target/mips: Clean up handling of CP0 register 17
[qemu/ar7.git] / gdbstub.c
blobb92ba59e4dffd89ced2eefb3eb3949ac9c73c6ed
1 /*
2 * gdb server stub
4 * This implements a subset of the remote protocol as described in:
6 * https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
8 * Copyright (c) 2003-2005 Fabrice Bellard
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 * SPDX-License-Identifier: LGPL-2.0+
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "qemu/ctype.h"
31 #include "qemu/cutils.h"
32 #include "qemu/module.h"
33 #include "trace-root.h"
34 #ifdef CONFIG_USER_ONLY
35 #include "qemu.h"
36 #else
37 #include "monitor/monitor.h"
38 #include "chardev/char.h"
39 #include "chardev/char-fe.h"
40 #include "sysemu/sysemu.h"
41 #include "exec/gdbstub.h"
42 #include "hw/cpu/cluster.h"
43 #include "hw/boards.h"
44 #endif
46 #define MAX_PACKET_LENGTH 4096
48 #include "qemu/sockets.h"
49 #include "sysemu/hw_accel.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/runstate.h"
52 #include "hw/semihosting/semihost.h"
53 #include "exec/exec-all.h"
55 #ifdef CONFIG_USER_ONLY
56 #define GDB_ATTACHED "0"
57 #else
58 #define GDB_ATTACHED "1"
59 #endif
61 #ifndef CONFIG_USER_ONLY
62 static int phy_memory_mode;
63 #endif
65 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
66 uint8_t *buf, int len, bool is_write)
68 CPUClass *cc;
70 #ifndef CONFIG_USER_ONLY
71 if (phy_memory_mode) {
72 if (is_write) {
73 cpu_physical_memory_write(addr, buf, len);
74 } else {
75 cpu_physical_memory_read(addr, buf, len);
77 return 0;
79 #endif
81 cc = CPU_GET_CLASS(cpu);
82 if (cc->memory_rw_debug) {
83 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
85 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
88 /* Return the GDB index for a given vCPU state.
90 * For user mode this is simply the thread id. In system mode GDB
91 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
93 static inline int cpu_gdb_index(CPUState *cpu)
95 #if defined(CONFIG_USER_ONLY)
96 TaskState *ts = (TaskState *) cpu->opaque;
97 return ts->ts_tid;
98 #else
99 return cpu->cpu_index + 1;
100 #endif
103 enum {
104 GDB_SIGNAL_0 = 0,
105 GDB_SIGNAL_INT = 2,
106 GDB_SIGNAL_QUIT = 3,
107 GDB_SIGNAL_TRAP = 5,
108 GDB_SIGNAL_ABRT = 6,
109 GDB_SIGNAL_ALRM = 14,
110 GDB_SIGNAL_IO = 23,
111 GDB_SIGNAL_XCPU = 24,
112 GDB_SIGNAL_UNKNOWN = 143
115 #ifdef CONFIG_USER_ONLY
117 /* Map target signal numbers to GDB protocol signal numbers and vice
118 * versa. For user emulation's currently supported systems, we can
119 * assume most signals are defined.
122 static int gdb_signal_table[] = {
124 TARGET_SIGHUP,
125 TARGET_SIGINT,
126 TARGET_SIGQUIT,
127 TARGET_SIGILL,
128 TARGET_SIGTRAP,
129 TARGET_SIGABRT,
130 -1, /* SIGEMT */
131 TARGET_SIGFPE,
132 TARGET_SIGKILL,
133 TARGET_SIGBUS,
134 TARGET_SIGSEGV,
135 TARGET_SIGSYS,
136 TARGET_SIGPIPE,
137 TARGET_SIGALRM,
138 TARGET_SIGTERM,
139 TARGET_SIGURG,
140 TARGET_SIGSTOP,
141 TARGET_SIGTSTP,
142 TARGET_SIGCONT,
143 TARGET_SIGCHLD,
144 TARGET_SIGTTIN,
145 TARGET_SIGTTOU,
146 TARGET_SIGIO,
147 TARGET_SIGXCPU,
148 TARGET_SIGXFSZ,
149 TARGET_SIGVTALRM,
150 TARGET_SIGPROF,
151 TARGET_SIGWINCH,
152 -1, /* SIGLOST */
153 TARGET_SIGUSR1,
154 TARGET_SIGUSR2,
155 #ifdef TARGET_SIGPWR
156 TARGET_SIGPWR,
157 #else
159 #endif
160 -1, /* SIGPOLL */
172 #ifdef __SIGRTMIN
173 __SIGRTMIN + 1,
174 __SIGRTMIN + 2,
175 __SIGRTMIN + 3,
176 __SIGRTMIN + 4,
177 __SIGRTMIN + 5,
178 __SIGRTMIN + 6,
179 __SIGRTMIN + 7,
180 __SIGRTMIN + 8,
181 __SIGRTMIN + 9,
182 __SIGRTMIN + 10,
183 __SIGRTMIN + 11,
184 __SIGRTMIN + 12,
185 __SIGRTMIN + 13,
186 __SIGRTMIN + 14,
187 __SIGRTMIN + 15,
188 __SIGRTMIN + 16,
189 __SIGRTMIN + 17,
190 __SIGRTMIN + 18,
191 __SIGRTMIN + 19,
192 __SIGRTMIN + 20,
193 __SIGRTMIN + 21,
194 __SIGRTMIN + 22,
195 __SIGRTMIN + 23,
196 __SIGRTMIN + 24,
197 __SIGRTMIN + 25,
198 __SIGRTMIN + 26,
199 __SIGRTMIN + 27,
200 __SIGRTMIN + 28,
201 __SIGRTMIN + 29,
202 __SIGRTMIN + 30,
203 __SIGRTMIN + 31,
204 -1, /* SIGCANCEL */
205 __SIGRTMIN,
206 __SIGRTMIN + 32,
207 __SIGRTMIN + 33,
208 __SIGRTMIN + 34,
209 __SIGRTMIN + 35,
210 __SIGRTMIN + 36,
211 __SIGRTMIN + 37,
212 __SIGRTMIN + 38,
213 __SIGRTMIN + 39,
214 __SIGRTMIN + 40,
215 __SIGRTMIN + 41,
216 __SIGRTMIN + 42,
217 __SIGRTMIN + 43,
218 __SIGRTMIN + 44,
219 __SIGRTMIN + 45,
220 __SIGRTMIN + 46,
221 __SIGRTMIN + 47,
222 __SIGRTMIN + 48,
223 __SIGRTMIN + 49,
224 __SIGRTMIN + 50,
225 __SIGRTMIN + 51,
226 __SIGRTMIN + 52,
227 __SIGRTMIN + 53,
228 __SIGRTMIN + 54,
229 __SIGRTMIN + 55,
230 __SIGRTMIN + 56,
231 __SIGRTMIN + 57,
232 __SIGRTMIN + 58,
233 __SIGRTMIN + 59,
234 __SIGRTMIN + 60,
235 __SIGRTMIN + 61,
236 __SIGRTMIN + 62,
237 __SIGRTMIN + 63,
238 __SIGRTMIN + 64,
239 __SIGRTMIN + 65,
240 __SIGRTMIN + 66,
241 __SIGRTMIN + 67,
242 __SIGRTMIN + 68,
243 __SIGRTMIN + 69,
244 __SIGRTMIN + 70,
245 __SIGRTMIN + 71,
246 __SIGRTMIN + 72,
247 __SIGRTMIN + 73,
248 __SIGRTMIN + 74,
249 __SIGRTMIN + 75,
250 __SIGRTMIN + 76,
251 __SIGRTMIN + 77,
252 __SIGRTMIN + 78,
253 __SIGRTMIN + 79,
254 __SIGRTMIN + 80,
255 __SIGRTMIN + 81,
256 __SIGRTMIN + 82,
257 __SIGRTMIN + 83,
258 __SIGRTMIN + 84,
259 __SIGRTMIN + 85,
260 __SIGRTMIN + 86,
261 __SIGRTMIN + 87,
262 __SIGRTMIN + 88,
263 __SIGRTMIN + 89,
264 __SIGRTMIN + 90,
265 __SIGRTMIN + 91,
266 __SIGRTMIN + 92,
267 __SIGRTMIN + 93,
268 __SIGRTMIN + 94,
269 __SIGRTMIN + 95,
270 -1, /* SIGINFO */
271 -1, /* UNKNOWN */
272 -1, /* DEFAULT */
279 #endif
281 #else
282 /* In system mode we only need SIGINT and SIGTRAP; other signals
283 are not yet supported. */
285 enum {
286 TARGET_SIGINT = 2,
287 TARGET_SIGTRAP = 5
290 static int gdb_signal_table[] = {
293 TARGET_SIGINT,
296 TARGET_SIGTRAP
298 #endif
300 #ifdef CONFIG_USER_ONLY
301 static int target_signal_to_gdb (int sig)
303 int i;
304 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
305 if (gdb_signal_table[i] == sig)
306 return i;
307 return GDB_SIGNAL_UNKNOWN;
309 #endif
311 static int gdb_signal_to_target (int sig)
313 if (sig < ARRAY_SIZE (gdb_signal_table))
314 return gdb_signal_table[sig];
315 else
316 return -1;
319 typedef struct GDBRegisterState {
320 int base_reg;
321 int num_regs;
322 gdb_reg_cb get_reg;
323 gdb_reg_cb set_reg;
324 const char *xml;
325 struct GDBRegisterState *next;
326 } GDBRegisterState;
328 typedef struct GDBProcess {
329 uint32_t pid;
330 bool attached;
332 char target_xml[1024];
333 } GDBProcess;
335 enum RSState {
336 RS_INACTIVE,
337 RS_IDLE,
338 RS_GETLINE,
339 RS_GETLINE_ESC,
340 RS_GETLINE_RLE,
341 RS_CHKSUM1,
342 RS_CHKSUM2,
344 typedef struct GDBState {
345 CPUState *c_cpu; /* current CPU for step/continue ops */
346 CPUState *g_cpu; /* current CPU for other ops */
347 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
348 enum RSState state; /* parsing state */
349 char line_buf[MAX_PACKET_LENGTH];
350 int line_buf_index;
351 int line_sum; /* running checksum */
352 int line_csum; /* checksum at the end of the packet */
353 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
354 int last_packet_len;
355 int signal;
356 #ifdef CONFIG_USER_ONLY
357 int fd;
358 int running_state;
359 #else
360 CharBackend chr;
361 Chardev *mon_chr;
362 #endif
363 bool multiprocess;
364 GDBProcess *processes;
365 int process_num;
366 char syscall_buf[256];
367 gdb_syscall_complete_cb current_syscall_cb;
368 } GDBState;
370 /* By default use no IRQs and no timers while single stepping so as to
371 * make single stepping like an ICE HW step.
