vl: Deprecate -virtfs_synth
[qemu/ar7.git] / block / qed.c
blobdcdcd62b4a2e6ef1d7cdbe4764535e9cea5d87b3
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/option.h"
21 #include "trace.h"
22 #include "qed.h"
23 #include "sysemu/block-backend.h"
24 #include "qapi/qmp/qdict.h"
25 #include "qapi/qobject-input-visitor.h"
26 #include "qapi/qapi-visit-block-core.h"
28 static QemuOptsList qed_create_opts;
30 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
31 const char *filename)
33 const QEDHeader *header = (const QEDHeader *)buf;
35 if (buf_size < sizeof(*header)) {
36 return 0;
38 if (le32_to_cpu(header->magic) != QED_MAGIC) {
39 return 0;
41 return 100;
44 /**
45 * Check whether an image format is raw
47 * @fmt: Backing file format, may be NULL
49 static bool qed_fmt_is_raw(const char *fmt)
51 return fmt && strcmp(fmt, "raw") == 0;
54 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
56 cpu->magic = le32_to_cpu(le->magic);
57 cpu->cluster_size = le32_to_cpu(le->cluster_size);
58 cpu->table_size = le32_to_cpu(le->table_size);
59 cpu->header_size = le32_to_cpu(le->header_size);
60 cpu->features = le64_to_cpu(le->features);
61 cpu->compat_features = le64_to_cpu(le->compat_features);
62 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
63 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
64 cpu->image_size = le64_to_cpu(le->image_size);
65 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
66 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
69 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
71 le->magic = cpu_to_le32(cpu->magic);
72 le->cluster_size = cpu_to_le32(cpu->cluster_size);
73 le->table_size = cpu_to_le32(cpu->table_size);
74 le->header_size = cpu_to_le32(cpu->header_size);
75 le->features = cpu_to_le64(cpu->features);
76 le->compat_features = cpu_to_le64(cpu->compat_features);
77 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
78 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
79 le->image_size = cpu_to_le64(cpu->image_size);
80 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
81 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
84 int qed_write_header_sync(BDRVQEDState *s)
86 QEDHeader le;
87 int ret;
89 qed_header_cpu_to_le(&s->header, &le);
90 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
91 if (ret != sizeof(le)) {
92 return ret;
94 return 0;
97 /**
98 * Update header in-place (does not rewrite backing filename or other strings)
100 * This function only updates known header fields in-place and does not affect
101 * extra data after the QED header.
103 * No new allocating reqs can start while this function runs.
105 static int coroutine_fn qed_write_header(BDRVQEDState *s)
107 /* We must write full sectors for O_DIRECT but cannot necessarily generate
108 * the data following the header if an unrecognized compat feature is
109 * active. Therefore, first read the sectors containing the header, update
110 * them, and write back.
113 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
114 size_t len = nsectors * BDRV_SECTOR_SIZE;
115 uint8_t *buf;
116 int ret;
118 assert(s->allocating_acb || s->allocating_write_reqs_plugged);
120 buf = qemu_blockalign(s->bs, len);
122 ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
123 if (ret < 0) {
124 goto out;
127 /* Update header */
128 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
130 ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0);
131 if (ret < 0) {
132 goto out;
135 ret = 0;
136 out:
137 qemu_vfree(buf);
138 return ret;
141 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
143 uint64_t table_entries;
144 uint64_t l2_size;
146 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
147 l2_size = table_entries * cluster_size;
149 return l2_size * table_entries;
152 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
154 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
155 cluster_size > QED_MAX_CLUSTER_SIZE) {
156 return false;
158 if (cluster_size & (cluster_size - 1)) {
159 return false; /* not power of 2 */
161 return true;
164 static bool qed_is_table_size_valid(uint32_t table_size)
166 if (table_size < QED_MIN_TABLE_SIZE ||
167 table_size > QED_MAX_TABLE_SIZE) {
168 return false;
170 if (table_size & (table_size - 1)) {
171 return false; /* not power of 2 */
173 return true;
176 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
177 uint32_t table_size)
179 if (image_size % BDRV_SECTOR_SIZE != 0) {
180 return false; /* not multiple of sector size */
182 if (image_size > qed_max_image_size(cluster_size, table_size)) {
183 return false; /* image is too large */
185 return true;
189 * Read a string of known length from the image file
191 * @file: Image file
192 * @offset: File offset to start of string, in bytes
193 * @n: String length in bytes
194 * @buf: Destination buffer
195 * @buflen: Destination buffer length in bytes
196 * @ret: 0 on success, -errno on failure
198 * The string is NUL-terminated.
200 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
201 char *buf, size_t buflen)
203 int ret;
204 if (n >= buflen) {
205 return -EINVAL;
207 ret = bdrv_pread(file, offset, buf, n);
208 if (ret < 0) {
209 return ret;
211 buf[n] = '\0';
212 return 0;
216 * Allocate new clusters
218 * @s: QED state
219 * @n: Number of contiguous clusters to allocate
220 * @ret: Offset of first allocated cluster
222 * This function only produces the offset where the new clusters should be
223 * written. It updates BDRVQEDState but does not make any changes to the image
224 * file.
226 * Called with table_lock held.
