fw_cfg: switch fw_cfg_find() to locate the fw_cfg device by type rather than path
[qemu/ar7.git] / hw / nvram / fw_cfg.c
blob3a988b669bc4b6af1bb344750cae127d50640fdd
1 /*
2 * QEMU Firmware configuration device emulation
4 * Copyright (c) 2008 Gleb Natapov
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/dma.h"
28 #include "hw/boards.h"
29 #include "hw/isa/isa.h"
30 #include "hw/nvram/fw_cfg.h"
31 #include "hw/sysbus.h"
32 #include "trace.h"
33 #include "qemu/error-report.h"
34 #include "qemu/config-file.h"
35 #include "qemu/cutils.h"
36 #include "qapi/error.h"
38 #define FW_CFG_FILE_SLOTS_DFLT 0x20
40 #define FW_CFG_NAME "fw_cfg"
41 #define FW_CFG_PATH "/machine/" FW_CFG_NAME
43 #define TYPE_FW_CFG "fw_cfg"
44 #define TYPE_FW_CFG_IO "fw_cfg_io"
45 #define TYPE_FW_CFG_MEM "fw_cfg_mem"
47 #define FW_CFG(obj) OBJECT_CHECK(FWCfgState, (obj), TYPE_FW_CFG)
48 #define FW_CFG_IO(obj) OBJECT_CHECK(FWCfgIoState, (obj), TYPE_FW_CFG_IO)
49 #define FW_CFG_MEM(obj) OBJECT_CHECK(FWCfgMemState, (obj), TYPE_FW_CFG_MEM)
51 /* FW_CFG_VERSION bits */
52 #define FW_CFG_VERSION 0x01
53 #define FW_CFG_VERSION_DMA 0x02
55 /* FW_CFG_DMA_CONTROL bits */
56 #define FW_CFG_DMA_CTL_ERROR 0x01
57 #define FW_CFG_DMA_CTL_READ 0x02
58 #define FW_CFG_DMA_CTL_SKIP 0x04
59 #define FW_CFG_DMA_CTL_SELECT 0x08
60 #define FW_CFG_DMA_CTL_WRITE 0x10
62 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
64 typedef struct FWCfgEntry {
65 uint32_t len;
66 bool allow_write;
67 uint8_t *data;
68 void *callback_opaque;
69 FWCfgReadCallback read_callback;
70 } FWCfgEntry;
72 struct FWCfgState {
73 /*< private >*/
74 SysBusDevice parent_obj;
75 /*< public >*/
77 uint16_t file_slots;
78 FWCfgEntry *entries[2];
79 int *entry_order;
80 FWCfgFiles *files;
81 uint16_t cur_entry;
82 uint32_t cur_offset;
83 Notifier machine_ready;
85 int fw_cfg_order_override;
87 bool dma_enabled;
88 dma_addr_t dma_addr;
89 AddressSpace *dma_as;
90 MemoryRegion dma_iomem;
93 struct FWCfgIoState {
94 /*< private >*/
95 FWCfgState parent_obj;
96 /*< public >*/
98 MemoryRegion comb_iomem;
101 struct FWCfgMemState {
102 /*< private >*/
103 FWCfgState parent_obj;
104 /*< public >*/
106 MemoryRegion ctl_iomem, data_iomem;
107 uint32_t data_width;
108 MemoryRegionOps wide_data_ops;
111 #define JPG_FILE 0
112 #define BMP_FILE 1
114 static char *read_splashfile(char *filename, gsize *file_sizep,
115 int *file_typep)
117 GError *err = NULL;
118 gboolean res;
119 gchar *content;
120 int file_type;
121 unsigned int filehead;
122 int bmp_bpp;
124 res = g_file_get_contents(filename, &content, file_sizep, &err);
125 if (res == FALSE) {
126 error_report("failed to read splash file '%s'", filename);
127 g_error_free(err);
128 return NULL;
131 /* check file size */
132 if (*file_sizep < 30) {
133 goto error;
136 /* check magic ID */
137 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
138 if (filehead == 0xd8ff) {
139 file_type = JPG_FILE;
140 } else if (filehead == 0x4d42) {
141 file_type = BMP_FILE;
142 } else {
143 goto error;
146 /* check BMP bpp */
147 if (file_type == BMP_FILE) {
148 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
149 if (bmp_bpp != 24) {
150 goto error;
154 /* return values */
155 *file_typep = file_type;
157 return content;
159 error:
160 error_report("splash file '%s' format not recognized; must be JPEG "
161 "or 24 bit BMP", filename);
162 g_free(content);
163 return NULL;
166 static void fw_cfg_bootsplash(FWCfgState *s)
168 int boot_splash_time = -1;
169 const char *boot_splash_filename = NULL;
170 char *p;
171 char *filename, *file_data;
172 gsize file_size;
173 int file_type;
174 const char *temp;
176 /* get user configuration */
177 QemuOptsList *plist = qemu_find_opts("boot-opts");
178 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
