1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "helper_regs.h"
12 #include "hw/ppc/spapr.h"
13 #include "hw/ppc/spapr_cpu_core.h"
14 #include "mmu-hash64.h"
15 #include "cpu-models.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/spapr_ovec.h"
20 #include "mmu-book3s-v3.h"
21 #include "hw/mem/memory-device.h"
23 bool is_ram_address(SpaprMachineState
*spapr
, hwaddr addr
)
25 MachineState
*machine
= MACHINE(spapr
);
26 DeviceMemoryState
*dms
= machine
->device_memory
;
28 if (addr
< machine
->ram_size
) {
31 if ((addr
>= dms
->base
)
32 && ((addr
- dms
->base
) < memory_region_size(&dms
->mr
))) {
39 /* Convert a return code from the KVM ioctl()s implementing resize HPT
40 * into a PAPR hypercall return code */
41 static target_ulong
resize_hpt_convert_rc(int ret
)
44 return H_LONG_BUSY_ORDER_100_SEC
;
45 } else if (ret
>= 10000) {
46 return H_LONG_BUSY_ORDER_10_SEC
;
47 } else if (ret
>= 1000) {
48 return H_LONG_BUSY_ORDER_1_SEC
;
49 } else if (ret
>= 100) {
50 return H_LONG_BUSY_ORDER_100_MSEC
;
51 } else if (ret
>= 10) {
52 return H_LONG_BUSY_ORDER_10_MSEC
;
54 return H_LONG_BUSY_ORDER_1_MSEC
;
77 static target_ulong
h_resize_hpt_prepare(PowerPCCPU
*cpu
,
78 SpaprMachineState
*spapr
,
82 target_ulong flags
= args
[0];
84 uint64_t current_ram_size
;
87 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
91 if (!spapr
->htab_shift
) {
92 /* Radix guest, no HPT */
93 return H_NOT_AVAILABLE
;
96 trace_spapr_h_resize_hpt_prepare(flags
, shift
);
102 if (shift
&& ((shift
< 18) || (shift
> 46))) {
106 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
108 /* We only allow the guest to allocate an HPT one order above what
109 * we'd normally give them (to stop a small guest claiming a huge
110 * chunk of resources in the HPT */
111 if (shift
> (spapr_hpt_shift_for_ramsize(current_ram_size
) + 1)) {
115 rc
= kvmppc_resize_hpt_prepare(cpu
, flags
, shift
);
117 return resize_hpt_convert_rc(rc
);
124 return softmmu_resize_hpt_prepare(cpu
, spapr
, shift
);
127 static void do_push_sregs_to_kvm_pr(CPUState
*cs
, run_on_cpu_data data
)
131 cpu_synchronize_state(cs
);
133 ret
= kvmppc_put_books_sregs(POWERPC_CPU(cs
));
135 error_report("failed to push sregs to KVM: %s", strerror(-ret
));
140 void push_sregs_to_kvm_pr(SpaprMachineState
*spapr
)
145 * This is a hack for the benefit of KVM PR - it abuses the SDR1
146 * slot in kvm_sregs to communicate the userspace address of the
149 if (!kvm_enabled() || !spapr
->htab
) {
154 run_on_cpu(cs
, do_push_sregs_to_kvm_pr
, RUN_ON_CPU_NULL
);
158 static target_ulong
h_resize_hpt_commit(PowerPCCPU
*cpu
,
159 SpaprMachineState
*spapr
,
163 target_ulong flags
= args
[0];
164 target_ulong shift
= args
[1];
167 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
171 if (!spapr
->htab_shift
) {
172 /* Radix guest, no HPT */
173 return H_NOT_AVAILABLE
;
176 trace_spapr_h_resize_hpt_commit(flags
, shift
);
178 rc
= kvmppc_resize_hpt_commit(cpu
, flags
, shift
);
180 rc
= resize_hpt_convert_rc(rc
);
181 if (rc
== H_SUCCESS
) {
182 /* Need to set the new htab_shift in the machine state */
183 spapr
->htab_shift
= shift
;
192 return softmmu_resize_hpt_commit(cpu
, spapr
, flags
, shift
);
197 static target_ulong
h_set_sprg0(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
198 target_ulong opcode
, target_ulong
*args
)
200 cpu_synchronize_state(CPU(cpu
));
201 cpu
->env
.spr
[SPR_SPRG0
] = args
[0];
206 static target_ulong
h_set_dabr(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
207 target_ulong opcode
, target_ulong
*args
)
209 if (!ppc_has_spr(cpu
, SPR_DABR
)) {
210 return H_HARDWARE
; /* DABR register not available */
212 cpu_synchronize_state(CPU(cpu
));
214 if (ppc_has_spr(cpu
, SPR_DABRX
)) {
215 cpu
->env
.spr
[SPR_DABRX
] = 0x3; /* Use Problem and Privileged state */
216 } else if (!(args
[0] & 0x4)) { /* Breakpoint Translation set? */
217 return H_RESERVED_DABR
;
220 cpu
->env
.spr
[SPR_DABR
] = args
[0];
224 static target_ulong
h_set_xdabr(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
225 target_ulong opcode
, target_ulong
*args
)
227 target_ulong dabrx
= args
[1];
229 if (!ppc_has_spr(cpu
, SPR_DABR
) || !ppc_has_spr(cpu
, SPR_DABRX
)) {
233 if ((dabrx
& ~0xfULL
) != 0 || (dabrx
& H_DABRX_HYPERVISOR
) != 0
234 || (dabrx
& (H_DABRX_KERNEL
| H_DABRX_USER
)) == 0) {
238 cpu_synchronize_state(CPU(cpu
));
239 cpu
->env
.spr
[SPR_DABRX
] = dabrx
;
240 cpu
->env
.spr
[SPR_DABR
] = args
[0];
245 static target_ulong
h_page_init(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
246 target_ulong opcode
, target_ulong
*args
)
248 target_ulong flags
= args
[0];
249 hwaddr dst
= args
[1];
250 hwaddr src
= args
[2];
251 hwaddr len
= TARGET_PAGE_SIZE
;
252 uint8_t *pdst
, *psrc
;
253 target_long ret
= H_SUCCESS
;
255 if (flags
& ~(H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
256 | H_COPY_PAGE
| H_ZERO_PAGE
)) {
257 qemu_log_mask(LOG_UNIMP