228 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
230 uint64_t offset = s->file_size;
231 s->file_size += n * s->header.cluster_size;
232 return offset;
235 QEDTable *qed_alloc_table(BDRVQEDState *s)
237 /* Honor O_DIRECT memory alignment requirements */
238 return qemu_blockalign(s->bs,
239 s->header.cluster_size * s->header.table_size);
243 * Allocate a new zeroed L2 table
245 * Called with table_lock held.
247 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
249 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
251 l2_table->table = qed_alloc_table(s);
252 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
254 memset(l2_table->table->offsets, 0,
255 s->header.cluster_size * s->header.table_size);
256 return l2_table;
259 static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
261 qemu_co_mutex_lock(&s->table_lock);
263 /* No reentrancy is allowed. */
264 assert(!s->allocating_write_reqs_plugged);
265 if (s->allocating_acb != NULL) {
266 /* Another allocating write came concurrently. This cannot happen
267 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
269 qemu_co_mutex_unlock(&s->table_lock);
270 return false;
273 s->allocating_write_reqs_plugged = true;
274 qemu_co_mutex_unlock(&s->table_lock);
275 return true;
278 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
280 qemu_co_mutex_lock(&s->table_lock);
281 assert(s->allocating_write_reqs_plugged);
282 s->allocating_write_reqs_plugged = false;
283 qemu_co_queue_next(&s->allocating_write_reqs);
284 qemu_co_mutex_unlock(&s->table_lock);
287 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
289 BDRVQEDState *s = opaque;
290 int ret;
292 trace_qed_need_check_timer_cb(s);
294 if (!qed_plug_allocating_write_reqs(s)) {
295 return;
298 /* Ensure writes are on disk before clearing flag */
299 ret = bdrv_co_flush(s->bs->file->bs);
300 if (ret < 0) {
301 qed_unplug_allocating_write_reqs(s);
302 return;
305 s->header.features &= ~QED_F_NEED_CHECK;
306 ret = qed_write_header(s);
307 (void) ret;
309 qed_unplug_allocating_write_reqs(s);
311 ret = bdrv_co_flush(s->bs);
312 (void) ret;
315 static void qed_need_check_timer_cb(void *opaque)
317 Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
318 qemu_coroutine_enter(co);
321 static void qed_start_need_check_timer(BDRVQEDState *s)
323 trace_qed_start_need_check_timer(s);
325 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
326 * migration.
328 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
329 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
332 /* It's okay to call this multiple times or when no timer is started */
333 static void qed_cancel_need_check_timer(BDRVQEDState *s)
335 trace_qed_cancel_need_check_timer(s);
336 timer_del(s->need_check_timer);
339 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
341 BDRVQEDState *s = bs->opaque;
343 qed_cancel_need_check_timer(s);
344 timer_free(s->need_check_timer);
347 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
348 AioContext *new_context)
350 BDRVQEDState *s = bs->opaque;
352 s->need_check_timer = aio_timer_new(new_context,
353 QEMU_CLOCK_VIRTUAL, SCALE_NS,
354 qed_need_check_timer_cb, s);
355 if (s->header.features & QED_F_NEED_CHECK) {
356 qed_start_need_check_timer(s);
360 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
362 BDRVQEDState *s = bs->opaque;
364 /* Fire the timer immediately in order to start doing I/O as soon as the
365 * header is flushed.
367 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
368 qed_cancel_need_check_timer(s);
369 qed_need_check_timer_entry(s);
373 static void bdrv_qed_init_state(BlockDriverState *bs)
375 BDRVQEDState *s = bs->opaque;
377 memset(s, 0, sizeof(BDRVQEDState));
378 s->bs = bs;
379 qemu_co_mutex_init(&s->table_lock);
380 qemu_co_queue_init(&s->allocating_write_reqs);
383 /* Called with table_lock held. */
384 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
385 int flags, Error **errp)
387 BDRVQEDState *s = bs->opaque;
388 QEDHeader le_header;
389 int64_t file_size;
390 int ret;
392 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
393 if (ret < 0) {
394 return ret;
396 qed_header_le_to_cpu(&le_header, &s->header);
398 if (s->header.magic != QED_MAGIC) {
399 error_setg(errp, "Image not in QED format");
400 return -EINVAL;
402 if (s->header.features & ~QED_FEATURE_MASK) {
403 /* image uses unsupported feature bits */
404 error_setg(errp, "Unsupported QED features: %" PRIx64,
405 s->header.features & ~QED_FEATURE_MASK);
406 return -ENOTSUP;
408 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
409 return -EINVAL;
412 /* Round down file size to the last cluster */
413 file_size = bdrv_getlength(bs->file->bs);
414 if (file_size < 0) {
415 return file_size;
417 s->file_size = qed_start_of_cluster(s, file_size);
419 if (!qed_is_table_size_valid(s->header.table_size)) {
420 return -EINVAL;
422 if (!qed_is_image_size_valid(s->header.image_size,
423 s->header.cluster_size,
424 s->header.table_size)) {
425 return -EINVAL;
427 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
428 return -EINVAL;
431 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
432 sizeof(uint64_t);
433 s->l2_shift = ctz32(s->header.cluster_size);
434 s->l2_mask = s->table_nelems - 1;
435 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
437 /* Header size calculation must not overflow uint32_t */
438 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
439 return -EINVAL;
442 if ((s->header.features & QED_F_BACKING_FILE)) {
443 if ((uint64_t)s->header.backing_filename_offset +
444 s->header.backing_filename_size >
445 s->header.cluster_size * s->header.header_size) {
446 return -EINVAL;
449 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
450 s->header.backing_filename_size,
451 bs->auto_backing_file,
452 sizeof(bs->auto_backing_file));
453 if (ret < 0) {
454 return ret;
456 pstrcpy(bs->backing_file, sizeof(bs->backing_file),
457 bs->auto_backing_file);
459 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
460 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
464 /* Reset unknown autoclear feature bits. This is a backwards
465 * compatibility mechanism that allows images to be opened by older
466 * programs, which "knock out" unknown feature bits. When an image is
467 * opened by a newer program again it can detect that the autoclear
468 * feature is no longer valid.
