target/arm: Provide and use H8 and H1_8 macros
[qemu/ar7.git] / hw / ppc / spapr_hcall.c
blobf25014afda408002ee1ec1027a0dd7a6025eca61
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "qemu/log.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "helper_regs.h"
12 #include "hw/ppc/spapr.h"
13 #include "hw/ppc/spapr_cpu_core.h"
14 #include "mmu-hash64.h"
15 #include "cpu-models.h"
16 #include "trace.h"
17 #include "kvm_ppc.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/spapr_ovec.h"
20 #include "mmu-book3s-v3.h"
21 #include "hw/mem/memory-device.h"
23 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
25 MachineState *machine = MACHINE(spapr);
26 DeviceMemoryState *dms = machine->device_memory;
28 if (addr < machine->ram_size) {
29 return true;
31 if ((addr >= dms->base)
32 && ((addr - dms->base) < memory_region_size(&dms->mr))) {
33 return true;
36 return false;
39 /* Convert a return code from the KVM ioctl()s implementing resize HPT
40 * into a PAPR hypercall return code */
41 static target_ulong resize_hpt_convert_rc(int ret)
43 if (ret >= 100000) {
44 return H_LONG_BUSY_ORDER_100_SEC;
45 } else if (ret >= 10000) {
46 return H_LONG_BUSY_ORDER_10_SEC;
47 } else if (ret >= 1000) {
48 return H_LONG_BUSY_ORDER_1_SEC;
49 } else if (ret >= 100) {
50 return H_LONG_BUSY_ORDER_100_MSEC;
51 } else if (ret >= 10) {
52 return H_LONG_BUSY_ORDER_10_MSEC;
53 } else if (ret > 0) {
54 return H_LONG_BUSY_ORDER_1_MSEC;
57 switch (ret) {
58 case 0:
59 return H_SUCCESS;
60 case -EPERM:
61 return H_AUTHORITY;
62 case -EINVAL:
63 return H_PARAMETER;
64 case -ENXIO:
65 return H_CLOSED;
66 case -ENOSPC:
67 return H_PTEG_FULL;
68 case -EBUSY:
69 return H_BUSY;
70 case -ENOMEM:
71 return H_NO_MEM;
72 default:
73 return H_HARDWARE;
77 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
78 SpaprMachineState *spapr,
79 target_ulong opcode,
80 target_ulong *args)
82 target_ulong flags = args[0];
83 int shift = args[1];
84 uint64_t current_ram_size;
85 int rc;
87 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
88 return H_AUTHORITY;
91 if (!spapr->htab_shift) {
92 /* Radix guest, no HPT */
93 return H_NOT_AVAILABLE;
96 trace_spapr_h_resize_hpt_prepare(flags, shift);
98 if (flags != 0) {
99 return H_PARAMETER;
102 if (shift && ((shift < 18) || (shift > 46))) {
103 return H_PARAMETER;
106 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
108 /* We only allow the guest to allocate an HPT one order above what
109 * we'd normally give them (to stop a small guest claiming a huge
110 * chunk of resources in the HPT */
111 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
112 return H_RESOURCE;
115 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
116 if (rc != -ENOSYS) {
117 return resize_hpt_convert_rc(rc);
120 if (kvm_enabled()) {
121 return H_HARDWARE;
124 return softmmu_resize_hpt_prepare(cpu, spapr, shift);
127 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
129 int ret;
131 cpu_synchronize_state(cs);
133 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
134 if (ret < 0) {
135 error_report("failed to push sregs to KVM: %s", strerror(-ret));
136 exit(1);
140 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
142 CPUState *cs;
145 * This is a hack for the benefit of KVM PR - it abuses the SDR1
146 * slot in kvm_sregs to communicate the userspace address of the
147 * HPT
149 if (!kvm_enabled() || !spapr->htab) {
150 return;
153 CPU_FOREACH(cs) {
154 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
158 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
159 SpaprMachineState *spapr,
160 target_ulong opcode,
161 target_ulong *args)
163 target_ulong flags = args[0];
164 target_ulong shift = args[1];
165 int rc;
167 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
168 return H_AUTHORITY;
171 if (!spapr->htab_shift) {
172 /* Radix guest, no HPT */
173 return H_NOT_AVAILABLE;
176 trace_spapr_h_resize_hpt_commit(flags, shift);
178 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
179 if (rc != -ENOSYS) {
180 rc = resize_hpt_convert_rc(rc);
181 if (rc == H_SUCCESS) {
182 /* Need to set the new htab_shift in the machine state */
183 spapr->htab_shift = shift;
185 return rc;
188 if (kvm_enabled()) {
189 return H_HARDWARE;
192 return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
197 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
198 target_ulong opcode, target_ulong *args)
200 cpu_synchronize_state(CPU(cpu));
201 cpu->env.spr[SPR_SPRG0] = args[0];
203 return H_SUCCESS;
206 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
