2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "hw/ppc/ppc.h"
26 #include "hw/ppc/ppc_e500.h"
27 #include "qemu/timer.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/cpus.h"
30 #include "hw/timer/m48t59.h"
32 #include "qemu/error-report.h"
33 #include "hw/loader.h"
34 #include "sysemu/kvm.h"
38 //#define PPC_DEBUG_IRQ
39 //#define PPC_DEBUG_TB
42 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
44 # define LOG_IRQ(...) do { } while (0)
49 # define LOG_TB(...) qemu_log(__VA_ARGS__)
51 # define LOG_TB(...) do { } while (0)
54 static void cpu_ppc_tb_stop (CPUPPCState
*env
);
55 static void cpu_ppc_tb_start (CPUPPCState
*env
);
57 void ppc_set_irq(PowerPCCPU
*cpu
, int n_IRQ
, int level
)
59 CPUState
*cs
= CPU(cpu
);
60 CPUPPCState
*env
= &cpu
->env
;
61 unsigned int old_pending
= env
->pending_interrupts
;
64 env
->pending_interrupts
|= 1 << n_IRQ
;
65 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
67 env
->pending_interrupts
&= ~(1 << n_IRQ
);
68 if (env
->pending_interrupts
== 0) {
69 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
73 if (old_pending
!= env
->pending_interrupts
) {
75 kvmppc_set_interrupt(cpu
, n_IRQ
, level
);
79 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
80 "req %08x\n", __func__
, env
, n_IRQ
, level
,
81 env
->pending_interrupts
, CPU(cpu
)->interrupt_request
);
84 /* PowerPC 6xx / 7xx internal IRQ controller */
85 static void ppc6xx_set_irq(void *opaque
, int pin
, int level
)
87 PowerPCCPU
*cpu
= opaque
;
88 CPUPPCState
*env
= &cpu
->env
;
91 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
93 cur_level
= (env
->irq_input_state
>> pin
) & 1;
94 /* Don't generate spurious events */
95 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
96 CPUState
*cs
= CPU(cpu
);
99 case PPC6xx_INPUT_TBEN
:
100 /* Level sensitive - active high */
101 LOG_IRQ("%s: %s the time base\n",
102 __func__
, level
? "start" : "stop");
104 cpu_ppc_tb_start(env
);
106 cpu_ppc_tb_stop(env
);
108 case PPC6xx_INPUT_INT
:
109 /* Level sensitive - active high */
110 LOG_IRQ("%s: set the external IRQ state to %d\n",
112 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
114 case PPC6xx_INPUT_SMI
:
115 /* Level sensitive - active high */
116 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
118 ppc_set_irq(cpu
, PPC_INTERRUPT_SMI
, level
);
120 case PPC6xx_INPUT_MCP
:
121 /* Negative edge sensitive */
122 /* XXX: TODO: actual reaction may depends on HID0 status
123 * 603/604/740/750: check HID0[EMCP]
125 if (cur_level
== 1 && level
== 0) {
126 LOG_IRQ("%s: raise machine check state\n",
128 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
131 case PPC6xx_INPUT_CKSTP_IN
:
132 /* Level sensitive - active low */
133 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
134 /* XXX: Note that the only way to restart the CPU is to reset it */
136 LOG_IRQ("%s: stop the CPU\n", __func__
);
140 case PPC6xx_INPUT_HRESET
:
141 /* Level sensitive - active low */
143 LOG_IRQ("%s: reset the CPU\n", __func__
);
144 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
147 case PPC6xx_INPUT_SRESET
:
148 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
150 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
153 /* Unknown pin - do nothing */
154 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
158 env
->irq_input_state
|= 1 << pin
;
160 env
->irq_input_state
&= ~(1 << pin
);
164 void ppc6xx_irq_init(CPUPPCState
*env
)
166 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
168 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, cpu
,
172 #if defined(TARGET_PPC64)
173 /* PowerPC 970 internal IRQ controller */
174 static void ppc970_set_irq(void *opaque
, int pin
, int level
)
176 PowerPCCPU
*cpu
= opaque
;
177 CPUPPCState
*env
= &cpu
->env
;
180 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
182 cur_level
= (env
->irq_input_state
>> pin
) & 1;
183 /* Don't generate spurious events */
184 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
185 CPUState
*cs
= CPU(cpu
);
188 case PPC970_INPUT_INT
:
189 /* Level sensitive - active high */
190 LOG_IRQ("%s: set the external IRQ state to %d\n",
192 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
194 case PPC970_INPUT_THINT
:
195 /* Level sensitive - active high */
196 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__
