nbd/server: Trace client noncompliance on unaligned requests
[qemu/ar7.git] / exec.c
blob6ab62f4eee0945aacbcadfe6d06bf618874bf4b8
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
90 #endif
92 #ifdef TARGET_PAGE_BITS_VARY
93 int target_page_bits;
94 bool target_page_bits_decided;
95 #endif
97 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
99 /* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
101 __thread CPUState *current_cpu;
102 /* 0 = Do not count executed instructions.
103 1 = Precise instruction counting.
104 2 = Adaptive rate instruction counting. */
105 int use_icount;
107 uintptr_t qemu_host_page_size;
108 intptr_t qemu_host_page_mask;
110 bool set_preferred_target_page_bits(int bits)
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
115 * a particular size.
117 #ifdef TARGET_PAGE_BITS_VARY
118 assert(bits >= TARGET_PAGE_BITS_MIN);
119 if (target_page_bits == 0 || target_page_bits > bits) {
120 if (target_page_bits_decided) {
121 return false;
123 target_page_bits = bits;
125 #endif
126 return true;
129 #if !defined(CONFIG_USER_ONLY)
131 static void finalize_target_page_bits(void)
133 #ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits == 0) {
135 target_page_bits = TARGET_PAGE_BITS_MIN;
137 target_page_bits_decided = true;
138 #endif
141 typedef struct PhysPageEntry PhysPageEntry;
143 struct PhysPageEntry {
144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
145 uint32_t skip : 6;
146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
147 uint32_t ptr : 26;
150 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
152 /* Size of the L2 (and L3, etc) page tables. */
153 #define ADDR_SPACE_BITS 64
155 #define P_L2_BITS 9
156 #define P_L2_SIZE (1 << P_L2_BITS)
158 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
160 typedef PhysPageEntry Node[P_L2_SIZE];
162 typedef struct PhysPageMap {
163 struct rcu_head rcu;
165 unsigned sections_nb;
166 unsigned sections_nb_alloc;
167 unsigned nodes_nb;
168 unsigned nodes_nb_alloc;
169 Node *nodes;
170 MemoryRegionSection *sections;
171 } PhysPageMap;
173 struct AddressSpaceDispatch {
174 MemoryRegionSection *mru_section;
175 /* This is a multi-level map on the physical address space.
176 * The bottom level has pointers to MemoryRegionSections.
178 PhysPageEntry phys_map;
179 PhysPageMap map;
182 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
183 typedef struct subpage_t {
184 MemoryRegion iomem;
185 FlatView *fv;
186 hwaddr base;
187 uint16_t sub_section[];
188 } subpage_t;
190 #define PHYS_SECTION_UNASSIGNED 0
191 #define PHYS_SECTION_NOTDIRTY 1
192 #define PHYS_SECTION_ROM 2
193 #define PHYS_SECTION_WATCH 3
195 static void io_mem_init(void);
196 static void memory_map_init(void);
197 static void tcg_commit(MemoryListener *listener);
199 static MemoryRegion io_mem_watch;
202 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
203 * @cpu: the CPU whose AddressSpace this is
204 * @as: the AddressSpace itself
205 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
206 * @tcg_as_listener: listener for tracking changes to the AddressSpace
208 struct CPUAddressSpace {
209 CPUState *cpu;
210 AddressSpace *as;
211 struct AddressSpaceDispatch *memory_dispatch;
212 MemoryListener tcg_as_listener;
215 struct DirtyBitmapSnapshot {
216 ram_addr_t start;
217 ram_addr_t end;
218 unsigned long dirty[];
221 #endif
223 #if !defined(CONFIG_USER_ONLY)
225 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
227 static unsigned alloc_hint = 16;
228 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
229 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
231 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
232 alloc_hint = map->nodes_nb_alloc;
236 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
238 unsigned i;
239 uint32_t ret;
240 PhysPageEntry e;
241 PhysPageEntry *p;
243 ret = map->nodes_nb++;
244 p = map->nodes[ret];
245 assert(ret != PHYS_MAP_NODE_NIL);
246 assert(ret != map->nodes_nb_alloc);
248 e.skip = leaf ? 0 : 1;
249 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
250 for (i = 0; i < P_L2_SIZE; ++i) {
251 memcpy(&p[i], &e, sizeof(e));
253 return ret;
256 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
257 hwaddr *index, hwaddr *nb, uint16_t leaf,
258 int level)
260 PhysPageEntry *p;
261 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
263 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
264 lp->ptr = phys_map_node_alloc(map, level == 0);
266 p = map->nodes[lp->ptr];
267 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
269 while (*nb && lp < &p[P_L2_SIZE]) {
270 if ((*index & (step - 1)) == 0 && *nb >= step) {
271 lp->skip = 0;
272 lp->ptr = leaf;
273 *index += step;
274 *nb -= step;
275 } else {
276 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
278 ++lp;
282 static void phys_page_set(AddressSpaceDispatch *d,
283 hwaddr index, hwaddr nb,
284 uint16_t leaf)
286 /* Wildly overreserve - it doesn't matter much. */
287 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
289 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
292 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
293 * and update our entry so we can skip it and go directly to the destination.
295 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
297 unsigned valid_ptr = P_L2_SIZE;
298 int valid = 0;
299 PhysPageEntry *p;
300 int i;
302 if (lp->ptr == PHYS_MAP_NODE_NIL) {
303 return;
306 p = nodes[lp->ptr];
307 for (i = 0; i < P_L2_SIZE; i++) {
308 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
309 continue;
312 valid_ptr = i;
313 valid++;
314 if (p[i].skip) {
315 phys_page_compact(&p[i], nodes);
319 /* We can only compress if there's only one child. */
320 if (valid != 1) {
321 return;
324 assert(valid_ptr < P_L2_SIZE);
326 /* Don't compress if it won't fit in the # of bits we have. */
327 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
328 return;
331 lp->ptr = p[valid_ptr].ptr;
332 if (!p[valid_ptr].skip) {
333 /* If our only child is a leaf, make this a leaf. */
334 /* By design, we should have made this node a leaf to begin with so we
335 * should never reach here.