, "h_page_init: Bad flags (" TARGET_FMT_lx
"\n",
262 /* Map-in destination */
263 if (!is_ram_address(spapr
, dst
) || (dst
& ~TARGET_PAGE_MASK
) != 0) {
266 pdst
= cpu_physical_memory_map(dst
, &len
, true);
267 if (!pdst
|| len
!= TARGET_PAGE_SIZE
) {
271 if (flags
& H_COPY_PAGE
) {
272 /* Map-in source, copy to destination, and unmap source again */
273 if (!is_ram_address(spapr
, src
) || (src
& ~TARGET_PAGE_MASK
) != 0) {
277 psrc
= cpu_physical_memory_map(src
, &len
, false);
278 if (!psrc
|| len
!= TARGET_PAGE_SIZE
) {
282 memcpy(pdst
, psrc
, len
);
283 cpu_physical_memory_unmap(psrc
, len
, 0, len
);
284 } else if (flags
& H_ZERO_PAGE
) {
285 memset(pdst
, 0, len
); /* Just clear the destination page */
288 if (kvm_enabled() && (flags
& H_ICACHE_SYNCHRONIZE
) != 0) {
289 kvmppc_dcbst_range(cpu
, pdst
, len
);
291 if (flags
& (H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
)) {
293 kvmppc_icbi_range(cpu
, pdst
, len
);
300 cpu_physical_memory_unmap(pdst
, TARGET_PAGE_SIZE
, 1, len
);
304 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
305 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
306 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
307 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
308 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
309 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
311 static target_ulong
register_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
313 CPUState
*cs
= CPU(cpu
);
314 CPUPPCState
*env
= &cpu
->env
;
315 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
320 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
324 if (vpa
% env
->dcache_line_size
) {
327 /* FIXME: bounds check the address */
329 size
= lduw_be_phys(cs
->as
, vpa
+ 0x4);
331 if (size
< VPA_MIN_SIZE
) {
335 /* VPA is not allowed to cross a page boundary */
336 if ((vpa
/ 4096) != ((vpa
+ size
- 1) / 4096)) {
340 spapr_cpu
->vpa_addr
= vpa
;
342 tmp
= ldub_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
);
343 tmp
|= VPA_SHARED_PROC_VAL
;
344 stb_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
, tmp
);
349 static target_ulong
deregister_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
351 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
353 if (spapr_cpu
->slb_shadow_addr
) {
357 if (spapr_cpu
->dtl_addr
) {
361 spapr_cpu
->vpa_addr
= 0;
365 static target_ulong
register_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
367 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
371 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
375 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
380 if ((addr
/ 4096) != ((addr
+ size
- 1) / 4096)) {
384 if (!spapr_cpu
->vpa_addr
) {
388 spapr_cpu
->slb_shadow_addr
= addr
;
389 spapr_cpu
->slb_shadow_size
= size
;
394 static target_ulong
deregister_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
396 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
398 spapr_cpu
->slb_shadow_addr
= 0;
399 spapr_cpu
->slb_shadow_size
= 0;
403 static target_ulong
register_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
405 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
409 hcall_dprintf("Can't cope with DTL at logical 0\n");
413 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
419 if (!spapr_cpu
->vpa_addr
) {
423 spapr_cpu
->dtl_addr
= addr
;
424 spapr_cpu
->dtl_size
= size
;
429 static target_ulong
deregister_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
431 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
433 spapr_cpu
->dtl_addr
= 0;
434 spapr_cpu
->dtl_size
= 0;
439 static target_ulong
h_register_vpa(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
440 target_ulong opcode
, target_ulong
*args
)
442 target_ulong flags
= args
[0];
443 target_ulong procno
= args
[1];
444 target_ulong vpa
= args
[2];
445 target_ulong ret
= H_PARAMETER
;
448 tcpu
= spapr_find_cpu(procno
);
454 case FLAGS_REGISTER_VPA
:
455 ret
= register_vpa(tcpu
, vpa
);
458 case FLAGS_DEREGISTER_VPA
:
459 ret
= deregister_vpa(tcpu
, vpa
);
462 case FLAGS_REGISTER_SLBSHADOW
:
463 ret
= register_slb_shadow(tcpu
, vpa
);
466 case FLAGS_DEREGISTER_SLBSHADOW
:
467 ret
= deregister_slb_shadow(tcpu
, vpa
);
470 case FLAGS_REGISTER_DTL
:
471 ret
= register_dtl(tcpu
, vpa
);
474 case FLAGS_DEREGISTER_DTL
:
475 ret
= deregister_dtl(tcpu
, vpa
);
482 static target_ulong
h_cede(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
483 target_ulong opcode
, target_ulong
*args
)
485 CPUPPCState
*env
= &cpu
->env
;
486 CPUState
*cs
= CPU(cpu
);
487 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
489 env
->msr
|= (1ULL << MSR_EE
);
490 hreg_compute_hflags(env
);
492 if (spapr_cpu
->prod
) {
493 spapr_cpu
->prod
= false;
497 if (!cpu_has_work(cs
)) {
499 cs
->exception_index
= EXCP_HLT
;
500 cs
->exit_request
= 1;
507 * Confer to self, aka join. Cede could use the same pattern as well, if
508 * EXCP_HLT can be changed to ECXP_HALTED.