,
198 ppc_set_irq(cpu
, PPC_INTERRUPT_THERM
, level
);
200 case PPC970_INPUT_MCP
:
201 /* Negative edge sensitive */
202 /* XXX: TODO: actual reaction may depends on HID0 status
203 * 603/604/740/750: check HID0[EMCP]
205 if (cur_level
== 1 && level
== 0) {
206 LOG_IRQ("%s: raise machine check state\n",
208 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
211 case PPC970_INPUT_CKSTP
:
212 /* Level sensitive - active low */
213 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
215 LOG_IRQ("%s: stop the CPU\n", __func__
);
218 LOG_IRQ("%s: restart the CPU\n", __func__
);
223 case PPC970_INPUT_HRESET
:
224 /* Level sensitive - active low */
226 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
229 case PPC970_INPUT_SRESET
:
230 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
232 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
234 case PPC970_INPUT_TBEN
:
235 LOG_IRQ("%s: set the TBEN state to %d\n", __func__
,
240 /* Unknown pin - do nothing */
241 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
245 env
->irq_input_state
|= 1 << pin
;
247 env
->irq_input_state
&= ~(1 << pin
);
251 void ppc970_irq_init(CPUPPCState
*env
)
253 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
255 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, cpu
,
259 /* POWER7 internal IRQ controller */
260 static void power7_set_irq(void *opaque
, int pin
, int level
)
262 PowerPCCPU
*cpu
= opaque
;
263 CPUPPCState
*env
= &cpu
->env
;
265 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
269 case POWER7_INPUT_INT
:
270 /* Level sensitive - active high */
271 LOG_IRQ("%s: set the external IRQ state to %d\n",
273 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
276 /* Unknown pin - do nothing */
277 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
281 env
->irq_input_state
|= 1 << pin
;
283 env
->irq_input_state
&= ~(1 << pin
);
287 void ppcPOWER7_irq_init(CPUPPCState
*env
)
289 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
291 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power7_set_irq
, cpu
,
294 #endif /* defined(TARGET_PPC64) */
296 /* PowerPC 40x internal IRQ controller */
297 static void ppc40x_set_irq(void *opaque
, int pin
, int level
)
299 PowerPCCPU
*cpu
= opaque
;
300 CPUPPCState
*env
= &cpu
->env
;
303 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
305 cur_level
= (env
->irq_input_state
>> pin
) & 1;
306 /* Don't generate spurious events */
307 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
308 CPUState
*cs
= CPU(cpu
);
311 case PPC40x_INPUT_RESET_SYS
:
313 LOG_IRQ("%s: reset the PowerPC system\n",
315 ppc40x_system_reset(cpu
);
318 case PPC40x_INPUT_RESET_CHIP
:
320 LOG_IRQ("%s: reset the PowerPC chip\n", __func__
);
321 ppc40x_chip_reset(cpu
);
324 case PPC40x_INPUT_RESET_CORE
:
325 /* XXX: TODO: update DBSR[MRR] */
327 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
328 ppc40x_core_reset(cpu
);
331 case PPC40x_INPUT_CINT
:
332 /* Level sensitive - active high */
333 LOG_IRQ("%s: set the critical IRQ state to %d\n",
335 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
337 case PPC40x_INPUT_INT
:
338 /* Level sensitive - active high */
339 LOG_IRQ("%s: set the external IRQ state to %d\n",
341 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
343 case PPC40x_INPUT_HALT
:
344 /* Level sensitive - active low */
346 LOG_IRQ("%s: stop the CPU\n", __func__
);
349 LOG_IRQ("%s: restart the CPU\n", __func__
);
354 case PPC40x_INPUT_DEBUG
:
355 /* Level sensitive - active high */
356 LOG_IRQ("%s: set the debug pin state to %d\n",
358 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
361 /* Unknown pin - do nothing */
362 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
366 env
->irq_input_state
|= 1 << pin
;
368 env
->irq_input_state
&= ~(1 << pin
);
372 void ppc40x_irq_init(CPUPPCState
*env
)
374 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
376 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
377 cpu
, PPC40x_INPUT_NB
);
380 /* PowerPC E500 internal IRQ controller */
381 static void ppce500_set_irq(void *opaque
, int pin
, int level
)
383 PowerPCCPU
*cpu
= opaque
;
384 CPUPPCState
*env
= &cpu
->env
;
387 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
389 cur_level
= (env
->irq_input_state
>> pin
) & 1;
