target/arm/cpu64: max cpu: Support sve properties with KVM
[qemu/ar7.git] / target / arm / kvm64.c
blobc93bbee425ae91debaf28a7e857bccd5d984d88c
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
19 #include "qemu-common.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/kvm.h"
27 #include "sysemu/kvm_int.h"
28 #include "kvm_arm.h"
29 #include "hw/boards.h"
30 #include "internals.h"
32 static bool have_guest_debug;
35 * Although the ARM implementation of hardware assisted debugging
36 * allows for different breakpoints per-core, the current GDB
37 * interface treats them as a global pool of registers (which seems to
38 * be the case for x86, ppc and s390). As a result we store one copy
39 * of registers which is used for all active cores.
41 * Write access is serialised by virtue of the GDB protocol which
42 * updates things. Read access (i.e. when the values are copied to the
43 * vCPU) is also gated by GDB's run control.
45 * This is not unreasonable as most of the time debugging kernels you
46 * never know which core will eventually execute your function.
49 typedef struct {
50 uint64_t bcr;
51 uint64_t bvr;
52 } HWBreakpoint;
54 /* The watchpoint registers can cover more area than the requested
55 * watchpoint so we need to store the additional information
56 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
57 * when the watchpoint is hit.
59 typedef struct {
60 uint64_t wcr;
61 uint64_t wvr;
62 CPUWatchpoint details;
63 } HWWatchpoint;
65 /* Maximum and current break/watch point counts */
66 int max_hw_bps, max_hw_wps;
67 GArray *hw_breakpoints, *hw_watchpoints;
69 #define cur_hw_wps (hw_watchpoints->len)
70 #define cur_hw_bps (hw_breakpoints->len)
71 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
72 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
74 /**
75 * kvm_arm_init_debug() - check for guest debug capabilities
76 * @cs: CPUState
78 * kvm_check_extension returns the number of debug registers we have
79 * or 0 if we have none.
82 static void kvm_arm_init_debug(CPUState *cs)
84 have_guest_debug = kvm_check_extension(cs->kvm_state,
85 KVM_CAP_SET_GUEST_DEBUG);
87 max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
88 hw_watchpoints = g_array_sized_new(true, true,
89 sizeof(HWWatchpoint), max_hw_wps);
91 max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
92 hw_breakpoints = g_array_sized_new(true, true,
93 sizeof(HWBreakpoint), max_hw_bps);
94 return;
97 /**
98 * insert_hw_breakpoint()
99 * @addr: address of breakpoint
101 * See ARM ARM D2.9.1 for details but here we are only going to create
102 * simple un-linked breakpoints (i.e. we don't chain breakpoints
103 * together to match address and context or vmid). The hardware is
104 * capable of fancier matching but that will require exposing that
105 * fanciness to GDB's interface
107 * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
109 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
110 * +------+------+-------+-----+----+------+-----+------+-----+---+
111 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
112 * +------+------+-------+-----+----+------+-----+------+-----+---+
114 * BT: Breakpoint type (0 = unlinked address match)
115 * LBN: Linked BP number (0 = unused)
116 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
117 * BAS: Byte Address Select (RES1 for AArch64)
118 * E: Enable bit
120 * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
122 * 63 53 52 49 48 2 1 0
123 * +------+-----------+----------+-----+
124 * | RESS | VA[52:49] | VA[48:2] | 0 0 |
125 * +------+-----------+----------+-----+
127 * Depending on the addressing mode bits the top bits of the register
128 * are a sign extension of the highest applicable VA bit. Some
129 * versions of GDB don't do it correctly so we ensure they are correct
130 * here so future PC comparisons will work properly.
133 static int insert_hw_breakpoint(target_ulong addr)
135 HWBreakpoint brk = {
136 .bcr = 0x1, /* BCR E=1, enable */
137 .bvr = sextract64(addr, 0, 53)
140 if (cur_hw_bps >= max_hw_bps) {
141 return -ENOBUFS;
144 brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
145 brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
147 g_array_append_val(hw_breakpoints, brk);
149 return 0;
153 * delete_hw_breakpoint()
154 * @pc: address of breakpoint
156 * Delete a breakpoint and shuffle any above down
159 static int delete_hw_breakpoint(target_ulong pc)
161 int i;
162 for (i = 0; i < hw_breakpoints->len; i++) {
163 HWBreakpoint *brk = get_hw_bp(i);
164 if (brk->bvr == pc) {
165 g_array_remove_index(hw_breakpoints, i);
166 return 0;
169 return -ENOENT;
173 * insert_hw_watchpoint()
174 * @addr: address of watch point
175 * @len: size of area
176 * @type: type of watch point
178 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
179 * stuff if we want to. The watch points can be linked with the break
180 * points above to make them context aware. However for simplicity
181 * currently we only deal with simple read/write watch points.