336 * But since it's so simple to handle this, let's do it just in case we
337 * change this rule.
339 lp->skip = 0;
340 } else {
341 lp->skip += p[valid_ptr].skip;
345 void address_space_dispatch_compact(AddressSpaceDispatch *d)
347 if (d->phys_map.skip) {
348 phys_page_compact(&d->phys_map, d->map.nodes);
352 static inline bool section_covers_addr(const MemoryRegionSection *section,
353 hwaddr addr)
355 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
356 * the section must cover the entire address space.
358 return int128_gethi(section->size) ||
359 range_covers_byte(section->offset_within_address_space,
360 int128_getlo(section->size), addr);
363 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
365 PhysPageEntry lp = d->phys_map, *p;
366 Node *nodes = d->map.nodes;
367 MemoryRegionSection *sections = d->map.sections;
368 hwaddr index = addr >> TARGET_PAGE_BITS;
369 int i;
371 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
372 if (lp.ptr == PHYS_MAP_NODE_NIL) {
373 return &sections[PHYS_SECTION_UNASSIGNED];
375 p = nodes[lp.ptr];
376 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
379 if (section_covers_addr(&sections[lp.ptr], addr)) {
380 return &sections[lp.ptr];
381 } else {
382 return &sections[PHYS_SECTION_UNASSIGNED];
386 /* Called from RCU critical section */
387 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
388 hwaddr addr,
389 bool resolve_subpage)
391 MemoryRegionSection *section = atomic_read(&d->mru_section);
392 subpage_t *subpage;
394 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
395 !section_covers_addr(section, addr)) {
396 section = phys_page_find(d, addr);
397 atomic_set(&d->mru_section, section);
399 if (resolve_subpage && section->mr->subpage) {
400 subpage = container_of(section->mr, subpage_t, iomem);
401 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
403 return section;
406 /* Called from RCU critical section */
407 static MemoryRegionSection *
408 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
409 hwaddr *plen, bool resolve_subpage)
411 MemoryRegionSection *section;
412 MemoryRegion *mr;
413 Int128 diff;
415 section = address_space_lookup_region(d, addr, resolve_subpage);
416 /* Compute offset within MemoryRegionSection */
417 addr -= section->offset_within_address_space;
419 /* Compute offset within MemoryRegion */
420 *xlat = addr + section->offset_within_region;
422 mr = section->mr;
424 /* MMIO registers can be expected to perform full-width accesses based only
425 * on their address, without considering adjacent registers that could
426 * decode to completely different MemoryRegions. When such registers
427 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
428 * regions overlap wildly. For this reason we cannot clamp the accesses
429 * here.
431 * If the length is small (as is the case for address_space_ldl/stl),
432 * everything works fine. If the incoming length is large, however,
433 * the caller really has to do the clamping through memory_access_size.
435 if (memory_region_is_ram(mr)) {
436 diff = int128_sub(section->size, int128_make64(addr));
437 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
439 return section;
443 * address_space_translate_iommu - translate an address through an IOMMU
444 * memory region and then through the target address space.
446 * @iommu_mr: the IOMMU memory region that we start the translation from
447 * @addr: the address to be translated through the MMU
448 * @xlat: the translated address offset within the destination memory region.
449 * It cannot be %NULL.
450 * @plen_out: valid read/write length of the translated address. It
451 * cannot be %NULL.
452 * @page_mask_out: page mask for the translated address. This
453 * should only be meaningful for IOMMU translated
454 * addresses, since there may be huge pages that this bit
455 * would tell. It can be %NULL if we don't care about it.
456 * @is_write: whether the translation operation is for write
457 * @is_mmio: whether this can be MMIO, set true if it can
458 * @target_as: the address space targeted by the IOMMU
459 * @attrs: transaction attributes
461 * This function is called from RCU critical section. It is the common
462 * part of flatview_do_translate and address_space_translate_cached.
464 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
465 hwaddr *xlat,
466 hwaddr *plen_out,
467 hwaddr *page_mask_out,
468 bool is_write,
469 bool is_mmio,
470 AddressSpace **target_as,
471 MemTxAttrs attrs)
473 MemoryRegionSection *section;
474 hwaddr page_mask = (hwaddr)-1;
476 do {
477 hwaddr addr = *xlat;
478 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
479 int iommu_idx = 0;
480 IOMMUTLBEntry iotlb;
482 if (imrc->attrs_to_index) {
483 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
486 iotlb = imrc->translate(iommu_mr, addr, is_write ?
487 IOMMU_WO : IOMMU_RO, iommu_idx);
489 if (!(iotlb.perm & (1 << is_write))) {
490 goto unassigned;
493 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
494 | (addr & iotlb.addr_mask));
495 page_mask &= iotlb.addr_mask;
496 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
497 *target_as = iotlb.target_as;
499 section = address_space_translate_internal(
500 address_space_to_dispatch(iotlb.target_as), addr, xlat,
501 plen_out, is_mmio);
503 iommu_mr = memory_region_get_iommu(section->mr);
504 } while (unlikely(iommu_mr));
506 if (page_mask_out) {
507 *page_mask_out = page_mask;
509 return *section;
511 unassigned:
512 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
516 * flatview_do_translate - translate an address in FlatView
518 * @fv: the flat view that we want to translate on
519 * @addr: the address to be translated in above address space
520 * @xlat: the translated address offset within memory region. It
521 * cannot be @NULL.
522 * @plen_out: valid read/write length of the translated address. It
523 * can be @NULL when we don't care about it.
524 * @page_mask_out: page mask for the translated address. This
525 * should only be meaningful for IOMMU translated
526 * addresses, since there may be huge pages that this bit
527 * would tell. It can be @NULL if we don't care about it.