373 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
375 static GDBState *gdbserver_state;
377 bool gdb_has_xml;
379 #ifdef CONFIG_USER_ONLY
380 /* XXX: This is not thread safe. Do we care? */
381 static int gdbserver_fd = -1;
383 static int get_char(GDBState *s)
385 uint8_t ch;
386 int ret;
388 for(;;) {
389 ret = qemu_recv(s->fd, &ch, 1, 0);
390 if (ret < 0) {
391 if (errno == ECONNRESET)
392 s->fd = -1;
393 if (errno != EINTR)
394 return -1;
395 } else if (ret == 0) {
396 close(s->fd);
397 s->fd = -1;
398 return -1;
399 } else {
400 break;
403 return ch;
405 #endif
407 static enum {
408 GDB_SYS_UNKNOWN,
409 GDB_SYS_ENABLED,
410 GDB_SYS_DISABLED,
411 } gdb_syscall_mode;
413 /* Decide if either remote gdb syscalls or native file IO should be used. */
414 int use_gdb_syscalls(void)
416 SemihostingTarget target = semihosting_get_target();
417 if (target == SEMIHOSTING_TARGET_NATIVE) {
418 /* -semihosting-config target=native */
419 return false;
420 } else if (target == SEMIHOSTING_TARGET_GDB) {
421 /* -semihosting-config target=gdb */
422 return true;
425 /* -semihosting-config target=auto */
426 /* On the first call check if gdb is connected and remember. */
427 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
428 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
429 : GDB_SYS_DISABLED);
431 return gdb_syscall_mode == GDB_SYS_ENABLED;
434 /* Resume execution. */
435 static inline void gdb_continue(GDBState *s)
438 #ifdef CONFIG_USER_ONLY
439 s->running_state = 1;
440 trace_gdbstub_op_continue();
441 #else
442 if (!runstate_needs_reset()) {
443 trace_gdbstub_op_continue();
444 vm_start();
446 #endif
450 * Resume execution, per CPU actions. For user-mode emulation it's
451 * equivalent to gdb_continue.
453 static int gdb_continue_partial(GDBState *s, char *newstates)
455 CPUState *cpu;
456 int res = 0;
457 #ifdef CONFIG_USER_ONLY
459 * This is not exactly accurate, but it's an improvement compared to the
460 * previous situation, where only one CPU would be single-stepped.
462 CPU_FOREACH(cpu) {
463 if (newstates[cpu->cpu_index] == 's') {
464 trace_gdbstub_op_stepping(cpu->cpu_index);
465 cpu_single_step(cpu, sstep_flags);
468 s->running_state = 1;
469 #else
470 int flag = 0;
472 if (!runstate_needs_reset()) {
473 if (vm_prepare_start()) {
474 return 0;
477 CPU_FOREACH(cpu) {
478 switch (newstates[cpu->cpu_index]) {
479 case 0:
480 case 1:
481 break; /* nothing to do here */
482 case 's':
483 trace_gdbstub_op_stepping(cpu->cpu_index);
484 cpu_single_step(cpu, sstep_flags);
485 cpu_resume(cpu);
486 flag = 1;
487 break;
488 case 'c':
489 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
490 cpu_resume(cpu);
491 flag = 1;
492 break;
493 default:
494 res = -1;
495 break;
499 if (flag) {
500 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
502 #endif
503 return res;
506 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
508 #ifdef CONFIG_USER_ONLY
509 int ret;
511 while (len > 0) {
512 ret = send(s->fd, buf, len, 0);
513 if (ret < 0) {
514 if (errno != EINTR)
515 return;
516 } else {
517 buf += ret;
518 len -= ret;
521 #else
522 /* XXX this blocks entire thread. Rewrite to use
523 * qemu_chr_fe_write and background I/O callbacks */
524 qemu_chr_fe_write_all(&s->chr, buf, len);
525 #endif
528 static inline int fromhex(int v)
530 if (v >= '0' && v <= '9')
531 return v - '0';
532 else if (v >= 'A' && v <= 'F')
533 return v - 'A' + 10;
534 else if (v >= 'a' && v <= 'f')
535 return v - 'a' + 10;
536 else
537 return 0;
540 static inline int tohex(int v)
542 if (v < 10)
543 return v + '0';
544 else
545 return v - 10 + 'a';
548 /* writes 2*len+1 bytes in buf */
549 static void memtohex(char *buf, const uint8_t *mem, int len)
551 int i, c;
552 char *q;
553 q = buf;
554 for(i = 0; i < len; i++) {
555 c = mem[i];
556 *q++ = tohex(c >> 4);
557 *q++ = tohex(c & 0xf);
559 *q = '\0';
562 static void hextomem(uint8_t *mem, const char *buf, int len)
564 int i;
566 for(i = 0; i < len; i++) {
567 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
568 buf += 2;
572 static void hexdump(const char *buf, int len,
573 void (*trace_fn)(size_t ofs, char const *text))
575 char line_buffer[3 * 16 + 4 + 16 + 1];
577 size_t i;
578 for (i = 0; i < len || (i & 0xF); ++i) {
579 size_t byte_ofs = i & 15;
581 if (byte_ofs == 0) {
582 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
583 line_buffer[3 * 16 + 4 + 16] = 0;
586 size_t col_group = (i >> 2) & 3;
587 size_t hex_col = byte_ofs * 3 + col_group;
588 size_t txt_col = 3 * 16 + 4 + byte_ofs;
590 if (i < len) {
591 char value = buf[i];
593 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
594 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
595 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
596 ? value
597 : '.';
600 if (byte_ofs == 0xF)
601 trace_fn(i & -16, line_buffer);
605 /* return -1 if error, 0 if OK */
606 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
608 int csum, i;
609 uint8_t *p;
611 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
612 hexdump(buf, len, trace_gdbstub_io_binaryreply);
615 for(;;) {
616 p = s->last_packet;
617 *(p++) = '$';
618 memcpy(p, buf, len);
619 p += len;
620 csum = 0;
621 for(i = 0; i < len; i++) {
622 csum += buf[i];
624 *(p++) = '#';
625 *(p++) = tohex((csum >> 4) & 0xf);
626 *(p++) = tohex((csum) & 0xf);
628 s->last_packet_len = p - s->last_packet;
629 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
631 #ifdef CONFIG_USER_ONLY
632 i = get_char(s);
633 if (i < 0)
634 return -1;
635 if (i == '+')
636 break;
637 #else
638 break;
639 #endif
641 return 0;
644 /* return -1 if error, 0 if OK */
645 static int put_packet(GDBState *s, const char *buf)
647 trace_gdbstub_io_reply(buf);
649 return put_packet_binary(s, buf, strlen(buf), false);
652 /* Encode data using the encoding for 'x' packets. */
653 static int memtox(char *buf, const char *mem, int len)
655 char *p = buf;
656 char c;
658 while (len--) {
659 c = *(mem++);
660 switch (c) {
661 case '#': case '$': case '*': case '}':
662 *(p++) = '}';
663 *(p++) = c ^ 0x20;
664 break;
665 default:
666 *(p++) = c;
667 break;
670 return p - buf;
673 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
675 /* TODO: In user mode, we should use the task state PID */
676 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
677 /* Return the default process' PID */
678 return s->processes[s->process_num - 1].pid;
680 return cpu->cluster_index + 1;
683 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
685 int i;
687 if (!pid) {
688 /* 0 means any process, we take the first one */
689 return &s->processes[0];
692 for (i = 0; i < s->process_num; i++) {
693 if (s->processes[i].pid == pid) {
694 return &s->processes[i];
698 return NULL;
701 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
703 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
706 static CPUState *find_cpu(uint32_t thread_id)
708 CPUState *cpu;
710 CPU_FOREACH(cpu) {
711 if (cpu_gdb_index(cpu) == thread_id) {
712 return cpu;
716 return NULL;
719 static CPUState *get_first_cpu_in_process(const GDBState *s,
720 GDBProcess *process)
722 CPUState *cpu;
724 CPU_FOREACH(cpu) {
725 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
726 return cpu;
730 return NULL;
733 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
735 uint32_t pid = gdb_get_cpu_pid(s, cpu);
736 cpu = CPU_NEXT(cpu);
738 while (cpu) {
739 if (gdb_get_cpu_pid(s, cpu) == pid) {
740 break;
743 cpu = CPU_NEXT(cpu);
746 return cpu;
749 /* Return the cpu following @cpu, while ignoring unattached processes. */
750 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
752 cpu = CPU_NEXT(cpu);
754 while (cpu) {
755 if (gdb_get_cpu_process(s, cpu)->attached) {
756 break;
759 cpu = CPU_NEXT(cpu);
762 return cpu;
765 /* Return the first attached cpu */
766 static CPUState *gdb_first_attached_cpu(const GDBState *s)
768 CPUState *cpu = first_cpu;
769 GDBProcess *process = gdb_get_cpu_process(s, cpu);
771 if (!process->attached) {
772 return gdb_next_attached_cpu(s, cpu);
775 return cpu;
778 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
780 GDBProcess *process;
781 CPUState *cpu;
783 if (!pid && !tid) {
784 /* 0 means any process/thread, we take the first attached one */
785 return gdb_first_attached_cpu(s);
786 } else if (pid && !tid) {
787 /* any thread in a specific process */
788 process = gdb_get_process(s, pid);
790 if (process == NULL) {
791 return NULL;
794 if (!process->attached) {
795 return NULL;
798 return get_first_cpu_in_process(s, process);
799 } else {
800 /* a specific thread */
801 cpu = find_cpu(tid);
803 if (cpu == NULL) {
804 return NULL;
807 process = gdb_get_cpu_process(s, cpu);
809 if (pid && process->pid != pid) {
810 return NULL;
813 if (!process->attached) {
814 return NULL;
817 return cpu;
821 static const char *get_feature_xml(const GDBState *s, const char *p,
822 const char **newp, GDBProcess *process)
824 size_t len;
825 int i;
826 const char *name;
827 CPUState *cpu = get_first_cpu_in_process(s, process);
828 CPUClass *cc = CPU_GET_CLASS(cpu);
830 len = 0;
831 while (p[len] && p[len] != ':')
832 len++;
833 *newp = p + len;
835 name = NULL;
836 if (strncmp(p, "target.xml", len) == 0) {
837 char *buf = process->target_xml;
838 const size_t buf_sz = sizeof(process->target_xml);
840 /* Generate the XML description for this CPU. */
841 if (!buf[0]) {
842 GDBRegisterState *r;
844 pstrcat(buf, buf_sz,
845 "<?xml version=\"1.0\"?>"
846 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
847 "<target>");
848 if (cc->gdb_arch_name) {
849 gchar *arch = cc->gdb_arch_name(cpu);
