy code.
1880 * Discard any partially sent host-page size chunks, mark any partially
1881 * dirty host-page size chunks as all dirty. In this case the host-page
1882 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
1884 * Returns zero on success
1886 * @ms: current migration state
1887 * @block: block we want to work with
1889 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
1891 PostcopyDiscardState *pds =
1892 postcopy_discard_send_init(ms, block->idstr);
1894 /* First pass: Discard all partially sent host pages */
1895 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1897 * Second pass: Ensure that all partially dirty host pages are made
1898 * fully dirty.
1900 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1902 postcopy_discard_send_finish(ms, pds);
1903 return 0;
1907 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
1909 * Returns zero on success
1911 * Transmit the set of pages to be discarded after precopy to the target
1912 * these are pages that:
1913 * a) Have been previously transmitted but are now dirty again
1914 * b) Pages that have never been transmitted, this ensures that
1915 * any pages on the destination that have been mapped by background
1916 * tasks get discarded (transparent huge pages is the specific concern)
1917 * Hopefully this is pretty sparse
1919 * @ms: current migration state
1921 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1923 RAMState *rs = ram_state;
1924 RAMBlock *block;
1925 int ret;
1927 rcu_read_lock();
1929 /* This should be our last sync, the src is now paused */
1930 migration_bitmap_sync(rs);
1932 /* Easiest way to make sure we don't resume in the middle of a host-page */
1933 rs->last_seen_block = NULL;
1934 rs->last_sent_block = NULL;
1935 rs->last_page = 0;
1937 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1938 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
1939 unsigned long *bitmap = block->bmap;
1940 unsigned long *unsentmap = block->unsentmap;
1942 if (!unsentmap) {
1943 /* We don't have a safe way to resize the sentmap, so
1944 * if the bitmap was resized it will be NULL at this
1945 * point.
1947 error_report("migration ram resized during precopy phase");
1948 rcu_read_unlock();
1949 return -EINVAL;
1951 /* Deal with TPS != HPS and huge pages */
1952 ret = postcopy_chunk_hostpages(ms, block);
1953 if (ret) {
1954 rcu_read_unlock();
1955 return ret;
1959 * Update the unsentmap to be unsentmap = unsentmap | dirty
1961 bitmap_or(unsentmap, unsentmap, bitmap, pages);
1962 #ifdef DEBUG_POSTCOPY
1963 ram_debug_dump_bitmap(unsentmap, true, pages);
1964 #endif
1966 trace_ram_postcopy_send_discard_bitmap();
1968 ret = postcopy_each_ram_send_discard(ms);
1969 rcu_read_unlock();
1971 return ret;
1975 * ram_discard_range: discard dirtied pages at the beginning of postcopy
1977 * Returns zero on success
1979 * @rbname: name of the RAMBlock of the request. NULL means the
1980 * same that last one.
1981 * @start: RAMBlock starting page
1982 * @length: RAMBlock size
1984 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
1986 int ret = -1;
1988 trace_ram_discard_range(rbname, start, length);
1990 rcu_read_lock();
1991 RAMBlock *rb = qemu_ram_block_by_name(rbname);
1993 if (!rb) {
1994 error_report("ram_discard_range: Failed to find block '%s'", rbname);
1995 goto err;
1998 ret = ram_block_discard_range(rb, start, length);
2000 err:
2001 rcu_read_unlock();
2003 return ret;
2006 static int ram_state_init(RAMState **rsp)
2008 *rsp = g_new0(RAMState, 1);
2010 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2011 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2012 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2014 if (migrate_use_xbzrle()) {
2015 XBZRLE_cache_lock();
2016 XBZRLE.zero_target_page = g_malloc0(TARGET_PAGE_SIZE);
2017 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
2018 TARGET_PAGE_SIZE,
2019 TARGET_PAGE_SIZE);
2020 if (!XBZRLE.cache) {
2021 XBZRLE_cache_unlock();
2022 error_report("Error creating cache");
2023 g_free(*rsp);
2024 *rsp = NULL;
2025 return -1;
2027 XBZRLE_cache_unlock();
2029 /* We prefer not to abort if there is no memory */
2030 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2031 if (!XBZRLE.encoded_buf) {
2032 error_report("Error allocating encoded_buf");
2033 g_free(*rsp);
2034 *rsp = NULL;
2035 return -1;
2038 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2039 if (!XBZRLE.current_buf) {
2040 error_report("Error allocating current_buf");
2041 g_free(XBZRLE.encoded_buf);
2042 XBZRLE.encoded_buf = NULL;
2043 g_free(*rsp);
2044 *rsp = NULL;
2045 return -1;
2049 /* For memory_global_dirty_log_start below. */
2050 qemu_mutex_lock_iothread();
2052 qemu_mutex_lock_ramlist();
2053 rcu_read_lock();
2054 ram_state_reset(*rsp);
2056 /* Skip setting bitmap if there is no RAM */
2057 if (ram_bytes_total()) {
2058 RAMBlock *block;
2060 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2061 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
2063 block->bmap = bitmap_new(pages);
2064 bitmap_set(block->bmap, 0, pages);
2065 if (migrate_postcopy_ram()) {
2066 block->unsentmap = bitmap_new(pages);
2067 bitmap_set(block->unsentmap, 0, pages);
2073 * Count the total number of pages used by ram blocks not including any
2074 * gaps due to alignment or unplugs.