207 target_ulong opcode, target_ulong *args)
209 if (!ppc_has_spr(cpu, SPR_DABR)) {
210 return H_HARDWARE; /* DABR register not available */
212 cpu_synchronize_state(CPU(cpu));
214 if (ppc_has_spr(cpu, SPR_DABRX)) {
215 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
216 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
217 return H_RESERVED_DABR;
220 cpu->env.spr[SPR_DABR] = args[0];
221 return H_SUCCESS;
224 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
225 target_ulong opcode, target_ulong *args)
227 target_ulong dabrx = args[1];
229 if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
230 return H_HARDWARE;
233 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
234 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
235 return H_PARAMETER;
238 cpu_synchronize_state(CPU(cpu));
239 cpu->env.spr[SPR_DABRX] = dabrx;
240 cpu->env.spr[SPR_DABR] = args[0];
242 return H_SUCCESS;
245 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
246 target_ulong opcode, target_ulong *args)
248 target_ulong flags = args[0];
249 hwaddr dst = args[1];
250 hwaddr src = args[2];
251 hwaddr len = TARGET_PAGE_SIZE;
252 uint8_t *pdst, *psrc;
253 target_long ret = H_SUCCESS;
255 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
256 | H_COPY_PAGE | H_ZERO_PAGE)) {
257 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
258 flags);
259 return H_PARAMETER;
262 /* Map-in destination */
263 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
264 return H_PARAMETER;
266 pdst = cpu_physical_memory_map(dst, &len, true);
267 if (!pdst || len != TARGET_PAGE_SIZE) {
268 return H_PARAMETER;
271 if (flags & H_COPY_PAGE) {
272 /* Map-in source, copy to destination, and unmap source again */
273 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
274 ret = H_PARAMETER;
275 goto unmap_out;
277 psrc = cpu_physical_memory_map(src, &len, false);
278 if (!psrc || len != TARGET_PAGE_SIZE) {
279 ret = H_PARAMETER;
280 goto unmap_out;
282 memcpy(pdst, psrc, len);
283 cpu_physical_memory_unmap(psrc, len, 0, len);
284 } else if (flags & H_ZERO_PAGE) {
285 memset(pdst, 0, len); /* Just clear the destination page */
288 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
289 kvmppc_dcbst_range(cpu, pdst, len);
291 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
292 if (kvm_enabled()) {
293 kvmppc_icbi_range(cpu, pdst, len);
294 } else {
295 tb_flush(CPU(cpu));
299 unmap_out:
300 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
301 return ret;
304 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
305 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
306 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
307 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
308 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
309 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
311 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
313 CPUState *cs = CPU(cpu);
314 CPUPPCState *env = &cpu->env;
315 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
316 uint16_t size;
317 uint8_t tmp;
319 if (vpa == 0) {
320 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
321 return H_HARDWARE;
324 if (vpa % env->dcache_line_size) {
325 return H_PARAMETER;
327 /* FIXME: bounds check the address */
329 size = lduw_be_phys(cs->as, vpa + 0x4);
331 if (size < VPA_MIN_SIZE) {
332 return H_PARAMETER;
335 /* VPA is not allowed to cross a page boundary */
336 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
337 return H_PARAMETER;
340 spapr_cpu->vpa_addr = vpa;
342 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
343 tmp |= VPA_SHARED_PROC_VAL;
344 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
346 return H_SUCCESS;
349 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
351 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
353 if (spapr_cpu->slb_shadow_addr) {
354 return H_RESOURCE;
357 if (spapr_cpu->dtl_addr) {
358 return H_RESOURCE;
361 spapr_cpu->vpa_addr = 0;
362 return H_SUCCESS;
365 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
367 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
368 uint32_t size;
370 if (addr == 0) {
371 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
372 return H_HARDWARE;
375 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
376 if (size < 0x8) {
377 return H_PARAMETER;
380 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
381 return H_PARAMETER;
384 if (!spapr_cpu->vpa_addr) {
385 return H_RESOURCE;
388 spapr_cpu->slb_shadow_addr = addr;
389 spapr_cpu->slb_shadow_size = size;
391 return H_SUCCESS;