850 pstrcat(buf, buf_sz, "<architecture>");
851 pstrcat(buf, buf_sz, arch);
852 pstrcat(buf, buf_sz, "</architecture>");
853 g_free(arch);
855 pstrcat(buf, buf_sz, "<xi:include href=\"");
856 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
857 pstrcat(buf, buf_sz, "\"/>");
858 for (r = cpu->gdb_regs; r; r = r->next) {
859 pstrcat(buf, buf_sz, "<xi:include href=\"");
860 pstrcat(buf, buf_sz, r->xml);
861 pstrcat(buf, buf_sz, "\"/>");
863 pstrcat(buf, buf_sz, "</target>");
865 return buf;
867 if (cc->gdb_get_dynamic_xml) {
868 char *xmlname = g_strndup(p, len);
869 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
871 g_free(xmlname);
872 if (xml) {
873 return xml;
876 for (i = 0; ; i++) {
877 name = xml_builtin[i][0];
878 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
879 break;
881 return name ? xml_builtin[i][1] : NULL;
884 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
886 CPUClass *cc = CPU_GET_CLASS(cpu);
887 CPUArchState *env = cpu->env_ptr;
888 GDBRegisterState *r;
890 if (reg < cc->gdb_num_core_regs) {
891 return cc->gdb_read_register(cpu, mem_buf, reg);
894 for (r = cpu->gdb_regs; r; r = r->next) {
895 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
896 return r->get_reg(env, mem_buf, reg - r->base_reg);
899 return 0;
902 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
904 CPUClass *cc = CPU_GET_CLASS(cpu);
905 CPUArchState *env = cpu->env_ptr;
906 GDBRegisterState *r;
908 if (reg < cc->gdb_num_core_regs) {
909 return cc->gdb_write_register(cpu, mem_buf, reg);
912 for (r = cpu->gdb_regs; r; r = r->next) {
913 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
914 return r->set_reg(env, mem_buf, reg - r->base_reg);
917 return 0;
920 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
921 specifies the first register number and these registers are included in
922 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
923 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
926 void gdb_register_coprocessor(CPUState *cpu,
927 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
928 int num_regs, const char *xml, int g_pos)
930 GDBRegisterState *s;
931 GDBRegisterState **p;
933 p = &cpu->gdb_regs;
934 while (*p) {
935 /* Check for duplicates. */
936 if (strcmp((*p)->xml, xml) == 0)
937 return;
938 p = &(*p)->next;
941 s = g_new0(GDBRegisterState, 1);
942 s->base_reg = cpu->gdb_num_regs;
943 s->num_regs = num_regs;
944 s->get_reg = get_reg;
945 s->set_reg = set_reg;
946 s->xml = xml;
948 /* Add to end of list. */
949 cpu->gdb_num_regs += num_regs;
950 *p = s;
951 if (g_pos) {
952 if (g_pos != s->base_reg) {
953 error_report("Error: Bad gdb register numbering for '%s', "
954 "expected %d got %d", xml, g_pos, s->base_reg);
955 } else {
956 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
961 #ifndef CONFIG_USER_ONLY
962 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
963 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
965 static const int xlat[] = {
966 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
967 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
968 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
971 CPUClass *cc = CPU_GET_CLASS(cpu);
972 int cputype = xlat[gdbtype];
974 if (cc->gdb_stop_before_watchpoint) {
975 cputype |= BP_STOP_BEFORE_ACCESS;
977 return cputype;
979 #endif
981 static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len)
983 CPUState *cpu;
984 int err = 0;
986 if (kvm_enabled()) {
987 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
990 switch (type) {
991 case GDB_BREAKPOINT_SW:
992 case GDB_BREAKPOINT_HW:
993 CPU_FOREACH(cpu) {
994 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
995 if (err) {
996 break;
999 return err;
1000 #ifndef CONFIG_USER_ONLY
1001 case GDB_WATCHPOINT_WRITE:
1002 case GDB_WATCHPOINT_READ:
1003 case GDB_WATCHPOINT_ACCESS:
1004 CPU_FOREACH(cpu) {
1005 err = cpu_watchpoint_insert(cpu, addr, len,
1006 xlat_gdb_type(cpu, type), NULL);
1007 if (err) {
1008 break;
1011 return err;
1012 #endif
1013 default:
1014 return -ENOSYS;
1018 static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len)
1020 CPUState *cpu;
1021 int err = 0;
1023 if (kvm_enabled()) {
1024 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1027 switch (type) {
1028 case GDB_BREAKPOINT_SW:
1029 case GDB_BREAKPOINT_HW:
1030 CPU_FOREACH(cpu) {
1031 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1032 if (err) {
1033 break;
1036 return err;
1037 #ifndef CONFIG_USER_ONLY
1038 case GDB_WATCHPOINT_WRITE:
1039 case GDB_WATCHPOINT_READ:
1040 case GDB_WATCHPOINT_ACCESS:
1041 CPU_FOREACH(cpu) {
1042 err = cpu_watchpoint_remove(cpu, addr, len,
1043 xlat_gdb_type(cpu, type));
1044 if (err)
1045 break;
1047 return err;
1048 #endif
1049 default:
1050 return -ENOSYS;
1054 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1056 cpu_breakpoint_remove_all(cpu, BP_GDB);
1057 #ifndef CONFIG_USER_ONLY
1058 cpu_watchpoint_remove_all(cpu, BP_GDB);
1059 #endif
1062 static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1064 CPUState *cpu = get_first_cpu_in_process(s, p);
1066 while (cpu) {
1067 gdb_cpu_breakpoint_remove_all(cpu);
1068 cpu = gdb_next_cpu_in_process(s, cpu);
1072 static void gdb_breakpoint_remove_all(void)
1074 CPUState *cpu;
1076 if (kvm_enabled()) {
1077 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1078 return;
1081 CPU_FOREACH(cpu) {
1082 gdb_cpu_breakpoint_remove_all(cpu);
1086 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1088 CPUState *cpu = s->c_cpu;
1090 cpu_synchronize_state(cpu);
1091 cpu_set_pc(cpu, pc);
1094 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1095 char *buf, size_t buf_size)
1097 if (s->multiprocess) {
1098 snprintf(buf, buf_size, "p%02x.%02x",
1099 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1100 } else {
1101 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1104 return buf;
1107 typedef enum GDBThreadIdKind {
1108 GDB_ONE_THREAD = 0,
1109 GDB_ALL_THREADS, /* One process, all threads */
1110 GDB_ALL_PROCESSES,
1111 GDB_READ_THREAD_ERR
1112 } GDBThreadIdKind;
1114 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1115 uint32_t *pid, uint32_t *tid)
1117 unsigned long p, t;
1118 int ret;
1120 if (*buf == 'p') {
1121 buf++;
1122 ret = qemu_strtoul(buf, &buf, 16, &p);
1124 if (ret) {
1125 return GDB_READ_THREAD_ERR;
1128 /* Skip '.' */
1129 buf++;
1130 } else {
1131 p = 1;
1134 ret = qemu_strtoul(buf, &buf, 16, &t);
1136 if (ret) {
1137 return GDB_READ_THREAD_ERR;
1140 *end_buf = buf;
1142 if (p == -1) {
1143 return GDB_ALL_PROCESSES;
1146 if (pid) {
1147 *pid = p;
1150 if (t == -1) {
1151 return GDB_ALL_THREADS;
1154 if (tid) {
1155 *tid = t;
1158 return GDB_ONE_THREAD;
1162 * gdb_handle_vcont - Parses and handles a vCont packet.
1163 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1164 * a format error, 0 on success.
1166 static int gdb_handle_vcont(GDBState *s, const char *p)
1168 int res, signal = 0;
1169 char cur_action;
1170 char *newstates;
1171 unsigned long tmp;
1172 uint32_t pid, tid;
1173 GDBProcess *process;
1174 CPUState *cpu;
1175 GDBThreadIdKind kind;
1176 #ifdef CONFIG_USER_ONLY
1177 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1179 CPU_FOREACH(cpu) {
1180 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1182 #else
1183 MachineState *ms = MACHINE(qdev_get_machine());
1184 unsigned int max_cpus = ms->smp.max_cpus;
1185 #endif
1186 /* uninitialised CPUs stay 0 */
1187 newstates = g_new0(char, max_cpus);
1189 /* mark valid CPUs with 1 */
1190 CPU_FOREACH(cpu) {
1191 newstates[cpu->cpu_index] = 1;
1195 * res keeps track of what error we are returning, with -ENOTSUP meaning
1196 * that the command is unknown or unsupported, thus returning an empty
1197 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1198 * or incorrect parameters passed.
1200 res = 0;
1201 while (*p) {
1202 if (*p++ != ';') {
1203 res = -ENOTSUP;
1204 goto out;
1207 cur_action = *p++;
1208 if (cur_action == 'C' || cur_action == 'S') {
1209 cur_action = qemu_tolower(cur_action);
1210 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1211 if (res) {
1212 goto out;
1214 signal = gdb_signal_to_target(tmp);
1215 } else if (cur_action != 'c' && cur_action != 's') {
1216 /* unknown/invalid/unsupported command */
1217 res = -ENOTSUP;
1218 goto out;
1221 if (*p == '\0' || *p == ';') {
1223 * No thread specifier, action is on "all threads". The
1224 * specification is unclear regarding the process to act on. We
1225 * choose all processes.
1227 kind = GDB_ALL_PROCESSES;
1228 } else if (*p++ == ':') {
1229 kind = read_thread_id(p, &p, &pid, &tid);
1230 } else {
1231 res = -ENOTSUP;
1232 goto out;
1235 switch (kind) {
1236 case GDB_READ_THREAD_ERR:
1237 res = -EINVAL;
1238 goto out;
1240 case GDB_ALL_PROCESSES:
1241 cpu = gdb_first_attached_cpu(s);
1242 while (cpu) {
1243 if (newstates[cpu->cpu_index] == 1) {
1244 newstates[cpu->cpu_index] = cur_action;
1247 cpu = gdb_next_attached_cpu(s, cpu);
1249 break;
1251 case GDB_ALL_THREADS:
1252 process = gdb_get_process(s, pid);
1254 if (!process->attached) {
1255 res = -EINVAL;
1256 goto out;
1259 cpu = get_first_cpu_in_process(s, process);
1260 while (cpu) {
1261 if (newstates[cpu->cpu_index] == 1) {
1262 newstates[cpu->cpu_index] = cur_action;
1265 cpu = gdb_next_cpu_in_process(s, cpu);
1267 break;
1269 case GDB_ONE_THREAD:
1270 cpu = gdb_get_cpu(s, pid, tid);
1272 /* invalid CPU/thread specified */
1273 if (!cpu) {
1274 res = -EINVAL;
1275 goto out;
1278 /* only use if no previous match occourred */
1279 if (newstates[cpu->cpu_index] == 1) {
1280 newstates[cpu->cpu_index] = cur_action;
1282 break;