390 /* Don't generate spurious events */
391 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
393 case PPCE500_INPUT_MCK
:
395 LOG_IRQ("%s: reset the PowerPC system\n",
397 qemu_system_reset_request();
400 case PPCE500_INPUT_RESET_CORE
:
402 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
403 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, level
);
406 case PPCE500_INPUT_CINT
:
407 /* Level sensitive - active high */
408 LOG_IRQ("%s: set the critical IRQ state to %d\n",
410 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
412 case PPCE500_INPUT_INT
:
413 /* Level sensitive - active high */
414 LOG_IRQ("%s: set the core IRQ state to %d\n",
416 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
418 case PPCE500_INPUT_DEBUG
:
419 /* Level sensitive - active high */
420 LOG_IRQ("%s: set the debug pin state to %d\n",
422 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
425 /* Unknown pin - do nothing */
426 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
430 env
->irq_input_state
|= 1 << pin
;
432 env
->irq_input_state
&= ~(1 << pin
);
436 void ppce500_irq_init(CPUPPCState
*env
)
438 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
440 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
441 cpu
, PPCE500_INPUT_NB
);
444 /* Enable or Disable the E500 EPR capability */
445 void ppce500_set_mpic_proxy(bool enabled
)
450 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
452 cpu
->env
.mpic_proxy
= enabled
;
454 kvmppc_set_mpic_proxy(cpu
, enabled
);
459 /*****************************************************************************/
460 /* PowerPC time base and decrementer emulation */
462 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
464 /* TB time in tb periods */
465 return muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec()) + tb_offset
;
468 uint64_t cpu_ppc_load_tbl (CPUPPCState
*env
)
470 ppc_tb_t
*tb_env
= env
->tb_env
;
474 return env
->spr
[SPR_TBL
];
477 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
478 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
483 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState
*env
)
485 ppc_tb_t
*tb_env
= env
->tb_env
;
488 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
489 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
494 uint32_t cpu_ppc_load_tbu (CPUPPCState
*env
)
497 return env
->spr
[SPR_TBU
];
500 return _cpu_ppc_load_tbu(env
);
503 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
504 int64_t *tb_offsetp
, uint64_t value
)
506 *tb_offsetp
= value
- muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec());
507 LOG_TB("%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
508 __func__
, value
, *tb_offsetp
);
511 void cpu_ppc_store_tbl (CPUPPCState
*env
, uint32_t value
)
513 ppc_tb_t
*tb_env
= env
->tb_env
;
516 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
517 tb
&= 0xFFFFFFFF00000000ULL
;
518 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
519 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
522 static inline void _cpu_ppc_store_tbu(CPUPPCState
*env
, uint32_t value
)
524 ppc_tb_t
*tb_env
= env
->tb_env
;
527 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
528 tb
&= 0x00000000FFFFFFFFULL
;
529 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
530 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
533 void cpu_ppc_store_tbu (CPUPPCState
*env
, uint32_t value
)
535 _cpu_ppc_store_tbu(env
, value
);
538 uint64_t cpu_ppc_load_atbl (CPUPPCState
*env
)
540 ppc_tb_t
*tb_env
= env
->tb_env
;
543 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
544 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
549 uint32_t cpu_ppc_load_atbu (CPUPPCState
*env
)
551 ppc_tb_t
*tb_env
= env
->tb_env
;
554 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
555 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
560 void cpu_ppc_store_atbl (CPUPPCState
*env
, uint32_t value
)
562 ppc_tb_t
*tb_env
= env
->tb_env
;
565 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
566 tb
&= 0xFFFFFFFF00000000ULL
;
567 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
568 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
571 void cpu_ppc_store_atbu (CPUPPCState
*env
, uint32_t value
)
573 ppc_tb_t
*tb_env
= env
->tb_env
;
576 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