394 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
396 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
398 spapr_cpu->slb_shadow_addr = 0;
399 spapr_cpu->slb_shadow_size = 0;
400 return H_SUCCESS;
403 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
405 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
406 uint32_t size;
408 if (addr == 0) {
409 hcall_dprintf("Can't cope with DTL at logical 0\n");
410 return H_HARDWARE;
413 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
415 if (size < 48) {
416 return H_PARAMETER;
419 if (!spapr_cpu->vpa_addr) {
420 return H_RESOURCE;
423 spapr_cpu->dtl_addr = addr;
424 spapr_cpu->dtl_size = size;
426 return H_SUCCESS;
429 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
431 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
433 spapr_cpu->dtl_addr = 0;
434 spapr_cpu->dtl_size = 0;
436 return H_SUCCESS;
439 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
440 target_ulong opcode, target_ulong *args)
442 target_ulong flags = args[0];
443 target_ulong procno = args[1];
444 target_ulong vpa = args[2];
445 target_ulong ret = H_PARAMETER;
446 PowerPCCPU *tcpu;
448 tcpu = spapr_find_cpu(procno);
449 if (!tcpu) {
450 return H_PARAMETER;
453 switch (flags) {
454 case FLAGS_REGISTER_VPA:
455 ret = register_vpa(tcpu, vpa);
456 break;
458 case FLAGS_DEREGISTER_VPA:
459 ret = deregister_vpa(tcpu, vpa);
460 break;
462 case FLAGS_REGISTER_SLBSHADOW:
463 ret = register_slb_shadow(tcpu, vpa);
464 break;
466 case FLAGS_DEREGISTER_SLBSHADOW:
467 ret = deregister_slb_shadow(tcpu, vpa);
468 break;
470 case FLAGS_REGISTER_DTL:
471 ret = register_dtl(tcpu, vpa);
472 break;
474 case FLAGS_DEREGISTER_DTL:
475 ret = deregister_dtl(tcpu, vpa);
476 break;
479 return ret;
482 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
483 target_ulong opcode, target_ulong *args)
485 CPUPPCState *env = &cpu->env;
486 CPUState *cs = CPU(cpu);
487 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
489 env->msr |= (1ULL << MSR_EE);
490 hreg_compute_hflags(env);
492 if (spapr_cpu->prod) {
493 spapr_cpu->prod = false;
494 return H_SUCCESS;
497 if (!cpu_has_work(cs)) {
498 cs->halted = 1;
499 cs->exception_index = EXCP_HLT;
500 cs->exit_request = 1;
503 return H_SUCCESS;
507 * Confer to self, aka join. Cede could use the same pattern as well, if
508 * EXCP_HLT can be changed to ECXP_HALTED.
510 static target_ulong h_confer_self(PowerPCCPU *cpu)
512 CPUState *cs = CPU(cpu);
513 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
515 if (spapr_cpu->prod) {
516 spapr_cpu->prod = false;
517 return H_SUCCESS;
519 cs->halted = 1;
520 cs->exception_index = EXCP_HALTED;
521 cs->exit_request = 1;
523 return H_SUCCESS;
526 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
527 target_ulong opcode, target_ulong *args)
529 CPUPPCState *env = &cpu->env;
530 CPUState *cs;
531 bool last_unjoined = true;
533 if (env->msr & (1ULL << MSR_EE)) {
534 return H_BAD_MODE;
538 * Must not join the last CPU running. Interestingly, no such restriction
539 * for H_CONFER-to-self, but that is probably not intended to be used
540 * when H_JOIN is available.
542 CPU_FOREACH(cs) {
543 PowerPCCPU *c = POWERPC_CPU(cs);
544 CPUPPCState *e = &c->env;
545 if (c == cpu) {
546 continue;
549 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
550 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
551 last_unjoined = false;
552 break;
555 if (last_unjoined) {
556 return H_CONTINUE;
559 return h_confer_self(cpu);
562 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
563 target_ulong opcode, target_ulong *args)
565 target_long target = args[0];
566 uint32_t dispatch = args[1];
567 CPUState *cs = CPU(cpu);
568 SpaprCpuState *spapr_cpu;
571 * -1 means confer to all other CPUs without dispatch counter check,
572 * otherwise it's a targeted confer.
574 if (target != -1) {
575 PowerPCCPU *target_cpu = spapr_find_cpu(target);
576 uint32_t target_dispatch;
578 if (!target_cpu) {
579 return H_PARAMETER;
583 * target == self is a special case, we wait until prodded, without
584 * dispatch counter check.
586 if (cpu == target_cpu) {
587 return h_confer_self(cpu);
590 spapr_cpu = spapr_cpu_state(target_cpu);
591 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
592 return H_SUCCESS;
595 target_dispatch = ldl_be_phys(cs->as,
596 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
597 if (target_dispatch != dispatch) {
598 return H_SUCCESS;
602 * The targeted confer does not do anything special beyond yielding
603 * the current vCPU, but even this should be better than nothing.