183 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
185 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
186 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
187 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
188 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
190 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
191 * WT: 0 - unlinked, 1 - linked (not currently used)
192 * LBN: Linked BP number (not currently used)
193 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
194 * BAS: Byte Address Select
195 * LSC: Load/Store control (01: load, 10: store, 11: both)
196 * E: Enable
198 * The bottom 2 bits of the value register are masked. Therefore to
199 * break on any sizes smaller than an unaligned word you need to set
200 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
201 * need to ensure you mask the address as required and set BAS=0xff
204 static int insert_hw_watchpoint(target_ulong addr,
205 target_ulong len, int type)
207 HWWatchpoint wp = {
208 .wcr = 1, /* E=1, enable */
209 .wvr = addr & (~0x7ULL),
210 .details = { .vaddr = addr, .len = len }
213 if (cur_hw_wps >= max_hw_wps) {
214 return -ENOBUFS;
218 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
219 * valid whether EL3 is implemented or not
221 wp.wcr = deposit32(wp.wcr, 1, 2, 3);
223 switch (type) {
224 case GDB_WATCHPOINT_READ:
225 wp.wcr = deposit32(wp.wcr, 3, 2, 1);
226 wp.details.flags = BP_MEM_READ;
227 break;
228 case GDB_WATCHPOINT_WRITE:
229 wp.wcr = deposit32(wp.wcr, 3, 2, 2);
230 wp.details.flags = BP_MEM_WRITE;
231 break;
232 case GDB_WATCHPOINT_ACCESS:
233 wp.wcr = deposit32(wp.wcr, 3, 2, 3);
234 wp.details.flags = BP_MEM_ACCESS;
235 break;
236 default:
237 g_assert_not_reached();
238 break;
240 if (len <= 8) {
241 /* we align the address and set the bits in BAS */
242 int off = addr & 0x7;
243 int bas = (1 << len) - 1;
245 wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
246 } else {
247 /* For ranges above 8 bytes we need to be a power of 2 */
248 if (is_power_of_2(len)) {
249 int bits = ctz64(len);
251 wp.wvr &= ~((1 << bits) - 1);
252 wp.wcr = deposit32(wp.wcr, 24, 4, bits);
253 wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
254 } else {
255 return -ENOBUFS;
259 g_array_append_val(hw_watchpoints, wp);
260 return 0;
264 static bool check_watchpoint_in_range(int i, target_ulong addr)
266 HWWatchpoint *wp = get_hw_wp(i);
267 uint64_t addr_top, addr_bottom = wp->wvr;
268 int bas = extract32(wp->wcr, 5, 8);
269 int mask = extract32(wp->wcr, 24, 4);
271 if (mask) {
272 addr_top = addr_bottom + (1 << mask);
273 } else {
274 /* BAS must be contiguous but can offset against the base
275 * address in DBGWVR */
276 addr_bottom = addr_bottom + ctz32(bas);
277 addr_top = addr_bottom + clo32(bas);
280 if (addr >= addr_bottom && addr <= addr_top) {
281 return true;
284 return false;
288 * delete_hw_watchpoint()
289 * @addr: address of breakpoint
291 * Delete a breakpoint and shuffle any above down
294 static int delete_hw_watchpoint(target_ulong addr,
295 target_ulong len, int type)
297 int i;
298 for (i = 0; i < cur_hw_wps; i++) {
299 if (check_watchpoint_in_range(i, addr)) {
300 g_array_remove_index(hw_watchpoints, i);
301 return 0;
304 return -ENOENT;
308 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
309 target_ulong len, int type)
311 switch (type) {
312 case GDB_BREAKPOINT_HW:
313 return insert_hw_breakpoint(addr);
314 break;
315 case GDB_WATCHPOINT_READ:
316 case GDB_WATCHPOINT_WRITE:
317 case GDB_WATCHPOINT_ACCESS:
318 return insert_hw_watchpoint(addr, len, type);
319 default:
320 return -ENOSYS;
324 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
325 target_ulong len, int type)
327 switch (type) {
328 case GDB_BREAKPOINT_HW:
329 return delete_hw_breakpoint(addr);
330 break;
331 case GDB_WATCHPOINT_READ:
332 case GDB_WATCHPOINT_WRITE:
333 case GDB_WATCHPOINT_ACCESS:
334 return delete_hw_watchpoint(addr, len, type);
335 default:
336 return -ENOSYS;
341 void kvm_arch_remove_all_hw_breakpoints(void)
343 if (cur_hw_wps > 0) {
344 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
346 if (cur_hw_bps > 0) {
347 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
351 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
353 int i;