577 tb
&= 0x00000000FFFFFFFFULL
;
578 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
579 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
582 static void cpu_ppc_tb_stop (CPUPPCState
*env
)
584 ppc_tb_t
*tb_env
= env
->tb_env
;
585 uint64_t tb
, atb
, vmclk
;
587 /* If the time base is already frozen, do nothing */
588 if (tb_env
->tb_freq
!= 0) {
589 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
590 /* Get the time base */
591 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
592 /* Get the alternate time base */
593 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
594 /* Store the time base value (ie compute the current offset) */
595 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
596 /* Store the alternate time base value (compute the current offset) */
597 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
598 /* Set the time base frequency to zero */
600 /* Now, the time bases are frozen to tb_offset / atb_offset value */
604 static void cpu_ppc_tb_start (CPUPPCState
*env
)
606 ppc_tb_t
*tb_env
= env
->tb_env
;
607 uint64_t tb
, atb
, vmclk
;
609 /* If the time base is not frozen, do nothing */
610 if (tb_env
->tb_freq
== 0) {
611 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
612 /* Get the time base from tb_offset */
613 tb
= tb_env
->tb_offset
;
614 /* Get the alternate time base from atb_offset */
615 atb
= tb_env
->atb_offset
;
616 /* Restore the tb frequency from the decrementer frequency */
617 tb_env
->tb_freq
= tb_env
->decr_freq
;
618 /* Store the time base value */
619 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
620 /* Store the alternate time base value */
621 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
625 bool ppc_decr_clear_on_delivery(CPUPPCState
*env
)
627 ppc_tb_t
*tb_env
= env
->tb_env
;
628 int flags
= PPC_DECR_UNDERFLOW_TRIGGERED
| PPC_DECR_UNDERFLOW_LEVEL
;
629 return ((tb_env
->flags
& flags
) == PPC_DECR_UNDERFLOW_TRIGGERED
);
632 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState
*env
, uint64_t next
)
634 ppc_tb_t
*tb_env
= env
->tb_env
;
638 diff
= next
- qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
640 decr
= muldiv64(diff
, tb_env
->decr_freq
, get_ticks_per_sec());
641 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
644 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, get_ticks_per_sec());
646 LOG_TB("%s: %08" PRIx32
"\n", __func__
, decr
);
651 uint32_t cpu_ppc_load_decr (CPUPPCState
*env
)
653 ppc_tb_t
*tb_env
= env
->tb_env
;
656 return env
->spr
[SPR_DECR
];
659 return _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
662 uint32_t cpu_ppc_load_hdecr (CPUPPCState
*env
)
664 ppc_tb_t
*tb_env
= env
->tb_env
;
666 return _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
669 uint64_t cpu_ppc_load_purr (CPUPPCState
*env
)
671 ppc_tb_t
*tb_env
= env
->tb_env
;
674 diff
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) - tb_env
->purr_start
;
676 return tb_env
->purr_load
+ muldiv64(diff
, tb_env
->tb_freq
, get_ticks_per_sec());
679 /* When decrementer expires,
680 * all we need to do is generate or queue a CPU exception
682 static inline void cpu_ppc_decr_excp(PowerPCCPU
*cpu
)
685 LOG_TB("raise decrementer exception\n");
686 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 1);
689 static inline void cpu_ppc_decr_lower(PowerPCCPU
*cpu
)
691 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 0);
694 static inline void cpu_ppc_hdecr_excp(PowerPCCPU
*cpu
)
697 LOG_TB("raise decrementer exception\n");
698 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 1);
701 static inline void cpu_ppc_hdecr_lower(PowerPCCPU
*cpu
)
703 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 0);
706 static void __cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint64_t *nextp
,
708 void (*raise_excp
)(void *),
709 void (*lower_excp
)(PowerPCCPU
*),
710 uint32_t decr
, uint32_t value
)
712 CPUPPCState
*env
= &cpu
->env
;
713 ppc_tb_t
*tb_env
= env
->tb_env
;
716 LOG_TB("%s: %08" PRIx32
" => %08" PRIx32
"\n", __func__
,
720 /* KVM handles decrementer exceptions, we don't need our own timer */
725 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
728 * If we get a really small DEC value, we can assume that by the time we
729 * handled it we should inject an interrupt already.