604 * At least for single-threaded tcg, it gives the target a chance to
605 * run before we run again. Multi-threaded tcg does not really do
606 * anything with EXCP_YIELD yet.
610 cs->exception_index = EXCP_YIELD;
611 cs->exit_request = 1;
612 cpu_loop_exit(cs);
614 return H_SUCCESS;
617 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
618 target_ulong opcode, target_ulong *args)
620 target_long target = args[0];
621 PowerPCCPU *tcpu;
622 CPUState *cs;
623 SpaprCpuState *spapr_cpu;
625 tcpu = spapr_find_cpu(target);
626 cs = CPU(tcpu);
627 if (!cs) {
628 return H_PARAMETER;
631 spapr_cpu = spapr_cpu_state(tcpu);
632 spapr_cpu->prod = true;
633 cs->halted = 0;
634 qemu_cpu_kick(cs);
636 return H_SUCCESS;
639 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
640 target_ulong opcode, target_ulong *args)
642 target_ulong rtas_r3 = args[0];
643 uint32_t token = rtas_ld(rtas_r3, 0);
644 uint32_t nargs = rtas_ld(rtas_r3, 1);
645 uint32_t nret = rtas_ld(rtas_r3, 2);
647 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
648 nret, rtas_r3 + 12 + 4*nargs);
651 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
652 target_ulong opcode, target_ulong *args)
654 CPUState *cs = CPU(cpu);
655 target_ulong size = args[0];
656 target_ulong addr = args[1];
658 switch (size) {
659 case 1:
660 args[0] = ldub_phys(cs->as, addr);
661 return H_SUCCESS;
662 case 2:
663 args[0] = lduw_phys(cs->as, addr);
664 return H_SUCCESS;
665 case 4:
666 args[0] = ldl_phys(cs->as, addr);
667 return H_SUCCESS;
668 case 8:
669 args[0] = ldq_phys(cs->as, addr);
670 return H_SUCCESS;
672 return H_PARAMETER;
675 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
676 target_ulong opcode, target_ulong *args)
678 CPUState *cs = CPU(cpu);
680 target_ulong size = args[0];
681 target_ulong addr = args[1];
682 target_ulong val = args[2];
684 switch (size) {
685 case 1:
686 stb_phys(cs->as, addr, val);
687 return H_SUCCESS;
688 case 2:
689 stw_phys(cs->as, addr, val);
690 return H_SUCCESS;
691 case 4:
692 stl_phys(cs->as, addr, val);
693 return H_SUCCESS;
694 case 8:
695 stq_phys(cs->as, addr, val);
696 return H_SUCCESS;
698 return H_PARAMETER;
701 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
702 target_ulong opcode, target_ulong *args)
704 CPUState *cs = CPU(cpu);
706 target_ulong dst = args[0]; /* Destination address */
707 target_ulong src = args[1]; /* Source address */
708 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
709 target_ulong count = args[3]; /* Element count */
710 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
711 uint64_t tmp;
712 unsigned int mask = (1 << esize) - 1;
713 int step = 1 << esize;
715 if (count > 0x80000000) {
716 return H_PARAMETER;
719 if ((dst & mask) || (src & mask) || (op > 1)) {
720 return H_PARAMETER;
723 if (dst >= src && dst < (src + (count << esize))) {
724 dst = dst + ((count - 1) << esize);
725 src = src + ((count - 1) << esize);
726 step = -step;
729 while (count--) {
730 switch (esize) {
731 case 0:
732 tmp = ldub_phys(cs->as, src);
733 break;
734 case 1:
735 tmp = lduw_phys(cs->as, src);
736 break;
737 case 2:
738 tmp = ldl_phys(cs->as, src);
739 break;
740 case 3:
741 tmp = ldq_phys(cs->as, src);
742 break;
743 default:
744 return H_PARAMETER;
746 if (op == 1) {
747 tmp = ~tmp;
749 switch (esize) {
750 case 0:
751 stb_phys(cs->as, dst, tmp);
752 break;
753 case 1:
754 stw_phys(cs->as, dst, tmp);
755 break;
756 case 2:
757 stl_phys(cs->as, dst, tmp);
758 break;
759 case 3:
760 stq_phys(cs->as, dst, tmp);
761 break;
763 dst = dst + step;
764 src = src + step;
767 return H_SUCCESS;
770 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
771 target_ulong opcode, target_ulong *args)
773 /* Nothing to do on emulation, KVM will trap this in the kernel */
774 return H_SUCCESS;
777 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
778 target_ulong opcode, target_ulong *args)
780 /* Nothing to do on emulation, KVM will trap this in the kernel */
781 return H_SUCCESS;
784 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
785 SpaprMachineState *spapr,
786 target_ulong mflags,
787 target_ulong value1,
788 target_ulong value2)
790 if (value1) {
791 return H_P3;
793 if (value2) {
794 return H_P4;
797 switch (mflags) {
798 case H_SET_MODE_ENDIAN_BIG:
799 spapr_set_all_lpcrs(0, LPCR_ILE);
800 spapr_pci_switch_vga(spapr, true);
801 return H_SUCCESS;
803 case H_SET_MODE_ENDIAN_LITTLE:
804 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
805 spapr_pci_switch_vga(spapr, false);
806 return H_SUCCESS;
809 return H_UNSUPPORTED_FLAG;
812 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
813 target_ulong mflags,
814 target_ulong value1,
815 target_ulong value2)
817 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
819 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
820 return H_P2;
822 if (value1) {
823 return H_P3;
825 if (value2) {
826 return H_P4;
829 if (mflags == 1) {
830 /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
831 return H_UNSUPPORTED_FLAG;
834 if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
835 /* AIL=2 is reserved in POWER10 (ISA v3.1) */
836 return H_UNSUPPORTED_FLAG;
839 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
841 return H_SUCCESS;
844 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
845 target_ulong opcode, target_ulong *args)
847 target_ulong resource = args[1];
848 target_ulong ret = H_P2;
850 switch (resource) {
851 case H_SET_MODE_RESOURCE_LE:
852 ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
853 break;
854 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
855 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
856 args[2], args[3]);
857 break;
860 return ret;
863 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
864 target_ulong opcode, target_ulong *args)
866 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
867 opcode, " (H_CLEAN_SLB)");
868 return H_FUNCTION;
871 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
872 target_ulong opcode, target_ulong *args)
874 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
875 opcode, " (H_INVALIDATE_PID)");
876 return H_FUNCTION;
879 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
880 uint64_t patbe_old, uint64_t patbe_new)
883 * We have 4 Options:
884 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
885 * HASH->RADIX : Free HPT
886 * RADIX->HASH : Allocate HPT
887 * NOTHING->HASH : Allocate HPT
888 * Note: NOTHING implies the case where we said the guest could choose
889 * later and so assumed radix and now it's called H_REG_PROC_TBL
892 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
893 /* We assume RADIX, so this catches all the "Do Nothing" cases */
894 } else if (!(patbe_old & PATE1_GR)) {
895 /* HASH->RADIX : Free HPT */
896 spapr_free_hpt(spapr);
897 } else if (!(patbe_new & PATE1_GR)) {
898 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
899 spapr_setup_hpt(spapr);
901 return;
904 #define FLAGS_MASK 0x01FULL
905 #define FLAG_MODIFY 0x10
906 #define FLAG_REGISTER 0x08
907 #define FLAG_RADIX 0x04
908 #define FLAG_HASH_PROC_TBL 0x02
909 #define FLAG_GTSE 0x01
911 static target_ulong h_register_process_table(PowerPCCPU *cpu,
912 SpaprMachineState *spapr,
913 target_ulong opcode,
914 target_ulong *args)
916 target_ulong flags = args[0];
917 target_ulong proc_tbl = args[1];
918 target_ulong page_size = args[2];
919 target_ulong table_size = args[3];
920 target_ulong update_lpcr = 0;
921 uint64_t cproc;
923 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
924 return H_PARAMETER;
926 if (flags & FLAG_MODIFY) {
927 if (flags & FLAG_REGISTER) {
928 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
929 if (proc_tbl & 0xfff || proc_tbl >> 60) {
930 return H_P2;
931 } else if (page_size) {
932 return H_P3;
933 } else if (table_size > 24) {
934 return H_P4;
936 cproc = PATE1_GR | proc_tbl | table_size;
937 } else { /* Register new HPT process table */
938 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
939 /* TODO - Not Supported */
940 /* Technically caused by flag bits => H_PARAMETER */
941 return H_PARAMETER;
942 } else { /* Hash with SLB */
943 if (proc_tbl >> 38) {
944 return H_P2;
945 } else if (page_size & ~0x7) {
946 return H_P3;
947 } else if (table_size > 24) {
948 return H_P4;
951 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
954 } else { /* Deregister current process table */
956 * Set to benign value: (current GR) | 0. This allows
957 * deregistration in KVM to succeed even if the radix bit
958 * in flags doesn't match the radix bit in the old PATE.