510 static target_ulong
h_confer_self(PowerPCCPU
*cpu
)
512 CPUState
*cs
= CPU(cpu
);
513 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
515 if (spapr_cpu
->prod
) {
516 spapr_cpu
->prod
= false;
520 cs
->exception_index
= EXCP_HALTED
;
521 cs
->exit_request
= 1;
526 static target_ulong
h_join(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
527 target_ulong opcode
, target_ulong
*args
)
529 CPUPPCState
*env
= &cpu
->env
;
531 bool last_unjoined
= true;
533 if (env
->msr
& (1ULL << MSR_EE
)) {
538 * Must not join the last CPU running. Interestingly, no such restriction
539 * for H_CONFER-to-self, but that is probably not intended to be used
540 * when H_JOIN is available.
543 PowerPCCPU
*c
= POWERPC_CPU(cs
);
544 CPUPPCState
*e
= &c
->env
;
549 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
550 if (!cs
->halted
|| (e
->msr
& (1ULL << MSR_EE
))) {
551 last_unjoined
= false;
559 return h_confer_self(cpu
);
562 static target_ulong
h_confer(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
563 target_ulong opcode
, target_ulong
*args
)
565 target_long target
= args
[0];
566 uint32_t dispatch
= args
[1];
567 CPUState
*cs
= CPU(cpu
);
568 SpaprCpuState
*spapr_cpu
;
571 * -1 means confer to all other CPUs without dispatch counter check,
572 * otherwise it's a targeted confer.
575 PowerPCCPU
*target_cpu
= spapr_find_cpu(target
);
576 uint32_t target_dispatch
;
583 * target == self is a special case, we wait until prodded, without
584 * dispatch counter check.
586 if (cpu
== target_cpu
) {
587 return h_confer_self(cpu
);
590 spapr_cpu
= spapr_cpu_state(target_cpu
);
591 if (!spapr_cpu
->vpa_addr
|| ((dispatch
& 1) == 0)) {
595 target_dispatch
= ldl_be_phys(cs
->as
,
596 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
597 if (target_dispatch
!= dispatch
) {
602 * The targeted confer does not do anything special beyond yielding
603 * the current vCPU, but even this should be better than nothing.
604 * At least for single-threaded tcg, it gives the target a chance to
605 * run before we run again. Multi-threaded tcg does not really do
606 * anything with EXCP_YIELD yet.
610 cs
->exception_index
= EXCP_YIELD
;
611 cs
->exit_request
= 1;
617 static target_ulong
h_prod(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
618 target_ulong opcode
, target_ulong
*args
)
620 target_long target
= args
[0];
623 SpaprCpuState
*spapr_cpu
;
625 tcpu
= spapr_find_cpu(target
);
631 spapr_cpu
= spapr_cpu_state(tcpu
);
632 spapr_cpu
->prod
= true;
639 static target_ulong
h_rtas(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
640 target_ulong opcode
, target_ulong
*args
)
642 target_ulong rtas_r3
= args
[0];
643 uint32_t token
= rtas_ld(rtas_r3
, 0);
644 uint32_t nargs
= rtas_ld(rtas_r3
, 1);
645 uint32_t nret
= rtas_ld(rtas_r3
, 2);
647 return spapr_rtas_call(cpu
, spapr
, token
, nargs
, rtas_r3
+ 12,
648 nret
, rtas_r3
+ 12 + 4*nargs
);
651 static target_ulong
h_logical_load(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
652 target_ulong opcode
, target_ulong
*args
)
654 CPUState
*cs
= CPU(cpu
);
655 target_ulong size
= args
[0];
656 target_ulong addr
= args
[1];
660 args
[0] = ldub_phys(cs
->as
, addr
);
663 args
[0] = lduw_phys(cs
->as
, addr
);
666 args
[0] = ldl_phys(cs
->as
, addr
);
669 args
[0] = ldq_phys(cs
->as
, addr
);
675 static target_ulong
h_logical_store(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
676 target_ulong opcode
, target_ulong
*args
)
678 CPUState
*cs
= CPU(cpu
);
680 target_ulong size
= args
[0];
681 target_ulong addr
= args
[1];
682 target_ulong val
= args
[2];
686 stb_phys(cs
->as
, addr
, val
);
689 stw_phys(cs
->as
, addr
, val
);
692 stl_phys(cs
->as
, addr
, val
);
695 stq_phys(cs
->as
, addr
, val
);
701 static target_ulong
h_logical_memop(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
702 target_ulong opcode
, target_ulong
*args
)
704 CPUState
*cs
= CPU(cpu
);
706 target_ulong dst
= args
[0]; /* Destination address */
707 target_ulong src
= args
[1]; /* Source address */
708 target_ulong esize
= args
[2]; /* Element size (0=1,1=2,2=4,3=8) */
709 target_ulong count
= args
[3]; /* Element count */
710 target_ulong op
= args
[4]; /* 0 = copy, 1 = invert */
712 unsigned int mask
= (1 << esize
) - 1;
713 int step
= 1 << esize
;
715 if (count
> 0x80000000) {
719 if ((dst
& mask
) || (src
& mask
) || (op
> 1)) {
723 if (dst
>= src
&& dst
< (src
+ (count
<< esize
))) {
724 dst
= dst
+ ((count
- 1) << esize
);
725 src
= src
+ ((count
- 1) << esize
);
732 tmp
= ldub_phys(cs
->as
, src
);
735 tmp
= lduw_phys(cs
->as
, src
);
738 tmp
= ldl_phys(cs
->as