1285 s->signal = signal;
1286 gdb_continue_partial(s, newstates);
1288 out:
1289 g_free(newstates);
1291 return res;
1294 typedef union GdbCmdVariant {
1295 const char *data;
1296 uint8_t opcode;
1297 unsigned long val_ul;
1298 unsigned long long val_ull;
1299 struct {
1300 GDBThreadIdKind kind;
1301 uint32_t pid;
1302 uint32_t tid;
1303 } thread_id;
1304 } GdbCmdVariant;
1306 static const char *cmd_next_param(const char *param, const char delimiter)
1308 static const char all_delimiters[] = ",;:=";
1309 char curr_delimiters[2] = {0};
1310 const char *delimiters;
1312 if (delimiter == '?') {
1313 delimiters = all_delimiters;
1314 } else if (delimiter == '0') {
1315 return strchr(param, '\0');
1316 } else if (delimiter == '.' && *param) {
1317 return param + 1;
1318 } else {
1319 curr_delimiters[0] = delimiter;
1320 delimiters = curr_delimiters;
1323 param += strcspn(param, delimiters);
1324 if (*param) {
1325 param++;
1327 return param;
1330 static int cmd_parse_params(const char *data, const char *schema,
1331 GdbCmdVariant *params, int *num_params)
1333 int curr_param;
1334 const char *curr_schema, *curr_data;
1336 *num_params = 0;
1338 if (!schema) {
1339 return 0;
1342 curr_schema = schema;
1343 curr_param = 0;
1344 curr_data = data;
1345 while (curr_schema[0] && curr_schema[1] && *curr_data) {
1346 switch (curr_schema[0]) {
1347 case 'l':
1348 if (qemu_strtoul(curr_data, &curr_data, 16,
1349 &params[curr_param].val_ul)) {
1350 return -EINVAL;
1352 curr_param++;
1353 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1354 break;
1355 case 'L':
1356 if (qemu_strtou64(curr_data, &curr_data, 16,
1357 (uint64_t *)&params[curr_param].val_ull)) {
1358 return -EINVAL;
1360 curr_param++;
1361 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1362 break;
1363 case 's':
1364 params[curr_param].data = curr_data;
1365 curr_param++;
1366 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1367 break;
1368 case 'o':
1369 params[curr_param].opcode = *(uint8_t *)curr_data;
1370 curr_param++;
1371 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1372 break;
1373 case 't':
1374 params[curr_param].thread_id.kind =
1375 read_thread_id(curr_data, &curr_data,
1376 &params[curr_param].thread_id.pid,
1377 &params[curr_param].thread_id.tid);
1378 curr_param++;
1379 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1380 break;
1381 case '?':
1382 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1383 break;
1384 default:
1385 return -EINVAL;
1387 curr_schema += 2;
1390 *num_params = curr_param;
1391 return 0;
1394 typedef struct GdbCmdContext {
1395 GDBState *s;
1396 GdbCmdVariant *params;
1397 int num_params;
1398 uint8_t mem_buf[MAX_PACKET_LENGTH];
1399 char str_buf[MAX_PACKET_LENGTH + 1];
1400 } GdbCmdContext;
1402 typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx);
1405 * cmd_startswith -> cmd is compared using startswith
1408 * schema definitions:
1409 * Each schema parameter entry consists of 2 chars,
1410 * the first char represents the parameter type handling
1411 * the second char represents the delimiter for the next parameter
1413 * Currently supported schema types:
1414 * 'l' -> unsigned long (stored in .val_ul)
1415 * 'L' -> unsigned long long (stored in .val_ull)
1416 * 's' -> string (stored in .data)
1417 * 'o' -> single char (stored in .opcode)
1418 * 't' -> thread id (stored in .thread_id)
1419 * '?' -> skip according to delimiter
1421 * Currently supported delimiters:
1422 * '?' -> Stop at any delimiter (",;:=\0")
1423 * '0' -> Stop at "\0"
1424 * '.' -> Skip 1 char unless reached "\0"
1425 * Any other value is treated as the delimiter value itself
1427 typedef struct GdbCmdParseEntry {
1428 GdbCmdHandler handler;
1429 const char *cmd;
1430 bool cmd_startswith;
1431 const char *schema;
1432 } GdbCmdParseEntry;
1434 static inline int startswith(const char *string, const char *pattern)
1436 return !strncmp(string, pattern, strlen(pattern));
1439 static int process_string_cmd(GDBState *s, void *user_ctx, const char *data,
1440 const GdbCmdParseEntry *cmds, int num_cmds)
1442 int i, schema_len, max_num_params = 0;
1443 GdbCmdContext gdb_ctx;
1445 if (!cmds) {
1446 return -1;
1449 for (i = 0; i < num_cmds; i++) {
1450 const GdbCmdParseEntry *cmd = &cmds[i];
1451 g_assert(cmd->handler && cmd->cmd);
1453 if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
1454 (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
1455 continue;
1458 if (cmd->schema) {
1459 schema_len = strlen(cmd->schema);
1460 if (schema_len % 2) {
1461 return -2;
1464 max_num_params = schema_len / 2;
1467 gdb_ctx.params =
1468 (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params);
1469 memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params);
1471 if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema,
1472 gdb_ctx.params, &gdb_ctx.num_params)) {
1473 return -1;
1476 gdb_ctx.s = s;
1477 cmd->handler(&gdb_ctx, user_ctx);
1478 return 0;
1481 return -1;
1484 static void run_cmd_parser(GDBState *s, const char *data,
1485 const GdbCmdParseEntry *cmd)
1487 if (!data) {
1488 return;
1491 /* In case there was an error during the command parsing we must
1492 * send a NULL packet to indicate the command is not supported */
1493 if (process_string_cmd(s, NULL, data, cmd, 1)) {
1494 put_packet(s, "");
1498 static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx)
1500 GDBProcess *process;
1501 GDBState *s = gdb_ctx->s;
1502 uint32_t pid = 1;
1504 if (s->multiprocess) {
1505 if (!gdb_ctx->num_params) {
1506 put_packet(s, "E22");
1507 return;
1510 pid = gdb_ctx->params[0].val_ul;
1513 process = gdb_get_process(s, pid);
1514 gdb_process_breakpoint_remove_all(s, process);
1515 process->attached = false;
1517 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1518 s->c_cpu = gdb_first_attached_cpu(s);
1521 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1522 s->g_cpu = gdb_first_attached_cpu(s);
1525 if (!s->c_cpu) {
1526 /* No more process attached */
1527 gdb_syscall_mode = GDB_SYS_DISABLED;
1528 gdb_continue(s);
1530 put_packet(s, "OK");
1533 static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx)
1535 CPUState *cpu;
1537 if (!gdb_ctx->num_params) {
1538 put_packet(gdb_ctx->s, "E22");
1539 return;
1542 if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1543 put_packet(gdb_ctx->s, "E22");
1544 return;
1547 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
1548 gdb_ctx->params[0].thread_id.tid);
1549 if (!cpu) {
1550 put_packet(gdb_ctx->s, "E22");
1551 return;
1554 put_packet(gdb_ctx->s, "OK");
1557 static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx)
1559 if (gdb_ctx->num_params) {
1560 gdb_set_cpu_pc(gdb_ctx->s, gdb_ctx->params[0].val_ull);
1563 gdb_ctx->s->signal = 0;
1564 gdb_continue(gdb_ctx->s);
1567 static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx)
1569 unsigned long signal = 0;
1572 * Note: C sig;[addr] is currently unsupported and we simply
1573 * omit the addr parameter
1575 if (gdb_ctx->num_params) {
1576 signal = gdb_ctx->params[0].val_ul;
1579 gdb_ctx->s->signal = gdb_signal_to_target(signal);
1580 if (gdb_ctx->s->signal == -1) {
1581 gdb_ctx->s->signal = 0;
1583 gdb_continue(gdb_ctx->s);
1586 static void handle_set_thread(GdbCmdContext *gdb_ctx, void *user_ctx)
1588 CPUState *cpu;
1590 if (gdb_ctx->num_params != 2) {
1591 put_packet(gdb_ctx->s, "E22");
1592 return;
1595 if (gdb_ctx->params[1].thread_id.kind == GDB_READ_THREAD_ERR) {
1596 put_packet(gdb_ctx->s, "E22");
1597 return;
1600 if (gdb_ctx->params[1].thread_id.kind != GDB_ONE_THREAD) {
1601 put_packet(gdb_ctx->s, "OK");
1602 return;
1605 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[1].thread_id.pid,
1606 gdb_ctx->params[1].thread_id.tid);
1607 if (!cpu) {
1608 put_packet(gdb_ctx->s, "E22");
1609 return;
1613 * Note: This command is deprecated and modern gdb's will be using the
1614 * vCont command instead.
1616 switch (gdb_ctx->params[0].opcode) {
1617 case 'c':
1618 gdb_ctx->s->c_cpu = cpu;
1619 put_packet(gdb_ctx->s, "OK");
1620 break;
1621 case 'g':
1622 gdb_ctx->s->g_cpu = cpu;
1623 put_packet(gdb_ctx->s, "OK");
1624 break;
1625 default:
1626 put_packet(gdb_ctx->s, "E22");
1627 break;
1631 static void handle_insert_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1633 int res;
1635 if (gdb_ctx->num_params != 3) {
1636 put_packet(gdb_ctx->s, "E22");
1637 return;
1640 res = gdb_breakpoint_insert(gdb_ctx->params[0].val_ul,
1641 gdb_ctx->params[1].val_ull,
1642 gdb_ctx->params[2].val_ull);
1643 if (res >= 0) {
1644 put_packet(gdb_ctx->s, "OK");
1645 return;
1646 } else if (res == -ENOSYS) {
1647 put_packet(gdb_ctx->s, "");
1648 return;
1651 put_packet(gdb_ctx->s, "E22");
1654 static void handle_remove_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1656 int res;
1658 if (gdb_ctx->num_params != 3) {
1659 put_packet(gdb_ctx->s, "E22");
1660 return;
1663 res = gdb_breakpoint_remove(gdb_ctx->params[0].val_ul,
1664 gdb_ctx->params[1].val_ull,
1665 gdb_ctx->params[2].val_ull);
1666 if (res >= 0) {
1667 put_packet(gdb_ctx->s, "OK");
1668 return;
1669 } else if (res == -ENOSYS) {
1670 put_packet(gdb_ctx->s, "");
1671 return;
1674 put_packet(gdb_ctx->s, "E22");
1678 * handle_set/get_reg
1680 * Older gdb are really dumb, and don't use 'G/g' if 'P/p' is available.
1681 * This works, but can be very slow. Anything new enough to understand
1682 * XML also knows how to use this properly. However to use this we
1683 * need to define a local XML file as well as be talking to a
1684 * reasonably modern gdb. Responding with an empty packet will cause
1685 * the remote gdb to fallback to older methods.