354 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
356 for (i = 0; i < max_hw_wps; i++) {
357 HWWatchpoint *wp = get_hw_wp(i);
358 ptr->dbg_wcr[i] = wp->wcr;
359 ptr->dbg_wvr[i] = wp->wvr;
361 for (i = 0; i < max_hw_bps; i++) {
362 HWBreakpoint *bp = get_hw_bp(i);
363 ptr->dbg_bcr[i] = bp->bcr;
364 ptr->dbg_bvr[i] = bp->bvr;
368 bool kvm_arm_hw_debug_active(CPUState *cs)
370 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
373 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
375 int i;
377 for (i = 0; i < cur_hw_bps; i++) {
378 HWBreakpoint *bp = get_hw_bp(i);
379 if (bp->bvr == pc) {
380 return true;
383 return false;
386 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
388 int i;
390 for (i = 0; i < cur_hw_wps; i++) {
391 if (check_watchpoint_in_range(i, addr)) {
392 return &get_hw_wp(i)->details;
395 return NULL;
398 static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
400 int err;
402 err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
403 if (err != 0) {
404 error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
405 return false;
408 err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
409 if (err != 0) {
410 error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
411 return false;
414 return true;
417 void kvm_arm_pmu_init(CPUState *cs)
419 struct kvm_device_attr attr = {
420 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
421 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
424 if (!ARM_CPU(cs)->has_pmu) {
425 return;
427 if (!kvm_arm_pmu_set_attr(cs, &attr)) {
428 error_report("failed to init PMU");
429 abort();
433 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
435 struct kvm_device_attr attr = {
436 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
437 .addr = (intptr_t)&irq,
438 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
441 if (!ARM_CPU(cs)->has_pmu) {
442 return;
444 if (!kvm_arm_pmu_set_attr(cs, &attr)) {
445 error_report("failed to set irq for PMU");
446 abort();
450 static inline void set_feature(uint64_t *features, int feature)
452 *features |= 1ULL << feature;
455 static inline void unset_feature(uint64_t *features, int feature)
457 *features &= ~(1ULL << feature);
460 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
462 uint64_t ret;
463 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
464 int err;
466 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
467 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
468 if (err < 0) {
469 return -1;
471 *pret = ret;
472 return 0;
475 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
477 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
479 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
480 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
483 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
485 /* Identify the feature bits corresponding to the host CPU, and
486 * fill out the ARMHostCPUClass fields accordingly. To do this
487 * we have to create a scratch VM, create a single CPU inside it,
488 * and then query that CPU for the relevant ID registers.
490 int fdarray[3];
491 uint64_t features = 0;
492 int err;
494 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
495 * we know these will only support creating one kind of guest CPU,
496 * which is its preferred CPU type. Fortunately these old kernels
497 * support only a very limited number of CPUs.
499 static const uint32_t cpus_to_try[] = {
500 KVM_ARM_TARGET_AEM_V8,
501 KVM_ARM_TARGET_FOUNDATION_V8,
502 KVM_ARM_TARGET_CORTEX_A57,
503 QEMU_KVM_ARM_TARGET_NONE
506 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
507 * to use the preferred target
509 struct kvm_vcpu_init init = { .target = -1, };
511 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
512 return false;
515 ahcf->target = init.target;
516 ahcf->dtb_compatible = "arm,arm-v8";
518 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
519 ARM64_SYS_REG(3, 0, 0, 4, 0));
520 if (unlikely(err < 0)) {
522 * Before v4.15, the kernel only exposed a limited number of system
523 * registers, not including any of the interesting AArch64 ID regs.
524 * For the most part we could leave these fields as zero with minimal
525 * effect, since this does not affect the values seen by the guest.