, src
);
741 tmp
= ldq_phys(cs
->as
, src
);
751 stb_phys(cs
->as
, dst
, tmp
);
754 stw_phys(cs
->as
, dst
, tmp
);
757 stl_phys(cs
->as
, dst
, tmp
);
760 stq_phys(cs
->as
, dst
, tmp
);
770 static target_ulong
h_logical_icbi(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
771 target_ulong opcode
, target_ulong
*args
)
773 /* Nothing to do on emulation, KVM will trap this in the kernel */
777 static target_ulong
h_logical_dcbf(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
778 target_ulong opcode
, target_ulong
*args
)
780 /* Nothing to do on emulation, KVM will trap this in the kernel */
784 static target_ulong
h_set_mode_resource_le(PowerPCCPU
*cpu
,
785 SpaprMachineState
*spapr
,
798 case H_SET_MODE_ENDIAN_BIG
:
799 spapr_set_all_lpcrs(0, LPCR_ILE
);
800 spapr_pci_switch_vga(spapr
, true);
803 case H_SET_MODE_ENDIAN_LITTLE
:
804 spapr_set_all_lpcrs(LPCR_ILE
, LPCR_ILE
);
805 spapr_pci_switch_vga(spapr
, false);
809 return H_UNSUPPORTED_FLAG
;
812 static target_ulong
h_set_mode_resource_addr_trans_mode(PowerPCCPU
*cpu
,
817 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
819 if (!(pcc
->insns_flags2
& PPC2_ISA207S
)) {
830 /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
831 return H_UNSUPPORTED_FLAG
;
834 if (mflags
== 2 && (pcc
->insns_flags2
& PPC2_ISA310
)) {
835 /* AIL=2 is reserved in POWER10 (ISA v3.1) */
836 return H_UNSUPPORTED_FLAG
;
839 spapr_set_all_lpcrs(mflags
<< LPCR_AIL_SHIFT
, LPCR_AIL
);
844 static target_ulong
h_set_mode(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
845 target_ulong opcode
, target_ulong
*args
)
847 target_ulong resource
= args
[1];
848 target_ulong ret
= H_P2
;
851 case H_SET_MODE_RESOURCE_LE
:
852 ret
= h_set_mode_resource_le(cpu
, spapr
, args
[0], args
[2], args
[3]);
854 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE
:
855 ret
= h_set_mode_resource_addr_trans_mode(cpu
, args
[0],
863 static target_ulong
h_clean_slb(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
864 target_ulong opcode
, target_ulong
*args
)
866 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
867 opcode
, " (H_CLEAN_SLB)");
871 static target_ulong
h_invalidate_pid(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
872 target_ulong opcode
, target_ulong
*args
)
874 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
875 opcode
, " (H_INVALIDATE_PID)");
879 static void spapr_check_setup_free_hpt(SpaprMachineState
*spapr
,
880 uint64_t patbe_old
, uint64_t patbe_new
)
884 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
885 * HASH->RADIX : Free HPT
886 * RADIX->HASH : Allocate HPT
887 * NOTHING->HASH : Allocate HPT
888 * Note: NOTHING implies the case where we said the guest could choose
889 * later and so assumed radix and now it's called H_REG_PROC_TBL
892 if ((patbe_old
& PATE1_GR
) == (patbe_new
& PATE1_GR
)) {
893 /* We assume RADIX, so this catches all the "Do Nothing" cases */
894 } else if (!(patbe_old
& PATE1_GR
)) {
895 /* HASH->RADIX : Free HPT */
896 spapr_free_hpt(spapr
);
897 } else if (!(patbe_new
& PATE1_GR
)) {
898 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
899 spapr_setup_hpt(spapr
);
904 #define FLAGS_MASK 0x01FULL
905 #define FLAG_MODIFY 0x10
906 #define FLAG_REGISTER 0x08
907 #define FLAG_RADIX 0x04
908 #define FLAG_HASH_PROC_TBL 0x02
909 #define FLAG_GTSE 0x01
911 static target_ulong
h_register_process_table(PowerPCCPU
*cpu
,
912 SpaprMachineState
*spapr
,
916 target_ulong flags
= args
[0];
917 target_ulong proc_tbl
= args
[1];
918 target_ulong page_size
= args
[2];
919 target_ulong table_size
= args
[3];
920 target_ulong update_lpcr
= 0;
923 if (flags
& ~FLAGS_MASK
) { /* Check no reserved bits are set */
926 if (flags
& FLAG_MODIFY
) {
927 if (flags
& FLAG_REGISTER
) {
928 if (flags
& FLAG_RADIX
) { /* Register new RADIX process table */
929 if (proc_tbl
& 0xfff || proc_tbl
>> 60) {
931 } else if (page_size
) {
933 } else if (table_size
> 24) {
936 cproc
= PATE1_GR
| proc_tbl
| table_size
;
937 } else { /* Register new HPT process table */
938 if (flags
& FLAG_HASH_PROC_TBL
) { /* Hash with Segment Tables */
939 /* TODO - Not Supported */
940 /* Technically caused by flag bits => H_PARAMETER */
942 } else { /* Hash with SLB */
943 if (proc_tbl
>> 38) {
945 } else if (page_size
& ~0x7) {
947 } else if (table_size
> 24) {
951 cproc
= (proc_tbl
<< 25) | page_size
<< 5 | table_size
;
954 } else { /* Deregister current process table */
956 * Set to benign value: (current GR) | 0. This allows
957 * deregistration in KVM to succeed even if the radix bit
958 * in flags doesn't match the radix bit in the old PATE.