1688 static void handle_set_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1690 int reg_size;
1692 if (!gdb_has_xml) {
1693 put_packet(gdb_ctx->s, "");
1694 return;
1697 if (gdb_ctx->num_params != 2) {
1698 put_packet(gdb_ctx->s, "E22");
1699 return;
1702 reg_size = strlen(gdb_ctx->params[1].data) / 2;
1703 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[1].data, reg_size);
1704 gdb_write_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1705 gdb_ctx->params[0].val_ull);
1706 put_packet(gdb_ctx->s, "OK");
1709 static void handle_get_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1711 int reg_size;
1713 if (!gdb_has_xml) {
1714 put_packet(gdb_ctx->s, "");
1715 return;
1718 if (!gdb_ctx->num_params) {
1719 put_packet(gdb_ctx->s, "E14");
1720 return;
1723 reg_size = gdb_read_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1724 gdb_ctx->params[0].val_ull);
1725 if (!reg_size) {
1726 put_packet(gdb_ctx->s, "E14");
1727 return;
1730 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, reg_size);
1731 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1734 static void handle_write_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1736 if (gdb_ctx->num_params != 3) {
1737 put_packet(gdb_ctx->s, "E22");
1738 return;
1741 /* hextomem() reads 2*len bytes */
1742 if (gdb_ctx->params[1].val_ull > strlen(gdb_ctx->params[2].data) / 2) {
1743 put_packet(gdb_ctx->s, "E22");
1744 return;
1747 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[2].data,
1748 gdb_ctx->params[1].val_ull);
1749 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1750 gdb_ctx->mem_buf,
1751 gdb_ctx->params[1].val_ull, true)) {
1752 put_packet(gdb_ctx->s, "E14");
1753 return;
1756 put_packet(gdb_ctx->s, "OK");
1759 static void handle_read_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1761 if (gdb_ctx->num_params != 2) {
1762 put_packet(gdb_ctx->s, "E22");
1763 return;
1766 /* memtohex() doubles the required space */
1767 if (gdb_ctx->params[1].val_ull > MAX_PACKET_LENGTH / 2) {
1768 put_packet(gdb_ctx->s, "E22");
1769 return;
1772 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1773 gdb_ctx->mem_buf,
1774 gdb_ctx->params[1].val_ull, false)) {
1775 put_packet(gdb_ctx->s, "E14");
1776 return;
1779 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, gdb_ctx->params[1].val_ull);
1780 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1783 static void handle_write_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1785 target_ulong addr, len;
1786 uint8_t *registers;
1787 int reg_size;
1789 if (!gdb_ctx->num_params) {
1790 return;
1793 cpu_synchronize_state(gdb_ctx->s->g_cpu);
1794 registers = gdb_ctx->mem_buf;
1795 len = strlen(gdb_ctx->params[0].data) / 2;
1796 hextomem(registers, gdb_ctx->params[0].data, len);
1797 for (addr = 0; addr < gdb_ctx->s->g_cpu->gdb_num_g_regs && len > 0;
1798 addr++) {
1799 reg_size = gdb_write_register(gdb_ctx->s->g_cpu, registers, addr);
1800 len -= reg_size;
1801 registers += reg_size;
1803 put_packet(gdb_ctx->s, "OK");
1806 static void handle_read_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1808 target_ulong addr, len;
1810 cpu_synchronize_state(gdb_ctx->s->g_cpu);
1811 len = 0;
1812 for (addr = 0; addr < gdb_ctx->s->g_cpu->gdb_num_g_regs; addr++) {
1813 len += gdb_read_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf + len,
1814 addr);
1817 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, len);
1818 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1821 static void handle_file_io(GdbCmdContext *gdb_ctx, void *user_ctx)
1823 if (gdb_ctx->num_params >= 2 && gdb_ctx->s->current_syscall_cb) {
1824 target_ulong ret, err;
1826 ret = (target_ulong)gdb_ctx->params[0].val_ull;
1827 err = (target_ulong)gdb_ctx->params[1].val_ull;
1828 gdb_ctx->s->current_syscall_cb(gdb_ctx->s->c_cpu, ret, err);
1829 gdb_ctx->s->current_syscall_cb = NULL;
1832 if (gdb_ctx->num_params >= 3 && gdb_ctx->params[2].opcode == (uint8_t)'C') {
1833 put_packet(gdb_ctx->s, "T02");
1834 return;
1837 gdb_continue(gdb_ctx->s);
1840 static void handle_step(GdbCmdContext *gdb_ctx, void *user_ctx)
1842 if (gdb_ctx->num_params) {
1843 gdb_set_cpu_pc(gdb_ctx->s, (target_ulong)gdb_ctx->params[0].val_ull);
1846 cpu_single_step(gdb_ctx->s->c_cpu, sstep_flags);
1847 gdb_continue(gdb_ctx->s);
1850 static void handle_v_cont_query(GdbCmdContext *gdb_ctx, void *user_ctx)
1852 put_packet(gdb_ctx->s, "vCont;c;C;s;S");
1855 static void handle_v_cont(GdbCmdContext *gdb_ctx, void *user_ctx)
1857 int res;
1859 if (!gdb_ctx->num_params) {
1860 return;
1863 res = gdb_handle_vcont(gdb_ctx->s, gdb_ctx->params[0].data);
1864 if ((res == -EINVAL) || (res == -ERANGE)) {
1865 put_packet(gdb_ctx->s, "E22");
1866 } else if (res) {
1867 put_packet(gdb_ctx->s, "");
1871 static void handle_v_attach(GdbCmdContext *gdb_ctx, void *user_ctx)
1873 GDBProcess *process;
1874 CPUState *cpu;
1875 char thread_id[16];
1877 pstrcpy(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "E22");
1878 if (!gdb_ctx->num_params) {
1879 goto cleanup;
1882 process = gdb_get_process(gdb_ctx->s, gdb_ctx->params[0].val_ul);
1883 if (!process) {
1884 goto cleanup;
1887 cpu = get_first_cpu_in_process(gdb_ctx->s, process);
1888 if (!cpu) {
1889 goto cleanup;
1892 process->attached = true;
1893 gdb_ctx->s->g_cpu = cpu;
1894 gdb_ctx->s->c_cpu = cpu;
1896 gdb_fmt_thread_id(gdb_ctx->s, cpu, thread_id, sizeof(thread_id));
1897 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "T%02xthread:%s;",
1898 GDB_SIGNAL_TRAP, thread_id);
1899 cleanup:
1900 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1903 static void handle_v_kill(GdbCmdContext *gdb_ctx, void *user_ctx)
1905 /* Kill the target */
1906 put_packet(gdb_ctx->s, "OK");
1907 error_report("QEMU: Terminated via GDBstub");
1908 exit(0);
1911 static GdbCmdParseEntry gdb_v_commands_table[] = {
1912 /* Order is important if has same prefix */
1914 .handler = handle_v_cont_query,
1915 .cmd = "Cont?",
1916 .cmd_startswith = 1
1919 .handler = handle_v_cont,
1920 .cmd = "Cont",
1921 .cmd_startswith = 1,
1922 .schema = "s0"
1925 .handler = handle_v_attach,
1926 .cmd = "Attach;",
1927 .cmd_startswith = 1,
1928 .schema = "l0"
1931 .handler = handle_v_kill,
1932 .cmd = "Kill;",
1933 .cmd_startswith = 1
1937 static void handle_v_commands(GdbCmdContext *gdb_ctx, void *user_ctx)
1939 if (!gdb_ctx->num_params) {
1940 return;
1943 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
1944 gdb_v_commands_table,
1945 ARRAY_SIZE(gdb_v_commands_table))) {
1946 put_packet(gdb_ctx->s, "");
1950 static void handle_query_qemu_sstepbits(GdbCmdContext *gdb_ctx, void *user_ctx)
1952 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
1953 "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", SSTEP_ENABLE,
1954 SSTEP_NOIRQ, SSTEP_NOTIMER);
1955 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1958 static void handle_set_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
1960 if (!gdb_ctx->num_params) {
1961 return;
1964 sstep_flags = gdb_ctx->params[0].val_ul;
1965 put_packet(gdb_ctx->s, "OK");
1968 static void handle_query_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
1970 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "0x%x", sstep_flags);
1971 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1974 static void handle_query_curr_tid(GdbCmdContext *gdb_ctx, void *user_ctx)
1976 CPUState *cpu;
1977 GDBProcess *process;
1978 char thread_id[16];
1981 * "Current thread" remains vague in the spec, so always return
1982 * the first thread of the current process (gdb returns the
1983 * first thread).
1985 process = gdb_get_cpu_process(gdb_ctx->s, gdb_ctx->s->g_cpu);
1986 cpu = get_first_cpu_in_process(gdb_ctx->s, process);
1987 gdb_fmt_thread_id(gdb_ctx->s, cpu, thread_id, sizeof(thread_id));
1988 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "QC%s", thread_id);
1989 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1992 static void handle_query_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
1994 char thread_id[16];
1996 if (!gdb_ctx->s->query_cpu) {
1997 put_packet(gdb_ctx->s, "l");
1998 return;
2001 gdb_fmt_thread_id(gdb_ctx->s, gdb_ctx->s->query_cpu, thread_id,
2002 sizeof(thread_id));
2003 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "m%s", thread_id);
2004 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2005 gdb_ctx->s->query_cpu =
2006 gdb_next_attached_cpu(gdb_ctx->s, gdb_ctx->s->query_cpu);
2009 static void handle_query_first_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
2011 gdb_ctx->s->query_cpu = gdb_first_attached_cpu(gdb_ctx->s);
2012 handle_query_threads(gdb_ctx, user_ctx);
2015 static void handle_query_thread_extra(GdbCmdContext *gdb_ctx, void *user_ctx)
2017 CPUState *cpu;
2018 int len;
2020 if (!gdb_ctx->num_params ||
2021 gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
2022 put_packet(gdb_ctx->s, "E22");
2023 return;
2026 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
2027 gdb_ctx->params[0].thread_id.tid);
2028 if (!cpu) {
2029 return;
2032 cpu_synchronize_state(cpu);
2034 if (gdb_ctx->s->multiprocess && (gdb_ctx->s->process_num > 1)) {
2035 /* Print the CPU model and name in multiprocess mode */
2036 ObjectClass *oc = object_get_class(OBJECT(cpu));
2037 const char *cpu_model = object_class_get_name(oc);
2038 char *cpu_name = object_get_canonical_path_component(OBJECT(cpu));
2039 len = snprintf((char *)gdb_ctx->mem_buf, sizeof(gdb_ctx->str_buf) / 2,
2040 "%s %s [%s]", cpu_model, cpu_name,
2041 cpu->halted ? "halted " : "running");
2042 g_free(cpu_name);
2043 } else {
2044 /* memtohex() doubles the required space */
2045 len = snprintf((char *)gdb_ctx->mem_buf, sizeof(gdb_ctx->str_buf) / 2,
2046 "CPU#%d [%s]", cpu->cpu_index,
2047 cpu->halted ? "halted " : "running");
2049 trace_gdbstub_op_extra_info((char *)gdb_ctx->mem_buf);
2050 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, len);
2051 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2054 #ifdef CONFIG_USER_ONLY
2055 static void handle_query_offsets(GdbCmdContext *gdb_ctx, void *user_ctx)
2057 TaskState *ts;
2059 ts = gdb_ctx->s->c_cpu->opaque;
2060 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
2061 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2062 ";Bss=" TARGET_ABI_FMT_lx,
2063 ts->info->code_offset,
2064 ts->info->data_offset,
2065 ts->info->data_offset);
2066 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2068 #else
2069 static void handle_query_rcmd(GdbCmdContext *gdb_ctx, void *user_ctx)
2071 int len;
2073 if (!gdb_ctx->num_params) {
2074 put_packet(gdb_ctx->s, "E22");
2075 return;
2078 len = strlen(gdb_ctx->params[0].data);
2079 if (len % 2) {
2080 put_packet(gdb_ctx->s, "E01");
2081 return;
2084 len = len / 2;
2085 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[0].data, len);
2086 gdb_ctx->mem_buf[len++] = 0;
2087 qemu_chr_be_write(gdb_ctx->s->mon_chr, gdb_ctx->mem_buf, len);
2088 put_packet(gdb_ctx->s, "OK");
2091 #endif
2093 static void handle_query_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2095 CPUClass *cc;
2097 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "PacketSize=%x",
2098 MAX_PACKET_LENGTH);