179 if (opts != NULL) {
180 temp = qemu_opt_get(opts, "splash");
181 if (temp != NULL) {
182 boot_splash_filename = temp;
184 temp = qemu_opt_get(opts, "splash-time");
185 if (temp != NULL) {
186 p = (char *)temp;
187 boot_splash_time = strtol(p, &p, 10);
191 /* insert splash time if user configurated */
192 if (boot_splash_time >= 0) {
193 /* validate the input */
194 if (boot_splash_time > 0xffff) {
195 error_report("splash time is big than 65535, force it to 65535.");
196 boot_splash_time = 0xffff;
198 /* use little endian format */
199 qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff);
200 qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff);
201 fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
204 /* insert splash file if user configurated */
205 if (boot_splash_filename != NULL) {
206 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
207 if (filename == NULL) {
208 error_report("failed to find file '%s'.", boot_splash_filename);
209 return;
212 /* loading file data */
213 file_data = read_splashfile(filename, &file_size, &file_type);
214 if (file_data == NULL) {
215 g_free(filename);
216 return;
218 g_free(boot_splash_filedata);
219 boot_splash_filedata = (uint8_t *)file_data;
220 boot_splash_filedata_size = file_size;
222 /* insert data */
223 if (file_type == JPG_FILE) {
224 fw_cfg_add_file(s, "bootsplash.jpg",
225 boot_splash_filedata, boot_splash_filedata_size);
226 } else {
227 fw_cfg_add_file(s, "bootsplash.bmp",
228 boot_splash_filedata, boot_splash_filedata_size);
230 g_free(filename);
234 static void fw_cfg_reboot(FWCfgState *s)
236 int reboot_timeout = -1;
237 char *p;
238 const char *temp;
240 /* get user configuration */
241 QemuOptsList *plist = qemu_find_opts("boot-opts");
242 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
243 if (opts != NULL) {
244 temp = qemu_opt_get(opts, "reboot-timeout");
245 if (temp != NULL) {
246 p = (char *)temp;
247 reboot_timeout = strtol(p, &p, 10);
250 /* validate the input */
251 if (reboot_timeout > 0xffff) {
252 error_report("reboot timeout is larger than 65535, force it to 65535.");
253 reboot_timeout = 0xffff;
255 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4);
258 static void fw_cfg_write(FWCfgState *s, uint8_t value)
260 /* nothing, write support removed in QEMU v2.4+ */
263 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
265 return s->file_slots;
268 /* Note: this function returns an exclusive limit. */
269 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
271 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
274 static int fw_cfg_select(FWCfgState *s, uint16_t key)
276 int arch, ret;
277 FWCfgEntry *e;
279 s->cur_offset = 0;
280 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
281 s->cur_entry = FW_CFG_INVALID;
282 ret = 0;
283 } else {
284 s->cur_entry = key;
285 ret = 1;
286 /* entry successfully selected, now run callback if present */
287 arch = !!(key & FW_CFG_ARCH_LOCAL);
288 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
289 if (e->read_callback) {
290 e->read_callback(e->callback_opaque);
294 trace_fw_cfg_select(s, key, ret);
295 return ret;
298 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
300 FWCfgState *s = opaque;
301 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
302 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
303 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
304 uint64_t value = 0;
306 assert(size > 0 && size <= sizeof(value));
307 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
308 /* The least significant 'size' bytes of the return value are
309 * expected to contain a string preserving portion of the item
310 * data, padded with zeros on the right in case we run out early.