527 * However, it could cause problems down the line for QEMU,
528 * so provide a minimal v8.0 default.
530 * ??? Could read MIDR and use knowledge from cpu64.c.
531 * ??? Could map a page of memory into our temp guest and
532 * run the tiniest of hand-crafted kernels to extract
533 * the values seen by the guest.
534 * ??? Either of these sounds like too much effort just
535 * to work around running a modern host kernel.
537 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
538 err = 0;
539 } else {
540 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
541 ARM64_SYS_REG(3, 0, 0, 4, 1));
542 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
543 ARM64_SYS_REG(3, 0, 0, 6, 0));
544 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
545 ARM64_SYS_REG(3, 0, 0, 6, 1));
546 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
547 ARM64_SYS_REG(3, 0, 0, 7, 0));
548 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
549 ARM64_SYS_REG(3, 0, 0, 7, 1));
552 * Note that if AArch32 support is not present in the host,
553 * the AArch32 sysregs are present to be read, but will
554 * return UNKNOWN values. This is neither better nor worse
555 * than skipping the reads and leaving 0, as we must avoid
556 * considering the values in every case.
558 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
559 ARM64_SYS_REG(3, 0, 0, 2, 0));
560 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
561 ARM64_SYS_REG(3, 0, 0, 2, 1));
562 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
563 ARM64_SYS_REG(3, 0, 0, 2, 2));
564 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
565 ARM64_SYS_REG(3, 0, 0, 2, 3));
566 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
567 ARM64_SYS_REG(3, 0, 0, 2, 4));
568 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
569 ARM64_SYS_REG(3, 0, 0, 2, 5));
570 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
571 ARM64_SYS_REG(3, 0, 0, 2, 7));
573 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
574 ARM64_SYS_REG(3, 0, 0, 3, 0));
575 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
576 ARM64_SYS_REG(3, 0, 0, 3, 1));
577 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
578 ARM64_SYS_REG(3, 0, 0, 3, 2));
581 kvm_arm_destroy_scratch_host_vcpu(fdarray);
583 if (err < 0) {
584 return false;
587 /* We can assume any KVM supporting CPU is at least a v8
588 * with VFPv4+Neon; this in turn implies most of the other
589 * feature bits.
591 set_feature(&features, ARM_FEATURE_V8);
592 set_feature(&features, ARM_FEATURE_VFP4);
593 set_feature(&features, ARM_FEATURE_NEON);
594 set_feature(&features, ARM_FEATURE_AARCH64);
595 set_feature(&features, ARM_FEATURE_PMU);
597 ahcf->features = features;
599 return true;
602 bool kvm_arm_aarch32_supported(CPUState *cpu)
604 KVMState *s = KVM_STATE(current_machine->accelerator);
606 return kvm_check_extension(s, KVM_CAP_ARM_EL1_32BIT);
609 bool kvm_arm_sve_supported(CPUState *cpu)
611 KVMState *s = KVM_STATE(current_machine->accelerator);
613 return kvm_check_extension(s, KVM_CAP_ARM_SVE);
616 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
618 void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
620 /* Only call this function if kvm_arm_sve_supported() returns true. */
621 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
622 static bool probed;
623 uint32_t vq = 0;
624 int i, j;
626 bitmap_clear(map, 0, ARM_MAX_VQ);
629 * KVM ensures all host CPUs support the same set of vector lengths.
630 * So we only need to create the scratch VCPUs once and then cache
631 * the results.
