fpu/softfloat: re-factor add/sub
[qemu/ar7.git] / include / fpu / softfloat.h
blob693ece0974ce0bd8055bb8eb932b2a231e5777e3
1 /*
2 * QEMU float support
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
85 #define LIT64( a ) a##LL
87 /*----------------------------------------------------------------------------
88 | Software IEC/IEEE floating-point ordering relations
89 *----------------------------------------------------------------------------*/
90 enum {
91 float_relation_less = -1,
92 float_relation_equal = 0,
93 float_relation_greater = 1,
94 float_relation_unordered = 2
97 #include "fpu/softfloat-types.h"
99 static inline void set_float_detect_tininess(int val, float_status *status)
101 status->float_detect_tininess = val;
103 static inline void set_float_rounding_mode(int val, float_status *status)
105 status->float_rounding_mode = val;
107 static inline void set_float_exception_flags(int val, float_status *status)
109 status->float_exception_flags = val;
111 static inline void set_floatx80_rounding_precision(int val,
112 float_status *status)
114 status->floatx80_rounding_precision = val;
116 static inline void set_flush_to_zero(flag val, float_status *status)
118 status->flush_to_zero = val;
120 static inline void set_flush_inputs_to_zero(flag val, float_status *status)
122 status->flush_inputs_to_zero = val;
124 static inline void set_default_nan_mode(flag val, float_status *status)
126 status->default_nan_mode = val;
128 static inline void set_snan_bit_is_one(flag val, float_status *status)
130 status->snan_bit_is_one = val;
132 static inline int get_float_detect_tininess(float_status *status)
134 return status->float_detect_tininess;
136 static inline int get_float_rounding_mode(float_status *status)
138 return status->float_rounding_mode;
140 static inline int get_float_exception_flags(float_status *status)
142 return status->float_exception_flags;
144 static inline int get_floatx80_rounding_precision(float_status *status)
146 return status->floatx80_rounding_precision;
148 static inline flag get_flush_to_zero(float_status *status)
150 return status->flush_to_zero;
152 static inline flag get_flush_inputs_to_zero(float_status *status)
154 return status->flush_inputs_to_zero;
156 static inline flag get_default_nan_mode(float_status *status)
158 return status->default_nan_mode;
161 /*----------------------------------------------------------------------------
162 | Routine to raise any or all of the software IEC/IEEE floating-point
163 | exception flags.
164 *----------------------------------------------------------------------------*/
165 void float_raise(uint8_t flags, float_status *status);
167 /*----------------------------------------------------------------------------
168 | If `a' is denormal and we are in flush-to-zero mode then set the
169 | input-denormal exception and return zero. Otherwise just return the value.
170 *----------------------------------------------------------------------------*/
171 float16 float16_squash_input_denormal(float16 a, float_status *status);
172 float32 float32_squash_input_denormal(float32 a, float_status *status);
173 float64 float64_squash_input_denormal(float64 a, float_status *status);
175 /*----------------------------------------------------------------------------
176 | Options to indicate which negations to perform in float*_muladd()
177 | Using these differs from negating an input or output before calling
178 | the muladd function in that this means that a NaN doesn't have its
179 | sign bit inverted before it is propagated.
180 | We also support halving the result before rounding, as a special
181 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
182 *----------------------------------------------------------------------------*/
183 enum {
184 float_muladd_negate_c = 1,
185 float_muladd_negate_product = 2,
186 float_muladd_negate_result = 4,
187 float_muladd_halve_result = 8,
190 /*----------------------------------------------------------------------------
191 | Software IEC/IEEE integer-to-floating-point conversion routines.
192 *----------------------------------------------------------------------------*/
193 float32 int32_to_float32(int32_t, float_status *status);
194 float64 int32_to_float64(int32_t, float_status *status);
195 float32 uint32_to_float32(uint32_t, float_status *status);
196 float64 uint32_to_float64(uint32_t, float_status *status);
197 floatx80 int32_to_floatx80(int32_t, float_status *status);
198 float128 int32_to_float128(int32_t, float_status *status);
199 float32 int64_to_float32(int64_t, float_status *status);
200 float64 int64_to_float64(int64_t, float_status *status);
201 floatx80 int64_to_floatx80(int64_t, float_status *status);
202 float128 int64_to_float128(int64_t, float_status *status);
203 float32 uint64_to_float32(uint64_t, float_status *status);
204 float64 uint64_to_float64(uint64_t, float_status *status);
205 float128 uint64_to_float128(uint64_t, float_status *status);
207 /* We provide the int16 versions for symmetry of API with float-to-int */
208 static inline float32 int16_to_float32(int16_t v, float_status *status)
210 return int32_to_float32(v, status);
213 static inline float32 uint16_to_float32(uint16_t v, float_status *status)
215 return uint32_to_float32(v, status);
218 static inline float64 int16_to_float64(int16_t v, float_status *status)
220 return int32_to_float64(v, status);
223 static inline float64 uint16_to_float64(uint16_t v, float_status *status)
225 return uint32_to_float64(v, status);
228 /*----------------------------------------------------------------------------
229 | Software half-precision conversion routines.