311 * In technical terms, we're composing the host-endian representation
312 * of the big endian interpretation of the fw_cfg string.
314 do {
315 value = (value << 8) | e->data[s->cur_offset++];
316 } while (--size && s->cur_offset < e->len);
317 /* If size is still not zero, we *did* run out early, so continue
318 * left-shifting, to add the appropriate number of padding zeros
319 * on the right.
321 value <<= 8 * size;
324 trace_fw_cfg_read(s, value);
325 return value;
328 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
329 uint64_t value, unsigned size)
331 FWCfgState *s = opaque;
332 unsigned i = size;
334 do {
335 fw_cfg_write(s, value >> (8 * --i));
336 } while (i);
339 static void fw_cfg_dma_transfer(FWCfgState *s)
341 dma_addr_t len;
342 FWCfgDmaAccess dma;
343 int arch;
344 FWCfgEntry *e;
345 int read = 0, write = 0;
346 dma_addr_t dma_addr;
348 /* Reset the address before the next access */
349 dma_addr = s->dma_addr;
350 s->dma_addr = 0;
352 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
353 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
354 FW_CFG_DMA_CTL_ERROR);
355 return;
358 dma.address = be64_to_cpu(dma.address);
359 dma.length = be32_to_cpu(dma.length);
360 dma.control = be32_to_cpu(dma.control);
362 if (dma.control & FW_CFG_DMA_CTL_SELECT) {
363 fw_cfg_select(s, dma.control >> 16);
366 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
367 e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
368 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
370 if (dma.control & FW_CFG_DMA_CTL_READ) {
371 read = 1;
372 write = 0;
373 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
374 read = 0;
375 write = 1;
376 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
377 read = 0;
378 write = 0;
379 } else {
380 dma.length = 0;
383 dma.control = 0;
385 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
386 if (s->cur_entry == FW_CFG_INVALID || !e->data ||
387 s->cur_offset >= e->len) {
388 len = dma.length;
390 /* If the access is not a read access, it will be a skip access,
391 * tested before.
393 if (read) {
394 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
395 dma.control |= FW_CFG_DMA_CTL_ERROR;
398 if (write) {
399 dma.control |= FW_CFG_DMA_CTL_ERROR;
401 } else {
402 if (dma.length <= (e->len - s->cur_offset)) {
403 len = dma.length;
404 } else {
405 len = (e->len - s->cur_offset);
408 /* If the access is not a read access, it will be a skip access,
409 * tested before.