633 if (!probed) {
634 struct kvm_vcpu_init init = {
635 .target = -1,
636 .features[0] = (1 << KVM_ARM_VCPU_SVE),
638 struct kvm_one_reg reg = {
639 .id = KVM_REG_ARM64_SVE_VLS,
640 .addr = (uint64_t)&vls[0],
642 int fdarray[3], ret;
644 probed = true;
646 if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
647 error_report("failed to create scratch VCPU with SVE enabled");
648 abort();
650 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
651 kvm_arm_destroy_scratch_host_vcpu(fdarray);
652 if (ret) {
653 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
654 strerror(errno));
655 abort();
658 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
659 if (vls[i]) {
660 vq = 64 - clz64(vls[i]) + i * 64;
661 break;
664 if (vq > ARM_MAX_VQ) {
665 warn_report("KVM supports vector lengths larger than "
666 "QEMU can enable");
670 for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) {
671 if (!vls[i]) {
672 continue;
674 for (j = 1; j <= 64; ++j) {
675 vq = j + i * 64;
676 if (vq > ARM_MAX_VQ) {
677 return;
679 if (vls[i] & (1UL << (j - 1))) {
680 set_bit(vq - 1, map);
686 static int kvm_arm_sve_set_vls(CPUState *cs)
688 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0};
689 struct kvm_one_reg reg = {
690 .id = KVM_REG_ARM64_SVE_VLS,
691 .addr = (uint64_t)&vls[0],
693 ARMCPU *cpu = ARM_CPU(cs);
694 uint32_t vq;
695 int i, j;
697 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
699 for (vq = 1; vq <= cpu->sve_max_vq; ++vq) {
700 if (test_bit(vq - 1, cpu->sve_vq_map)) {
701 i = (vq - 1) / 64;
702 j = (vq - 1) % 64;
703 vls[i] |= 1UL << j;
707 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
710 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
712 int kvm_arch_init_vcpu(CPUState *cs)
714 int ret;
715 uint64_t mpidr;
716 ARMCPU *cpu = ARM_CPU(cs);
717 CPUARMState *env = &cpu->env;
719 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
720 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
721 error_report("KVM is not supported for this guest CPU type");
722 return -EINVAL;
725 /* Determine init features for this CPU */
726 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
727 if (cpu->start_powered_off) {
728 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
730 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
731 cpu->psci_version = 2;
732 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
734 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
735 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
737 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
738 cpu->has_pmu = false;
740 if (cpu->has_pmu) {
741 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
742 } else {
743 unset_feature(&env->features, ARM_FEATURE_PMU);
745 if (cpu_isar_feature(aa64_sve, cpu)) {
746 assert(kvm_arm_sve_supported(cs));
747 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
750 /* Do KVM_ARM_VCPU_INIT ioctl */
751 ret = kvm_arm_vcpu_init(cs);
752 if (ret) {
753 return ret;
756 if (cpu_isar_feature(aa64_sve, cpu)) {
757 ret = kvm_arm_sve_set_vls(cs);
758 if (ret) {
759 return ret;
761 ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
762 if (ret) {
763 return ret;
768 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
769 * Currently KVM has its own idea about MPIDR assignment, so we
770 * override our defaults with what we get from KVM.
772 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
773 if (ret) {
774 return ret;
776 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
778 kvm_arm_init_debug(cs);
780 /* Check whether user space can specify guest syndrome value */
781 kvm_arm_init_serror_injection(cs);
783 return kvm_arm_init_cpreg_list(cpu);
786 int kvm_arch_destroy_vcpu(CPUState *cs)
788 return 0;
791 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
793 /* Return true if the regidx is a register we should synchronize
794 * via the cpreg_tuples array (ie is not a core or sve reg that
795 * we sync by hand in kvm_arch_get/put_registers())
797 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
798 case KVM_REG_ARM_CORE:
799 case KVM_REG_ARM64_SVE:
800 return false;
801 default:
802 return true;
806 typedef struct CPRegStateLevel {
807 uint64_t regidx;
808 int level;
809 } CPRegStateLevel;
811 /* All system registers not listed in the following table are assumed to be
812 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
813 * often, you must add it to this table with a state of either
814 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
816 static const CPRegStateLevel non_runtime_cpregs[] = {
817 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
820 int kvm_arm_cpreg_level(uint64_t regidx)
822 int i;
824 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
825 const CPRegStateLevel *l = &non_runtime_cpregs[i];
826 if (l->regidx == regidx) {
827 return l->level;
831 return KVM_PUT_RUNTIME_STATE;
834 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
835 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
837 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
838 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
840 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
841 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
843 static int kvm_arch_put_fpsimd(CPUState *cs)
845 CPUARMState *env = &ARM_CPU(cs)->env;
846 struct kvm_one_reg reg;
847 int i, ret;
849 for (i = 0; i < 32; i++) {
850 uint64_t *q = aa64_vfp_qreg(env, i);
851 #ifdef HOST_WORDS_BIGENDIAN
852 uint64_t fp_val[2] = { q[1], q[0] };
853 reg.addr = (uintptr_t)fp_val;
854 #else
855 reg.addr = (uintptr_t)q;
856 #endif
857 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
858 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
859 if (ret) {
860 return ret;
864 return 0;
868 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
869 * The byte at offset i from the start of the in-memory representation contains
870 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
871 * lowest offsets are stored in the lowest memory addresses, then that nearly
872 * matches QEMU's representation, which is to use an array of host-endian
873 * uint64_t's, where the lower offsets are at the lower indices. To complete
874 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
876 static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
878 #ifdef HOST_WORDS_BIGENDIAN
879 int i;
881 for (i = 0; i < nr; ++i) {
882 dst[i] = bswap64(src[i]);
885 return dst;
886 #else
887 return src;
888 #endif
892 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
893 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
894 * code the slice index to zero for now as it's unlikely we'll need more than
895 * one slice for quite some time.