731 * On MSB level based DEC implementations the MSB always means the interrupt
732 * is pending, so raise it on those.
734 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
735 * an edge interrupt, so raise it here too.
738 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
) && (value
& 0x80000000)) ||
739 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_TRIGGERED
) && (value
& 0x80000000)
740 && !(decr
& 0x80000000))) {
745 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
746 if (!(value
& 0x80000000) && (tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
)) {
750 /* Calculate the next timer event */
751 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
752 next
= now
+ muldiv64(value
, get_ticks_per_sec(), tb_env
->decr_freq
);
756 timer_mod(timer
, next
);
759 static inline void _cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint32_t decr
,
762 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
764 __cpu_ppc_store_decr(cpu
, &tb_env
->decr_next
, tb_env
->decr_timer
,
765 tb_env
->decr_timer
->cb
, &cpu_ppc_decr_lower
, decr
,
769 void cpu_ppc_store_decr (CPUPPCState
*env
, uint32_t value
)
771 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
773 _cpu_ppc_store_decr(cpu
, cpu_ppc_load_decr(env
), value
);
776 static void cpu_ppc_decr_cb(void *opaque
)
778 PowerPCCPU
*cpu
= opaque
;
780 cpu_ppc_decr_excp(cpu
);
783 static inline void _cpu_ppc_store_hdecr(PowerPCCPU
*cpu
, uint32_t hdecr
,
786 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
788 if (tb_env
->hdecr_timer
!= NULL
) {
789 __cpu_ppc_store_decr(cpu
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
790 tb_env
->hdecr_timer
->cb
, &cpu_ppc_hdecr_lower
,
795 void cpu_ppc_store_hdecr (CPUPPCState
*env
, uint32_t value
)
797 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
799 _cpu_ppc_store_hdecr(cpu
, cpu_ppc_load_hdecr(env
), value
);
802 static void cpu_ppc_hdecr_cb(void *opaque
)
804 PowerPCCPU
*cpu
= opaque
;
806 cpu_ppc_hdecr_excp(cpu
);
809 static void cpu_ppc_store_purr(PowerPCCPU
*cpu
, uint64_t value
)
811 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
813 tb_env
->purr_load
= value
;
814 tb_env
->purr_start
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
817 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
819 CPUPPCState
*env
= opaque
;
820 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
821 ppc_tb_t
*tb_env
= env
->tb_env
;
823 tb_env
->tb_freq
= freq
;
824 tb_env
->decr_freq
= freq
;
825 /* There is a bug in Linux 2.4 kernels:
826 * if a decrementer exception is pending when it enables msr_ee at startup,
827 * it's not ready to handle it...
829 _cpu_ppc_store_decr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF);
830 _cpu_ppc_store_hdecr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF);
831 cpu_ppc_store_purr(cpu
, 0x0000000000000000ULL
);
834 static void timebase_pre_save(void *opaque
)
836 PPCTimebase
*tb
= opaque
;
837 uint64_t ticks
= cpu_get_real_ticks();
838 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
840 if (!first_ppc_cpu
->env
.tb_env
) {
841 error_report("No timebase object");
845 tb
->time_of_the_day_ns
= qemu_clock_get_ns(QEMU_CLOCK_HOST
);
847 * tb_offset is only expected to be changed by migration so
848 * there is no need to update it from KVM here
850 tb
->guest_timebase
= ticks
+ first_ppc_cpu
->env
.tb_env
->tb_offset
;
853 static int timebase_post_load(void *opaque
, int version_id
)
855 PPCTimebase
*tb_remote
= opaque
;
857 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
858 int64_t tb_off_adj
, tb_off
, ns_diff
;
859 int64_t migration_duration_ns
, migration_duration_tb
, guest_tb
, host_ns
;
862 if (!first_ppc_cpu
->env
.tb_env
) {
863 error_report("No timebase object");
867 freq
= first_ppc_cpu
->env
.tb_env
->tb_freq
;
869 * Calculate timebase on the destination side of migration.