230 *----------------------------------------------------------------------------*/
231 float16 float32_to_float16(float32, flag, float_status *status);
232 float32 float16_to_float32(float16, flag, float_status *status);
233 float16 float64_to_float16(float64 a, flag ieee, float_status *status);
234 float64 float16_to_float64(float16 a, flag ieee, float_status *status);
236 /*----------------------------------------------------------------------------
237 | Software half-precision operations.
238 *----------------------------------------------------------------------------*/
240 float16 float16_add(float16, float16, float_status *status);
241 float16 float16_sub(float16, float16, float_status *status);
243 int float16_is_quiet_nan(float16, float_status *status);
244 int float16_is_signaling_nan(float16, float_status *status);
245 float16 float16_maybe_silence_nan(float16, float_status *status);
247 static inline int float16_is_any_nan(float16 a)
249 return ((float16_val(a) & ~0x8000) > 0x7c00);
252 static inline int float16_is_neg(float16 a)
254 return float16_val(a) >> 15;
257 static inline int float16_is_infinity(float16 a)
259 return (float16_val(a) & 0x7fff) == 0x7c00;
262 static inline int float16_is_zero(float16 a)
264 return (float16_val(a) & 0x7fff) == 0;
267 static inline int float16_is_zero_or_denormal(float16 a)
269 return (float16_val(a) & 0x7c00) == 0;
272 static inline float16 float16_abs(float16 a)
274 /* Note that abs does *not* handle NaN specially, nor does
275 * it flush denormal inputs to zero.
277 return make_float16(float16_val(a) & 0x7fff);
280 static inline float16 float16_chs(float16 a)
282 /* Note that chs does *not* handle NaN specially, nor does
283 * it flush denormal inputs to zero.
285 return make_float16(float16_val(a) ^ 0x8000);
288 static inline float16 float16_set_sign(float16 a, int sign)
290 return make_float16((float16_val(a) & 0x7fff) | (sign << 15));
293 #define float16_zero make_float16(0)
294 #define float16_one make_float16(0x3c00)
295 #define float16_half make_float16(0x3800)
296 #define float16_infinity make_float16(0x7c00)
298 /*----------------------------------------------------------------------------
299 | The pattern for a default generated half-precision NaN.
300 *----------------------------------------------------------------------------*/
301 float16 float16_default_nan(float_status *status);
303 /*----------------------------------------------------------------------------
304 | Software IEC/IEEE single-precision conversion routines.
305 *----------------------------------------------------------------------------*/
306 int16_t float32_to_int16(float32, float_status *status);
307 uint16_t float32_to_uint16(float32, float_status *status);
308 int16_t float32_to_int16_round_to_zero(float32, float_status *status);
309 uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
310 int32_t float32_to_int32(float32, float_status *status);
311 int32_t float32_to_int32_round_to_zero(float32, float_status *status);
312 uint32_t float32_to_uint32(float32, float_status *status);
313 uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
314 int64_t float32_to_int64(float32, float_status *status);
315 uint64_t float32_to_uint64(float32, float_status *status);
316 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
317 int64_t float32_to_int64_round_to_zero(float32, float_status *status);
318 float64 float32_to_float64(float32, float_status *status);
319 floatx80 float32_to_floatx80(float32, float_status *status);
320 float128 float32_to_float128(float32, float_status *status);
322 /*----------------------------------------------------------------------------
323 | Software IEC/IEEE single-precision operations.