897 static int kvm_arch_put_sve(CPUState *cs)
899 ARMCPU *cpu = ARM_CPU(cs);
900 CPUARMState *env = &cpu->env;
901 uint64_t tmp[ARM_MAX_VQ * 2];
902 uint64_t *r;
903 struct kvm_one_reg reg;
904 int n, ret;
906 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
907 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
908 reg.addr = (uintptr_t)r;
909 reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
910 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
911 if (ret) {
912 return ret;
916 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
917 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
918 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
919 reg.addr = (uintptr_t)r;
920 reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
921 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
922 if (ret) {
923 return ret;
927 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
928 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
929 reg.addr = (uintptr_t)r;
930 reg.id = KVM_REG_ARM64_SVE_FFR(0);
931 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
932 if (ret) {
933 return ret;
936 return 0;
939 int kvm_arch_put_registers(CPUState *cs, int level)
941 struct kvm_one_reg reg;
942 uint64_t val;
943 uint32_t fpr;
944 int i, ret;
945 unsigned int el;
947 ARMCPU *cpu = ARM_CPU(cs);
948 CPUARMState *env = &cpu->env;
950 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
951 * AArch64 registers before pushing them out to 64-bit KVM.
953 if (!is_a64(env)) {
954 aarch64_sync_32_to_64(env);
957 for (i = 0; i < 31; i++) {
958 reg.id = AARCH64_CORE_REG(regs.regs[i]);
959 reg.addr = (uintptr_t) &env->xregs[i];
960 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
961 if (ret) {
962 return ret;
966 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
967 * QEMU side we keep the current SP in xregs[31] as well.
969 aarch64_save_sp(env, 1);
971 reg.id = AARCH64_CORE_REG(regs.sp);
972 reg.addr = (uintptr_t) &env->sp_el[0];
973 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
974 if (ret) {
975 return ret;
978 reg.id = AARCH64_CORE_REG(sp_el1);
979 reg.addr = (uintptr_t) &env->sp_el[1];
980 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
981 if (ret) {
982 return ret;
985 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
986 if (is_a64(env)) {
987 val = pstate_read(env);
988 } else {
989 val = cpsr_read(env);
991 reg.id = AARCH64_CORE_REG(regs.pstate);
992 reg.addr = (uintptr_t) &val;
993 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
994 if (ret) {
995 return ret;
998 reg.id = AARCH64_CORE_REG(regs.pc);
999 reg.addr = (uintptr_t) &env->pc;
1000 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1001 if (ret) {
1002 return ret;
1005 reg.id = AARCH64_CORE_REG(elr_el1);
1006 reg.addr = (uintptr_t) &env->elr_el[1];
1007 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1008 if (ret) {
1009 return ret;
1012 /* Saved Program State Registers
1014 * Before we restore from the banked_spsr[] array we need to
1015 * ensure that any modifications to env->spsr are correctly
1016 * reflected in the banks.