870 * The destination timebase must be not less than the source timebase.
871 * We try to adjust timebase by downtime if host clocks are not
872 * too much out of sync (1 second for now).
874 host_ns
= qemu_clock_get_ns(QEMU_CLOCK_HOST
);
875 ns_diff
= MAX(0, host_ns
- tb_remote
->time_of_the_day_ns
);
876 migration_duration_ns
= MIN(NSEC_PER_SEC
, ns_diff
);
877 migration_duration_tb
= muldiv64(migration_duration_ns
, freq
, NSEC_PER_SEC
);
878 guest_tb
= tb_remote
->guest_timebase
+ MIN(0, migration_duration_tb
);
880 tb_off_adj
= guest_tb
- cpu_get_real_ticks();
882 tb_off
= first_ppc_cpu
->env
.tb_env
->tb_offset
;
883 trace_ppc_tb_adjust(tb_off
, tb_off_adj
, tb_off_adj
- tb_off
,
884 (tb_off_adj
- tb_off
) / freq
);
886 /* Set new offset to all CPUs */
888 PowerPCCPU
*pcpu
= POWERPC_CPU(cpu
);
889 pcpu
->env
.tb_env
->tb_offset
= tb_off_adj
;
895 const VMStateDescription vmstate_ppc_timebase
= {
898 .minimum_version_id
= 1,
899 .minimum_version_id_old
= 1,
900 .pre_save
= timebase_pre_save
,
901 .post_load
= timebase_post_load
,
902 .fields
= (VMStateField
[]) {
903 VMSTATE_UINT64(guest_timebase
, PPCTimebase
),
904 VMSTATE_INT64(time_of_the_day_ns
, PPCTimebase
),
905 VMSTATE_END_OF_LIST()
909 /* Set up (once) timebase frequency (in Hz) */
910 clk_setup_cb
cpu_ppc_tb_init (CPUPPCState
*env
, uint32_t freq
)
912 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
915 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
916 env
->tb_env
= tb_env
;
917 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
918 if (env
->insns_flags
& PPC_SEGMENT_64B
) {
919 /* All Book3S 64bit CPUs implement level based DEC logic */
920 tb_env
->flags
|= PPC_DECR_UNDERFLOW_LEVEL
;
922 /* Create new timer */
923 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_decr_cb
, cpu
);
925 /* XXX: find a suitable condition to enable the hypervisor decrementer
927 tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_hdecr_cb
,
930 tb_env
->hdecr_timer
= NULL
;
932 cpu_ppc_set_tb_clk(env
, freq
);
934 return &cpu_ppc_set_tb_clk
;
937 /* Specific helpers for POWER & PowerPC 601 RTC */
939 static clk_setup_cb
cpu_ppc601_rtc_init (CPUPPCState
*env
)
941 return cpu_ppc_tb_init(env
, 7812500);
945 void cpu_ppc601_store_rtcu (CPUPPCState
*env
, uint32_t value
)
947 _cpu_ppc_store_tbu(env
, value
);
950 uint32_t cpu_ppc601_load_rtcu (CPUPPCState
*env
)
952 return _cpu_ppc_load_tbu(env
);
955 void cpu_ppc601_store_rtcl (CPUPPCState
*env
, uint32_t value
)
957 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
960 uint32_t cpu_ppc601_load_rtcl (CPUPPCState
*env
)
962 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
965 /*****************************************************************************/
966 /* PowerPC 40x timers */
969 typedef struct ppc40x_timer_t ppc40x_timer_t
;
970 struct ppc40x_timer_t
{
971 uint64_t pit_reload
; /* PIT auto-reload value */
972 uint64_t fit_next
; /* Tick for next FIT interrupt */
973 QEMUTimer
*fit_timer
;
974 uint64_t wdt_next
; /* Tick for next WDT interrupt */
975 QEMUTimer
*wdt_timer
;
977 /* 405 have the PIT, 440 have a DECR. */
978 unsigned int decr_excp
;
981 /* Fixed interval timer */
982 static void cpu_4xx_fit_cb (void *opaque
)
987 ppc40x_timer_t
*ppc40x_timer
;
991 cpu
= ppc_env_get_cpu(env
);
992 tb_env
= env
->tb_env
;
993 ppc40x_timer
= tb_env
->opaque
;
994 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
995 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
1009 /* Cannot occur, but makes gcc happy */
1012 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->tb_freq
);
1015 timer_mod(ppc40x_timer
->fit_timer
, next
);