528 * @is_write: whether the translation operation is for write
529 * @is_mmio: whether this can be MMIO, set true if it can
530 * @target_as: the address space targeted by the IOMMU
531 * @attrs: memory transaction attributes
533 * This function is called from RCU critical section
535 static MemoryRegionSection flatview_do_translate(FlatView *fv,
536 hwaddr addr,
537 hwaddr *xlat,
538 hwaddr *plen_out,
539 hwaddr *page_mask_out,
540 bool is_write,
541 bool is_mmio,
542 AddressSpace **target_as,
543 MemTxAttrs attrs)
545 MemoryRegionSection *section;
546 IOMMUMemoryRegion *iommu_mr;
547 hwaddr plen = (hwaddr)(-1);
549 if (!plen_out) {
550 plen_out = &plen;
553 section = address_space_translate_internal(
554 flatview_to_dispatch(fv), addr, xlat,
555 plen_out, is_mmio);
557 iommu_mr = memory_region_get_iommu(section->mr);
558 if (unlikely(iommu_mr)) {
559 return address_space_translate_iommu(iommu_mr, xlat,
560 plen_out, page_mask_out,
561 is_write, is_mmio,
562 target_as, attrs);
564 if (page_mask_out) {
565 /* Not behind an IOMMU, use default page size. */
566 *page_mask_out = ~TARGET_PAGE_MASK;
569 return *section;
572 /* Called from RCU critical section */
573 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
574 bool is_write, MemTxAttrs attrs)
576 MemoryRegionSection section;
577 hwaddr xlat, page_mask;
580 * This can never be MMIO, and we don't really care about plen,
581 * but page mask.
583 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
584 NULL, &page_mask, is_write, false, &as,
585 attrs);
587 /* Illegal translation */
588 if (section.mr == &io_mem_unassigned) {
589 goto iotlb_fail;
592 /* Convert memory region offset into address space offset */
593 xlat += section.offset_within_address_space -
594 section.offset_within_region;
596 return (IOMMUTLBEntry) {
597 .target_as = as,
598 .iova = addr & ~page_mask,
599 .translated_addr = xlat & ~page_mask,
600 .addr_mask = page_mask,
601 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
602 .perm = IOMMU_RW,
605 iotlb_fail:
606 return (IOMMUTLBEntry) {0};
609 /* Called from RCU critical section */
610 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
611 hwaddr *plen, bool is_write,
612 MemTxAttrs attrs)
614 MemoryRegion *mr;
615 MemoryRegionSection section;
616 AddressSpace *as = NULL;
618 /* This can be MMIO, so setup MMIO bit. */
619 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
620 is_write, true, &as, attrs);
621 mr = section.mr;
623 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
624 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
625 *plen = MIN(page, *plen);
628 return mr;
631 typedef struct TCGIOMMUNotifier {
632 IOMMUNotifier n;
633 MemoryRegion *mr;
634 CPUState *cpu;
635 int iommu_idx;
636 bool active;
637 } TCGIOMMUNotifier;
639 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
641 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
643 if (!notifier->active) {
644 return;
646 tlb_flush(notifier->cpu);
647 notifier->active = false;
648 /* We leave the notifier struct on the list to avoid reallocating it later.
649 * Generally the number of IOMMUs a CPU deals with will be small.
650 * In any case we can't unregister the iommu notifier from a notify
651 * callback.
655 static void tcg_register_iommu_notifier(CPUState *cpu,
656 IOMMUMemoryRegion *iommu_mr,
657 int iommu_idx)
659 /* Make sure this CPU has an IOMMU notifier registered for this
660 * IOMMU/IOMMU index combination, so that we can flush its TLB
661 * when the IOMMU tells us the mappings we've cached have changed.
663 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
664 TCGIOMMUNotifier *notifier;
665 int i;
667 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
668 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
669 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
670 break;
673 if (i == cpu->iommu_notifiers->len) {
674 /* Not found, add a new entry at the end of the array */
675 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
676 notifier = g_new0(TCGIOMMUNotifier, 1);
677 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
679 notifier->mr = mr;
680 notifier->iommu_idx = iommu_idx;
681 notifier->cpu = cpu;
682 /* Rather than trying to register interest in the specific part
683 * of the iommu's address space that we've accessed and then
684 * expand it later as subsequent accesses touch more of it, we
685 * just register interest in the whole thing, on the assumption
686 * that iommu reconfiguration will be rare.
688 iommu_notifier_init(&notifier->n,
689 tcg_iommu_unmap_notify,
690 IOMMU_NOTIFIER_UNMAP,
692 HWADDR_MAX,
693 iommu_idx);
694 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
697 if (!notifier->active) {
698 notifier->active = true;
702 static void tcg_iommu_free_notifier_list(CPUState *cpu)
704 /* Destroy the CPU's notifier list */
705 int i;
706 TCGIOMMUNotifier *notifier;
708 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
709 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
710 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
711 g_free(notifier);
713 g_array_free(cpu->iommu_notifiers, true);
716 /* Called from RCU critical section */
717 MemoryRegionSection *
718 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
719 hwaddr *xlat, hwaddr *plen,
720 MemTxAttrs attrs, int *prot)
722 MemoryRegionSection *section;
723 IOMMUMemoryRegion *iommu_mr;
724 IOMMUMemoryRegionClass *imrc;
725 IOMMUTLBEntry iotlb;
726 int iommu_idx;
727 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
729 for (;;) {
730 section = address_space_translate_internal(d, addr, &addr, plen, false);
732 iommu_mr = memory_region_get_iommu(section->mr);
733 if (!iommu_mr) {
734 break;
737 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
739 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
740 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
741 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
742 * doesn't short-cut its translation table walk.