1018 el = arm_current_el(env);
1019 if (el > 0 && !is_a64(env)) {
1020 i = bank_number(env->uncached_cpsr & CPSR_M);
1021 env->banked_spsr[i] = env->spsr;
1024 /* KVM 0-4 map to QEMU banks 1-5 */
1025 for (i = 0; i < KVM_NR_SPSR; i++) {
1026 reg.id = AARCH64_CORE_REG(spsr[i]);
1027 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1028 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1029 if (ret) {
1030 return ret;
1034 if (cpu_isar_feature(aa64_sve, cpu)) {
1035 ret = kvm_arch_put_sve(cs);
1036 } else {
1037 ret = kvm_arch_put_fpsimd(cs);
1039 if (ret) {
1040 return ret;
1043 reg.addr = (uintptr_t)(&fpr);
1044 fpr = vfp_get_fpsr(env);
1045 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1046 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1047 if (ret) {
1048 return ret;
1051 reg.addr = (uintptr_t)(&fpr);
1052 fpr = vfp_get_fpcr(env);
1053 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1054 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1055 if (ret) {
1056 return ret;
1059 ret = kvm_put_vcpu_events(cpu);
1060 if (ret) {
1061 return ret;
1064 write_cpustate_to_list(cpu, true);
1066 if (!write_list_to_kvmstate(cpu, level)) {
1067 return -EINVAL;
1070 kvm_arm_sync_mpstate_to_kvm(cpu);
1072 return ret;
1075 static int kvm_arch_get_fpsimd(CPUState *cs)
1077 CPUARMState *env = &ARM_CPU(cs)->env;
1078 struct kvm_one_reg reg;
1079 int i, ret;
1081 for (i = 0; i < 32; i++) {
1082 uint64_t *q = aa64_vfp_qreg(env, i);
1083 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1084 reg.addr = (uintptr_t)q;
1085 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1086 if (ret) {
1087 return ret;
1088 } else {
1089 #ifdef HOST_WORDS_BIGENDIAN
1090 uint64_t t;
1091 t = q[0], q[0] = q[1], q[1] = t;
1092 #endif
1096 return 0;
1100 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1101 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1102 * code the slice index to zero for now as it's unlikely we'll need more than
1103 * one slice for quite some time.
1105 static int kvm_arch_get_sve(CPUState *cs)
1107 ARMCPU *cpu = ARM_CPU(cs);
1108 CPUARMState *env = &cpu->env;
1109 struct kvm_one_reg reg;
1110 uint64_t *r;
1111 int n, ret;
1113 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1114 r = &env->vfp.zregs[n].d[0];
1115 reg.addr = (uintptr_t)r;
1116 reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1117 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1118 if (ret) {
1119 return ret;
1121 sve_bswap64(r, r, cpu->sve_max_vq * 2);
1124 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1125 r = &env->vfp.pregs[n].p[0];
1126 reg.addr = (uintptr_t)r;
1127 reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1128 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1129 if (ret) {
1130 return ret;
1132 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1135 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
1136 reg.addr = (uintptr_t)r;
1137 reg.id = KVM_REG_ARM64_SVE_FFR(0);
1138 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1139 if (ret) {
1140 return ret;
1142 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1144 return 0;
1147 int kvm_arch_get_registers(CPUState *cs)
1149 struct kvm_one_reg reg;
1150 uint64_t val;
1151 unsigned int el;
1152 uint32_t fpr;
1153 int i, ret;
1155 ARMCPU *cpu = ARM_CPU(cs);
1156 CPUARMState *env = &cpu->env;
1158 for (i = 0; i < 31; i++) {
1159 reg.id = AARCH64_CORE_REG(regs.regs[i]);
1160 reg.addr = (uintptr_t) &env->xregs[i];
1161 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1162 if (ret) {
1163 return ret;
1167 reg.id = AARCH64_CORE_REG(regs.sp);
1168 reg.addr = (uintptr_t) &env->sp_el[0];
1169 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1170 if (ret) {
1171 return ret;
1174 reg.id = AARCH64_CORE_REG(sp_el1);
1175 reg.addr = (uintptr_t) &env->sp_el[1];
1176 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1177 if (ret) {
1178 return ret;
1181 reg.id = AARCH64_CORE_REG(regs.pstate);
1182 reg.addr = (uintptr_t) &val;
1183 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1184 if (ret) {
1185 return ret;
1188 env->aarch64 = ((val & PSTATE_nRW) == 0);
1189 if (is_a64(env)) {
1190 pstate_write(env, val);
1191 } else {
1192 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
1195 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1196 * QEMU side we keep the current SP in xregs[31] as well.
1198 aarch64_restore_sp(env, 1);
1200 reg.id = AARCH64_CORE_REG(regs.pc);
1201 reg.addr = (uintptr_t) &env->pc;
1202 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1203 if (ret) {
1204 return ret;
1207 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1208 * incoming AArch64 regs received from 64-bit KVM.
1209 * We must perform this after all of the registers have been acquired from
1210 * the kernel.