960 cproc
= spapr
->patb_entry
& PATE1_GR
;
962 } else { /* Maintain current registration */
963 if (!(flags
& FLAG_RADIX
) != !(spapr
->patb_entry
& PATE1_GR
)) {
964 /* Technically caused by flag bits => H_PARAMETER */
965 return H_PARAMETER
; /* Existing Process Table Mismatch */
967 cproc
= spapr
->patb_entry
;
970 /* Check if we need to setup OR free the hpt */
971 spapr_check_setup_free_hpt(spapr
, spapr
->patb_entry
, cproc
);
973 spapr
->patb_entry
= cproc
; /* Save new process table */
975 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
976 if (flags
& FLAG_RADIX
) /* Radix must use process tables, also set HR */
977 update_lpcr
|= (LPCR_UPRT
| LPCR_HR
);
978 else if (flags
& FLAG_HASH_PROC_TBL
) /* Hash with process tables */
979 update_lpcr
|= LPCR_UPRT
;
980 if (flags
& FLAG_GTSE
) /* Guest translation shootdown enable */
981 update_lpcr
|= LPCR_GTSE
;
983 spapr_set_all_lpcrs(update_lpcr
, LPCR_UPRT
| LPCR_HR
| LPCR_GTSE
);
986 return kvmppc_configure_v3_mmu(cpu
, flags
& FLAG_RADIX
,
987 flags
& FLAG_GTSE
, cproc
);
992 #define H_SIGNAL_SYS_RESET_ALL -1
993 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
995 static target_ulong
h_signal_sys_reset(PowerPCCPU
*cpu
,
996 SpaprMachineState
*spapr
,
997 target_ulong opcode
, target_ulong
*args
)
999 target_long target
= args
[0];
1004 if (target
< H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1009 PowerPCCPU
*c
= POWERPC_CPU(cs
);
1011 if (target
== H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1016 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1022 cs
= CPU(spapr_find_cpu(target
));
1024 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1031 /* Returns either a logical PVR or zero if none was found */
1032 static uint32_t cas_check_pvr(PowerPCCPU
*cpu
, uint32_t max_compat
,
1033 target_ulong
*addr
, bool *raw_mode_supported
)
1035 bool explicit_match
= false; /* Matched the CPU's real PVR */
1036 uint32_t best_compat
= 0;
1040 * We scan the supplied table of PVRs looking for two things
1041 * 1. Is our real CPU PVR in the list?
1042 * 2. What's the "best" listed logical PVR
1044 for (i
= 0; i
< 512; ++i
) {
1045 uint32_t pvr
, pvr_mask
;
1047 pvr_mask
= ldl_be_phys(&address_space_memory
, *addr
);
1048 pvr
= ldl_be_phys(&address_space_memory
, *addr
+ 4);
1051 if (~pvr_mask
& pvr
) {
1052 break; /* Terminator record */
1055 if ((cpu
->env
.spr
[SPR_PVR
] & pvr_mask
) == (pvr
& pvr_mask
)) {
1056 explicit_match
= true;
1058 if (ppc_check_compat(cpu
, pvr
, best_compat
, max_compat
)) {
1064 *raw_mode_supported
= explicit_match
;
1066 /* Parsing finished */
1067 trace_spapr_cas_pvr(cpu
->compat_pvr
, explicit_match
, best_compat
);
1073 target_ulong
do_client_architecture_support(PowerPCCPU
*cpu
,
1074 SpaprMachineState
*spapr
,
1076 target_ulong fdt_bufsize
)
1078 target_ulong ov_table
; /* Working address in data buffer */
1080 SpaprOptionVector
*ov1_guest
, *ov5_guest
;
1082 bool raw_mode_supported
= false;
1086 uint32_t max_compat
= spapr
->max_compat_pvr
;
1088 /* CAS is supposed to be called early when only the boot vCPU is active. */
1090 if (cs
== CPU(cpu
)) {
1094 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1095 return H_MULTI_THREADS_ACTIVE
;
1099 cas_pvr
= cas_check_pvr(cpu
, max_compat
, &vec
, &raw_mode_supported
);
1100 if (!cas_pvr
&& (!raw_mode_supported
|| max_compat
)) {
1102 * We couldn't find a suitable compatibility mode, and either
1103 * the guest doesn't support "raw" mode for this CPU, or "raw"
1104 * mode is disabled because a maximum compat mode is set.