411 if (read) {
412 if (dma_memory_write(s->dma_as, dma.address,
413 &e->data[s->cur_offset], len)) {
414 dma.control |= FW_CFG_DMA_CTL_ERROR;
417 if (write) {
418 if (!e->allow_write ||
419 len != dma.length ||
420 dma_memory_read(s->dma_as, dma.address,
421 &e->data[s->cur_offset], len)) {
422 dma.control |= FW_CFG_DMA_CTL_ERROR;
426 s->cur_offset += len;
429 dma.address += len;
430 dma.length -= len;
434 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
435 dma.control);
437 trace_fw_cfg_read(s, 0);
440 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
441 unsigned size)
443 /* Return a signature value (and handle various read sizes) */
444 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
447 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
448 uint64_t value, unsigned size)
450 FWCfgState *s = opaque;
452 if (size == 4) {
453 if (addr == 0) {
454 /* FWCfgDmaAccess high address */
455 s->dma_addr = value << 32;
456 } else if (addr == 4) {
457 /* FWCfgDmaAccess low address */
458 s->dma_addr |= value;
459 fw_cfg_dma_transfer(s);
461 } else if (size == 8 && addr == 0) {
462 s->dma_addr = value;
463 fw_cfg_dma_transfer(s);
467 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
468 unsigned size, bool is_write)
470 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
471 (size == 8 && addr == 0));
474 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
475 unsigned size, bool is_write)
477 return addr == 0;
480 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
481 uint64_t value, unsigned size)
483 fw_cfg_select(opaque, (uint16_t)value);
486 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
487 unsigned size, bool is_write)
489 return is_write && size == 2;
492 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
493 uint64_t value, unsigned size)
495 switch (size) {
496 case 1:
497 fw_cfg_write(opaque, (uint8_t)value);
498 break;
499 case 2:
500 fw_cfg_select(opaque, (uint16_t)value);
501 break;
505 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
506 unsigned size, bool is_write)
508 return (size == 1) || (is_write && size == 2);
511 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
512 .write = fw_cfg_ctl_mem_write,
513 .endianness = DEVICE_BIG_ENDIAN,
514 .valid.accepts = fw_cfg_ctl_mem_valid,
517 static const MemoryRegionOps fw_cfg_data_mem_ops = {
518 .read = fw_cfg_data_read,
519 .write = fw_cfg_data_mem_write,
520 .endianness = DEVICE_BIG_ENDIAN,
521 .valid = {
522 .min_access_size = 1,
523 .max_access_size = 1,
524 .accepts = fw_cfg_data_mem_valid,
528 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
529 .read = fw_cfg_data_read,
530 .write = fw_cfg_comb_write,
531 .endianness = DEVICE_LITTLE_ENDIAN,
532 .valid.accepts = fw_cfg_comb_valid,
535 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
536 .read = fw_cfg_dma_mem_read,
537 .write = fw_cfg_dma_mem_write,
538 .endianness = DEVICE_BIG_ENDIAN,
539 .valid.accepts = fw_cfg_dma_mem_valid,
540 .valid.max_access_size = 8,
541 .impl.max_access_size = 8,
544 static void fw_cfg_reset(DeviceState *d)
546 FWCfgState *s = FW_CFG(d);
548 /* we never register a read callback for FW_CFG_SIGNATURE */
549 fw_cfg_select(s, FW_CFG_SIGNATURE);
552 /* Save restore 32 bit int as uint16_t
553 This is a Big hack, but it is how the old state did it.
554 Or we broke compatibility in the state, or we can't use struct tm
557 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
558 VMStateField *field)
560 uint32_t *v = pv;
561 *v = qemu_get_be16(f);
562 return 0;
565 static int put_unused(QEMUFile *f, void *pv, size_t size, VMStateField *field,
566 QJSON *vmdesc)
568 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
569 fprintf(stderr, "This functions shouldn't be called.\n");
571 return 0;
574 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
575 .name = "int32_as_uint16",
576 .get = get_uint32_as_uint16,
577 .put = put_unused,
580 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
581 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