960 cproc = spapr->patb_entry & PATE1_GR;
962 } else { /* Maintain current registration */
963 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
964 /* Technically caused by flag bits => H_PARAMETER */
965 return H_PARAMETER; /* Existing Process Table Mismatch */
967 cproc = spapr->patb_entry;
970 /* Check if we need to setup OR free the hpt */
971 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
973 spapr->patb_entry = cproc; /* Save new process table */
975 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
976 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
977 update_lpcr |= (LPCR_UPRT | LPCR_HR);
978 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
979 update_lpcr |= LPCR_UPRT;
980 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
981 update_lpcr |= LPCR_GTSE;
983 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
985 if (kvm_enabled()) {
986 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
987 flags & FLAG_GTSE, cproc);
989 return H_SUCCESS;
992 #define H_SIGNAL_SYS_RESET_ALL -1
993 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
995 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
996 SpaprMachineState *spapr,
997 target_ulong opcode, target_ulong *args)
999 target_long target = args[0];
1000 CPUState *cs;
1002 if (target < 0) {
1003 /* Broadcast */
1004 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1005 return H_PARAMETER;
1008 CPU_FOREACH(cs) {
1009 PowerPCCPU *c = POWERPC_CPU(cs);
1011 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1012 if (c == cpu) {
1013 continue;
1016 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1018 return H_SUCCESS;
1020 } else {
1021 /* Unicast */
1022 cs = CPU(spapr_find_cpu(target));
1023 if (cs) {
1024 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1025 return H_SUCCESS;
1027 return H_PARAMETER;
1031 /* Returns either a logical PVR or zero if none was found */
1032 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1033 target_ulong *addr, bool *raw_mode_supported)
1035 bool explicit_match = false; /* Matched the CPU's real PVR */
1036 uint32_t best_compat = 0;
1037 int i;
1040 * We scan the supplied table of PVRs looking for two things
1041 * 1. Is our real CPU PVR in the list?
1042 * 2. What's the "best" listed logical PVR
1044 for (i = 0; i < 512; ++i) {
1045 uint32_t pvr, pvr_mask;
1047 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1048 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1049 *addr += 8;
1051 if (~pvr_mask & pvr) {
1052 break; /* Terminator record */
1055 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1056 explicit_match = true;
1057 } else {
1058 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1059 best_compat = pvr;
1064 *raw_mode_supported = explicit_match;
1066 /* Parsing finished */
1067 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1069 return best_compat;
1072 static
1073 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1074 SpaprMachineState *spapr,
1075 target_ulong vec,
1076 target_ulong fdt_bufsize)
1078 target_ulong ov_table; /* Working address in data buffer */
1079 uint32_t cas_pvr;
1080 SpaprOptionVector *ov1_guest, *ov5_guest;
1081 bool guest_radix;
1082 bool raw_mode_supported = false;
1083 bool guest_xive;
1084 CPUState *cs;
1085 void *fdt;
1086 uint32_t max_compat = spapr->max_compat_pvr;
1088 /* CAS is supposed to be called early when only the boot vCPU is active. */
1089 CPU_FOREACH(cs) {
1090 if (cs == CPU(cpu)) {
1091 continue;
1093 if (!cs->halted) {
1094 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1095 return H_MULTI_THREADS_ACTIVE;
1099 cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1100 if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1102 * We couldn't find a suitable compatibility mode, and either
1103 * the guest doesn't support "raw" mode for this CPU, or "raw"
1104 * mode is disabled because a maximum compat mode is set.
1106 error_report("Couldn't negotiate a suitable PVR during CAS");
1107 return H_HARDWARE;
1110 /* Update CPUs */
1111 if (cpu->compat_pvr != cas_pvr) {
1112 Error *local_err = NULL;
1114 if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1115 /* We fail to set compat mode (likely because running with KVM PR),
1116 * but maybe we can fallback to raw mode if the guest supports it.
1118 if (!raw_mode_supported) {
1119 error_report_err(local_err);
1120 return H_HARDWARE;
1122 error_free(local_err);
1126 /* For the future use: here @ov_table points to the first option vector */
1127 ov_table = vec;
1129 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1130 if (!ov1_guest) {
1131 warn_report("guest didn't provide option vector 1");
1132 return H_PARAMETER;
1134 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1135 if (!ov5_guest) {
1136 spapr_ovec_cleanup(ov1_guest);
1137 warn_report("guest didn't provide option vector 5");
1138 return H_PARAMETER;
1140 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1141 error_report("guest requested hash and radix MMU, which is invalid.");
1142 exit(EXIT_FAILURE);
1144 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1145 error_report("guest requested an invalid interrupt mode");
1146 exit(EXIT_FAILURE);
1149 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1151 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1154 * HPT resizing is a bit of a special case, because when enabled
1155 * we assume an HPT guest will support it until it says it
1156 * doesn't, instead of assuming it won't support it until it says
1157 * it does. Strictly speaking that approach could break for
1158 * guests which don't make a CAS call, but those are so old we
1159 * don't care about them. Without that assumption we'd have to
1160 * make at least a temporary allocation of an HPT sized for max
1161 * memory, which could be impossibly difficult under KVM HV if
1162 * maxram is large.