744 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
745 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
746 | (addr & iotlb.addr_mask));
747 /* Update the caller's prot bits to remove permissions the IOMMU
748 * is giving us a failure response for. If we get down to no
749 * permissions left at all we can give up now.
751 if (!(iotlb.perm & IOMMU_RO)) {
752 *prot &= ~(PAGE_READ | PAGE_EXEC);
754 if (!(iotlb.perm & IOMMU_WO)) {
755 *prot &= ~PAGE_WRITE;
758 if (!*prot) {
759 goto translate_fail;
762 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
765 assert(!memory_region_is_iommu(section->mr));
766 *xlat = addr;
767 return section;
769 translate_fail:
770 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
772 #endif
774 #if !defined(CONFIG_USER_ONLY)
776 static int cpu_common_post_load(void *opaque, int version_id)
778 CPUState *cpu = opaque;
780 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
781 version_id is increased. */
782 cpu->interrupt_request &= ~0x01;
783 tlb_flush(cpu);
785 /* loadvm has just updated the content of RAM, bypassing the
786 * usual mechanisms that ensure we flush TBs for writes to
787 * memory we've translated code from. So we must flush all TBs,
788 * which will now be stale.
790 tb_flush(cpu);
792 return 0;
795 static int cpu_common_pre_load(void *opaque)
797 CPUState *cpu = opaque;
799 cpu->exception_index = -1;
801 return 0;
804 static bool cpu_common_exception_index_needed(void *opaque)
806 CPUState *cpu = opaque;
808 return tcg_enabled() && cpu->exception_index != -1;
811 static const VMStateDescription vmstate_cpu_common_exception_index = {
812 .name = "cpu_common/exception_index",
813 .version_id = 1,
814 .minimum_version_id = 1,
815 .needed = cpu_common_exception_index_needed,
816 .fields = (VMStateField[]) {
817 VMSTATE_INT32(exception_index, CPUState),
818 VMSTATE_END_OF_LIST()
822 static bool cpu_common_crash_occurred_needed(void *opaque)
824 CPUState *cpu = opaque;
826 return cpu->crash_occurred;
829 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
830 .name = "cpu_common/crash_occurred",
831 .version_id = 1,
832 .minimum_version_id = 1,
833 .needed = cpu_common_crash_occurred_needed,
834 .fields = (VMStateField[]) {
835 VMSTATE_BOOL(crash_occurred, CPUState),
836 VMSTATE_END_OF_LIST()
840 const VMStateDescription vmstate_cpu_common = {
841 .name = "cpu_common",
842 .version_id = 1,
843 .minimum_version_id = 1,
844 .pre_load = cpu_common_pre_load,
845 .post_load = cpu_common_post_load,
846 .fields = (VMStateField[]) {
847 VMSTATE_UINT32(halted, CPUState),
848 VMSTATE_UINT32(interrupt_request, CPUState),
849 VMSTATE_END_OF_LIST()
851 .subsections = (const VMStateDescription*[]) {
852 &vmstate_cpu_common_exception_index,
853 &vmstate_cpu_common_crash_occurred,
854 NULL
858 #endif
860 CPUState *qemu_get_cpu(int index)
862 CPUState *cpu;
864 CPU_FOREACH(cpu) {
865 if (cpu->cpu_index == index) {
866 return cpu;
870 return NULL;
873 #if !defined(CONFIG_USER_ONLY)
874 void cpu_address_space_init(CPUState *cpu, int asidx,
875 const char *prefix, MemoryRegion *mr)
877 CPUAddressSpace *newas;
878 AddressSpace *as = g_new0(AddressSpace, 1);
879 char *as_name;
881 assert(mr);
882 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
883 address_space_init(as, mr, as_name);
884 g_free(as_name);
886 /* Target code should have set num_ases before calling us */
887 assert(asidx < cpu->num_ases);
889 if (asidx == 0) {
890 /* address space 0 gets the convenience alias */
891 cpu->as = as;
894 /* KVM cannot currently support multiple address spaces. */
895 assert(asidx == 0 || !kvm_enabled());
897 if (!cpu->cpu_ases) {
898 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
901 newas = &cpu->cpu_ases[asidx];
902 newas->cpu = cpu;
903 newas->as = as;
904 if (tcg_enabled()) {
905 newas->tcg_as_listener.commit = tcg_commit;
906 memory_listener_register(&newas->tcg_as_listener, as);
910 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
912 /* Return the AddressSpace corresponding to the specified index */
913 return cpu->cpu_ases[asidx].as;
915 #endif
917 void cpu_exec_unrealizefn(CPUState *cpu)
919 CPUClass *cc = CPU_GET_CLASS(cpu);
921 cpu_list_remove(cpu);
923 if (cc->vmsd != NULL) {
924 vmstate_unregister(NULL, cc->vmsd, cpu);
926 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
927 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
929 #ifndef CONFIG_USER_ONLY
930 tcg_iommu_free_notifier_list(cpu);
931 #endif
934 Property cpu_common_props[] = {
935 #ifndef CONFIG_USER_ONLY
936 /* Create a memory property for softmmu CPU object,
937 * so users can wire up its memory. (This can't go in qom/cpu.c
938 * because that file is compiled only once for both user-mode
939 * and system builds.) The default if no link is set up is to use
940 * the system address space.