470 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
471 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
472 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
474 ret = qed_write_header_sync(s);
475 if (ret) {
476 return ret;
479 /* From here on only known autoclear feature bits are valid */
480 bdrv_flush(bs->file->bs);
483 s->l1_table = qed_alloc_table(s);
484 qed_init_l2_cache(&s->l2_cache);
486 ret = qed_read_l1_table_sync(s);
487 if (ret) {
488 goto out;
491 /* If image was not closed cleanly, check consistency */
492 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
493 /* Read-only images cannot be fixed. There is no risk of corruption
494 * since write operations are not possible. Therefore, allow
495 * potentially inconsistent images to be opened read-only. This can
496 * aid data recovery from an otherwise inconsistent image.
498 if (!bdrv_is_read_only(bs->file->bs) &&
499 !(flags & BDRV_O_INACTIVE)) {
500 BdrvCheckResult result = {0};
502 ret = qed_check(s, &result, true);
503 if (ret) {
504 goto out;
509 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
511 out:
512 if (ret) {
513 qed_free_l2_cache(&s->l2_cache);
514 qemu_vfree(s->l1_table);
516 return ret;
519 typedef struct QEDOpenCo {
520 BlockDriverState *bs;
521 QDict *options;
522 int flags;
523 Error **errp;
524 int ret;
525 } QEDOpenCo;
527 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
529 QEDOpenCo *qoc = opaque;
530 BDRVQEDState *s = qoc->bs->opaque;
532 qemu_co_mutex_lock(&s->table_lock);
533 qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
534 qemu_co_mutex_unlock(&s->table_lock);
537 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
538 Error **errp)
540 QEDOpenCo qoc = {
541 .bs = bs,
542 .options = options,
543 .flags = flags,
544 .errp = errp,
545 .ret = -EINPROGRESS
548 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
549 false, errp);
550 if (!bs->file) {
551 return -EINVAL;
554 bdrv_qed_init_state(bs);
555 if (qemu_in_coroutine()) {
556 bdrv_qed_open_entry(&qoc);
557 } else {
558 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
559 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
560 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
562 BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
563 return qoc.ret;
566 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
568 BDRVQEDState *s = bs->opaque;
570 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
573 /* We have nothing to do for QED reopen, stubs just return
574 * success */
575 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
576 BlockReopenQueue *queue, Error **errp)
578 return 0;
581 static void bdrv_qed_close(BlockDriverState *bs)
583 BDRVQEDState *s = bs->opaque;
585 bdrv_qed_detach_aio_context(bs);
587 /* Ensure writes reach stable storage */
588 bdrv_flush(bs->file->bs);
590 /* Clean shutdown, no check required on next open */
591 if (s->header.features & QED_F_NEED_CHECK) {
592 s->header.features &= ~QED_F_NEED_CHECK;
593 qed_write_header_sync(s);
596 qed_free_l2_cache(&s->l2_cache);
597 qemu_vfree(s->l1_table);
600 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
601 Error **errp)
603 BlockdevCreateOptionsQed *qed_opts;
604 BlockBackend *blk = NULL;
605 BlockDriverState *bs = NULL;
607 QEDHeader header;
608 QEDHeader le_header;
609 uint8_t *l1_table = NULL;
610 size_t l1_size;
611 int ret = 0;
613 assert(opts->driver == BLOCKDEV_DRIVER_QED);
614 qed_opts = &opts->u.qed;
616 /* Validate options and set default values */
617 if (!qed_opts->has_cluster_size) {
618 qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
620 if (!qed_opts->has_table_size) {
621 qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
624 if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
625 error_setg(errp, "QED cluster size must be within range [%u, %u] "
626 "and power of 2",
627 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
628 return -EINVAL;
630 if (!qed_is_table_size_valid(qed_opts->table_size)) {
631 error_setg(errp, "QED table size must be within range [%u, %u] "
632 "and power of 2",
633 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
634 return -EINVAL;
636 if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
637 qed_opts->table_size))
639 error_setg(errp, "QED image size must be a non-zero multiple of "
640 "cluster size and less than %" PRIu64 " bytes",
641 qed_max_image_size(qed_opts->cluster_size,
642 qed_opts->table_size));
643 return -EINVAL;
646 /* Create BlockBackend to write to the image */
647 bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
648 if (bs == NULL) {
649 return -EIO;
652 blk = blk_new(BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL);
653 ret = blk_insert_bs(blk, bs, errp);
654 if (ret < 0) {
655 goto out;
657 blk_set_allow_write_beyond_eof(blk, true);
659 /* Prepare image format */
660 header = (QEDHeader) {
661 .magic = QED_MAGIC,
662 .cluster_size = qed_opts->cluster_size,
663 .table_size = qed_opts->table_size,