1016 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
1017 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1) {
1018 ppc_set_irq(cpu
, PPC_INTERRUPT_FIT
, 1);
1020 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
1021 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
1022 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1025 /* Programmable interval timer */
1026 static void start_stop_pit (CPUPPCState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
1028 ppc40x_timer_t
*ppc40x_timer
;
1031 ppc40x_timer
= tb_env
->opaque
;
1032 if (ppc40x_timer
->pit_reload
<= 1 ||
1033 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
1034 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
1036 LOG_TB("%s: stop PIT\n", __func__
);
1037 timer_del(tb_env
->decr_timer
);
1039 LOG_TB("%s: start PIT %016" PRIx64
"\n",
1040 __func__
, ppc40x_timer
->pit_reload
);
1041 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1042 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
1043 get_ticks_per_sec(), tb_env
->decr_freq
);
1045 next
+= tb_env
->decr_next
- now
;
1048 timer_mod(tb_env
->decr_timer
, next
);
1049 tb_env
->decr_next
= next
;
1053 static void cpu_4xx_pit_cb (void *opaque
)
1058 ppc40x_timer_t
*ppc40x_timer
;
1061 cpu
= ppc_env_get_cpu(env
);
1062 tb_env
= env
->tb_env
;
1063 ppc40x_timer
= tb_env
->opaque
;
1064 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
1065 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) {
1066 ppc_set_irq(cpu
, ppc40x_timer
->decr_excp
, 1);
1068 start_stop_pit(env
, tb_env
, 1);
1069 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
" "
1070 "%016" PRIx64
"\n", __func__
,
1071 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
1072 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
1073 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
1074 ppc40x_timer
->pit_reload
);
1077 /* Watchdog timer */
1078 static void cpu_4xx_wdt_cb (void *opaque
)
1083 ppc40x_timer_t
*ppc40x_timer
;
1087 cpu
= ppc_env_get_cpu(env
);
1088 tb_env
= env
->tb_env
;
1089 ppc40x_timer
= tb_env
->opaque
;
1090 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1091 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
1105 /* Cannot occur, but makes gcc happy */
1108 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->decr_freq
);
1111 LOG_TB("%s: TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
1112 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1113 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
1116 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1117 ppc40x_timer
->wdt_next
= next
;
1118 env
->spr
[SPR_40x_TSR
] |= 1U << 31;
1121 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1122 ppc40x_timer
->wdt_next
= next
;
1123 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
1124 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1) {
1125 ppc_set_irq(cpu
, PPC_INTERRUPT_WDT
, 1);
1129 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1130 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1131 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1135 case 0x1: /* Core reset */
1136 ppc40x_core_reset(cpu
);
1138 case 0x2: /* Chip reset */
1139 ppc40x_chip_reset(cpu
);
1141 case 0x3: /* System reset */
1142 ppc40x_system_reset(cpu
);
1148 void store_40x_pit (CPUPPCState
*env
, target_ulong val
)
1151 ppc40x_timer_t
*ppc40x_timer
;
1153 tb_env
= env
->tb_env
;
1154 ppc40x_timer
= tb_env
->opaque
;
1155 LOG_TB("%s val" TARGET_FMT_lx
"\n", __func__
, val
);
1156 ppc40x_timer
->pit_reload
= val
;
1157 start_stop_pit(env
, tb_env
, 0);
1160 target_ulong
load_40x_pit (CPUPPCState
*env
)
1162 return cpu_ppc_load_decr(env
);