584 static bool is_version_1(void *opaque, int version_id)
586 return version_id == 1;
589 bool fw_cfg_dma_enabled(void *opaque)
591 FWCfgState *s = opaque;
593 return s->dma_enabled;
596 static const VMStateDescription vmstate_fw_cfg_dma = {
597 .name = "fw_cfg/dma",
598 .needed = fw_cfg_dma_enabled,
599 .fields = (VMStateField[]) {
600 VMSTATE_UINT64(dma_addr, FWCfgState),
601 VMSTATE_END_OF_LIST()
605 static const VMStateDescription vmstate_fw_cfg = {
606 .name = "fw_cfg",
607 .version_id = 2,
608 .minimum_version_id = 1,
609 .fields = (VMStateField[]) {
610 VMSTATE_UINT16(cur_entry, FWCfgState),
611 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
612 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
613 VMSTATE_END_OF_LIST()
615 .subsections = (const VMStateDescription*[]) {
616 &vmstate_fw_cfg_dma,
617 NULL,
621 static void fw_cfg_add_bytes_read_callback(FWCfgState *s, uint16_t key,
622 FWCfgReadCallback callback,
623 void *callback_opaque,
624 void *data, size_t len,
625 bool read_only)
627 int arch = !!(key & FW_CFG_ARCH_LOCAL);
629 key &= FW_CFG_ENTRY_MASK;
631 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
632 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
634 s->entries[arch][key].data = data;
635 s->entries[arch][key].len = (uint32_t)len;
636 s->entries[arch][key].read_callback = callback;
637 s->entries[arch][key].callback_opaque = callback_opaque;
638 s->entries[arch][key].allow_write = !read_only;
641 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
642 void *data, size_t len)
644 void *ptr;
645 int arch = !!(key & FW_CFG_ARCH_LOCAL);
647 key &= FW_CFG_ENTRY_MASK;
649 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
651 /* return the old data to the function caller, avoid memory leak */
652 ptr = s->entries[arch][key].data;
653 s->entries[arch][key].data = data;
654 s->entries[arch][key].len = len;
655 s->entries[arch][key].callback_opaque = NULL;
656 s->entries[arch][key].allow_write = false;
658 return ptr;
661 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
663 fw_cfg_add_bytes_read_callback(s, key, NULL, NULL, data, len, true);
666 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
668 size_t sz = strlen(value) + 1;
670 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
673 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
675 uint16_t *copy;
677 copy = g_malloc(sizeof(value));
678 *copy = cpu_to_le16(value);
679 fw_cfg_add_bytes(s, key, copy, sizeof(value));
682 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
684 uint16_t *copy, *old;
686 copy = g_malloc(sizeof(value));
687 *copy = cpu_to_le16(value);
688 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
689 g_free(old);
692 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
694 uint32_t *copy;
696 copy = g_malloc(sizeof(value));
697 *copy = cpu_to_le32(value);
698 fw_cfg_add_bytes(s, key, copy, sizeof(value));
701 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
703 uint64_t *copy;
705 copy = g_malloc(sizeof(value));
706 *copy = cpu_to_le64(value);
707 fw_cfg_add_bytes(s, key, copy, sizeof(value));
710 void fw_cfg_set_order_override(FWCfgState *s, int order)
712 assert(s->fw_cfg_order_override == 0);
713 s->fw_cfg_order_override = order;
716 void fw_cfg_reset_order_override(FWCfgState *s)
718 assert(s->fw_cfg_order_override != 0);
719 s->fw_cfg_order_override = 0;
723 * This is the legacy order list. For legacy systems, files are in
724 * the fw_cfg in the order defined below, by the "order" value. Note
725 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
726 * specific area, but there may be more than one and they occur in the
727 * order that the user specifies them on the command line. Those are
728 * handled in a special manner, using the order override above.
730 * For non-legacy, the files are sorted by filename to avoid this kind
731 * of complexity in the future.
733 * This is only for x86, other arches don't implement versioning so
734 * they won't set legacy mode.