2076 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2078 memory_global_dirty_log_start();
2079 migration_bitmap_sync(*rsp);
2080 qemu_mutex_unlock_ramlist();
2081 qemu_mutex_unlock_iothread();
2082 rcu_read_unlock();
2084 return 0;
2088 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2089 * long-running RCU critical section. When rcu-reclaims in the code
2090 * start to become numerous it will be necessary to reduce the
2091 * granularity of these critical sections.
2095 * ram_save_setup: Setup RAM for migration
2097 * Returns zero to indicate success and negative for error
2099 * @f: QEMUFile where to send the data
2100 * @opaque: RAMState pointer
2102 static int ram_save_setup(QEMUFile *f, void *opaque)
2104 RAMState **rsp = opaque;
2105 RAMBlock *block;
2107 /* migration has already setup the bitmap, reuse it. */
2108 if (!migration_in_colo_state()) {
2109 if (ram_state_init(rsp) != 0) {
2110 return -1;
2113 (*rsp)->f = f;
2115 rcu_read_lock();
2117 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
2119 RAMBLOCK_FOREACH(block) {
2120 qemu_put_byte(f, strlen(block->idstr));
2121 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2122 qemu_put_be64(f, block->used_length);
2123 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
2124 qemu_put_be64(f, block->page_size);
2128 rcu_read_unlock();
2129 compress_threads_save_setup();
2131 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2132 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2134 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2136 return 0;
2140 * ram_save_iterate: iterative stage for migration
2142 * Returns zero to indicate success and negative for error
2144 * @f: QEMUFile where to send the data
2145 * @opaque: RAMState pointer
2147 static int ram_save_iterate(QEMUFile *f, void *opaque)
2149 RAMState **temp = opaque;
2150 RAMState *rs = *temp;
2151 int ret;
2152 int i;
2153 int64_t t0;
2154 int done = 0;
2156 rcu_read_lock();
2157 if (ram_list.version != rs->last_version) {
2158 ram_state_reset(rs);
2161 /* Read version before ram_list.blocks */
2162 smp_rmb();
2164 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2166 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2167 i = 0;
2168 while ((ret = qemu_file_rate_limit(f)) == 0) {
2169 int pages;
2171 pages = ram_find_and_save_block(rs, false);
2172 /* no more pages to sent */
2173 if (pages == 0) {
2174 done = 1;
2175 break;
2177 rs->iterations++;
2179 /* we want to check in the 1st loop, just in case it was the 1st time
2180 and we had to sync the dirty bitmap.
2181 qemu_get_clock_ns() is a bit expensive, so we only check each some
2182 iterations
2184 if ((i & 63) == 0) {
2185 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2186 if (t1 > MAX_WAIT) {
2187 trace_ram_save_iterate_big_wait(t1, i);
2188 break;
2191 i++;
2193 flush_compressed_data(rs);
2194 rcu_read_unlock();
2197 * Must occur before EOS (or any QEMUFile operation)
2198 * because of RDMA protocol.
