xlnx-zynqmp: Connect the sysbus AHCI to ZynqMP
[qemu/ar7.git] / disas / libvixl / a64 / instructions-a64.cc
blobb0918868386c0461e70282863c511354cd356947
1 // Copyright 2013, ARM Limited
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #include "a64/instructions-a64.h"
28 #include "a64/assembler-a64.h"
30 namespace vixl {
33 // Floating-point infinity values.
34 const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
35 const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
36 const double kFP64PositiveInfinity =
37 rawbits_to_double(UINT64_C(0x7ff0000000000000));
38 const double kFP64NegativeInfinity =
39 rawbits_to_double(UINT64_C(0xfff0000000000000));
42 // The default NaN values (for FPCR.DN=1).
43 const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000));
44 const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
47 static uint64_t RotateRight(uint64_t value,
48 unsigned int rotate,
49 unsigned int width) {
50 VIXL_ASSERT(width <= 64);
51 rotate &= 63;
52 return ((value & ((UINT64_C(1) << rotate) - 1)) <<
53 (width - rotate)) | (value >> rotate);
57 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
58 uint64_t value,
59 unsigned width) {
60 VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
61 (width == 32));
62 VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
63 uint64_t result = value & ((UINT64_C(1) << width) - 1);
64 for (unsigned i = width; i < reg_size; i *= 2) {
65 result |= (result << i);
67 return result;
71 bool Instruction::IsLoad() const {
72 if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
73 return false;
76 if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
77 return Mask(LoadStorePairLBit) != 0;
78 } else {
79 LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
80 switch (op) {
81 case LDRB_w:
82 case LDRH_w:
83 case LDR_w:
84 case LDR_x:
85 case LDRSB_w:
86 case LDRSB_x:
87 case LDRSH_w:
88 case LDRSH_x:
89 case LDRSW_x:
90 case LDR_s:
91 case LDR_d: return true;
92 default: return false;
98 bool Instruction::IsStore() const {
99 if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
100 return false;
103 if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
104 return Mask(LoadStorePairLBit) == 0;
105 } else {
106 LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
107 switch (op) {
108 case STRB_w:
109 case STRH_w:
110 case STR_w:
111 case STR_x:
112 case STR_s:
113 case STR_d: return true;
114 default: return false;
120 // Logical immediates can't encode zero, so a return value of zero is used to
121 // indicate a failure case. Specifically, where the constraints on imm_s are
122 // not met.
123 uint64_t Instruction::ImmLogical() const {
124 unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
125 int64_t n = BitN();
126 int64_t imm_s = ImmSetBits();
127 int64_t imm_r = ImmRotate();
129 // An integer is constructed from the n, imm_s and imm_r bits according to
130 // the following table:
132 // N imms immr size S R
133 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
134 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
135 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
136 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
137 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
138 // 0 11110s xxxxxr 2 UInt(s) UInt(r)
139 // (s bits must not be all set)
141 // A pattern is constructed of size bits, where the least significant S+1
142 // bits are set. The pattern is rotated right by R, and repeated across a
143 // 32 or 64-bit value, depending on destination register width.