2099 cc = CPU_GET_CLASS(first_cpu);
2100 if (cc->gdb_core_xml_file) {
2101 pstrcat(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
2102 ";qXfer:features:read+");
2105 if (gdb_ctx->num_params &&
2106 strstr(gdb_ctx->params[0].data, "multiprocess+")) {
2107 gdb_ctx->s->multiprocess = true;
2110 pstrcat(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), ";multiprocess+");
2111 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2114 static void handle_query_xfer_features(GdbCmdContext *gdb_ctx, void *user_ctx)
2116 GDBProcess *process;
2117 CPUClass *cc;
2118 unsigned long len, total_len, addr;
2119 const char *xml;
2120 const char *p;
2122 if (gdb_ctx->num_params < 3) {
2123 put_packet(gdb_ctx->s, "E22");
2124 return;
2127 process = gdb_get_cpu_process(gdb_ctx->s, gdb_ctx->s->g_cpu);
2128 cc = CPU_GET_CLASS(gdb_ctx->s->g_cpu);
2129 if (!cc->gdb_core_xml_file) {
2130 put_packet(gdb_ctx->s, "");
2131 return;
2134 gdb_has_xml = true;
2135 p = gdb_ctx->params[0].data;
2136 xml = get_feature_xml(gdb_ctx->s, p, &p, process);
2137 if (!xml) {
2138 put_packet(gdb_ctx->s, "E00");
2139 return;
2142 addr = gdb_ctx->params[1].val_ul;
2143 len = gdb_ctx->params[2].val_ul;
2144 total_len = strlen(xml);
2145 if (addr > total_len) {
2146 put_packet(gdb_ctx->s, "E00");
2147 return;
2150 if (len > (MAX_PACKET_LENGTH - 5) / 2) {
2151 len = (MAX_PACKET_LENGTH - 5) / 2;
2154 if (len < total_len - addr) {
2155 gdb_ctx->str_buf[0] = 'm';
2156 len = memtox(gdb_ctx->str_buf + 1, xml + addr, len);
2157 } else {
2158 gdb_ctx->str_buf[0] = 'l';
2159 len = memtox(gdb_ctx->str_buf + 1, xml + addr, total_len - addr);
2162 put_packet_binary(gdb_ctx->s, gdb_ctx->str_buf, len + 1, true);
2165 static void handle_query_attached(GdbCmdContext *gdb_ctx, void *user_ctx)
2167 put_packet(gdb_ctx->s, GDB_ATTACHED);
2170 static void handle_query_qemu_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2172 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "sstepbits;sstep");
2173 #ifndef CONFIG_USER_ONLY
2174 pstrcat(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), ";PhyMemMode");
2175 #endif
2176 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2179 #ifndef CONFIG_USER_ONLY
2180 static void handle_query_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx,
2181 void *user_ctx)
2183 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "%d", phy_memory_mode);
2184 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2187 static void handle_set_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx, void *user_ctx)
2189 if (!gdb_ctx->num_params) {
2190 put_packet(gdb_ctx->s, "E22");
2191 return;
2194 if (!gdb_ctx->params[0].val_ul) {
2195 phy_memory_mode = 0;
2196 } else {
2197 phy_memory_mode = 1;
2199 put_packet(gdb_ctx->s, "OK");
2201 #endif
2203 static GdbCmdParseEntry gdb_gen_query_set_common_table[] = {
2204 /* Order is important if has same prefix */
2206 .handler = handle_query_qemu_sstepbits,
2207 .cmd = "qemu.sstepbits",
2210 .handler = handle_query_qemu_sstep,
2211 .cmd = "qemu.sstep",
2214 .handler = handle_set_qemu_sstep,
2215 .cmd = "qemu.sstep=",
2216 .cmd_startswith = 1,
2217 .schema = "l0"
2221 static GdbCmdParseEntry gdb_gen_query_table[] = {
2223 .handler = handle_query_curr_tid,
2224 .cmd = "C",
2227 .handler = handle_query_threads,
2228 .cmd = "sThreadInfo",
2231 .handler = handle_query_first_threads,
2232 .cmd = "fThreadInfo",
2235 .handler = handle_query_thread_extra,
2236 .cmd = "ThreadExtraInfo,",
2237 .cmd_startswith = 1,
2238 .schema = "t0"
2240 #ifdef CONFIG_USER_ONLY
2242 .handler = handle_query_offsets,
2243 .cmd = "Offsets",
2245 #else
2247 .handler = handle_query_rcmd,
2248 .cmd = "Rcmd,",
2249 .cmd_startswith = 1,
2250 .schema = "s0"
2252 #endif
2254 .handler = handle_query_supported,
2255 .cmd = "Supported:",
2256 .cmd_startswith = 1,
2257 .schema = "s0"
2260 .handler = handle_query_supported,
2261 .cmd = "Supported",
2262 .schema = "s0"
2265 .handler = handle_query_xfer_features,
2266 .cmd = "Xfer:features:read:",
2267 .cmd_startswith = 1,
2268 .schema = "s:l,l0"
2271 .handler = handle_query_attached,
2272 .cmd = "Attached:",
2273 .cmd_startswith = 1
2276 .handler = handle_query_attached,
2277 .cmd = "Attached",
2280 .handler = handle_query_qemu_supported,
2281 .cmd = "qemu.Supported",
2283 #ifndef CONFIG_USER_ONLY
2285 .handler = handle_query_qemu_phy_mem_mode,
2286 .cmd = "qemu.PhyMemMode",
2288 #endif
2291 static GdbCmdParseEntry gdb_gen_set_table[] = {
2292 /* Order is important if has same prefix */
2294 .handler = handle_set_qemu_sstep,
2295 .cmd = "qemu.sstep:",
2296 .cmd_startswith = 1,
2297 .schema = "l0"
2299 #ifndef CONFIG_USER_ONLY
2301 .handler = handle_set_qemu_phy_mem_mode,
2302 .cmd = "qemu.PhyMemMode:",
2303 .cmd_startswith = 1,
2304 .schema = "l0"
2306 #endif
2309 static void handle_gen_query(GdbCmdContext *gdb_ctx, void *user_ctx)
2311 if (!gdb_ctx->num_params) {
2312 return;
2315 if (!process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2316 gdb_gen_query_set_common_table,
2317 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2318 return;
2321 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2322 gdb_gen_query_table,
2323 ARRAY_SIZE(gdb_gen_query_table))) {
2324 put_packet(gdb_ctx->s, "");
2328 static void handle_gen_set(GdbCmdContext *gdb_ctx, void *user_ctx)
2330 if (!gdb_ctx->num_params) {
2331 return;
2334 if (!process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2335 gdb_gen_query_set_common_table,
2336 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2337 return;
2340 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2341 gdb_gen_set_table,
2342 ARRAY_SIZE(gdb_gen_set_table))) {
2343 put_packet(gdb_ctx->s, "");
2347 static void handle_target_halt(GdbCmdContext *gdb_ctx, void *user_ctx)
2349 char thread_id[16];
2351 gdb_fmt_thread_id(gdb_ctx->s, gdb_ctx->s->c_cpu, thread_id,
2352 sizeof(thread_id));
2353 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "T%02xthread:%s;",
2354 GDB_SIGNAL_TRAP, thread_id);
2355 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2357 * Remove all the breakpoints when this query is issued,
2358 * because gdb is doing an initial connect and the state
2359 * should be cleaned up.
2361 gdb_breakpoint_remove_all();
2364 static int gdb_handle_packet(GDBState *s, const char *line_buf)
2366 const GdbCmdParseEntry *cmd_parser = NULL;
2368 trace_gdbstub_io_command(line_buf);
2370 switch (line_buf[0]) {
2371 case '!':
2372 put_packet(s, "OK");
2373 break;
2374 case '?':
2376 static const GdbCmdParseEntry target_halted_cmd_desc = {
2377 .handler = handle_target_halt,
2378 .cmd = "?",
2379 .cmd_startswith = 1
2381 cmd_parser = &target_halted_cmd_desc;
2383 break;
2384 case 'c':
2386 static const GdbCmdParseEntry continue_cmd_desc = {
2387 .handler = handle_continue,
2388 .cmd = "c",
2389 .cmd_startswith = 1,
2390 .schema = "L0"
2392 cmd_parser = &continue_cmd_desc;
2394 break;
2395 case 'C':
2397 static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
2398 .handler = handle_cont_with_sig,
2399 .cmd = "C",
2400 .cmd_startswith = 1,
2401 .schema = "l0"
2403 cmd_parser = &cont_with_sig_cmd_desc;
2405 break;
2406 case 'v':
2408 static const GdbCmdParseEntry v_cmd_desc = {
2409 .handler = handle_v_commands,
2410 .cmd = "v",
2411 .cmd_startswith = 1,
2412 .schema = "s0"
2414 cmd_parser = &v_cmd_desc;
2416 break;
2417 case 'k':
2418 /* Kill the target */
2419 error_report("QEMU: Terminated via GDBstub");
2420 exit(0);
2421 case 'D':
2423 static const GdbCmdParseEntry detach_cmd_desc = {
2424 .handler = handle_detach,
2425 .cmd = "D",
2426 .cmd_startswith = 1,
2427 .schema = "?.l0"
2429 cmd_parser = &detach_cmd_desc;
2431 break;
2432 case 's':
2434 static const GdbCmdParseEntry step_cmd_desc = {
2435 .handler = handle_step,
2436 .cmd = "s",
2437 .cmd_startswith = 1,
2438 .schema = "L0"
2440 cmd_parser = &step_cmd_desc;
2442 break;
2443 case 'F':
2445 static const GdbCmdParseEntry file_io_cmd_desc = {
2446 .handler = handle_file_io,
2447 .cmd = "F",
2448 .cmd_startswith = 1,
2449 .schema = "L,L,o0"
2451 cmd_parser = &file_io_cmd_desc;
2453 break;
2454 case 'g':
2456 static const GdbCmdParseEntry read_all_regs_cmd_desc = {
2457 .handler = handle_read_all_regs,
2458 .cmd = "g",
2459 .cmd_startswith = 1
2461 cmd_parser = &read_all_regs_cmd_desc;
2463 break;
2464 case 'G':
2466 static const GdbCmdParseEntry write_all_regs_cmd_desc = {
2467 .handler = handle_write_all_regs,
2468 .cmd = "G",
2469 .cmd_startswith = 1,
2470 .schema = "s0"
2472 cmd_parser = &write_all_regs_cmd_desc;
2474 break;
2475 case 'm':
2477 static const GdbCmdParseEntry read_mem_cmd_desc = {
2478 .handler = handle_read_mem,
2479 .cmd = "m",
2480 .cmd_startswith = 1,
2481 .schema = "L,L0"
2483 cmd_parser = &read_mem_cmd_desc;
2485 break;
2486 case 'M':
2488 static const GdbCmdParseEntry write_mem_cmd_desc = {
2489 .handler = handle_write_mem,
2490 .cmd = "M",
2491 .cmd_startswith = 1,
2492 .schema = "L,L:s0"
2494 cmd_parser = &write_mem_cmd_desc;
2496 break;
2497 case 'p':
2499 static const GdbCmdParseEntry get_reg_cmd_desc = {
2500 .handler = handle_get_reg,
2501 .cmd = "p",
2502 .cmd_startswith = 1,
2503 .schema = "L0"
2505 cmd_parser = &get_reg_cmd_desc;
2507 break;
2508 case 'P':
2510 static const GdbCmdParseEntry set_reg_cmd_desc = {
2511 .handler = handle_set_reg,
2512 .cmd = "P",
2513 .cmd_startswith = 1,
2514 .schema = "L?s0"
2516 cmd_parser = &set_reg_cmd_desc;
2518 break;
2519 case 'Z':
2521 static const GdbCmdParseEntry insert_bp_cmd_desc = {
2522 .handler = handle_insert_bp,
2523 .cmd = "Z",
2524 .cmd_startswith = 1,
2525 .schema = "l?L?L0"
2527 cmd_parser = &insert_bp_cmd_desc;
2529 break;
2530 case 'z':
2532 static const GdbCmdParseEntry remove_bp_cmd_desc = {
2533 .handler = handle_remove_bp,
2534 .cmd = "z",
2535 .cmd_startswith = 1,
2536 .schema = "l?L?L0"
2538 cmd_parser = &remove_bp_cmd_desc;
2540 break;
2541 case 'H':
2543 static const GdbCmdParseEntry set_thread_cmd_desc = {
2544 .handler = handle_set_thread,
2545 .cmd = "H",
2546 .cmd_startswith = 1,
2547 .schema = "o.t0"
2549 cmd_parser = &set_thread_cmd_desc;
2551 break;
2552 case 'T':
2554 static const GdbCmdParseEntry thread_alive_cmd_desc = {
2555 .handler = handle_thread_alive,
2556 .cmd = "T",
2557 .cmd_startswith = 1,
2558 .schema = "t0"
2560 cmd_parser = &thread_alive_cmd_desc;
2562 break;
2563 case 'q':
2565 static const GdbCmdParseEntry gen_query_cmd_desc = {
2566 .handler = handle_gen_query,
2567 .cmd = "q",
2568 .cmd_startswith = 1,
2569 .schema = "s0"
2571 cmd_parser = &gen_query_cmd_desc;
2573 break;
2574 case 'Q':
2576 static const GdbCmdParseEntry gen_set_cmd_desc = {
2577 .handler = handle_gen_set,
2578 .cmd = "Q",
2579 .cmd_startswith = 1,
2580 .schema = "s0"
2582 cmd_parser = &gen_set_cmd_desc;
2584 break;
2585 default:
2586 /* put empty packet */
2587 put_packet(s, "");
2588 break;
2591 run_cmd_parser(s, line_buf, cmd_parser);
2593 return RS_IDLE;
2596 void gdb_set_stop_cpu(CPUState *cpu)
2598 GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
2600 if (!p->attached) {
2602 * Having a stop CPU corresponding to a process that is not attached
2603 * confuses GDB. So we ignore the request.