2200 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2202 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2203 ram_counters.transferred += 8;
2205 ret = qemu_file_get_error(f);
2206 if (ret < 0) {
2207 return ret;
2210 return done;
2214 * ram_save_complete: function called to send the remaining amount of ram
2216 * Returns zero to indicate success
2218 * Called with iothread lock
2220 * @f: QEMUFile where to send the data
2221 * @opaque: RAMState pointer
2223 static int ram_save_complete(QEMUFile *f, void *opaque)
2225 RAMState **temp = opaque;
2226 RAMState *rs = *temp;
2228 rcu_read_lock();
2230 if (!migration_in_postcopy()) {
2231 migration_bitmap_sync(rs);
2234 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2236 /* try transferring iterative blocks of memory */
2238 /* flush all remaining blocks regardless of rate limiting */
2239 while (true) {
2240 int pages;
2242 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
2243 /* no more blocks to sent */
2244 if (pages == 0) {
2245 break;
2249 flush_compressed_data(rs);
2250 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2252 rcu_read_unlock();
2254 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2256 return 0;
2259 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2260 uint64_t *non_postcopiable_pending,
2261 uint64_t *postcopiable_pending)
2263 RAMState **temp = opaque;
2264 RAMState *rs = *temp;
2265 uint64_t remaining_size;
2267 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2269 if (!migration_in_postcopy() &&
2270 remaining_size < max_size) {
2271 qemu_mutex_lock_iothread();
2272 rcu_read_lock();
2273 migration_bitmap_sync(rs);
2274 rcu_read_unlock();
2275 qemu_mutex_unlock_iothread();
2276 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2279 if (migrate_postcopy_ram()) {
2280 /* We can do postcopy, and all the data is postcopiable */
2281 *postcopiable_pending += remaining_size;
2282 } else {
2283 *non_postcopiable_pending += remaining_size;
2287 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2289 unsigned int xh_len;
2290 int xh_flags;
2291 uint8_t *loaded_data;
2293 /* extract RLE header */
2294 xh_flags = qemu_get_byte(f);
2295 xh_len = qemu_get_be16(f);
2297 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2298 error_report("Failed to load XBZRLE page - wrong compression!");
2299 return -1;
2302 if (xh_len > TARGET_PAGE_SIZE) {
2303 error_report("Failed to load XBZRLE page - len overflow!");
2304 return -1;
2306 loaded_data = XBZRLE.decoded_buf;
2307 /* load data and decode */
2308 /* it can change loaded_data to point to an internal buffer */
2309 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2311 /* decode RLE */
2312 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2313 TARGET_PAGE_SIZE) == -1) {
2314 error_report("Failed to load XBZRLE page - decode error!");
2315 return -1;
2318 return 0;
2322 * ram_block_from_stream: read a RAMBlock id from the migration stream
2324 * Must be called from within a rcu critical section.
2326 * Returns a pointer from within the RCU-protected ram_list.
2328 * @f: QEMUFile where to read the data from
2329 * @flags: Page flags (mostly to see if it's a continuation of previous block)
2331 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
2333 static RAMBlock *block = NULL;
2334 char id[256];
2335 uint8_t len;
2337 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2338 if (!block) {
2339 error_report("Ack, bad migration stream!");
2340 return NULL;
2342 return block;
2345 len = qemu_get_byte(f);
2346 qemu_get_buffer(f, (uint8_t *)id, len);
2347 id[len] = 0;
2349 block = qemu_ram_block_by_name(id);
2350 if (!block) {
2351 error_report("Can't find block %s", id);
2352 return NULL;
2355 return block;
2358 static inline void *host_from_ram_block_offset(RAMBlock *block,
2359 ram_addr_t offset)
2361 if (!offset_in_ramblock(block, offset)) {
2362 return NULL;
2365 return block->host + offset;
2369 * ram_handle_compressed: handle the zero page case
2371 * If a page (or a whole RDMA chunk) has been
2372 * determined to be zero, then zap it.
2374 * @host: host address for the zero page
2375 * @ch: what the page is filled from. We only support zero
2376 * @size: size of the zero page
2378 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2380 if (ch != 0 || !is_zero_range(host, size)) {
2381 memset(host, ch, size);
2385 static void *do_data_decompress(void *opaque)
2387 DecompressParam *param = opaque;
2388 unsigned long pagesize;
2389 uint8_t *des;
2390 int len;
2392 qemu_mutex_lock(&param->mutex);
2393 while (!param->quit) {
2394 if (param->des) {
2395 des = param->des;
2396 len = param->len;
2397 param->des = 0;
2398 qemu_mutex_unlock(&param->mutex);
2400 pagesize = TARGET_PAGE_SIZE;
2401 /* uncompress() will return failed in some case, especially
2402 * when the page is dirted when doing the compression, it's
2403 * not a problem because the dirty page will be retransferred
2404 * and uncompress() won't break the data in other pages.