736 static struct {
737 const char *name;
738 int order;
739 } fw_cfg_order[] = {
740 { "etc/boot-menu-wait", 10 },
741 { "bootsplash.jpg", 11 },
742 { "bootsplash.bmp", 12 },
743 { "etc/boot-fail-wait", 15 },
744 { "etc/smbios/smbios-tables", 20 },
745 { "etc/smbios/smbios-anchor", 30 },
746 { "etc/e820", 40 },
747 { "etc/reserved-memory-end", 50 },
748 { "genroms/kvmvapic.bin", 55 },
749 { "genroms/linuxboot.bin", 60 },
750 { }, /* VGA ROMs from pc_vga_init come here, 70. */
751 { }, /* NIC option ROMs from pc_nic_init come here, 80. */
752 { "etc/system-states", 90 },
753 { }, /* User ROMs come here, 100. */
754 { }, /* Device FW comes here, 110. */
755 { "etc/extra-pci-roots", 120 },
756 { "etc/acpi/tables", 130 },
757 { "etc/table-loader", 140 },
758 { "etc/tpm/log", 150 },
759 { "etc/acpi/rsdp", 160 },
760 { "bootorder", 170 },
762 #define FW_CFG_ORDER_OVERRIDE_LAST 200
765 static int get_fw_cfg_order(FWCfgState *s, const char *name)
767 int i;
769 if (s->fw_cfg_order_override > 0) {
770 return s->fw_cfg_order_override;
773 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
774 if (fw_cfg_order[i].name == NULL) {
775 continue;
778 if (strcmp(name, fw_cfg_order[i].name) == 0) {
779 return fw_cfg_order[i].order;
783 /* Stick unknown stuff at the end. */
784 warn_report("Unknown firmware file in legacy mode: %s", name);
785 return FW_CFG_ORDER_OVERRIDE_LAST;
788 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
789 FWCfgReadCallback callback, void *callback_opaque,
790 void *data, size_t len, bool read_only)
792 int i, index, count;
793 size_t dsize;
794 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
795 int order = 0;
797 if (!s->files) {
798 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
799 s->files = g_malloc0(dsize);
800 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
803 count = be32_to_cpu(s->files->count);
804 assert(count < fw_cfg_file_slots(s));
806 /* Find the insertion point. */
807 if (mc->legacy_fw_cfg_order) {
809 * Sort by order. For files with the same order, we keep them
810 * in the sequence in which they were added.
812 order = get_fw_cfg_order(s, filename);
813 for (index = count;
814 index > 0 && order < s->entry_order[index - 1];
815 index--);
816 } else {
817 /* Sort by file name. */
818 for (index = count;
819 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
820 index--);
824 * Move all the entries from the index point and after down one
825 * to create a slot for the new entry. Because calculations are
826 * being done with the index, make it so that "i" is the current
827 * index and "i - 1" is the one being copied from, thus the
828 * unusual start and end in the for statement.
830 for (i = count + 1; i > index; i--) {
831 s->files->f[i] = s->files->f[i - 1];
832 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
833 s->entries[0][FW_CFG_FILE_FIRST + i] =
834 s->entries[0][FW_CFG_FILE_FIRST + i - 1];
835 s->entry_order[i] = s->entry_order[i - 1];
838 memset(&s->files->f[index], 0, sizeof(FWCfgFile));
839 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
841 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
842 for (i = 0; i <= count; i++) {
843 if (i != index &&
844 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
845 error_report("duplicate fw_cfg file name: %s",
846 s->files->f[index].name);
847 exit(1);
851 fw_cfg_add_bytes_read_callback(s, FW_CFG_FILE_FIRST + index,
852 callback, callback_opaque, data, len,
853 read_only);
855 s->files->f[index].size = cpu_to_be32(len);
856 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
857 s->entry_order[index] = order;
858 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
860 s->files->count = cpu_to_be32(count+1);
863 void fw_cfg_add_file(FWCfgState *s, const char *filename,
864 void *data, size_t len)
866 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len, true);
869 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
870 void *data, size_t len)
872 int i, index;
873 void *ptr = NULL;
875 assert(s->files);
877 index = be32_to_cpu(s->files->count);
878 assert(index < fw_cfg_file_slots(s));
880 for (i = 0; i < index; i++) {