2605 return;
2608 gdbserver_state->c_cpu = cpu;
2609 gdbserver_state->g_cpu = cpu;
2612 #ifndef CONFIG_USER_ONLY
2613 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2615 GDBState *s = gdbserver_state;
2616 CPUState *cpu = s->c_cpu;
2617 char buf[256];
2618 char thread_id[16];
2619 const char *type;
2620 int ret;
2622 if (running || s->state == RS_INACTIVE) {
2623 return;
2625 /* Is there a GDB syscall waiting to be sent? */
2626 if (s->current_syscall_cb) {
2627 put_packet(s, s->syscall_buf);
2628 return;
2631 if (cpu == NULL) {
2632 /* No process attached */
2633 return;
2636 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
2638 switch (state) {
2639 case RUN_STATE_DEBUG:
2640 if (cpu->watchpoint_hit) {
2641 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
2642 case BP_MEM_READ:
2643 type = "r";
2644 break;
2645 case BP_MEM_ACCESS:
2646 type = "a";
2647 break;
2648 default:
2649 type = "";
2650 break;
2652 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
2653 (target_ulong)cpu->watchpoint_hit->vaddr);
2654 snprintf(buf, sizeof(buf),
2655 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
2656 GDB_SIGNAL_TRAP, thread_id, type,
2657 (target_ulong)cpu->watchpoint_hit->vaddr);
2658 cpu->watchpoint_hit = NULL;
2659 goto send_packet;
2660 } else {
2661 trace_gdbstub_hit_break();
2663 tb_flush(cpu);
2664 ret = GDB_SIGNAL_TRAP;
2665 break;
2666 case RUN_STATE_PAUSED:
2667 trace_gdbstub_hit_paused();
2668 ret = GDB_SIGNAL_INT;
2669 break;
2670 case RUN_STATE_SHUTDOWN:
2671 trace_gdbstub_hit_shutdown();
2672 ret = GDB_SIGNAL_QUIT;
2673 break;
2674 case RUN_STATE_IO_ERROR:
2675 trace_gdbstub_hit_io_error();
2676 ret = GDB_SIGNAL_IO;
2677 break;
2678 case RUN_STATE_WATCHDOG:
2679 trace_gdbstub_hit_watchdog();
2680 ret = GDB_SIGNAL_ALRM;
2681 break;
2682 case RUN_STATE_INTERNAL_ERROR:
2683 trace_gdbstub_hit_internal_error();
2684 ret = GDB_SIGNAL_ABRT;
2685 break;
2686 case RUN_STATE_SAVE_VM:
2687 case RUN_STATE_RESTORE_VM:
2688 return;
2689 case RUN_STATE_FINISH_MIGRATE:
2690 ret = GDB_SIGNAL_XCPU;
2691 break;
2692 default:
2693 trace_gdbstub_hit_unknown(state);
2694 ret = GDB_SIGNAL_UNKNOWN;
2695 break;
2697 gdb_set_stop_cpu(cpu);
2698 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
2700 send_packet:
2701 put_packet(s, buf);
2703 /* disable single step if it was enabled */
2704 cpu_single_step(cpu, 0);
2706 #endif
2708 /* Send a gdb syscall request.
2709 This accepts limited printf-style format specifiers, specifically:
2710 %x - target_ulong argument printed in hex.
2711 %lx - 64-bit argument printed in hex.
2712 %s - string pointer (target_ulong) and length (int) pair. */
2713 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
2715 char *p;
2716 char *p_end;
2717 target_ulong addr;
2718 uint64_t i64;
2719 GDBState *s;
2721 s = gdbserver_state;
2722 if (!s)
2723 return;
2724 s->current_syscall_cb = cb;
2725 #ifndef CONFIG_USER_ONLY
2726 vm_stop(RUN_STATE_DEBUG);
2727 #endif
2728 p = s->syscall_buf;
2729 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2730 *(p++) = 'F';
2731 while (*fmt) {
2732 if (*fmt == '%') {
2733 fmt++;
2734 switch (*fmt++) {
2735 case 'x':
2736 addr = va_arg(va, target_ulong);
2737 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2738 break;
2739 case 'l':
2740 if (*(fmt++) != 'x')
2741 goto bad_format;
2742 i64 = va_arg(va, uint64_t);
2743 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2744 break;
2745 case 's':
2746 addr = va_arg(va, target_ulong);
2747 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2748 addr, va_arg(va, int));
2749 break;
2750 default:
2751 bad_format:
2752 error_report("gdbstub: Bad syscall format string '%s'",
2753 fmt - 1);
2754 break;
2756 } else {
2757 *(p++) = *(fmt++);
2760 *p = 0;
2761 #ifdef CONFIG_USER_ONLY
2762 put_packet(s, s->syscall_buf);
2763 /* Return control to gdb for it to process the syscall request.
2764 * Since the protocol requires that gdb hands control back to us
2765 * using a "here are the results" F packet, we don't need to check
2766 * gdb_handlesig's return value (which is the signal to deliver if
2767 * execution was resumed via a continue packet).
2769 gdb_handlesig(s->c_cpu, 0);
2770 #else
2771 /* In this case wait to send the syscall packet until notification that
2772 the CPU has stopped. This must be done because if the packet is sent
2773 now the reply from the syscall request could be received while the CPU
2774 is still in the running state, which can cause packets to be dropped
2775 and state transition 'T' packets to be sent while the syscall is still
2776 being processed. */
2777 qemu_cpu_kick(s->c_cpu);
2778 #endif
2781 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2783 va_list va;
2785 va_start(va, fmt);
2786 gdb_do_syscallv(cb, fmt, va);
2787 va_end(va);
2790 static void gdb_read_byte(GDBState *s, uint8_t ch)
2792 uint8_t reply;
2794 #ifndef CONFIG_USER_ONLY
2795 if (s->last_packet_len) {
2796 /* Waiting for a response to the last packet. If we see the start
2797 of a new command then abandon the previous response. */
2798 if (ch == '-') {
2799 trace_gdbstub_err_got_nack();
2800 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2801 } else if (ch == '+') {
2802 trace_gdbstub_io_got_ack();
2803 } else {
2804 trace_gdbstub_io_got_unexpected(ch);
2807 if (ch == '+' || ch == '$')
2808 s->last_packet_len = 0;
2809 if (ch != '$')
2810 return;
2812 if (runstate_is_running()) {
2813 /* when the CPU is running, we cannot do anything except stop
2814 it when receiving a char */
2815 vm_stop(RUN_STATE_PAUSED);
2816 } else
2817 #endif
2819 switch(s->state) {
2820 case RS_IDLE:
2821 if (ch == '$') {
2822 /* start of command packet */
2823 s->line_buf_index = 0;
2824 s->line_sum = 0;
2825 s->state = RS_GETLINE;
2826 } else {
2827 trace_gdbstub_err_garbage(ch);
2829 break;
2830 case RS_GETLINE:
2831 if (ch == '}') {
2832 /* start escape sequence */
2833 s->state = RS_GETLINE_ESC;
2834 s->line_sum += ch;
2835 } else if (ch == '*') {
2836 /* start run length encoding sequence */
2837 s->state = RS_GETLINE_RLE;
2838 s->line_sum += ch;
2839 } else if (ch == '#') {
2840 /* end of command, start of checksum*/
2841 s->state = RS_CHKSUM1;
2842 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2843 trace_gdbstub_err_overrun();
2844 s->state = RS_IDLE;
2845 } else {
2846 /* unescaped command character */
2847 s->line_buf[s->line_buf_index++] = ch;
2848 s->line_sum += ch;
2850 break;
2851 case RS_GETLINE_ESC:
2852 if (ch == '#') {
2853 /* unexpected end of command in escape sequence */
2854 s->state = RS_CHKSUM1;
2855 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2856 /* command buffer overrun */
2857 trace_gdbstub_err_overrun();
2858 s->state = RS_IDLE;
2859 } else {
2860 /* parse escaped character and leave escape state */
2861 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2862 s->line_sum += ch;
2863 s->state = RS_GETLINE;
2865 break;
2866 case RS_GETLINE_RLE:
2868 * Run-length encoding is explained in "Debugging with GDB /
2869 * Appendix E GDB Remote Serial Protocol / Overview".
2871 if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
2872 /* invalid RLE count encoding */
2873 trace_gdbstub_err_invalid_repeat(ch);
2874 s->state = RS_GETLINE;
2875 } else {
2876 /* decode repeat length */
2877 int repeat = ch - ' ' + 3;
2878 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2879 /* that many repeats would overrun the command buffer */
2880 trace_gdbstub_err_overrun();
2881 s->state = RS_IDLE;
2882 } else if (s->line_buf_index < 1) {
2883 /* got a repeat but we have nothing to repeat */
2884 trace_gdbstub_err_invalid_rle();
2885 s->state = RS_GETLINE;
2886 } else {
2887 /* repeat the last character */
2888 memset(s->line_buf + s->line_buf_index,
2889 s->line_buf[s->line_buf_index - 1], repeat);
2890 s->line_buf_index += repeat;
2891 s->line_sum += ch;
2892 s->state = RS_GETLINE;
2895 break;
2896 case RS_CHKSUM1:
2897 /* get high hex digit of checksum */
2898 if (!isxdigit(ch)) {
2899 trace_gdbstub_err_checksum_invalid(ch);
2900 s->state = RS_GETLINE;
2901 break;
2903 s->line_buf[s->line_buf_index] = '\0';
2904 s->line_csum = fromhex(ch) << 4;
2905 s->state = RS_CHKSUM2;
2906 break;
2907 case RS_CHKSUM2:
2908 /* get low hex digit of checksum */
2909 if (!isxdigit(ch)) {
2910 trace_gdbstub_err_checksum_invalid(ch);
2911 s->state = RS_GETLINE;
2912 break;
2914 s->line_csum |= fromhex(ch);
2916 if (s->line_csum != (s->line_sum & 0xff)) {
2917 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2918 /* send NAK reply */
2919 reply = '-';
2920 put_buffer(s, &reply, 1);
2921 s->state = RS_IDLE;
2922 } else {
2923 /* send ACK reply */
2924 reply = '+';
2925 put_buffer(s, &reply, 1);
2926 s->state = gdb_handle_packet(s, s->line_buf);
2928 break;
2929 default:
2930 abort();
2935 /* Tell the remote gdb that the process has exited. */
2936 void gdb_exit(CPUArchState *env, int code)
2938 GDBState *s;
2939 char buf[4];
2941 s = gdbserver_state;
2942 if (!s) {
2943 return;
2945 #ifdef CONFIG_USER_ONLY
2946 if (gdbserver_fd < 0 || s->fd < 0) {
2947 return;
2949 #endif
2951 trace_gdbstub_op_exiting((uint8_t)code);
2953 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2954 put_packet(s, buf);
2956 #ifndef CONFIG_USER_ONLY
2957 qemu_chr_fe_deinit(&s->chr, true);
2958 #endif
2962 * Create the process that will contain all the "orphan" CPUs (that are not
2963 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2964 * be attachable and thus will be invisible to the user.