664 .header_size = 1,
665 .features = 0,
666 .compat_features = 0,
667 .l1_table_offset = qed_opts->cluster_size,
668 .image_size = qed_opts->size,
671 l1_size = header.cluster_size * header.table_size;
673 /* File must start empty and grow, check truncate is supported */
674 ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp);
675 if (ret < 0) {
676 goto out;
679 if (qed_opts->has_backing_file) {
680 header.features |= QED_F_BACKING_FILE;
681 header.backing_filename_offset = sizeof(le_header);
682 header.backing_filename_size = strlen(qed_opts->backing_file);
684 if (qed_opts->has_backing_fmt) {
685 const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
686 if (qed_fmt_is_raw(backing_fmt)) {
687 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
692 qed_header_cpu_to_le(&header, &le_header);
693 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
694 if (ret < 0) {
695 goto out;
697 ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
698 header.backing_filename_size, 0);
699 if (ret < 0) {
700 goto out;
703 l1_table = g_malloc0(l1_size);
704 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
705 if (ret < 0) {
706 goto out;
709 ret = 0; /* success */
710 out:
711 g_free(l1_table);
712 blk_unref(blk);
713 bdrv_unref(bs);
714 return ret;
717 static int coroutine_fn bdrv_qed_co_create_opts(const char *filename,
718 QemuOpts *opts,
719 Error **errp)
721 BlockdevCreateOptions *create_options = NULL;
722 QDict *qdict;
723 Visitor *v;
724 BlockDriverState *bs = NULL;
725 Error *local_err = NULL;
726 int ret;
728 static const QDictRenames opt_renames[] = {
729 { BLOCK_OPT_BACKING_FILE, "backing-file" },
730 { BLOCK_OPT_BACKING_FMT, "backing-fmt" },
731 { BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
732 { BLOCK_OPT_TABLE_SIZE, "table-size" },
733 { NULL, NULL },
736 /* Parse options and convert legacy syntax */
737 qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
739 if (!qdict_rename_keys(qdict, opt_renames, errp)) {
740 ret = -EINVAL;
741 goto fail;
744 /* Create and open the file (protocol layer) */
745 ret = bdrv_create_file(filename, opts, &local_err);
746 if (ret < 0) {
747 error_propagate(errp, local_err);
748 goto fail;
751 bs = bdrv_open(filename, NULL, NULL,
752 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
753 if (bs == NULL) {
754 ret = -EIO;
755 goto fail;
758 /* Now get the QAPI type BlockdevCreateOptions */
759 qdict_put_str(qdict, "driver", "qed");
760 qdict_put_str(qdict, "file", bs->node_name);
762 v = qobject_input_visitor_new_flat_confused(qdict, errp);
763 if (!v) {
764 ret = -EINVAL;
765 goto fail;
768 visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err);
769 visit_free(v);
771 if (local_err) {
772 error_propagate(errp, local_err);
773 ret = -EINVAL;
774 goto fail;
777 /* Silently round up size */
778 assert(create_options->driver == BLOCKDEV_DRIVER_QED);
779 create_options->u.qed.size =
780 ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
782 /* Create the qed image (format layer) */
783 ret = bdrv_qed_co_create(create_options, errp);
785 fail:
786 qobject_unref(qdict);
787 bdrv_unref(bs);
788 qapi_free_BlockdevCreateOptions(create_options);
789 return ret;
792 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
793 bool want_zero,
794 int64_t pos, int64_t bytes,
795 int64_t *pnum, int64_t *map,
796 BlockDriverState **file)
798 BDRVQEDState *s = bs->opaque;
799 size_t len = MIN(bytes, SIZE_MAX);
800 int status;
801 QEDRequest request = { .l2_table = NULL };
802 uint64_t offset;
803 int ret;
805 qemu_co_mutex_lock(&s->table_lock);
806 ret = qed_find_cluster(s, &request, pos, &len, &offset);
808 *pnum = len;
809 switch (ret) {
810 case QED_CLUSTER_FOUND:
811 *map = offset | qed_offset_into_cluster(s, pos);
812 status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
813 *file = bs->file->bs;
814 break;
815 case QED_CLUSTER_ZERO:
816 status = BDRV_BLOCK_ZERO;
817 break;
818 case QED_CLUSTER_L2:
819 case QED_CLUSTER_L1:
820 status = 0;
821 break;
822 default:
823 assert(ret < 0);
824 status = ret;
825 break;
828 qed_unref_l2_cache_entry(request.l2_table);
829 qemu_co_mutex_unlock(&s->table_lock);
831 return status;
834 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
836 return acb->bs->opaque;
840 * Read from the backing file or zero-fill if no backing file
842 * @s: QED state
843 * @pos: Byte position in device
844 * @qiov: Destination I/O vector
845 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
846 * @cb: Completion function
847 * @opaque: User data for completion function
849 * This function reads qiov->size bytes starting at pos from the backing file.
850 * If there is no backing file then zeroes are read.
852 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
853 QEMUIOVector *qiov,
854 QEMUIOVector **backing_qiov)
856 uint64_t backing_length = 0;
857 size_t size;
858 int ret;
860 /* If there is a backing file, get its length. Treat the absence of a
861 * backing file like a zero length backing file.