324 *----------------------------------------------------------------------------*/
325 float32 float32_round_to_int(float32, float_status *status);
326 float32 float32_add(float32, float32, float_status *status);
327 float32 float32_sub(float32, float32, float_status *status);
328 float32 float32_mul(float32, float32, float_status *status);
329 float32 float32_div(float32, float32, float_status *status);
330 float32 float32_rem(float32, float32, float_status *status);
331 float32 float32_muladd(float32, float32, float32, int, float_status *status);
332 float32 float32_sqrt(float32, float_status *status);
333 float32 float32_exp2(float32, float_status *status);
334 float32 float32_log2(float32, float_status *status);
335 int float32_eq(float32, float32, float_status *status);
336 int float32_le(float32, float32, float_status *status);
337 int float32_lt(float32, float32, float_status *status);
338 int float32_unordered(float32, float32, float_status *status);
339 int float32_eq_quiet(float32, float32, float_status *status);
340 int float32_le_quiet(float32, float32, float_status *status);
341 int float32_lt_quiet(float32, float32, float_status *status);
342 int float32_unordered_quiet(float32, float32, float_status *status);
343 int float32_compare(float32, float32, float_status *status);
344 int float32_compare_quiet(float32, float32, float_status *status);
345 float32 float32_min(float32, float32, float_status *status);
346 float32 float32_max(float32, float32, float_status *status);
347 float32 float32_minnum(float32, float32, float_status *status);
348 float32 float32_maxnum(float32, float32, float_status *status);
349 float32 float32_minnummag(float32, float32, float_status *status);
350 float32 float32_maxnummag(float32, float32, float_status *status);
351 int float32_is_quiet_nan(float32, float_status *status);
352 int float32_is_signaling_nan(float32, float_status *status);
353 float32 float32_maybe_silence_nan(float32, float_status *status);
354 float32 float32_scalbn(float32, int, float_status *status);
356 static inline float32 float32_abs(float32 a)
358 /* Note that abs does *not* handle NaN specially, nor does
359 * it flush denormal inputs to zero.
361 return make_float32(float32_val(a) & 0x7fffffff);
364 static inline float32 float32_chs(float32 a)
366 /* Note that chs does *not* handle NaN specially, nor does
367 * it flush denormal inputs to zero.
369 return make_float32(float32_val(a) ^ 0x80000000);
372 static inline int float32_is_infinity(float32 a)
374 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
377 static inline int float32_is_neg(float32 a)
379 return float32_val(a) >> 31;
382 static inline int float32_is_zero(float32 a)
384 return (float32_val(a) & 0x7fffffff) == 0;
387 static inline int float32_is_any_nan(float32 a)
389 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
392 static inline int float32_is_zero_or_denormal(float32 a)
394 return (float32_val(a) & 0x7f800000) == 0;
397 static inline float32 float32_set_sign(float32 a, int sign)
399 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
402 #define float32_zero make_float32(0)
403 #define float32_one make_float32(0x3f800000)
404 #define float32_half make_float32(0x3f000000)
405 #define float32_infinity make_float32(0x7f800000)
408 /*----------------------------------------------------------------------------
409 | The pattern for a default generated single-precision NaN.
410 *----------------------------------------------------------------------------*/
411 float32 float32_default_nan(float_status *status);
413 /*----------------------------------------------------------------------------
414 | Software IEC/IEEE double-precision conversion routines.
415 *----------------------------------------------------------------------------*/
416 int16_t float64_to_int16(float64, float_status *status);
417 uint16_t float64_to_uint16(float64, float_status *status);
418 int16_t float64_to_int16_round_to_zero(float64, float_status *status);
419 uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
420 int32_t float64_to_int32(float64, float_status *status);
421 int32_t float64_to_int32_round_to_zero(float64, float_status *status);
422 uint32_t float64_to_uint32(float64, float_status *status);
423 uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
424 int64_t float64_to_int64(float64, float_status *status);
425 int64_t float64_to_int64_round_to_zero(float64, float_status *status);
426 uint64_t float64_to_uint64(float64 a, float_status *status);
427 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
428 float32 float64_to_float32(float64, float_status *status);
429 floatx80 float64_to_floatx80(float64, float_status *status);
430 float128 float64_to_float128(float64, float_status *status);
432 /*----------------------------------------------------------------------------
433 | Software IEC/IEEE double-precision operations.