881 if (strcmp(filename, s->files->f[i].name) == 0) {
882 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
883 data, len);
884 s->files->f[i].size = cpu_to_be32(len);
885 return ptr;
888 /* add new one */
889 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len, true);
890 return NULL;
893 static void fw_cfg_machine_reset(void *opaque)
895 void *ptr;
896 size_t len;
897 FWCfgState *s = opaque;
898 char *bootindex = get_boot_devices_list(&len, false);
900 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
901 g_free(ptr);
904 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
906 FWCfgState *s = container_of(n, FWCfgState, machine_ready);
907 qemu_register_reset(fw_cfg_machine_reset, s);
912 static void fw_cfg_init1(DeviceState *dev)
914 FWCfgState *s = FW_CFG(dev);
915 MachineState *machine = MACHINE(qdev_get_machine());
916 uint32_t version = FW_CFG_VERSION;
918 assert(!object_resolve_path(FW_CFG_PATH, NULL));
920 object_property_add_child(OBJECT(machine), FW_CFG_NAME, OBJECT(s), NULL);
922 qdev_init_nofail(dev);
924 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
925 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
926 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
927 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
928 fw_cfg_bootsplash(s);
929 fw_cfg_reboot(s);
931 if (s->dma_enabled) {
932 version |= FW_CFG_VERSION_DMA;
935 fw_cfg_add_i32(s, FW_CFG_ID, version);
937 s->machine_ready.notify = fw_cfg_machine_ready;
938 qemu_add_machine_init_done_notifier(&s->machine_ready);
941 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
942 AddressSpace *dma_as)
944 DeviceState *dev;
945 SysBusDevice *sbd;
946 FWCfgIoState *ios;
947 FWCfgState *s;
948 bool dma_requested = dma_iobase && dma_as;
950 dev = qdev_create(NULL, TYPE_FW_CFG_IO);
951 if (!dma_requested) {
952 qdev_prop_set_bit(dev, "dma_enabled", false);
955 fw_cfg_init1(dev);
957 sbd = SYS_BUS_DEVICE(dev);
958 ios = FW_CFG_IO(dev);
959 sysbus_add_io(sbd, iobase, &ios->comb_iomem);
961 s = FW_CFG(dev);
963 if (s->dma_enabled) {
964 /* 64 bits for the address field */
965 s->dma_as = dma_as;
966 s->dma_addr = 0;
967 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
970 return s;
973 FWCfgState *fw_cfg_init_io(uint32_t iobase)
975 return fw_cfg_init_io_dma(iobase, 0, NULL);
978 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
979 hwaddr data_addr, uint32_t data_width,
980 hwaddr dma_addr, AddressSpace *dma_as)
982 DeviceState *dev;
983 SysBusDevice *sbd;
984 FWCfgState *s;
985 bool dma_requested = dma_addr && dma_as;
987 dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
988 qdev_prop_set_uint32(dev, "data_width", data_width);
989 if (!dma_requested) {
990 qdev_prop_set_bit(dev, "dma_enabled", false);
993 fw_cfg_init1(dev);
995 sbd = SYS_BUS_DEVICE(dev);
996 sysbus_mmio_map(sbd, 0, ctl_addr);
997 sysbus_mmio_map(sbd, 1, data_addr);
999 s = FW_CFG(dev);
1001 if (s->dma_enabled) {
1002 s->dma_as = dma_as;
1003 s->dma_addr = 0;
1004 sysbus_mmio_map(sbd, 2, dma_addr);
1007 return s;
1010 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1012 return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1013 fw_cfg_data_mem_ops.valid.max_access_size,
1014 0, NULL);
1018 FWCfgState *fw_cfg_find(void)
1020 /* Returns NULL unless there is exactly one fw_cfg device */
1021 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1024 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1026 DeviceClass *dc = DEVICE_CLASS(klass);
1028 dc->reset = fw_cfg_reset;
1029 dc->vmsd = &vmstate_fw_cfg;
1032 static const TypeInfo fw_cfg_info = {
1033 .name = TYPE_FW_CFG,
1034 .parent = TYPE_SYS_BUS_DEVICE,
1035 .abstract = true,
1036 .instance_size = sizeof(FWCfgState),
1037 .class_init = fw_cfg_class_init,
1040 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1042 uint16_t file_slots_max;
1044 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1045 error_setg(errp, "\"file_slots\" must be at least 0x%x",
1046 FW_CFG_FILE_SLOTS_MIN);
1047 return;
1050 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1051 * that we permit. The actual (exclusive) value coming from the