863 if (s->bs->backing) {
864 int64_t l = bdrv_getlength(s->bs->backing->bs);
865 if (l < 0) {
866 return l;
868 backing_length = l;
871 /* Zero all sectors if reading beyond the end of the backing file */
872 if (pos >= backing_length ||
873 pos + qiov->size > backing_length) {
874 qemu_iovec_memset(qiov, 0, 0, qiov->size);
877 /* Complete now if there are no backing file sectors to read */
878 if (pos >= backing_length) {
879 return 0;
882 /* If the read straddles the end of the backing file, shorten it */
883 size = MIN((uint64_t)backing_length - pos, qiov->size);
885 assert(*backing_qiov == NULL);
886 *backing_qiov = g_new(QEMUIOVector, 1);
887 qemu_iovec_init(*backing_qiov, qiov->niov);
888 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
890 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
891 ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
892 if (ret < 0) {
893 return ret;
895 return 0;
899 * Copy data from backing file into the image
901 * @s: QED state
902 * @pos: Byte position in device
903 * @len: Number of bytes
904 * @offset: Byte offset in image file
906 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
907 uint64_t pos, uint64_t len,
908 uint64_t offset)
910 QEMUIOVector qiov;
911 QEMUIOVector *backing_qiov = NULL;
912 int ret;
914 /* Skip copy entirely if there is no work to do */
915 if (len == 0) {
916 return 0;
919 qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
921 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
923 if (backing_qiov) {
924 qemu_iovec_destroy(backing_qiov);
925 g_free(backing_qiov);
926 backing_qiov = NULL;
929 if (ret) {
930 goto out;
933 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
934 ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
935 if (ret < 0) {
936 goto out;
938 ret = 0;
939 out:
940 qemu_vfree(qemu_iovec_buf(&qiov));
941 return ret;
945 * Link one or more contiguous clusters into a table
947 * @s: QED state
948 * @table: L2 table
949 * @index: First cluster index
950 * @n: Number of contiguous clusters
951 * @cluster: First cluster offset
953 * The cluster offset may be an allocated byte offset in the image file, the
954 * zero cluster marker, or the unallocated cluster marker.
956 * Called with table_lock held.
958 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
959 int index, unsigned int n,
960 uint64_t cluster)
962 int i;
963 for (i = index; i < index + n; i++) {
964 table->offsets[i] = cluster;
965 if (!qed_offset_is_unalloc_cluster(cluster) &&
966 !qed_offset_is_zero_cluster(cluster)) {
967 cluster += s->header.cluster_size;
972 /* Called with table_lock held. */
973 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
975 BDRVQEDState *s = acb_to_s(acb);
977 /* Free resources */
978 qemu_iovec_destroy(&acb->cur_qiov);
979 qed_unref_l2_cache_entry(acb->request.l2_table);
981 /* Free the buffer we may have allocated for zero writes */
982 if (acb->flags & QED_AIOCB_ZERO) {
983 qemu_vfree(acb->qiov->iov[0].iov_base);
984 acb->qiov->iov[0].iov_base = NULL;
987 /* Start next allocating write request waiting behind this one. Note that
988 * requests enqueue themselves when they first hit an unallocated cluster
989 * but they wait until the entire request is finished before waking up the
990 * next request in the queue. This ensures that we don't cycle through
991 * requests multiple times but rather finish one at a time completely.
993 if (acb == s->allocating_acb) {
994 s->allocating_acb = NULL;
995 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
996 qemu_co_queue_next(&s->allocating_write_reqs);
997 } else if (s->header.features & QED_F_NEED_CHECK) {
998 qed_start_need_check_timer(s);
1004 * Update L1 table with new L2 table offset and write it out
1006 * Called with table_lock held.
1008 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
1010 BDRVQEDState *s = acb_to_s(acb);
1011 CachedL2Table *l2_table = acb->request.l2_table;
1012 uint64_t l2_offset = l2_table->offset;
1013 int index, ret;
1015 index = qed_l1_index(s, acb->cur_pos);
1016 s->l1_table->offsets[index] = l2_table->offset;
1018 ret = qed_write_l1_table(s, index, 1);
1020 /* Commit the current L2 table to the cache */
1021 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1023 /* This is guaranteed to succeed because we just committed the entry to the
1024 * cache.
1026 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1027 assert(acb->request.l2_table != NULL);
1029 return ret;
1034 * Update L2 table with new cluster offsets and write them out
1036 * Called with table_lock held.
1038 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1040 BDRVQEDState *s = acb_to_s(acb);
1041 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1042 int index, ret;
1044 if (need_alloc) {
1045 qed_unref_l2_cache_entry(acb->request.l2_table);
1046 acb->request.l2_table = qed_new_l2_table(s);
1049 index = qed_l2_index(s, acb->cur_pos);
1050 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1051 offset);
1053 if (need_alloc) {
1054 /* Write out the whole new L2 table */
1055 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1056 if (ret) {
1057 return ret;
1059 return qed_aio_write_l1_update(acb);
1060 } else {
1061 /* Write out only the updated part of the L2 table */
1062 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1063 false);
1064 if (ret) {
1065 return ret;
1068 return 0;
1072 * Write data to the image file
1074 * Called with table_lock *not* held.