1164 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1165 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1167 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1168 error_report(
1169 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1170 exit(1);
1173 if (spapr->htab_shift < maxshift) {
1174 /* Guest doesn't know about HPT resizing, so we
1175 * pre-emptively resize for the maximum permitted RAM. At
1176 * the point this is called, nothing should have been
1177 * entered into the existing HPT */
1178 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1179 push_sregs_to_kvm_pr(spapr);
1183 /* NOTE: there are actually a number of ov5 bits where input from the
1184 * guest is always zero, and the platform/QEMU enables them independently
1185 * of guest input. To model these properly we'd want some sort of mask,
1186 * but since they only currently apply to memory migration as defined
1187 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1188 * to worry about this for now.
1191 /* full range of negotiated ov5 capabilities */
1192 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1193 spapr_ovec_cleanup(ov5_guest);
1195 spapr_check_mmu_mode(guest_radix);
1197 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1198 spapr_ovec_cleanup(ov1_guest);
1201 * Ensure the guest asks for an interrupt mode we support;
1202 * otherwise terminate the boot.
1204 if (guest_xive) {
1205 if (!spapr->irq->xive) {
1206 error_report(
1207 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1208 exit(EXIT_FAILURE);
1210 } else {
1211 if (!spapr->irq->xics) {
1212 error_report(
1213 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1214 exit(EXIT_FAILURE);
1218 spapr_irq_update_active_intc(spapr);
1221 * Process all pending hot-plug/unplug requests now. An updated full
1222 * rendered FDT will be returned to the guest.
1224 spapr_drc_reset_all(spapr);
1225 spapr_clear_pending_hotplug_events(spapr);
1228 * If spapr_machine_reset() did not set up a HPT but one is necessary
1229 * (because the guest isn't going to use radix) then set it up here.
1231 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1232 /* legacy hash or new hash: */
1233 spapr_setup_hpt(spapr);
1236 fdt = spapr_build_fdt(spapr, false, fdt_bufsize);
1238 g_free(spapr->fdt_blob);
1239 spapr->fdt_size = fdt_totalsize(fdt);
1240 spapr->fdt_initial_size = spapr->fdt_size;
1241 spapr->fdt_blob = fdt;
1243 return H_SUCCESS;
1246 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1247 SpaprMachineState *spapr,
1248 target_ulong opcode,
1249 target_ulong *args)
1251 target_ulong vec = ppc64_phys_to_real(args[0]);
1252 target_ulong fdt_buf = args[1];
1253 target_ulong fdt_bufsize = args[2];
1254 target_ulong ret;
1255 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1257 if (fdt_bufsize < sizeof(hdr)) {
1258 error_report("SLOF provided insufficient CAS buffer "
1259 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1260 exit(EXIT_FAILURE);
1263 fdt_bufsize -= sizeof(hdr);
1265 ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1266 if (ret == H_SUCCESS) {
1267 _FDT((fdt_pack(spapr->fdt_blob)));
1268 spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1269 spapr->fdt_initial_size = spapr->fdt_size;
1271 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1272 cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1273 spapr->fdt_size);
1274 trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1277 return ret;
1280 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1281 SpaprMachineState *spapr,
1282 target_ulong opcode,
1283 target_ulong *args)
1285 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1286 ~H_CPU_CHAR_THR_RECONF_TRIG;
1287 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1288 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1289 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1290 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1291 uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1292 SPAPR_CAP_CCF_ASSIST);
1294 switch (safe_cache) {
1295 case SPAPR_CAP_WORKAROUND:
1296 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1297 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1298 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1299 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1300 break;
1301 case SPAPR_CAP_FIXED:
1302 break;
1303 default: /* broken */
1304 assert(safe_cache == SPAPR_CAP_BROKEN);
1305 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1306 break;
1309 switch (safe_bounds_check) {
1310 case SPAPR_CAP_WORKAROUND:
1311 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1312 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1313 break;
1314 case SPAPR_CAP_FIXED:
1315 break;
1316 default: /* broken */
1317 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1318 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1319 break;
1322 switch (safe_indirect_branch) {
1323 case SPAPR_CAP_FIXED_NA:
1324 break;
1325 case SPAPR_CAP_FIXED_CCD:
1326 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1327 break;
1328 case SPAPR_CAP_FIXED_IBS:
1329 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1330 break;
1331 case SPAPR_CAP_WORKAROUND:
1332 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1333 if (count_cache_flush_assist) {
1334 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1336 break;
1337 default: /* broken */
1338 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1339 break;
1342 args[0] = characteristics;
1343 args[1] = behaviour;