942 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
943 MemoryRegion *),
944 #endif
945 DEFINE_PROP_END_OF_LIST(),
948 void cpu_exec_initfn(CPUState *cpu)
950 cpu->as = NULL;
951 cpu->num_ases = 0;
953 #ifndef CONFIG_USER_ONLY
954 cpu->thread_id = qemu_get_thread_id();
955 cpu->memory = system_memory;
956 object_ref(OBJECT(cpu->memory));
957 #endif
960 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
962 CPUClass *cc = CPU_GET_CLASS(cpu);
963 static bool tcg_target_initialized;
965 cpu_list_add(cpu);
967 if (tcg_enabled() && !tcg_target_initialized) {
968 tcg_target_initialized = true;
969 cc->tcg_initialize();
971 tlb_init(cpu);
973 #ifndef CONFIG_USER_ONLY
974 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
975 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
977 if (cc->vmsd != NULL) {
978 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
981 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
982 #endif
985 const char *parse_cpu_model(const char *cpu_model)
987 ObjectClass *oc;
988 CPUClass *cc;
989 gchar **model_pieces;
990 const char *cpu_type;
992 model_pieces = g_strsplit(cpu_model, ",", 2);
994 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
995 if (oc == NULL) {
996 error_report("unable to find CPU model '%s'", model_pieces[0]);
997 g_strfreev(model_pieces);
998 exit(EXIT_FAILURE);
1001 cpu_type = object_class_get_name(oc);
1002 cc = CPU_CLASS(oc);
1003 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1004 g_strfreev(model_pieces);
1005 return cpu_type;
1008 #if defined(CONFIG_USER_ONLY)
1009 void tb_invalidate_phys_addr(target_ulong addr)
1011 mmap_lock();
1012 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1013 mmap_unlock();
1016 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1018 tb_invalidate_phys_addr(pc);
1020 #else
1021 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1023 ram_addr_t ram_addr;
1024 MemoryRegion *mr;
1025 hwaddr l = 1;
1027 if (!tcg_enabled()) {
1028 return;
1031 rcu_read_lock();
1032 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1033 if (!(memory_region_is_ram(mr)
1034 || memory_region_is_romd(mr))) {
1035 rcu_read_unlock();
1036 return;
1038 ram_addr = memory_region_get_ram_addr(mr) + addr;
1039 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1040 rcu_read_unlock();
1043 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1045 MemTxAttrs attrs;
1046 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1047 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1048 if (phys != -1) {
1049 /* Locks grabbed by tb_invalidate_phys_addr */
1050 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1051 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1054 #endif
1056 #if defined(CONFIG_USER_ONLY)
1057 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1062 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1063 int flags)
1065 return -ENOSYS;
1068 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1072 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1073 int flags, CPUWatchpoint **watchpoint)
1075 return -ENOSYS;
1077 #else
1078 /* Add a watchpoint. */
1079 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1080 int flags, CPUWatchpoint **watchpoint)
1082 CPUWatchpoint *wp;
1084 /* forbid ranges which are empty or run off the end of the address space */
1085 if (len == 0 || (addr + len - 1) < addr) {
1086 error_report("tried to set invalid watchpoint at %"
1087 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1088 return -EINVAL;
1090 wp = g_malloc(sizeof(*wp));
1092 wp->vaddr = addr;
1093 wp->len = len;
1094 wp->flags = flags;
1096 /* keep all GDB-injected watchpoints in front */
1097 if (flags & BP_GDB) {
1098 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1099 } else {
1100 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1103 tlb_flush_page(cpu, addr);
1105 if (watchpoint)
1106 *watchpoint = wp;
1107 return 0;
1110 /* Remove a specific watchpoint. */
1111 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1112 int flags)
1114 CPUWatchpoint *wp;
1116 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1117 if (addr == wp->vaddr && len == wp->len
1118 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1119 cpu_watchpoint_remove_by_ref(cpu, wp);
1120 return 0;
1123 return -ENOENT;
1126 /* Remove a specific watchpoint by reference. */
1127 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1129 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1131 tlb_flush_page(cpu, watchpoint->vaddr);
1133 g_free(watchpoint);
1136 /* Remove all matching watchpoints. */
1137 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1139 CPUWatchpoint *wp, *next;
1141 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1142 if (wp->flags & mask) {
1143 cpu_watchpoint_remove_by_ref(cpu, wp);
1148 /* Return true if this watchpoint address matches the specified
1149 * access (ie the address range covered by the watchpoint overlaps
1150 * partially or completely with the address range covered by the
1151 * access).
1153 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1154 vaddr addr,
1155 vaddr len)
1157 /* We know the lengths are non-zero, but a little caution is
1158 * required to avoid errors in the case where the range ends
1159 * exactly at the top of the address space and so addr + len
1160 * wraps round to zero.