1076 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1078 BDRVQEDState *s = acb_to_s(acb);
1079 uint64_t offset = acb->cur_cluster +
1080 qed_offset_into_cluster(s, acb->cur_pos);
1082 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1084 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1085 return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1086 &acb->cur_qiov, 0);
1090 * Populate untouched regions of new data cluster
1092 * Called with table_lock held.
1094 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1096 BDRVQEDState *s = acb_to_s(acb);
1097 uint64_t start, len, offset;
1098 int ret;
1100 qemu_co_mutex_unlock(&s->table_lock);
1102 /* Populate front untouched region of new data cluster */
1103 start = qed_start_of_cluster(s, acb->cur_pos);
1104 len = qed_offset_into_cluster(s, acb->cur_pos);
1106 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1107 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1108 if (ret < 0) {
1109 goto out;
1112 /* Populate back untouched region of new data cluster */
1113 start = acb->cur_pos + acb->cur_qiov.size;
1114 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1115 offset = acb->cur_cluster +
1116 qed_offset_into_cluster(s, acb->cur_pos) +
1117 acb->cur_qiov.size;
1119 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1120 ret = qed_copy_from_backing_file(s, start, len, offset);
1121 if (ret < 0) {
1122 goto out;
1125 ret = qed_aio_write_main(acb);
1126 if (ret < 0) {
1127 goto out;
1130 if (s->bs->backing) {
1132 * Flush new data clusters before updating the L2 table
1134 * This flush is necessary when a backing file is in use. A crash
1135 * during an allocating write could result in empty clusters in the
1136 * image. If the write only touched a subregion of the cluster,
1137 * then backing image sectors have been lost in the untouched
1138 * region. The solution is to flush after writing a new data
1139 * cluster and before updating the L2 table.
1141 ret = bdrv_co_flush(s->bs->file->bs);
1144 out:
1145 qemu_co_mutex_lock(&s->table_lock);
1146 return ret;
1150 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1152 static bool qed_should_set_need_check(BDRVQEDState *s)
1154 /* The flush before L2 update path ensures consistency */
1155 if (s->bs->backing) {
1156 return false;
1159 return !(s->header.features & QED_F_NEED_CHECK);
1163 * Write new data cluster
1165 * @acb: Write request
1166 * @len: Length in bytes
1168 * This path is taken when writing to previously unallocated clusters.
1170 * Called with table_lock held.
1172 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1174 BDRVQEDState *s = acb_to_s(acb);
1175 int ret;
1177 /* Cancel timer when the first allocating request comes in */
1178 if (s->allocating_acb == NULL) {
1179 qed_cancel_need_check_timer(s);
1182 /* Freeze this request if another allocating write is in progress */
1183 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1184 if (s->allocating_acb != NULL) {
1185 qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1186 assert(s->allocating_acb == NULL);
1188 s->allocating_acb = acb;
1189 return -EAGAIN; /* start over with looking up table entries */
1192 acb->cur_nclusters = qed_bytes_to_clusters(s,
1193 qed_offset_into_cluster(s, acb->cur_pos) + len);
1194 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1196 if (acb->flags & QED_AIOCB_ZERO) {
1197 /* Skip ahead if the clusters are already zero */
1198 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1199 return 0;
1201 acb->cur_cluster = 1;
1202 } else {
1203 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1206 if (qed_should_set_need_check(s)) {
1207 s->header.features |= QED_F_NEED_CHECK;
1208 ret = qed_write_header(s);
1209 if (ret < 0) {
1210 return ret;
1214 if (!(acb->flags & QED_AIOCB_ZERO)) {
1215 ret = qed_aio_write_cow(acb);
1216 if (ret < 0) {
1217 return ret;
1221 return qed_aio_write_l2_update(acb, acb->cur_cluster);
1225 * Write data cluster in place
1227 * @acb: Write request
1228 * @offset: Cluster offset in bytes
1229 * @len: Length in bytes
1231 * This path is taken when writing to already allocated clusters.
1233 * Called with table_lock held.
1235 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1236 size_t len)
1238 BDRVQEDState *s = acb_to_s(acb);
1239 int r;
1241 qemu_co_mutex_unlock(&s->table_lock);
1243 /* Allocate buffer for zero writes */
1244 if (acb->flags & QED_AIOCB_ZERO) {
1245 struct iovec *iov = acb->qiov->iov;
1247 if (!iov->iov_base) {
1248 iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1249 if (iov->iov_base == NULL) {
1250 r = -ENOMEM;
1251 goto out;
1253 memset(iov->iov_base, 0, iov->iov_len);
1257 /* Calculate the I/O vector */
1258 acb->cur_cluster = offset;
1259 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1261 /* Do the actual write. */
1262 r = qed_aio_write_main(acb);
1263 out:
1264 qemu_co_mutex_lock(&s->table_lock);
1265 return r;
1269 * Write data cluster
1271 * @opaque: Write request
1272 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1273 * @offset: Cluster offset in bytes
1274 * @len: Length in bytes
1276 * Called with table_lock held.
1278 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1279 uint64_t offset, size_t len)
1281 QEDAIOCB *acb = opaque;
1283 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1285 acb->find_cluster_ret = ret;
1287 switch (ret) {
1288 case QED_CLUSTER_FOUND:
1289 return qed_aio_write_inplace(acb, offset, len);
1291 case QED_CLUSTER_L2:
1292 case QED_CLUSTER_L1:
1293 case QED_CLUSTER_ZERO:
1294 return qed_aio_write_alloc(acb, len);
1296 default:
1297 g_assert_not_reached();
1302 * Read data cluster
1304 * @opaque: Read request
1305 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1306 * @offset: Cluster offset in bytes
1307 * @len: Length in bytes
1309 * Called with table_lock held.