2406 uncompress((Bytef *)des, &pagesize,
2407 (const Bytef *)param->compbuf, len);
2409 qemu_mutex_lock(&decomp_done_lock);
2410 param->done = true;
2411 qemu_cond_signal(&decomp_done_cond);
2412 qemu_mutex_unlock(&decomp_done_lock);
2414 qemu_mutex_lock(&param->mutex);
2415 } else {
2416 qemu_cond_wait(&param->cond, &param->mutex);
2419 qemu_mutex_unlock(&param->mutex);
2421 return NULL;
2424 static void wait_for_decompress_done(void)
2426 int idx, thread_count;
2428 if (!migrate_use_compression()) {
2429 return;
2432 thread_count = migrate_decompress_threads();
2433 qemu_mutex_lock(&decomp_done_lock);
2434 for (idx = 0; idx < thread_count; idx++) {
2435 while (!decomp_param[idx].done) {
2436 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2439 qemu_mutex_unlock(&decomp_done_lock);
2442 static void compress_threads_load_setup(void)
2444 int i, thread_count;
2446 if (!migrate_use_compression()) {
2447 return;
2449 thread_count = migrate_decompress_threads();
2450 decompress_threads = g_new0(QemuThread, thread_count);
2451 decomp_param = g_new0(DecompressParam, thread_count);
2452 qemu_mutex_init(&decomp_done_lock);
2453 qemu_cond_init(&decomp_done_cond);
2454 for (i = 0; i < thread_count; i++) {
2455 qemu_mutex_init(&decomp_param[i].mutex);
2456 qemu_cond_init(&decomp_param[i].cond);
2457 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2458 decomp_param[i].done = true;
2459 decomp_param[i].quit = false;
2460 qemu_thread_create(decompress_threads + i, "decompress",
2461 do_data_decompress, decomp_param + i,
2462 QEMU_THREAD_JOINABLE);
2466 static void compress_threads_load_cleanup(void)
2468 int i, thread_count;
2470 if (!migrate_use_compression()) {
2471 return;
2473 thread_count = migrate_decompress_threads();
2474 for (i = 0; i < thread_count; i++) {
2475 qemu_mutex_lock(&decomp_param[i].mutex);
2476 decomp_param[i].quit = true;
2477 qemu_cond_signal(&decomp_param[i].cond);
2478 qemu_mutex_unlock(&decomp_param[i].mutex);
2480 for (i = 0; i < thread_count; i++) {
2481 qemu_thread_join(decompress_threads + i);
2482 qemu_mutex_destroy(&decomp_param[i].mutex);
2483 qemu_cond_destroy(&decomp_param[i].cond);
2484 g_free(decomp_param[i].compbuf);
2486 g_free(decompress_threads);
2487 g_free(decomp_param);
2488 decompress_threads = NULL;
2489 decomp_param = NULL;
2492 static void decompress_data_with_multi_threads(QEMUFile *f,
2493 void *host, int len)
2495 int idx, thread_count;
2497 thread_count = migrate_decompress_threads();
2498 qemu_mutex_lock(&decomp_done_lock);
2499 while (true) {
2500 for (idx = 0; idx < thread_count; idx++) {
2501 if (decomp_param[idx].done) {
2502 decomp_param[idx].done = false;
2503 qemu_mutex_lock(&decomp_param[idx].mutex);
2504 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2505 decomp_param[idx].des = host;
2506 decomp_param[idx].len = len;
2507 qemu_cond_signal(&decomp_param[idx].cond);
2508 qemu_mutex_unlock(&decomp_param[idx].mutex);
2509 break;
2512 if (idx < thread_count) {
2513 break;
2514 } else {
2515 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2518 qemu_mutex_unlock(&decomp_done_lock);
2522 * ram_load_setup: Setup RAM for migration incoming side
2524 * Returns zero to indicate success and negative for error
2526 * @f: QEMUFile where to receive the data
2527 * @opaque: RAMState pointer
2529 static int ram_load_setup(QEMUFile *f, void *opaque)
2531 xbzrle_load_setup();
2532 compress_threads_load_setup();
2533 return 0;
2536 static int ram_load_cleanup(void *opaque)
2538 xbzrle_load_cleanup();
2539 compress_threads_load_cleanup();
2540 return 0;
2544 * ram_postcopy_incoming_init: allocate postcopy data structures
2546 * Returns 0 for success and negative if there was one error
2548 * @mis: current migration incoming state
2550 * Allocate data structures etc needed by incoming migration with
2551 * postcopy-ram. postcopy-ram's similarly names
2552 * postcopy_ram_incoming_init does the work.