1162 vaddr wpend = wp->vaddr + wp->len - 1;
1163 vaddr addrend = addr + len - 1;
1165 return !(addr > wpend || wp->vaddr > addrend);
1168 #endif
1170 /* Add a breakpoint. */
1171 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1172 CPUBreakpoint **breakpoint)
1174 CPUBreakpoint *bp;
1176 bp = g_malloc(sizeof(*bp));
1178 bp->pc = pc;
1179 bp->flags = flags;
1181 /* keep all GDB-injected breakpoints in front */
1182 if (flags & BP_GDB) {
1183 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1184 } else {
1185 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1188 breakpoint_invalidate(cpu, pc);
1190 if (breakpoint) {
1191 *breakpoint = bp;
1193 return 0;
1196 /* Remove a specific breakpoint. */
1197 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1199 CPUBreakpoint *bp;
1201 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1202 if (bp->pc == pc && bp->flags == flags) {
1203 cpu_breakpoint_remove_by_ref(cpu, bp);
1204 return 0;
1207 return -ENOENT;
1210 /* Remove a specific breakpoint by reference. */
1211 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1213 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1215 breakpoint_invalidate(cpu, breakpoint->pc);
1217 g_free(breakpoint);
1220 /* Remove all matching breakpoints. */
1221 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1223 CPUBreakpoint *bp, *next;
1225 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1226 if (bp->flags & mask) {
1227 cpu_breakpoint_remove_by_ref(cpu, bp);
1232 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1233 CPU loop after each instruction */
1234 void cpu_single_step(CPUState *cpu, int enabled)
1236 if (cpu->singlestep_enabled != enabled) {
1237 cpu->singlestep_enabled = enabled;
1238 if (kvm_enabled()) {
1239 kvm_update_guest_debug(cpu, 0);
1240 } else {
1241 /* must flush all the translated code to avoid inconsistencies */
1242 /* XXX: only flush what is necessary */
1243 tb_flush(cpu);
1248 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1250 va_list ap;
1251 va_list ap2;
1253 va_start(ap, fmt);
1254 va_copy(ap2, ap);
1255 fprintf(stderr, "qemu: fatal: ");
1256 vfprintf(stderr, fmt, ap);
1257 fprintf(stderr, "\n");
1258 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1259 if (qemu_log_separate()) {
1260 qemu_log_lock();
1261 qemu_log("qemu: fatal: ");
1262 qemu_log_vprintf(fmt, ap2);
1263 qemu_log("\n");
1264 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1265 qemu_log_flush();
1266 qemu_log_unlock();
1267 qemu_log_close();
1269 va_end(ap2);
1270 va_end(ap);
1271 replay_finish();
1272 #if defined(CONFIG_USER_ONLY)
1274 struct sigaction act;
1275 sigfillset(&act.sa_mask);
1276 act.sa_handler = SIG_DFL;
1277 act.sa_flags = 0;
1278 sigaction(SIGABRT, &act, NULL);
1280 #endif
1281 abort();
1284 #if !defined(CONFIG_USER_ONLY)
1285 /* Called from RCU critical section */
1286 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1288 RAMBlock *block;
1290 block = atomic_rcu_read(&ram_list.mru_block);
1291 if (block && addr - block->offset < block->max_length) {
1292 return block;
1294 RAMBLOCK_FOREACH(block) {
1295 if (addr - block->offset < block->max_length) {
1296 goto found;
1300 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1301 abort();
1303 found:
1304 /* It is safe to write mru_block outside the iothread lock. This
1305 * is what happens:
1307 * mru_block = xxx
1308 * rcu_read_unlock()
1309 * xxx removed from list
1310 * rcu_read_lock()
1311 * read mru_block
1312 * mru_block = NULL;
1313 * call_rcu(reclaim_ramblock, xxx);
1314 * rcu_read_unlock()
1316 * atomic_rcu_set is not needed here. The block was already published
1317 * when it was placed into the list. Here we're just making an extra
1318 * copy of the pointer.
1320 ram_list.mru_block = block;
1321 return block;
1324 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1326 CPUState *cpu;
1327 ram_addr_t start1;
1328 RAMBlock *block;
1329 ram_addr_t end;
1331 assert(tcg_enabled());
1332 end = TARGET_PAGE_ALIGN(start + length);
1333 start &= TARGET_PAGE_MASK;
1335 rcu_read_lock();
1336 block = qemu_get_ram_block(start);
1337 assert(block == qemu_get_ram_block(end - 1));
1338 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1339 CPU_FOREACH(cpu) {
1340 tlb_reset_dirty(cpu, start1, length);
1342 rcu_read_unlock();
1345 /* Note: start and end must be within the same ram block. */
1346 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1347 ram_addr_t length,
1348 unsigned client)
1350 DirtyMemoryBlocks *blocks;
1351 unsigned long end, page;
1352 bool dirty = false;
1354 if (length == 0) {
1355 return false;
1358 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1359 page = start >> TARGET_PAGE_BITS;
1361 rcu_read_lock();
1363 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1365 while (page < end) {
1366 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1367 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1368 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1370 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1371 offset, num);
1372 page += num;
1375 rcu_read_unlock();
1377 if (dirty && tcg_enabled()) {
1378 tlb_reset_dirty_range_all(start, length);
1381 return dirty;
1384 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1385 (ram_addr_t start, ram_addr_t length, unsigned client)
1387 DirtyMemoryBlocks *blocks;
1388 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1389 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1390 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1391 DirtyBitmapSnapshot *snap;
1392 unsigned long page, end, dest;
1394 snap = g_malloc0(sizeof(*snap) +
1395 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1396 snap->start = first;
1397 snap->end = last;
1399 page = first >> TARGET_PAGE_BITS;
1400 end = last >> TARGET_PAGE_BITS;
1401 dest = 0;
1403 rcu_read_lock();
1405 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1407 while (page < end) {
1408 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1409 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1410 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1412 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1413 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1414 offset >>= BITS_PER_LEVEL;
1416 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1417 blocks->blocks[idx] + offset,
1418 num);
1419 page += num;
1420 dest += num >> BITS_PER_LEVEL;
1423 rcu_read_unlock();
1425 if (tcg_enabled()) {
1426 tlb_reset_dirty_range_all(start, length);
1429 return snap;
1432 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1433 ram_addr_t start,
1434 ram_addr_t length)
1436 unsigned long page, end;
1438 assert(start >= snap->start);
1439 assert(start + length <= snap->end);
1441 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1442 page = (start - snap->start) >> TARGET_PAGE_BITS;
1444 while (page < end) {
1445 if (test_bit(page, snap->dirty)) {
1446 return true;
1448 page++;
1450 return false;
1453 /* Called from RCU critical section */
1454 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1455 MemoryRegionSection *section,
1456 target_ulong vaddr,
1457 hwaddr paddr, hwaddr xlat,
1458 int prot,
1459 target_ulong *address)
1461 hwaddr iotlb;
1462 CPUWatchpoint *wp;
1464 if (memory_region_is_ram(section->mr)) {
1465 /* Normal RAM. */
1466 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1467 if (!section->readonly) {
1468 iotlb |= PHYS_SECTION_NOTDIRTY;
1469 } else {
1470 iotlb |= PHYS_SECTION_ROM;
1472 } else {
1473 AddressSpaceDispatch *d;
1475 d = flatview_to_dispatch(section->fv);
1476 iotlb = section - d->map.sections;
1477 iotlb += xlat;
1480 /* Make accesses to pages with watchpoints go via the
1481 watchpoint trap routines. */
1482 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1483 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1484 /* Avoid trapping reads of pages with a write breakpoint. */
1485 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1486 iotlb = PHYS_SECTION_WATCH + paddr;
1487 *address |= TLB_MMIO;
1488 break;
1493 return iotlb;
1495 #endif /* defined(CONFIG_USER_ONLY) */
1497 #if !defined(CONFIG_USER_ONLY)
1499 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1500 uint16_t section);
1501 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1503 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1504 qemu_anon_ram_alloc;
1507 * Set a custom physical guest memory alloator.