1106 error_report("Couldn't negotiate a suitable PVR during CAS");
1111 if (cpu
->compat_pvr
!= cas_pvr
) {
1112 Error
*local_err
= NULL
;
1114 if (ppc_set_compat_all(cas_pvr
, &local_err
) < 0) {
1115 /* We fail to set compat mode (likely because running with KVM PR),
1116 * but maybe we can fallback to raw mode if the guest supports it.
1118 if (!raw_mode_supported
) {
1119 error_report_err(local_err
);
1122 error_free(local_err
);
1126 /* For the future use: here @ov_table points to the first option vector */
1129 ov1_guest
= spapr_ovec_parse_vector(ov_table
, 1);
1131 warn_report("guest didn't provide option vector 1");
1134 ov5_guest
= spapr_ovec_parse_vector(ov_table
, 5);
1136 spapr_ovec_cleanup(ov1_guest
);
1137 warn_report("guest didn't provide option vector 5");
1140 if (spapr_ovec_test(ov5_guest
, OV5_MMU_BOTH
)) {
1141 error_report("guest requested hash and radix MMU, which is invalid.");
1144 if (spapr_ovec_test(ov5_guest
, OV5_XIVE_BOTH
)) {
1145 error_report("guest requested an invalid interrupt mode");
1149 guest_radix
= spapr_ovec_test(ov5_guest
, OV5_MMU_RADIX_300
);
1151 guest_xive
= spapr_ovec_test(ov5_guest
, OV5_XIVE_EXPLOIT
);
1154 * HPT resizing is a bit of a special case, because when enabled
1155 * we assume an HPT guest will support it until it says it
1156 * doesn't, instead of assuming it won't support it until it says
1157 * it does. Strictly speaking that approach could break for
1158 * guests which don't make a CAS call, but those are so old we
1159 * don't care about them. Without that assumption we'd have to
1160 * make at least a temporary allocation of an HPT sized for max
1161 * memory, which could be impossibly difficult under KVM HV if
1164 if (!guest_radix
&& !spapr_ovec_test(ov5_guest
, OV5_HPT_RESIZE
)) {
1165 int maxshift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1167 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_REQUIRED
) {
1169 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1173 if (spapr
->htab_shift
< maxshift
) {
1174 /* Guest doesn't know about HPT resizing, so we
1175 * pre-emptively resize for the maximum permitted RAM. At
1176 * the point this is called, nothing should have been
1177 * entered into the existing HPT */
1178 spapr_reallocate_hpt(spapr
, maxshift
, &error_fatal
);
1179 push_sregs_to_kvm_pr(spapr
);
1183 /* NOTE: there are actually a number of ov5 bits where input from the
1184 * guest is always zero, and the platform/QEMU enables them independently
1185 * of guest input. To model these properly we'd want some sort of mask,
1186 * but since they only currently apply to memory migration as defined
1187 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1188 * to worry about this for now.
1191 /* full range of negotiated ov5 capabilities */
1192 spapr_ovec_intersect(spapr
->ov5_cas
, spapr
->ov5
, ov5_guest
);
1193 spapr_ovec_cleanup(ov5_guest
);
1195 spapr_check_mmu_mode(guest_radix
);
1197 spapr
->cas_pre_isa3_guest
= !spapr_ovec_test(ov1_guest
, OV1_PPC_3_00
);
1198 spapr_ovec_cleanup(ov1_guest
);
1201 * Ensure the guest asks for an interrupt mode we support;
1202 * otherwise terminate the boot.
1205 if (!spapr
->irq
->xive
) {
1207 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1211 if (!spapr
->irq
->xics
) {
1213 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1218 spapr_irq_update_active_intc(spapr
);
1221 * Process all pending hot-plug/unplug requests now. An updated full
1222 * rendered FDT will be returned to the guest.
1224 spapr_drc_reset_all(spapr
);
1225 spapr_clear_pending_hotplug_events(spapr
);
1228 * If spapr_machine_reset() did not set up a HPT but one is necessary
1229 * (because the guest isn't going to use radix) then set it up here.