1052 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1053 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1054 if (fw_cfg_file_slots(s) > file_slots_max) {
1055 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1056 file_slots_max);
1057 return;
1060 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1061 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1062 s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1065 static Property fw_cfg_io_properties[] = {
1066 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1067 true),
1068 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1069 FW_CFG_FILE_SLOTS_DFLT),
1070 DEFINE_PROP_END_OF_LIST(),
1073 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1075 FWCfgIoState *s = FW_CFG_IO(dev);
1076 Error *local_err = NULL;
1078 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1079 if (local_err) {
1080 error_propagate(errp, local_err);
1081 return;
1084 /* when using port i/o, the 8-bit data register ALWAYS overlaps
1085 * with half of the 16-bit control register. Hence, the total size
1086 * of the i/o region used is FW_CFG_CTL_SIZE */
1087 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1088 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1090 if (FW_CFG(s)->dma_enabled) {
1091 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1092 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1093 sizeof(dma_addr_t));
1097 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1099 DeviceClass *dc = DEVICE_CLASS(klass);
1101 dc->realize = fw_cfg_io_realize;
1102 dc->props = fw_cfg_io_properties;
1105 static const TypeInfo fw_cfg_io_info = {
1106 .name = TYPE_FW_CFG_IO,
1107 .parent = TYPE_FW_CFG,
1108 .instance_size = sizeof(FWCfgIoState),
1109 .class_init = fw_cfg_io_class_init,
1113 static Property fw_cfg_mem_properties[] = {
1114 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1115 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1116 true),
1117 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1118 FW_CFG_FILE_SLOTS_DFLT),
1119 DEFINE_PROP_END_OF_LIST(),
1122 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1124 FWCfgMemState *s = FW_CFG_MEM(dev);
1125 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1126 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1127 Error *local_err = NULL;
1129 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1130 if (local_err) {
1131 error_propagate(errp, local_err);
1132 return;
1135 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1136 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1137 sysbus_init_mmio(sbd, &s->ctl_iomem);
1139 if (s->data_width > data_ops->valid.max_access_size) {
1140 /* memberwise copy because the "old_mmio" member is const */
1141 s->wide_data_ops.read = data_ops->read;
1142 s->wide_data_ops.write = data_ops->write;
1143 s->wide_data_ops.endianness = data_ops->endianness;
1144 s->wide_data_ops.valid = data_ops->valid;
1145 s->wide_data_ops.impl = data_ops->impl;
1147 s->wide_data_ops.valid.max_access_size = s->data_width;
1148 s->wide_data_ops.impl.max_access_size = s->data_width;
1149 data_ops = &s->wide_data_ops;
1151 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1152 "fwcfg.data", data_ops->valid.max_access_size);
1153 sysbus_init_mmio(sbd, &s->data_iomem);
1155 if (FW_CFG(s)->dma_enabled) {
1156 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1157 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1158 sizeof(dma_addr_t));
1159 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1163 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1165 DeviceClass *dc = DEVICE_CLASS(klass);
1167 dc->realize = fw_cfg_mem_realize;
1168 dc->props = fw_cfg_mem_properties;
1171 static const TypeInfo fw_cfg_mem_info = {
1172 .name = TYPE_FW_CFG_MEM,
1173 .parent = TYPE_FW_CFG,
1174 .instance_size = sizeof(FWCfgMemState),
1175 .class_init = fw_cfg_mem_class_init,
1179 static void fw_cfg_register_types(void)
1181 type_register_static(&fw_cfg_info);
1182 type_register_static(&fw_cfg_io_info);
1183 type_register_static(&fw_cfg_mem_info);
1186 type_init(fw_cfg_register_types)