1311 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1312 uint64_t offset, size_t len)
1314 QEDAIOCB *acb = opaque;
1315 BDRVQEDState *s = acb_to_s(acb);
1316 BlockDriverState *bs = acb->bs;
1317 int r;
1319 qemu_co_mutex_unlock(&s->table_lock);
1321 /* Adjust offset into cluster */
1322 offset += qed_offset_into_cluster(s, acb->cur_pos);
1324 trace_qed_aio_read_data(s, acb, ret, offset, len);
1326 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1328 /* Handle zero cluster and backing file reads, otherwise read
1329 * data cluster directly.
1331 if (ret == QED_CLUSTER_ZERO) {
1332 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1333 r = 0;
1334 } else if (ret != QED_CLUSTER_FOUND) {
1335 r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1336 &acb->backing_qiov);
1337 } else {
1338 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1339 r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1340 &acb->cur_qiov, 0);
1343 qemu_co_mutex_lock(&s->table_lock);
1344 return r;
1348 * Begin next I/O or complete the request
1350 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1352 BDRVQEDState *s = acb_to_s(acb);
1353 uint64_t offset;
1354 size_t len;
1355 int ret;
1357 qemu_co_mutex_lock(&s->table_lock);
1358 while (1) {
1359 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1361 if (acb->backing_qiov) {
1362 qemu_iovec_destroy(acb->backing_qiov);
1363 g_free(acb->backing_qiov);
1364 acb->backing_qiov = NULL;
1367 acb->qiov_offset += acb->cur_qiov.size;
1368 acb->cur_pos += acb->cur_qiov.size;
1369 qemu_iovec_reset(&acb->cur_qiov);
1371 /* Complete request */
1372 if (acb->cur_pos >= acb->end_pos) {
1373 ret = 0;
1374 break;
1377 /* Find next cluster and start I/O */
1378 len = acb->end_pos - acb->cur_pos;
1379 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1380 if (ret < 0) {
1381 break;
1384 if (acb->flags & QED_AIOCB_WRITE) {
1385 ret = qed_aio_write_data(acb, ret, offset, len);
1386 } else {
1387 ret = qed_aio_read_data(acb, ret, offset, len);
1390 if (ret < 0 && ret != -EAGAIN) {
1391 break;
1395 trace_qed_aio_complete(s, acb, ret);
1396 qed_aio_complete(acb);
1397 qemu_co_mutex_unlock(&s->table_lock);
1398 return ret;
1401 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1402 QEMUIOVector *qiov, int nb_sectors,
1403 int flags)
1405 QEDAIOCB acb = {
1406 .bs = bs,
1407 .cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1408 .end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1409 .qiov = qiov,
1410 .flags = flags,
1412 qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1414 trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1416 /* Start request */
1417 return qed_aio_next_io(&acb);
1420 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1421 int64_t sector_num, int nb_sectors,
1422 QEMUIOVector *qiov)
1424 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1427 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1428 int64_t sector_num, int nb_sectors,
1429 QEMUIOVector *qiov, int flags)
1431 assert(!flags);
1432 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1435 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1436 int64_t offset,
1437 int bytes,
1438 BdrvRequestFlags flags)
1440 BDRVQEDState *s = bs->opaque;
1443 * Zero writes start without an I/O buffer. If a buffer becomes necessary
1444 * then it will be allocated during request processing.
1446 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1448 /* Fall back if the request is not aligned */
1449 if (qed_offset_into_cluster(s, offset) ||
1450 qed_offset_into_cluster(s, bytes)) {
1451 return -ENOTSUP;
1454 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1455 bytes >> BDRV_SECTOR_BITS,
1456 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1459 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1460 int64_t offset,
1461 PreallocMode prealloc,
1462 Error **errp)
1464 BDRVQEDState *s = bs->opaque;
1465 uint64_t old_image_size;
1466 int ret;
1468 if (prealloc != PREALLOC_MODE_OFF) {
1469 error_setg(errp, "Unsupported preallocation mode '%s'",
1470 PreallocMode_str(prealloc));
1471 return -ENOTSUP;
1474 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1475 s->header.table_size)) {
1476 error_setg(errp, "Invalid image size specified");
1477 return -EINVAL;
1480 if ((uint64_t)offset < s->header.image_size) {
1481 error_setg(errp, "Shrinking images is currently not supported");
1482 return -ENOTSUP;
1485 old_image_size = s->header.image_size;
1486 s->header.image_size = offset;
1487 ret = qed_write_header_sync(s);
1488 if (ret < 0) {
1489 s->header.image_size = old_image_size;
1490 error_setg_errno(errp, -ret, "Failed to update the image size");
1492 return ret;
1495 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1497 BDRVQEDState *s = bs->opaque;
1498 return s->header.image_size;
1501 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1503 BDRVQEDState *s = bs->opaque;
1505 memset(bdi, 0, sizeof(*bdi));
1506 bdi->cluster_size = s->header.cluster_size;
1507 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1508 bdi->unallocated_blocks_are_zero = true;
1509 return 0;
1512 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1513 const char *backing_file,
1514 const char *backing_fmt)
1516 BDRVQEDState *s = bs->opaque;
1517 QEDHeader new_header, le_header;
1518 void *buffer;
1519 size_t buffer_len, backing_file_len;
1520 int ret;
1522 /* Refuse to set backing filename if unknown compat feature bits are
1523 * active. If the image uses an unknown compat feature then we may not
1524 * know the layout of data following the header structure and cannot safely
1525 * add a new string.