1231 if ((spapr
->patb_entry
& PATE1_GR
) && !guest_radix
) {
1232 /* legacy hash or new hash: */
1233 spapr_setup_hpt(spapr
);
1236 fdt
= spapr_build_fdt(spapr
, false, fdt_bufsize
);
1238 g_free(spapr
->fdt_blob
);
1239 spapr
->fdt_size
= fdt_totalsize(fdt
);
1240 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1241 spapr
->fdt_blob
= fdt
;
1246 static target_ulong
h_client_architecture_support(PowerPCCPU
*cpu
,
1247 SpaprMachineState
*spapr
,
1248 target_ulong opcode
,
1251 target_ulong vec
= ppc64_phys_to_real(args
[0]);
1252 target_ulong fdt_buf
= args
[1];
1253 target_ulong fdt_bufsize
= args
[2];
1255 SpaprDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
1257 if (fdt_bufsize
< sizeof(hdr
)) {
1258 error_report("SLOF provided insufficient CAS buffer "
1259 TARGET_FMT_lu
" (min: %zu)", fdt_bufsize
, sizeof(hdr
));
1263 fdt_bufsize
-= sizeof(hdr
);
1265 ret
= do_client_architecture_support(cpu
, spapr
, vec
, fdt_bufsize
);
1266 if (ret
== H_SUCCESS
) {
1267 _FDT((fdt_pack(spapr
->fdt_blob
)));
1268 spapr
->fdt_size
= fdt_totalsize(spapr
->fdt_blob
);
1269 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1271 cpu_physical_memory_write(fdt_buf
, &hdr
, sizeof(hdr
));
1272 cpu_physical_memory_write(fdt_buf
+ sizeof(hdr
), spapr
->fdt_blob
,
1274 trace_spapr_cas_continue(spapr
->fdt_size
+ sizeof(hdr
));
1280 static target_ulong
h_get_cpu_characteristics(PowerPCCPU
*cpu
,
1281 SpaprMachineState
*spapr
,
1282 target_ulong opcode
,
1285 uint64_t characteristics
= H_CPU_CHAR_HON_BRANCH_HINTS
&
1286 ~H_CPU_CHAR_THR_RECONF_TRIG
;
1287 uint64_t behaviour
= H_CPU_BEHAV_FAVOUR_SECURITY
;
1288 uint8_t safe_cache
= spapr_get_cap(spapr
, SPAPR_CAP_CFPC
);
1289 uint8_t safe_bounds_check
= spapr_get_cap(spapr
, SPAPR_CAP_SBBC
);
1290 uint8_t safe_indirect_branch
= spapr_get_cap(spapr
, SPAPR_CAP_IBS
);
1291 uint8_t count_cache_flush_assist
= spapr_get_cap(spapr
,
1292 SPAPR_CAP_CCF_ASSIST
);
1294 switch (safe_cache
) {
1295 case SPAPR_CAP_WORKAROUND
:
1296 characteristics
|= H_CPU_CHAR_L1D_FLUSH_ORI30
;
1297 characteristics
|= H_CPU_CHAR_L1D_FLUSH_TRIG2
;
1298 characteristics
|= H_CPU_CHAR_L1D_THREAD_PRIV
;
1299 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1301 case SPAPR_CAP_FIXED
:
1303 default: /* broken */
1304 assert(safe_cache
== SPAPR_CAP_BROKEN
);
1305 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1309 switch (safe_bounds_check
) {
1310 case SPAPR_CAP_WORKAROUND
:
1311 characteristics
|= H_CPU_CHAR_SPEC_BAR_ORI31
;
1312 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1314 case SPAPR_CAP_FIXED
:
1316 default: /* broken */
1317 assert(safe_bounds_check
== SPAPR_CAP_BROKEN
);
1318 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1322 switch (safe_indirect_branch
) {
1323 case SPAPR_CAP_FIXED_NA
:
1325 case SPAPR_CAP_FIXED_CCD
:
1326 characteristics
|= H_CPU_CHAR_CACHE_COUNT_DIS
;
1328 case SPAPR_CAP_FIXED_IBS
:
1329 characteristics
|= H_CPU_CHAR_BCCTRL_SERIALISED
;
1331 case SPAPR_CAP_WORKAROUND
:
1332 behaviour
|= H_CPU_BEHAV_FLUSH_COUNT_CACHE
;
1333 if (count_cache_flush_assist
) {
1334 characteristics
|= H_CPU_CHAR_BCCTR_FLUSH_ASSIST
;
1337 default: /* broken */
1338 assert(safe_indirect_branch
== SPAPR_CAP_BROKEN
);
1342 args
[0] = characteristics
;
1343 args
[1] = behaviour
;
1347 static target_ulong
h_update_dt(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1348 target_ulong opcode
, target_ulong
*args
)
1350 target_ulong dt
= ppc64_phys_to_real(args
[0]);
1351 struct fdt_header hdr
= { 0 };
1353 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
1356 cpu_physical_memory_read(dt
, &hdr
, sizeof(hdr
));
1357 cb
= fdt32_to_cpu(hdr
.totalsize
);
1359 if (!smc
->update_dt_enabled
) {
1363 /* Check that the fdt did not grow out of proportion */
1364 if (cb
> spapr
->fdt_initial_size
* 2) {
1365 trace_spapr_update_dt_failed_size(spapr
->fdt_initial_size
, cb
,
1366 fdt32_to_cpu(hdr
.magic
));
1370 fdt
= g_malloc0(cb
);
1371 cpu_physical_memory_read(dt
, fdt
, cb
);
1373 /* Check the fdt consistency */
1374 if (fdt_check_full(fdt
, cb
)) {
1375 trace_spapr_update_dt_failed_check(spapr
->fdt_initial_size
, cb
,
1376 fdt32_to_cpu(hdr
.magic
));
1380 g_free(spapr
->fdt_blob
);
1381 spapr
->fdt_size
= cb
;
1382 spapr
->fdt_blob
= fdt
;
1383 trace_spapr_update_dt(cb
);
1388 static spapr_hcall_fn papr_hypercall_table
[(MAX_HCALL_OPCODE
/ 4) + 1];
1389 static spapr_hcall_fn kvmppc_hypercall_table
[KVMPPC_HCALL_MAX
- KVMPPC_HCALL_BASE