1165 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1167 CPUPPCState
*env
= opaque
;
1168 ppc_tb_t
*tb_env
= env
->tb_env
;
1170 LOG_TB("%s set new frequency to %" PRIu32
"\n", __func__
,
1172 tb_env
->tb_freq
= freq
;
1173 tb_env
->decr_freq
= freq
;
1174 /* XXX: we should also update all timers */
1177 clk_setup_cb
ppc_40x_timers_init (CPUPPCState
*env
, uint32_t freq
,
1178 unsigned int decr_excp
)
1181 ppc40x_timer_t
*ppc40x_timer
;
1183 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1184 env
->tb_env
= tb_env
;
1185 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1186 ppc40x_timer
= g_malloc0(sizeof(ppc40x_timer_t
));
1187 tb_env
->tb_freq
= freq
;
1188 tb_env
->decr_freq
= freq
;
1189 tb_env
->opaque
= ppc40x_timer
;
1190 LOG_TB("%s freq %" PRIu32
"\n", __func__
, freq
);
1191 if (ppc40x_timer
!= NULL
) {
1192 /* We use decr timer for PIT */
1193 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_pit_cb
, env
);
1194 ppc40x_timer
->fit_timer
=
1195 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_fit_cb
, env
);
1196 ppc40x_timer
->wdt_timer
=
1197 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_wdt_cb
, env
);
1198 ppc40x_timer
->decr_excp
= decr_excp
;
1201 return &ppc_40x_set_tb_clk
;
1204 /*****************************************************************************/
1205 /* Embedded PowerPC Device Control Registers */
1206 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1208 dcr_read_cb dcr_read
;
1209 dcr_write_cb dcr_write
;
1213 /* XXX: on 460, DCR addresses are 32 bits wide,
1214 * using DCRIPR to get the 22 upper bits of the DCR address
1216 #define DCRN_NB 1024
1218 ppc_dcrn_t dcrn
[DCRN_NB
];
1219 int (*read_error
)(int dcrn
);
1220 int (*write_error
)(int dcrn
);
1223 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1227 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1229 dcr
= &dcr_env
->dcrn
[dcrn
];
1230 if (dcr
->dcr_read
== NULL
)
1232 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1237 if (dcr_env
->read_error
!= NULL
)
1238 return (*dcr_env
->read_error
)(dcrn
);
1243 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1247 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1249 dcr
= &dcr_env
->dcrn
[dcrn
];
1250 if (dcr
->dcr_write
== NULL
)
1252 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1257 if (dcr_env
->write_error
!= NULL
)
1258 return (*dcr_env
->write_error
)(dcrn
);
1263 int ppc_dcr_register (CPUPPCState
*env
, int dcrn
, void *opaque
,
1264 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1269 dcr_env
= env
->dcr_env
;
1270 if (dcr_env
== NULL
)
1272 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1274 dcr
= &dcr_env
->dcrn
[dcrn
];
1275 if (dcr
->opaque
!= NULL
||
1276 dcr
->dcr_read
!= NULL
||
1277 dcr
->dcr_write
!= NULL
)
1279 dcr
->opaque
= opaque
;
1280 dcr
->dcr_read
= dcr_read
;
1281 dcr
->dcr_write
= dcr_write
;
1286 int ppc_dcr_init (CPUPPCState
*env
, int (*read_error
)(int dcrn
),
1287 int (*write_error
)(int dcrn
))
1291 dcr_env
= g_malloc0(sizeof(ppc_dcr_t
));
1292 dcr_env
->read_error
= read_error
;
1293 dcr_env
->write_error
= write_error
;
1294 env
->dcr_env
= dcr_env
;
1299 /*****************************************************************************/
1301 void PPC_debug_write (void *opaque
, uint32_t addr
, uint32_t val
)
1313 printf("Set loglevel to %04" PRIx32
"\n", val
);
1314 qemu_set_log(val
| 0x100);
1319 /* CPU device-tree ID helpers */
1320 int ppc_get_vcpu_dt_id(PowerPCCPU
*cpu
)
1322 return cpu
->cpu_dt_id
;
1325 PowerPCCPU
*ppc_get_vcpu_by_dt_id(int cpu_dt_id
)
1330 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1332 if (cpu
->cpu_dt_id
== cpu_dt_id
) {