1527 if (backing_file && (s->header.compat_features &
1528 ~QED_COMPAT_FEATURE_MASK)) {
1529 return -ENOTSUP;
1532 memcpy(&new_header, &s->header, sizeof(new_header));
1534 new_header.features &= ~(QED_F_BACKING_FILE |
1535 QED_F_BACKING_FORMAT_NO_PROBE);
1537 /* Adjust feature flags */
1538 if (backing_file) {
1539 new_header.features |= QED_F_BACKING_FILE;
1541 if (qed_fmt_is_raw(backing_fmt)) {
1542 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1546 /* Calculate new header size */
1547 backing_file_len = 0;
1549 if (backing_file) {
1550 backing_file_len = strlen(backing_file);
1553 buffer_len = sizeof(new_header);
1554 new_header.backing_filename_offset = buffer_len;
1555 new_header.backing_filename_size = backing_file_len;
1556 buffer_len += backing_file_len;
1558 /* Make sure we can rewrite header without failing */
1559 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1560 return -ENOSPC;
1563 /* Prepare new header */
1564 buffer = g_malloc(buffer_len);
1566 qed_header_cpu_to_le(&new_header, &le_header);
1567 memcpy(buffer, &le_header, sizeof(le_header));
1568 buffer_len = sizeof(le_header);
1570 if (backing_file) {
1571 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1572 buffer_len += backing_file_len;
1575 /* Write new header */
1576 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1577 g_free(buffer);
1578 if (ret == 0) {
1579 memcpy(&s->header, &new_header, sizeof(new_header));
1581 return ret;
1584 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1585 Error **errp)
1587 BDRVQEDState *s = bs->opaque;
1588 Error *local_err = NULL;
1589 int ret;
1591 bdrv_qed_close(bs);
1593 bdrv_qed_init_state(bs);
1594 qemu_co_mutex_lock(&s->table_lock);
1595 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1596 qemu_co_mutex_unlock(&s->table_lock);
1597 if (local_err) {
1598 error_propagate_prepend(errp, local_err,
1599 "Could not reopen qed layer: ");
1600 return;
1601 } else if (ret < 0) {
1602 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1603 return;
1607 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1608 BdrvCheckResult *result,
1609 BdrvCheckMode fix)
1611 BDRVQEDState *s = bs->opaque;
1612 int ret;
1614 qemu_co_mutex_lock(&s->table_lock);
1615 ret = qed_check(s, result, !!fix);
1616 qemu_co_mutex_unlock(&s->table_lock);
1618 return ret;
1621 static QemuOptsList qed_create_opts = {
1622 .name = "qed-create-opts",
1623 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1624 .desc = {
1626 .name = BLOCK_OPT_SIZE,
1627 .type = QEMU_OPT_SIZE,
1628 .help = "Virtual disk size"
1631 .name = BLOCK_OPT_BACKING_FILE,
1632 .type = QEMU_OPT_STRING,
1633 .help = "File name of a base image"
1636 .name = BLOCK_OPT_BACKING_FMT,
1637 .type = QEMU_OPT_STRING,
1638 .help = "Image format of the base image"
1641 .name = BLOCK_OPT_CLUSTER_SIZE,
1642 .type = QEMU_OPT_SIZE,
1643 .help = "Cluster size (in bytes)",
1644 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1647 .name = BLOCK_OPT_TABLE_SIZE,
1648 .type = QEMU_OPT_SIZE,
1649 .help = "L1/L2 table size (in clusters)"
1651 { /* end of list */ }
1655 static BlockDriver bdrv_qed = {
1656 .format_name = "qed",
1657 .instance_size = sizeof(BDRVQEDState),
1658 .create_opts = &qed_create_opts,
1659 .supports_backing = true,
1661 .bdrv_probe = bdrv_qed_probe,
1662 .bdrv_open = bdrv_qed_open,
1663 .bdrv_close = bdrv_qed_close,
1664 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1665 .bdrv_child_perm = bdrv_format_default_perms,
1666 .bdrv_co_create = bdrv_qed_co_create,
1667 .bdrv_co_create_opts = bdrv_qed_co_create_opts,
1668 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1669 .bdrv_co_block_status = bdrv_qed_co_block_status,
1670 .bdrv_co_readv = bdrv_qed_co_readv,
1671 .bdrv_co_writev = bdrv_qed_co_writev,
1672 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1673 .bdrv_co_truncate = bdrv_qed_co_truncate,
1674 .bdrv_getlength = bdrv_qed_getlength,
1675 .bdrv_get_info = bdrv_qed_get_info,
1676 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1677 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1678 .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1679 .bdrv_co_check = bdrv_qed_co_check,
1680 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1681 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1682 .bdrv_co_drain_begin = bdrv_qed_co_drain_begin,
1685 static void bdrv_qed_init(void)
1687 bdrv_register(&bdrv_qed);
1690 block_init(bdrv_qed_init);