1508 * Accelerators with unusual needs may need this. Hopefully, we can
1509 * get rid of it eventually.
1511 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1513 phys_mem_alloc = alloc;
1516 static uint16_t phys_section_add(PhysPageMap *map,
1517 MemoryRegionSection *section)
1519 /* The physical section number is ORed with a page-aligned
1520 * pointer to produce the iotlb entries. Thus it should
1521 * never overflow into the page-aligned value.
1523 assert(map->sections_nb < TARGET_PAGE_SIZE);
1525 if (map->sections_nb == map->sections_nb_alloc) {
1526 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1527 map->sections = g_renew(MemoryRegionSection, map->sections,
1528 map->sections_nb_alloc);
1530 map->sections[map->sections_nb] = *section;
1531 memory_region_ref(section->mr);
1532 return map->sections_nb++;
1535 static void phys_section_destroy(MemoryRegion *mr)
1537 bool have_sub_page = mr->subpage;
1539 memory_region_unref(mr);
1541 if (have_sub_page) {
1542 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1543 object_unref(OBJECT(&subpage->iomem));
1544 g_free(subpage);
1548 static void phys_sections_free(PhysPageMap *map)
1550 while (map->sections_nb > 0) {
1551 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1552 phys_section_destroy(section->mr);
1554 g_free(map->sections);
1555 g_free(map->nodes);
1558 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1560 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1561 subpage_t *subpage;
1562 hwaddr base = section->offset_within_address_space
1563 & TARGET_PAGE_MASK;
1564 MemoryRegionSection *existing = phys_page_find(d, base);
1565 MemoryRegionSection subsection = {
1566 .offset_within_address_space = base,
1567 .size = int128_make64(TARGET_PAGE_SIZE),
1569 hwaddr start, end;
1571 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1573 if (!(existing->mr->subpage)) {
1574 subpage = subpage_init(fv, base);
1575 subsection.fv = fv;
1576 subsection.mr = &subpage->iomem;
1577 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1578 phys_section_add(&d->map, &subsection));
1579 } else {
1580 subpage = container_of(existing->mr, subpage_t, iomem);
1582 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1583 end = start + int128_get64(section->size) - 1;
1584 subpage_register(subpage, start, end,
1585 phys_section_add(&d->map, section));
1589 static void register_multipage(FlatView *fv,
1590 MemoryRegionSection *section)
1592 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1593 hwaddr start_addr = section->offset_within_address_space;
1594 uint16_t section_index = phys_section_add(&d->map, section);
1595 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1596 TARGET_PAGE_BITS));
1598 assert(num_pages);
1599 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1603 * The range in *section* may look like this:
1605 * |s|PPPPPPP|s|
1607 * where s stands for subpage and P for page.
1609 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1611 MemoryRegionSection remain = *section;
1612 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1614 /* register first subpage */
1615 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1616 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1617 - remain.offset_within_address_space;
1619 MemoryRegionSection now = remain;
1620 now.size = int128_min(int128_make64(left), now.size);
1621 register_subpage(fv, &now);
1622 if (int128_eq(remain.size, now.size)) {
1623 return;
1625 remain.size = int128_sub(remain.size, now.size);
1626 remain.offset_within_address_space += int128_get64(now.size);
1627 remain.offset_within_region += int128_get64(now.size);
1630 /* register whole pages */
1631 if (int128_ge(remain.size, page_size)) {
1632 MemoryRegionSection now = remain;
1633 now.size = int128_and(now.size, int128_neg(page_size));
1634 register_multipage(fv, &now);
1635 if (int128_eq(remain.size, now.size)) {
1636 return;
1638 remain.size = int128_sub(remain.size, now.size);
1639 remain.offset_within_address_space += int128_get64(now.size);
1640 remain.offset_within_region += int128_get64(now.size);
1643 /* register last subpage */
1644 register_subpage(fv, &remain);
1647 void qemu_flush_coalesced_mmio_buffer(void)
1649 if (kvm_enabled())
1650 kvm_flush_coalesced_mmio_buffer();
1653 void qemu_mutex_lock_ramlist(void)
1655 qemu_mutex_lock(&ram_list.mutex);
1658 void qemu_mutex_unlock_ramlist(void)
1660 qemu_mutex_unlock(&ram_list.mutex);
1663 void ram_block_dump(Monitor *mon)
1665 RAMBlock *block;
1666 char *psize;
1668 rcu_read_lock();
1669 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1670 "Block Name", "PSize", "Offset", "Used", "Total");
1671 RAMBLOCK_FOREACH(block) {
1672 psize = size_to_str(block->page_size);
1673 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1674 " 0x%016" PRIx64 "\n", block->idstr, psize,
1675 (uint64_t)block->offset,
1676 (uint64_t)block->used_length,
1677 (uint64_t)block->max_length);
1678 g_free(psize);
1680 rcu_read_unlock();
1683 #ifdef __linux__
1685 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1686 * may or may not name the same files / on the same filesystem now as
1687 * when we actually open and map them. Iterate over the file
1688 * descriptors instead, and use qemu_fd_getpagesize().