434 *----------------------------------------------------------------------------*/
435 float64 float64_round_to_int(float64, float_status *status);
436 float64 float64_trunc_to_int(float64, float_status *status);
437 float64 float64_add(float64, float64, float_status *status);
438 float64 float64_sub(float64, float64, float_status *status);
439 float64 float64_mul(float64, float64, float_status *status);
440 float64 float64_div(float64, float64, float_status *status);
441 float64 float64_rem(float64, float64, float_status *status);
442 float64 float64_muladd(float64, float64, float64, int, float_status *status);
443 float64 float64_sqrt(float64, float_status *status);
444 float64 float64_log2(float64, float_status *status);
445 int float64_eq(float64, float64, float_status *status);
446 int float64_le(float64, float64, float_status *status);
447 int float64_lt(float64, float64, float_status *status);
448 int float64_unordered(float64, float64, float_status *status);
449 int float64_eq_quiet(float64, float64, float_status *status);
450 int float64_le_quiet(float64, float64, float_status *status);
451 int float64_lt_quiet(float64, float64, float_status *status);
452 int float64_unordered_quiet(float64, float64, float_status *status);
453 int float64_compare(float64, float64, float_status *status);
454 int float64_compare_quiet(float64, float64, float_status *status);
455 float64 float64_min(float64, float64, float_status *status);
456 float64 float64_max(float64, float64, float_status *status);
457 float64 float64_minnum(float64, float64, float_status *status);
458 float64 float64_maxnum(float64, float64, float_status *status);
459 float64 float64_minnummag(float64, float64, float_status *status);
460 float64 float64_maxnummag(float64, float64, float_status *status);
461 int float64_is_quiet_nan(float64 a, float_status *status);
462 int float64_is_signaling_nan(float64, float_status *status);
463 float64 float64_maybe_silence_nan(float64, float_status *status);
464 float64 float64_scalbn(float64, int, float_status *status);
466 static inline float64 float64_abs(float64 a)
468 /* Note that abs does *not* handle NaN specially, nor does
469 * it flush denormal inputs to zero.
471 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
474 static inline float64 float64_chs(float64 a)
476 /* Note that chs does *not* handle NaN specially, nor does
477 * it flush denormal inputs to zero.
479 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
482 static inline int float64_is_infinity(float64 a)
484 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
487 static inline int float64_is_neg(float64 a)
489 return float64_val(a) >> 63;
492 static inline int float64_is_zero(float64 a)
494 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
497 static inline int float64_is_any_nan(float64 a)
499 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
502 static inline int float64_is_zero_or_denormal(float64 a)
504 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
507 static inline float64 float64_set_sign(float64 a, int sign)
509 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
510 | ((int64_t)sign << 63));
513 #define float64_zero make_float64(0)
514 #define float64_one make_float64(0x3ff0000000000000LL)
515 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
516 #define float64_half make_float64(0x3fe0000000000000LL)
517 #define float64_infinity make_float64(0x7ff0000000000000LL)
519 /*----------------------------------------------------------------------------
520 | The pattern for a default generated double-precision NaN.
521 *----------------------------------------------------------------------------*/
522 float64 float64_default_nan(float_status *status);
524 /*----------------------------------------------------------------------------
525 | Software IEC/IEEE extended double-precision conversion routines.
526 *----------------------------------------------------------------------------*/
527 int32_t floatx80_to_int32(floatx80, float_status *status);
528 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
529 int64_t floatx80_to_int64(floatx80, float_status *status);
530 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
531 float32 floatx80_to_float32(floatx80, float_status *status);
532 float64 floatx80_to_float64(floatx80, float_status *status);
533 float128 floatx80_to_float128(floatx80, float_status *status);
535 /*----------------------------------------------------------------------------
536 | Software IEC/IEEE extended double-precision operations.
537 *----------------------------------------------------------------------------*/
538 floatx80 floatx80_round(floatx80 a, float_status *status);
539 floatx80 floatx80_round_to_int(floatx80, float_status *status);
540 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
541 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
542 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
543 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
544 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
545 floatx80 floatx80_sqrt(floatx80, float_status *status);
546 int floatx80_eq(floatx80, floatx80, float_status *status);
547 int floatx80_le(floatx80, floatx80, float_status *status);
548 int floatx80_lt(floatx80, floatx80, float_status *status);
549 int floatx80_unordered(floatx80, floatx80, float_status *status);
550 int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
551 int floatx80_le_quiet(floatx80, floatx80, float_status *status);
552 int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
553 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
554 int floatx80_compare(floatx80, floatx80, float_status *status);
555 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
556 int floatx80_is_quiet_nan(floatx80, float_status *status);
557 int floatx80_is_signaling_nan(floatx80, float_status *status);
558 floatx80 floatx80_maybe_silence_nan(floatx80, float_status *status);
559 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
561 static inline floatx80 floatx80_abs(floatx80 a)
563 a.high &= 0x7fff;
564 return a;
567 static inline floatx80 floatx80_chs(floatx80 a)
569 a.high ^= 0x8000;
570 return a;
573 static inline int floatx80_is_infinity(floatx80 a)
575 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
578 static inline int floatx80_is_neg(floatx80 a)
580 return a.high >> 15;
583 static inline int floatx80_is_zero(floatx80 a)
585 return (a.high & 0x7fff) == 0 && a.low == 0;
588 static inline int floatx80_is_zero_or_denormal(floatx80 a)
590 return (a.high & 0x7fff) == 0;
593 static inline int floatx80_is_any_nan(floatx80 a)
595 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
598 /*----------------------------------------------------------------------------
599 | Return whether the given value is an invalid floatx80 encoding.