2554 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2556 unsigned long ram_pages = last_ram_page();
2558 return postcopy_ram_incoming_init(mis, ram_pages);
2562 * ram_load_postcopy: load a page in postcopy case
2564 * Returns 0 for success or -errno in case of error
2566 * Called in postcopy mode by ram_load().
2567 * rcu_read_lock is taken prior to this being called.
2569 * @f: QEMUFile where to send the data
2571 static int ram_load_postcopy(QEMUFile *f)
2573 int flags = 0, ret = 0;
2574 bool place_needed = false;
2575 bool matching_page_sizes = false;
2576 MigrationIncomingState *mis = migration_incoming_get_current();
2577 /* Temporary page that is later 'placed' */
2578 void *postcopy_host_page = postcopy_get_tmp_page(mis);
2579 void *last_host = NULL;
2580 bool all_zero = false;
2582 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2583 ram_addr_t addr;
2584 void *host = NULL;
2585 void *page_buffer = NULL;
2586 void *place_source = NULL;
2587 RAMBlock *block = NULL;
2588 uint8_t ch;
2590 addr = qemu_get_be64(f);
2591 flags = addr & ~TARGET_PAGE_MASK;
2592 addr &= TARGET_PAGE_MASK;
2594 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2595 place_needed = false;
2596 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
2597 block = ram_block_from_stream(f, flags);
2599 host = host_from_ram_block_offset(block, addr);
2600 if (!host) {
2601 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2602 ret = -EINVAL;
2603 break;
2605 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE;
2607 * Postcopy requires that we place whole host pages atomically;
2608 * these may be huge pages for RAMBlocks that are backed by
2609 * hugetlbfs.
2610 * To make it atomic, the data is read into a temporary page
2611 * that's moved into place later.
2612 * The migration protocol uses, possibly smaller, target-pages
2613 * however the source ensures it always sends all the components
2614 * of a host page in order.
2616 page_buffer = postcopy_host_page +
2617 ((uintptr_t)host & (block->page_size - 1));
2618 /* If all TP are zero then we can optimise the place */
2619 if (!((uintptr_t)host & (block->page_size - 1))) {
2620 all_zero = true;
2621 } else {
2622 /* not the 1st TP within the HP */
2623 if (host != (last_host + TARGET_PAGE_SIZE)) {
2624 error_report("Non-sequential target page %p/%p",
2625 host, last_host);
2626 ret = -EINVAL;
2627 break;
2633 * If it's the last part of a host page then we place the host
2634 * page
2636 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2637 (block->page_size - 1)) == 0;
2638 place_source = postcopy_host_page;
2640 last_host = host;
2642 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2643 case RAM_SAVE_FLAG_ZERO:
2644 ch = qemu_get_byte(f);
2645 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2646 if (ch) {
2647 all_zero = false;
2649 break;
2651 case RAM_SAVE_FLAG_PAGE:
2652 all_zero = false;
2653 if (!place_needed || !matching_page_sizes) {
2654 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2655 } else {
2656 /* Avoids the qemu_file copy during postcopy, which is
2657 * going to do a copy later; can only do it when we
2658 * do this read in one go (matching page sizes)
2660 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2661 TARGET_PAGE_SIZE);
2663 break;
2664 case RAM_SAVE_FLAG_EOS:
2665 /* normal exit */
2666 break;
2667 default:
2668 error_report("Unknown combination of migration flags: %#x"
2669 " (postcopy mode)", flags);
2670 ret = -EINVAL;
2673 if (place_needed) {
2674 /* This gets called at the last target page in the host page */
2675 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
2677 if (all_zero) {
2678 ret = postcopy_place_page_zero(mis, place_dest,
2679 block->page_size);
2680 } else {
2681 ret = postcopy_place_page(mis, place_dest,
2682 place_source, block->page_size);
2685 if (!ret) {
2686 ret = qemu_file_get_error(f);
2690 return ret;
2693 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2695 int flags = 0, ret = 0, invalid_flags = 0;
2696 static uint64_t seq_iter;
2697 int len = 0;
2699 * If system is running in postcopy mode, page inserts to host memory must
2700 * be atomic
2702 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
2703 /* ADVISE is earlier, it shows the source has the postcopy capability on */
2704 bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE;
2706 seq_iter++;
2708 if (version_id != 4) {
2709 ret = -EINVAL;
2712 if (!migrate_use_compression()) {
2713 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
2715 /* This RCU critical section can be very long running.
2716 * When RCU reclaims in the code start to become numerous,
2717 * it will be necessary to reduce the granularity of this
2718 * critical section.