1344 return H_SUCCESS;
1347 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1348 target_ulong opcode, target_ulong *args)
1350 target_ulong dt = ppc64_phys_to_real(args[0]);
1351 struct fdt_header hdr = { 0 };
1352 unsigned cb;
1353 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1354 void *fdt;
1356 cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1357 cb = fdt32_to_cpu(hdr.totalsize);
1359 if (!smc->update_dt_enabled) {
1360 return H_SUCCESS;
1363 /* Check that the fdt did not grow out of proportion */
1364 if (cb > spapr->fdt_initial_size * 2) {
1365 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1366 fdt32_to_cpu(hdr.magic));
1367 return H_PARAMETER;
1370 fdt = g_malloc0(cb);
1371 cpu_physical_memory_read(dt, fdt, cb);
1373 /* Check the fdt consistency */
1374 if (fdt_check_full(fdt, cb)) {
1375 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1376 fdt32_to_cpu(hdr.magic));
1377 return H_PARAMETER;
1380 g_free(spapr->fdt_blob);
1381 spapr->fdt_size = cb;
1382 spapr->fdt_blob = fdt;
1383 trace_spapr_update_dt(cb);
1385 return H_SUCCESS;
1388 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1389 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1390 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1392 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1394 spapr_hcall_fn *slot;
1396 if (opcode <= MAX_HCALL_OPCODE) {
1397 assert((opcode & 0x3) == 0);
1399 slot = &papr_hypercall_table[opcode / 4];
1400 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1401 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1402 assert((opcode & 0x3) == 0);
1404 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1405 } else {
1406 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1408 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1411 assert(!(*slot));
1412 *slot = fn;
1415 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1416 target_ulong *args)
1418 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1420 if ((opcode <= MAX_HCALL_OPCODE)
1421 && ((opcode & 0x3) == 0)) {
1422 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1424 if (fn) {
1425 return fn(cpu, spapr, opcode, args);
1427 } else if ((opcode >= SVM_HCALL_BASE) &&
1428 (opcode <= SVM_HCALL_MAX)) {
1429 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1431 if (fn) {
1432 return fn(cpu, spapr, opcode, args);
1434 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1435 (opcode <= KVMPPC_HCALL_MAX)) {
1436 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1438 if (fn) {
1439 return fn(cpu, spapr, opcode, args);
1443 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1444 opcode);
1445 return H_FUNCTION;
1448 #ifndef CONFIG_TCG
1449 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1450 target_ulong opcode, target_ulong *args)
1452 g_assert_not_reached();
1455 static void hypercall_register_softmmu(void)
1457 /* hcall-pft */
1458 spapr_register_hypercall(H_ENTER, h_softmmu);
1459 spapr_register_hypercall(H_REMOVE, h_softmmu);
1460 spapr_register_hypercall(H_PROTECT, h_softmmu);
1461 spapr_register_hypercall(H_READ, h_softmmu);
1463 /* hcall-bulk */
1464 spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1466 #else
1467 static void hypercall_register_softmmu(void)
1469 /* DO NOTHING */
1471 #endif
1473 static void hypercall_register_types(void)
1475 hypercall_register_softmmu();
1477 /* hcall-hpt-resize */
1478 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1479 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1481 /* hcall-splpar */
1482 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1483 spapr_register_hypercall(H_CEDE, h_cede);
1484 spapr_register_hypercall(H_CONFER, h_confer);
1485 spapr_register_hypercall(H_PROD, h_prod);
1487 /* hcall-join */
1488 spapr_register_hypercall(H_JOIN, h_join);
1490 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1492 /* processor register resource access h-calls */
1493 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1494 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1495 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1496 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1497 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1499 /* In Memory Table MMU h-calls */
1500 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1501 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1502 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1504 /* hcall-get-cpu-characteristics */
1505 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1506 h_get_cpu_characteristics);
1508 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1509 * here between the "CI" and the "CACHE" variants, they will use whatever
1510 * mapping attributes qemu is using. When using KVM, the kernel will
1511 * enforce the attributes more strongly
1513 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1514 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1515 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1516 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1517 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1518 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1519 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1521 /* qemu/KVM-PPC specific hcalls */
1522 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1524 /* ibm,client-architecture-support support */
1525 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1527 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1530 type_init(hypercall_register_types)