2966 static void create_default_process(GDBState *s)
2968 GDBProcess *process;
2969 int max_pid = 0;
2971 if (s->process_num) {
2972 max_pid = s->processes[s->process_num - 1].pid;
2975 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2976 process = &s->processes[s->process_num - 1];
2978 /* We need an available PID slot for this process */
2979 assert(max_pid < UINT32_MAX);
2981 process->pid = max_pid + 1;
2982 process->attached = false;
2983 process->target_xml[0] = '\0';
2986 #ifdef CONFIG_USER_ONLY
2988 gdb_handlesig(CPUState *cpu, int sig)
2990 GDBState *s;
2991 char buf[256];
2992 int n;
2994 s = gdbserver_state;
2995 if (gdbserver_fd < 0 || s->fd < 0) {
2996 return sig;
2999 /* disable single step if it was enabled */
3000 cpu_single_step(cpu, 0);
3001 tb_flush(cpu);
3003 if (sig != 0) {
3004 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
3005 put_packet(s, buf);
3007 /* put_packet() might have detected that the peer terminated the
3008 connection. */
3009 if (s->fd < 0) {
3010 return sig;
3013 sig = 0;
3014 s->state = RS_IDLE;
3015 s->running_state = 0;
3016 while (s->running_state == 0) {
3017 n = read(s->fd, buf, 256);
3018 if (n > 0) {
3019 int i;
3021 for (i = 0; i < n; i++) {
3022 gdb_read_byte(s, buf[i]);
3024 } else {
3025 /* XXX: Connection closed. Should probably wait for another
3026 connection before continuing. */
3027 if (n == 0) {
3028 close(s->fd);
3030 s->fd = -1;
3031 return sig;
3034 sig = s->signal;
3035 s->signal = 0;
3036 return sig;
3039 /* Tell the remote gdb that the process has exited due to SIG. */
3040 void gdb_signalled(CPUArchState *env, int sig)
3042 GDBState *s;
3043 char buf[4];
3045 s = gdbserver_state;
3046 if (gdbserver_fd < 0 || s->fd < 0) {
3047 return;
3050 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
3051 put_packet(s, buf);
3054 static bool gdb_accept(void)
3056 GDBState *s;
3057 struct sockaddr_in sockaddr;
3058 socklen_t len;
3059 int fd;
3061 for(;;) {
3062 len = sizeof(sockaddr);
3063 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
3064 if (fd < 0 && errno != EINTR) {
3065 perror("accept");
3066 return false;
3067 } else if (fd >= 0) {
3068 qemu_set_cloexec(fd);
3069 break;
3073 /* set short latency */
3074 if (socket_set_nodelay(fd)) {
3075 perror("setsockopt");
3076 close(fd);
3077 return false;
3080 s = g_malloc0(sizeof(GDBState));
3081 create_default_process(s);
3082 s->processes[0].attached = true;
3083 s->c_cpu = gdb_first_attached_cpu(s);
3084 s->g_cpu = s->c_cpu;
3085 s->fd = fd;
3086 gdb_has_xml = false;
3088 gdbserver_state = s;
3089 return true;
3092 static int gdbserver_open(int port)
3094 struct sockaddr_in sockaddr;
3095 int fd, ret;
3097 fd = socket(PF_INET, SOCK_STREAM, 0);
3098 if (fd < 0) {
3099 perror("socket");
3100 return -1;
3102 qemu_set_cloexec(fd);
3104 socket_set_fast_reuse(fd);
3106 sockaddr.sin_family = AF_INET;
3107 sockaddr.sin_port = htons(port);
3108 sockaddr.sin_addr.s_addr = 0;
3109 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
3110 if (ret < 0) {
3111 perror("bind");
3112 close(fd);
3113 return -1;
3115 ret = listen(fd, 1);
3116 if (ret < 0) {
3117 perror("listen");
3118 close(fd);
3119 return -1;
3121 return fd;
3124 int gdbserver_start(int port)
3126 gdbserver_fd = gdbserver_open(port);
3127 if (gdbserver_fd < 0)
3128 return -1;
3129 /* accept connections */
3130 if (!gdb_accept()) {
3131 close(gdbserver_fd);
3132 gdbserver_fd = -1;
3133 return -1;
3135 return 0;
3138 /* Disable gdb stub for child processes. */
3139 void gdbserver_fork(CPUState *cpu)
3141 GDBState *s = gdbserver_state;
3143 if (gdbserver_fd < 0 || s->fd < 0) {
3144 return;
3146 close(s->fd);
3147 s->fd = -1;
3148 cpu_breakpoint_remove_all(cpu, BP_GDB);
3149 cpu_watchpoint_remove_all(cpu, BP_GDB);
3151 #else
3152 static int gdb_chr_can_receive(void *opaque)
3154 /* We can handle an arbitrarily large amount of data.
3155 Pick the maximum packet size, which is as good as anything. */
3156 return MAX_PACKET_LENGTH;
3159 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
3161 int i;
3163 for (i = 0; i < size; i++) {
3164 gdb_read_byte(gdbserver_state, buf[i]);
3168 static void gdb_chr_event(void *opaque, int event)
3170 int i;
3171 GDBState *s = (GDBState *) opaque;
3173 switch (event) {
3174 case CHR_EVENT_OPENED:
3175 /* Start with first process attached, others detached */
3176 for (i = 0; i < s->process_num; i++) {
3177 s->processes[i].attached = !i;
3180 s->c_cpu = gdb_first_attached_cpu(s);
3181 s->g_cpu = s->c_cpu;
3183 vm_stop(RUN_STATE_PAUSED);
3184 gdb_has_xml = false;
3185 break;
3186 default:
3187 break;
3191 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
3193 char buf[MAX_PACKET_LENGTH];
3195 buf[0] = 'O';
3196 if (len > (MAX_PACKET_LENGTH/2) - 1)
3197 len = (MAX_PACKET_LENGTH/2) - 1;
3198 memtohex(buf + 1, (uint8_t *)msg, len);
3199 put_packet(s, buf);
3202 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
3204 const char *p = (const char *)buf;
3205 int max_sz;
3207 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
3208 for (;;) {
3209 if (len <= max_sz) {
3210 gdb_monitor_output(gdbserver_state, p, len);
3211 break;
3213 gdb_monitor_output(gdbserver_state, p, max_sz);
3214 p += max_sz;
3215 len -= max_sz;
3217 return len;
3220 #ifndef _WIN32
3221 static void gdb_sigterm_handler(int signal)
3223 if (runstate_is_running()) {
3224 vm_stop(RUN_STATE_PAUSED);
3227 #endif
3229 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
3230 bool *be_opened, Error **errp)
3232 *be_opened = false;
3235 static void char_gdb_class_init(ObjectClass *oc, void *data)
3237 ChardevClass *cc = CHARDEV_CLASS(oc);
3239 cc->internal = true;
3240 cc->open = gdb_monitor_open;
3241 cc->chr_write = gdb_monitor_write;
3244 #define TYPE_CHARDEV_GDB "chardev-gdb"
3246 static const TypeInfo char_gdb_type_info = {
3247 .name = TYPE_CHARDEV_GDB,
3248 .parent = TYPE_CHARDEV,
3249 .class_init = char_gdb_class_init,
3252 static int find_cpu_clusters(Object *child, void *opaque)
3254 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
3255 GDBState *s = (GDBState *) opaque;
3256 CPUClusterState *cluster = CPU_CLUSTER(child);
3257 GDBProcess *process;
3259 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
3261 process = &s->processes[s->process_num - 1];
3264 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
3265 * runtime, we enforce here that the machine does not use a cluster ID
3266 * that would lead to PID 0.
3268 assert(cluster->cluster_id != UINT32_MAX);
3269 process->pid = cluster->cluster_id + 1;
3270 process->attached = false;
3271 process->target_xml[0] = '\0';
3273 return 0;
3276 return object_child_foreach(child, find_cpu_clusters, opaque);
3279 static int pid_order(const void *a, const void *b)
3281 GDBProcess *pa = (GDBProcess *) a;
3282 GDBProcess *pb = (GDBProcess *) b;
3284 if (pa->pid < pb->pid) {
3285 return -1;
3286 } else if (pa->pid > pb->pid) {
3287 return 1;
3288 } else {
3289 return 0;
3293 static void create_processes(GDBState *s)
3295 object_child_foreach(object_get_root(), find_cpu_clusters, s);
3297 if (s->processes) {
3298 /* Sort by PID */
3299 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
3302 create_default_process(s);
3305 static void cleanup_processes(GDBState *s)
3307 g_free(s->processes);
3308 s->process_num = 0;
3309 s->processes = NULL;
3312 int gdbserver_start(const char *device)
3314 trace_gdbstub_op_start(device);
3316 GDBState *s;
3317 char gdbstub_device_name[128];
3318 Chardev *chr = NULL;
3319 Chardev *mon_chr;
3321 if (!first_cpu) {
3322 error_report("gdbstub: meaningless to attach gdb to a "
3323 "machine without any CPU.");
3324 return -1;
3327 if (!device)
3328 return -1;
3329 if (strcmp(device, "none") != 0) {
3330 if (strstart(device, "tcp:", NULL)) {
3331 /* enforce required TCP attributes */
3332 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3333 "%s,nowait,nodelay,server", device);
3334 device = gdbstub_device_name;
3336 #ifndef _WIN32
3337 else if (strcmp(device, "stdio") == 0) {
3338 struct sigaction act;
3340 memset(&act, 0, sizeof(act));
3341 act.sa_handler = gdb_sigterm_handler;
3342 sigaction(SIGINT, &act, NULL);
3344 #endif
3346 * FIXME: it's a bit weird to allow using a mux chardev here
3347 * and implicitly setup a monitor. We may want to break this.
3349 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
3350 if (!chr)
3351 return -1;
3354 s = gdbserver_state;
3355 if (!s) {
3356 s = g_malloc0(sizeof(GDBState));
3357 gdbserver_state = s;
3359 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3361 /* Initialize a monitor terminal for gdb */
3362 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
3363 NULL, NULL, &error_abort);
3364 monitor_init_hmp(mon_chr, false);
3365 } else {
3366 qemu_chr_fe_deinit(&s->chr, true);
3367 mon_chr = s->mon_chr;
3368 cleanup_processes(s);
3369 memset(s, 0, sizeof(GDBState));
3370 s->mon_chr = mon_chr;
3373 create_processes(s);
3375 if (chr) {
3376 qemu_chr_fe_init(&s->chr, chr, &error_abort);
3377 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
3378 gdb_chr_event, NULL, s, NULL, true);
3380 s->state = chr ? RS_IDLE : RS_INACTIVE;
3381 s->mon_chr = mon_chr;
3382 s->current_syscall_cb = NULL;
3384 return 0;
3387 void gdbserver_cleanup(void)
3389 if (gdbserver_state) {
3390 put_packet(gdbserver_state, "W00");
3394 static void register_types(void)
3396 type_register_static(&char_gdb_type_info);
3399 type_init(register_types);
3400 #endif