2720 rcu_read_lock();
2722 if (postcopy_running) {
2723 ret = ram_load_postcopy(f);
2726 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2727 ram_addr_t addr, total_ram_bytes;
2728 void *host = NULL;
2729 uint8_t ch;
2731 addr = qemu_get_be64(f);
2732 flags = addr & ~TARGET_PAGE_MASK;
2733 addr &= TARGET_PAGE_MASK;
2735 if (flags & invalid_flags) {
2736 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
2737 error_report("Received an unexpected compressed page");
2740 ret = -EINVAL;
2741 break;
2744 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
2745 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
2746 RAMBlock *block = ram_block_from_stream(f, flags);
2748 host = host_from_ram_block_offset(block, addr);
2749 if (!host) {
2750 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2751 ret = -EINVAL;
2752 break;
2754 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
2757 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2758 case RAM_SAVE_FLAG_MEM_SIZE:
2759 /* Synchronize RAM block list */
2760 total_ram_bytes = addr;
2761 while (!ret && total_ram_bytes) {
2762 RAMBlock *block;
2763 char id[256];
2764 ram_addr_t length;
2766 len = qemu_get_byte(f);
2767 qemu_get_buffer(f, (uint8_t *)id, len);
2768 id[len] = 0;
2769 length = qemu_get_be64(f);
2771 block = qemu_ram_block_by_name(id);
2772 if (block) {
2773 if (length != block->used_length) {
2774 Error *local_err = NULL;
2776 ret = qemu_ram_resize(block, length,
2777 &local_err);
2778 if (local_err) {
2779 error_report_err(local_err);
2782 /* For postcopy we need to check hugepage sizes match */
2783 if (postcopy_advised &&
2784 block->page_size != qemu_host_page_size) {
2785 uint64_t remote_page_size = qemu_get_be64(f);
2786 if (remote_page_size != block->page_size) {
2787 error_report("Mismatched RAM page size %s "
2788 "(local) %zd != %" PRId64,
2789 id, block->page_size,
2790 remote_page_size);
2791 ret = -EINVAL;
2794 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2795 block->idstr);
2796 } else {
2797 error_report("Unknown ramblock \"%s\", cannot "
2798 "accept migration", id);
2799 ret = -EINVAL;
2802 total_ram_bytes -= length;
2804 break;
2806 case RAM_SAVE_FLAG_ZERO:
2807 ch = qemu_get_byte(f);
2808 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2809 break;
2811 case RAM_SAVE_FLAG_PAGE:
2812 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2813 break;
2815 case RAM_SAVE_FLAG_COMPRESS_PAGE:
2816 len = qemu_get_be32(f);
2817 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2818 error_report("Invalid compressed data length: %d", len);
2819 ret = -EINVAL;
2820 break;
2822 decompress_data_with_multi_threads(f, host, len);
2823 break;
2825 case RAM_SAVE_FLAG_XBZRLE:
2826 if (load_xbzrle(f, addr, host) < 0) {
2827 error_report("Failed to decompress XBZRLE page at "
2828 RAM_ADDR_FMT, addr);
2829 ret = -EINVAL;
2830 break;
2832 break;
2833 case RAM_SAVE_FLAG_EOS:
2834 /* normal exit */
2835 break;
2836 default:
2837 if (flags & RAM_SAVE_FLAG_HOOK) {
2838 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
2839 } else {
2840 error_report("Unknown combination of migration flags: %#x",
2841 flags);
2842 ret = -EINVAL;
2845 if (!ret) {
2846 ret = qemu_file_get_error(f);
2850 wait_for_decompress_done();
2851 rcu_read_unlock();
2852 trace_ram_load_complete(ret, seq_iter);
2853 return ret;
2856 static bool ram_has_postcopy(void *opaque)
2858 return migrate_postcopy_ram();
2861 static SaveVMHandlers savevm_ram_handlers = {
2862 .save_setup = ram_save_setup,
2863 .save_live_iterate = ram_save_iterate,
2864 .save_live_complete_postcopy = ram_save_complete,
2865 .save_live_complete_precopy = ram_save_complete,
2866 .has_postcopy = ram_has_postcopy,
2867 .save_live_pending = ram_save_pending,
2868 .load_state = ram_load,
2869 .save_cleanup = ram_save_cleanup,
2870 .load_setup = ram_load_setup,
2871 .load_cleanup = ram_load_cleanup,
2874 void ram_mig_init(void)
2876 qemu_mutex_init(&XBZRLE.lock);
2877 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);