+ 1];
1390 static spapr_hcall_fn svm_hypercall_table
[(SVM_HCALL_MAX
- SVM_HCALL_BASE
) / 4 + 1];
1392 void spapr_register_hypercall(target_ulong opcode
, spapr_hcall_fn fn
)
1394 spapr_hcall_fn
*slot
;
1396 if (opcode
<= MAX_HCALL_OPCODE
) {
1397 assert((opcode
& 0x3) == 0);
1399 slot
= &papr_hypercall_table
[opcode
/ 4];
1400 } else if (opcode
>= SVM_HCALL_BASE
&& opcode
<= SVM_HCALL_MAX
) {
1401 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1402 assert((opcode
& 0x3) == 0);
1404 slot
= &svm_hypercall_table
[(opcode
- SVM_HCALL_BASE
) / 4];
1406 assert((opcode
>= KVMPPC_HCALL_BASE
) && (opcode
<= KVMPPC_HCALL_MAX
));
1408 slot
= &kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1415 target_ulong
spapr_hypercall(PowerPCCPU
*cpu
, target_ulong opcode
,
1418 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1420 if ((opcode
<= MAX_HCALL_OPCODE
)
1421 && ((opcode
& 0x3) == 0)) {
1422 spapr_hcall_fn fn
= papr_hypercall_table
[opcode
/ 4];
1425 return fn(cpu
, spapr
, opcode
, args
);
1427 } else if ((opcode
>= SVM_HCALL_BASE
) &&
1428 (opcode
<= SVM_HCALL_MAX
)) {
1429 spapr_hcall_fn fn
= svm_hypercall_table
[(opcode
- SVM_HCALL_BASE
) / 4];
1432 return fn(cpu
, spapr
, opcode
, args
);
1434 } else if ((opcode
>= KVMPPC_HCALL_BASE
) &&
1435 (opcode
<= KVMPPC_HCALL_MAX
)) {
1436 spapr_hcall_fn fn
= kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1439 return fn(cpu
, spapr
, opcode
, args
);
1443 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx
"\n",
1449 static target_ulong
h_softmmu(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1450 target_ulong opcode
, target_ulong
*args
)
1452 g_assert_not_reached();
1455 static void hypercall_register_softmmu(void)
1458 spapr_register_hypercall(H_ENTER
, h_softmmu
);
1459 spapr_register_hypercall(H_REMOVE
, h_softmmu
);
1460 spapr_register_hypercall(H_PROTECT
, h_softmmu
);
1461 spapr_register_hypercall(H_READ
, h_softmmu
);
1464 spapr_register_hypercall(H_BULK_REMOVE
, h_softmmu
);
1467 static void hypercall_register_softmmu(void)
1473 static void hypercall_register_types(void)
1475 hypercall_register_softmmu();
1477 /* hcall-hpt-resize */
1478 spapr_register_hypercall(H_RESIZE_HPT_PREPARE
, h_resize_hpt_prepare
);
1479 spapr_register_hypercall(H_RESIZE_HPT_COMMIT
, h_resize_hpt_commit
);
1482 spapr_register_hypercall(H_REGISTER_VPA
, h_register_vpa
);
1483 spapr_register_hypercall(H_CEDE
, h_cede
);
1484 spapr_register_hypercall(H_CONFER
, h_confer
);
1485 spapr_register_hypercall(H_PROD
, h_prod
);
1488 spapr_register_hypercall(H_JOIN
, h_join
);
1490 spapr_register_hypercall(H_SIGNAL_SYS_RESET
, h_signal_sys_reset
);
1492 /* processor register resource access h-calls */
1493 spapr_register_hypercall(H_SET_SPRG0
, h_set_sprg0
);
1494 spapr_register_hypercall(H_SET_DABR
, h_set_dabr
);
1495 spapr_register_hypercall(H_SET_XDABR
, h_set_xdabr
);
1496 spapr_register_hypercall(H_PAGE_INIT
, h_page_init
);
1497 spapr_register_hypercall(H_SET_MODE
, h_set_mode
);
1499 /* In Memory Table MMU h-calls */
1500 spapr_register_hypercall(H_CLEAN_SLB
, h_clean_slb
);
1501 spapr_register_hypercall(H_INVALIDATE_PID
, h_invalidate_pid
);
1502 spapr_register_hypercall(H_REGISTER_PROC_TBL
, h_register_process_table
);
1504 /* hcall-get-cpu-characteristics */
1505 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS
,
1506 h_get_cpu_characteristics
);
1508 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1509 * here between the "CI" and the "CACHE" variants, they will use whatever
1510 * mapping attributes qemu is using. When using KVM, the kernel will
1511 * enforce the attributes more strongly
1513 spapr_register_hypercall(H_LOGICAL_CI_LOAD
, h_logical_load
);
1514 spapr_register_hypercall(H_LOGICAL_CI_STORE
, h_logical_store
);
1515 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD
, h_logical_load
);
1516 spapr_register_hypercall(H_LOGICAL_CACHE_STORE
, h_logical_store
);
1517 spapr_register_hypercall(H_LOGICAL_ICBI
, h_logical_icbi
);
1518 spapr_register_hypercall(H_LOGICAL_DCBF
, h_logical_dcbf
);
1519 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP
, h_logical_memop
);
1521 /* qemu/KVM-PPC specific hcalls */
1522 spapr_register_hypercall(KVMPPC_H_RTAS
, h_rtas
);
1524 /* ibm,client-architecture-support support */
1525 spapr_register_hypercall(KVMPPC_H_CAS
, h_client_architecture_support
);
1527 spapr_register_hypercall(KVMPPC_H_UPDATE_DT
, h_update_dt
);
1530 type_init(hypercall_register_types
)