146 if (n == 1) {
147 if (imm_s == 0x3F) {
148 return 0;
150 uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
151 return RotateRight(bits, imm_r, 64);
152 } else {
153 if ((imm_s >> 1) == 0x1F) {
154 return 0;
156 for (int width = 0x20; width >= 0x2; width >>= 1) {
157 if ((imm_s & width) == 0) {
158 int mask = width - 1;
159 if ((imm_s & mask) == mask) {
160 return 0;
162 uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
163 return RepeatBitsAcrossReg(reg_size,
164 RotateRight(bits, imm_r & mask, width),
165 width);
169 VIXL_UNREACHABLE();
170 return 0;
174 float Instruction::ImmFP32() const {
175 // ImmFP: abcdefgh (8 bits)
176 // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
177 // where B is b ^ 1
178 uint32_t bits = ImmFP();
179 uint32_t bit7 = (bits >> 7) & 0x1;
180 uint32_t bit6 = (bits >> 6) & 0x1;
181 uint32_t bit5_to_0 = bits & 0x3f;
182 uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
184 return rawbits_to_float(result);
188 double Instruction::ImmFP64() const {
189 // ImmFP: abcdefgh (8 bits)
190 // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
191 // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
192 // where B is b ^ 1
193 uint32_t bits = ImmFP();
194 uint64_t bit7 = (bits >> 7) & 0x1;
195 uint64_t bit6 = (bits >> 6) & 0x1;
196 uint64_t bit5_to_0 = bits & 0x3f;
197 uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
199 return rawbits_to_double(result);
203 LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
204 switch (op) {
205 case STP_x:
206 case LDP_x:
207 case STP_d:
208 case LDP_d: return LSDoubleWord;
209 default: return LSWord;
214 const Instruction* Instruction::ImmPCOffsetTarget() const {
215 const Instruction * base = this;
216 ptrdiff_t offset;
217 if (IsPCRelAddressing()) {
218 // ADR and ADRP.
219 offset = ImmPCRel();
220 if (Mask(PCRelAddressingMask) == ADRP) {
221 base = AlignDown(base, kPageSize);
222 offset *= kPageSize;
223 } else {
224 VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
226 } else {
227 // All PC-relative branches.
228 VIXL_ASSERT(BranchType() != UnknownBranchType);
229 // Relative branch offsets are instruction-size-aligned.
230 offset = ImmBranch() << kInstructionSizeLog2;
232 return base + offset;
236 inline int Instruction::ImmBranch() const {
237 switch (BranchType()) {
238 case CondBranchType: return ImmCondBranch();
239 case UncondBranchType: return ImmUncondBranch();
240 case CompareBranchType: return ImmCmpBranch();
241 case TestBranchType: return ImmTestBranch();
242 default: VIXL_UNREACHABLE();
244 return 0;
248 void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
249 if (IsPCRelAddressing()) {
250 SetPCRelImmTarget(target);
251 } else {
252 SetBranchImmTarget(target);
257 void Instruction::SetPCRelImmTarget(const Instruction* target) {
258 int32_t imm21;
259 if ((Mask(PCRelAddressingMask) == ADR)) {
260 imm21 = target - this;
261 } else {
262 VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
263 uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
264 uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
265 imm21 = target_page - this_page;
267 Instr imm = Assembler::ImmPCRelAddress(imm21);
269 SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
273 void Instruction::SetBranchImmTarget(const Instruction* target) {
274 VIXL_ASSERT(((target - this) & 3) == 0);
275 Instr branch_imm = 0;
276 uint32_t imm_mask = 0;
277 int offset = (target - this) >> kInstructionSizeLog2;
278 switch (BranchType()) {
279 case CondBranchType: {
280 branch_imm = Assembler::ImmCondBranch(offset);
281 imm_mask = ImmCondBranch_mask;
282 break;
284 case UncondBranchType: {
285 branch_imm = Assembler::ImmUncondBranch(offset);
286 imm_mask = ImmUncondBranch_mask;
287 break;
289 case CompareBranchType: {
290 branch_imm = Assembler::ImmCmpBranch(offset);
291 imm_mask = ImmCmpBranch_mask;
292 break;
294 case TestBranchType: {
295 branch_imm = Assembler::ImmTestBranch(offset);
296 imm_mask = ImmTestBranch_mask;
297 break;
299 default: VIXL_UNREACHABLE();
301 SetInstructionBits(Mask(~imm_mask) | branch_imm);
305 void Instruction::SetImmLLiteral(const Instruction* source) {
306 VIXL_ASSERT(IsWordAligned(source));
307 ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
308 Instr imm = Assembler::ImmLLiteral(offset);
309 Instr mask = ImmLLiteral_mask;
311 SetInstructionBits(Mask(~mask) | imm);
313 } // namespace vixl