1212 if (!is_a64(env)) {
1213 aarch64_sync_64_to_32(env);
1216 reg.id = AARCH64_CORE_REG(elr_el1);
1217 reg.addr = (uintptr_t) &env->elr_el[1];
1218 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1219 if (ret) {
1220 return ret;
1223 /* Fetch the SPSR registers
1225 * KVM SPSRs 0-4 map to QEMU banks 1-5
1227 for (i = 0; i < KVM_NR_SPSR; i++) {
1228 reg.id = AARCH64_CORE_REG(spsr[i]);
1229 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1230 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1231 if (ret) {
1232 return ret;
1236 el = arm_current_el(env);
1237 if (el > 0 && !is_a64(env)) {
1238 i = bank_number(env->uncached_cpsr & CPSR_M);
1239 env->spsr = env->banked_spsr[i];
1242 if (cpu_isar_feature(aa64_sve, cpu)) {
1243 ret = kvm_arch_get_sve(cs);
1244 } else {
1245 ret = kvm_arch_get_fpsimd(cs);
1247 if (ret) {
1248 return ret;
1251 reg.addr = (uintptr_t)(&fpr);
1252 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1253 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1254 if (ret) {
1255 return ret;
1257 vfp_set_fpsr(env, fpr);
1259 reg.addr = (uintptr_t)(&fpr);
1260 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1261 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1262 if (ret) {
1263 return ret;
1265 vfp_set_fpcr(env, fpr);
1267 ret = kvm_get_vcpu_events(cpu);
1268 if (ret) {
1269 return ret;
1272 if (!write_kvmstate_to_list(cpu)) {
1273 return -EINVAL;
1275 /* Note that it's OK to have registers which aren't in CPUState,
1276 * so we can ignore a failure return here.
1278 write_list_to_cpustate(cpu);
1280 kvm_arm_sync_mpstate_to_qemu(cpu);
1282 /* TODO: other registers */
1283 return ret;
1286 /* C6.6.29 BRK instruction */
1287 static const uint32_t brk_insn = 0xd4200000;
1289 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1291 if (have_guest_debug) {
1292 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1293 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1294 return -EINVAL;
1296 return 0;
1297 } else {
1298 error_report("guest debug not supported on this kernel");
1299 return -EINVAL;
1303 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1305 static uint32_t brk;
1307 if (have_guest_debug) {
1308 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1309 brk != brk_insn ||
1310 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1311 return -EINVAL;
1313 return 0;
1314 } else {
1315 error_report("guest debug not supported on this kernel");
1316 return -EINVAL;
1320 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1322 * To minimise translating between kernel and user-space the kernel
1323 * ABI just provides user-space with the full exception syndrome
1324 * register value to be decoded in QEMU.
1327 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1329 int hsr_ec = syn_get_ec(debug_exit->hsr);
1330 ARMCPU *cpu = ARM_CPU(cs);
1331 CPUClass *cc = CPU_GET_CLASS(cs);
1332 CPUARMState *env = &cpu->env;
1334 /* Ensure PC is synchronised */
1335 kvm_cpu_synchronize_state(cs);
1337 switch (hsr_ec) {
1338 case EC_SOFTWARESTEP:
1339 if (cs->singlestep_enabled) {
1340 return true;
1341 } else {
1343 * The kernel should have suppressed the guest's ability to
1344 * single step at this point so something has gone wrong.
1346 error_report("%s: guest single-step while debugging unsupported"
1347 " (%"PRIx64", %"PRIx32")",
1348 __func__, env->pc, debug_exit->hsr);
1349 return false;
1351 break;
1352 case EC_AA64_BKPT:
1353 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1354 return true;
1356 break;
1357 case EC_BREAKPOINT:
1358 if (find_hw_breakpoint(cs, env->pc)) {
1359 return true;
1361 break;
1362 case EC_WATCHPOINT:
1364 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1365 if (wp) {
1366 cs->watchpoint_hit = wp;
1367 return true;
1369 break;
1371 default:
1372 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1373 __func__, debug_exit->hsr, env->pc);
1376 /* If we are not handling the debug exception it must belong to
1377 * the guest. Let's re-use the existing TCG interrupt code to set
1378 * everything up properly.
1380 cs->exception_index = EXCP_BKPT;
1381 env->exception.syndrome = debug_exit->hsr;
1382 env->exception.vaddress = debug_exit->far;
1383 env->exception.target_el = 1;
1384 qemu_mutex_lock_iothread();
1385 cc->do_interrupt(cs);
1386 qemu_mutex_unlock_iothread();
1388 return false;