600 | Invalid floatx80 encodings arise when the integer bit is not set, but
601 | the exponent is not zero. The only times the integer bit is permitted to
602 | be zero is in subnormal numbers and the value zero.
603 | This includes what the Intel software developer's manual calls pseudo-NaNs,
604 | pseudo-infinities and un-normal numbers. It does not include
605 | pseudo-denormals, which must still be correctly handled as inputs even
606 | if they are never generated as outputs.
607 *----------------------------------------------------------------------------*/
608 static inline bool floatx80_invalid_encoding(floatx80 a)
610 return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
613 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
614 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
615 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
616 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
617 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
618 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
620 /*----------------------------------------------------------------------------
621 | The pattern for a default generated extended double-precision NaN.
622 *----------------------------------------------------------------------------*/
623 floatx80 floatx80_default_nan(float_status *status);
625 /*----------------------------------------------------------------------------
626 | Software IEC/IEEE quadruple-precision conversion routines.
627 *----------------------------------------------------------------------------*/
628 int32_t float128_to_int32(float128, float_status *status);
629 int32_t float128_to_int32_round_to_zero(float128, float_status *status);
630 int64_t float128_to_int64(float128, float_status *status);
631 int64_t float128_to_int64_round_to_zero(float128, float_status *status);
632 uint64_t float128_to_uint64(float128, float_status *status);
633 uint64_t float128_to_uint64_round_to_zero(float128, float_status *status);
634 uint32_t float128_to_uint32_round_to_zero(float128, float_status *status);
635 float32 float128_to_float32(float128, float_status *status);
636 float64 float128_to_float64(float128, float_status *status);
637 floatx80 float128_to_floatx80(float128, float_status *status);
639 /*----------------------------------------------------------------------------
640 | Software IEC/IEEE quadruple-precision operations.
641 *----------------------------------------------------------------------------*/
642 float128 float128_round_to_int(float128, float_status *status);
643 float128 float128_add(float128, float128, float_status *status);
644 float128 float128_sub(float128, float128, float_status *status);
645 float128 float128_mul(float128, float128, float_status *status);
646 float128 float128_div(float128, float128, float_status *status);
647 float128 float128_rem(float128, float128, float_status *status);
648 float128 float128_sqrt(float128, float_status *status);
649 int float128_eq(float128, float128, float_status *status);
650 int float128_le(float128, float128, float_status *status);
651 int float128_lt(float128, float128, float_status *status);
652 int float128_unordered(float128, float128, float_status *status);
653 int float128_eq_quiet(float128, float128, float_status *status);
654 int float128_le_quiet(float128, float128, float_status *status);
655 int float128_lt_quiet(float128, float128, float_status *status);
656 int float128_unordered_quiet(float128, float128, float_status *status);
657 int float128_compare(float128, float128, float_status *status);
658 int float128_compare_quiet(float128, float128, float_status *status);
659 int float128_is_quiet_nan(float128, float_status *status);
660 int float128_is_signaling_nan(float128, float_status *status);
661 float128 float128_maybe_silence_nan(float128, float_status *status);
662 float128 float128_scalbn(float128, int, float_status *status);
664 static inline float128 float128_abs(float128 a)
666 a.high &= 0x7fffffffffffffffLL;
667 return a;
670 static inline float128 float128_chs(float128 a)
672 a.high ^= 0x8000000000000000LL;
673 return a;
676 static inline int float128_is_infinity(float128 a)
678 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
681 static inline int float128_is_neg(float128 a)
683 return a.high >> 63;
686 static inline int float128_is_zero(float128 a)
688 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
691 static inline int float128_is_zero_or_denormal(float128 a)
693 return (a.high & 0x7fff000000000000LL) == 0;
696 static inline int float128_is_any_nan(float128 a)
698 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
699 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
702 #define float128_zero make_float128(0, 0)
704 /*----------------------------------------------------------------------------
705 | The pattern for a default generated quadruple-precision NaN.
706 *----------------------------------------------------------------------------*/
707 float128 float128_default_nan(float_status *status);
709 #endif /* SOFTFLOAT_H */