1690 static int find_max_supported_pagesize(Object *obj, void *opaque)
1692 long *hpsize_min = opaque;
1694 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1695 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1696 long hpsize = host_memory_backend_pagesize(backend);
1698 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1699 *hpsize_min = hpsize;
1703 return 0;
1706 long qemu_getrampagesize(void)
1708 long hpsize = LONG_MAX;
1709 long mainrampagesize;
1710 Object *memdev_root;
1712 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1714 /* it's possible we have memory-backend objects with
1715 * hugepage-backed RAM. these may get mapped into system
1716 * address space via -numa parameters or memory hotplug
1717 * hooks. we want to take these into account, but we
1718 * also want to make sure these supported hugepage
1719 * sizes are applicable across the entire range of memory
1720 * we may boot from, so we take the min across all
1721 * backends, and assume normal pages in cases where a
1722 * backend isn't backed by hugepages.
1724 memdev_root = object_resolve_path("/objects", NULL);
1725 if (memdev_root) {
1726 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1728 if (hpsize == LONG_MAX) {
1729 /* No additional memory regions found ==> Report main RAM page size */
1730 return mainrampagesize;
1733 /* If NUMA is disabled or the NUMA nodes are not backed with a
1734 * memory-backend, then there is at least one node using "normal" RAM,
1735 * so if its page size is smaller we have got to report that size instead.
1737 if (hpsize > mainrampagesize &&
1738 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1739 static bool warned;
1740 if (!warned) {
1741 error_report("Huge page support disabled (n/a for main memory).");
1742 warned = true;
1744 return mainrampagesize;
1747 return hpsize;
1749 #else
1750 long qemu_getrampagesize(void)
1752 return getpagesize();
1754 #endif
1756 #ifdef CONFIG_POSIX
1757 static int64_t get_file_size(int fd)
1759 int64_t size = lseek(fd, 0, SEEK_END);
1760 if (size < 0) {
1761 return -errno;
1763 return size;
1766 static int file_ram_open(const char *path,
1767 const char *region_name,
1768 bool *created,
1769 Error **errp)
1771 char *filename;
1772 char *sanitized_name;
1773 char *c;
1774 int fd = -1;
1776 *created = false;
1777 for (;;) {
1778 fd = open(path, O_RDWR);
1779 if (fd >= 0) {
1780 /* @path names an existing file, use it */
1781 break;
1783 if (errno == ENOENT) {
1784 /* @path names a file that doesn't exist, create it */
1785 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1786 if (fd >= 0) {
1787 *created = true;
1788 break;
1790 } else if (errno == EISDIR) {
1791 /* @path names a directory, create a file there */
1792 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1793 sanitized_name = g_strdup(region_name);
1794 for (c = sanitized_name; *c != '\0'; c++) {
1795 if (*c == '/') {
1796 *c = '_';
1800 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1801 sanitized_name);
1802 g_free(sanitized_name);
1804 fd = mkstemp(filename);
1805 if (fd >= 0) {
1806 unlink(filename);
1807 g_free(filename);
1808 break;
1810 g_free(filename);
1812 if (errno != EEXIST && errno != EINTR) {
1813 error_setg_errno(errp, errno,
1814 "can't open backing store %s for guest RAM",
1815 path);
1816 return -1;
1819 * Try again on EINTR and EEXIST. The latter happens when
1820 * something else creates the file between our two open().
1824 return fd;
1827 static void *file_ram_alloc(RAMBlock *block,
1828 ram_addr_t memory,
1829 int fd,
1830 bool truncate,
1831 Error **errp)
1833 void *area;
1835 block->page_size = qemu_fd_getpagesize(fd);
1836 if (block->mr->align % block->page_size) {
1837 error_setg(errp, "alignment 0x%" PRIx64
1838 " must be multiples of page size 0x%zx",
1839 block->mr->align, block->page_size);
1840 return NULL;
1841 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1842 error_setg(errp, "alignment 0x%" PRIx64
1843 " must be a power of two", block->mr->align);
1844 return NULL;
1846 block->mr->align = MAX(block->page_size, block->mr->align);
1847 #if defined(__s390x__)
1848 if (kvm_enabled()) {
1849 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1851 #endif
1853 if (memory < block->page_size) {
1854 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1855 "or larger than page size 0x%zx",
1856 memory, block->page_size);
1857 return NULL;
1860 memory = ROUND_UP(memory, block->page_size);
1863 * ftruncate is not supported by hugetlbfs in older
1864 * hosts, so don't bother bailing out on errors.
1865 * If anything goes wrong with it under other filesystems,
1866 * mmap will fail.
1868 * Do not truncate the non-empty backend file to avoid corrupting
1869 * the existing data in the file. Disabling shrinking is not
1870 * enough. For example, the current vNVDIMM implementation stores
1871 * the guest NVDIMM labels at the end of the backend file. If the
1872 * backend file is later extended, QEMU will not be able to find
1873 * those labels. Therefore, extending the non-empty backend file
1874 * is disabled as well.
1876 if (truncate && ftruncate(fd, memory)) {
1877 perror("ftruncate");
1880 area = qemu_ram_mmap(fd, memory, block->mr->align,
1881 block->flags & RAM_SHARED);
1882 if (area == MAP_FAILED) {
1883 error_setg_errno(errp, errno,
1884 "unable to map backing store for guest RAM");
1885 return NULL;
1888 if (mem_prealloc) {
1889 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1890 if (errp && *errp) {
1891 qemu_ram_munmap(fd, area, memory);
1892 return NULL;
1896 block->fd = fd;
1897 return area;
1899 #endif
1901 /* Allocate space within the ram_addr_t space that governs the
1902 * dirty bitmaps.
1903 * Called with the ramlist lock held.
1905 static ram_addr_t find_ram_offset(ram_addr_t size)
1907 RAMBlock *block, *next_block;
1908 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1910 assert(size != 0); /* it would hand out same offset multiple times */
1912 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1913 return 0;
1916 RAMBLOCK_FOREACH(block) {
1917 ram_addr_t candidate, next = RAM_ADDR_MAX;
1919 /* Align blocks to start on a 'long' in the bitmap
1920 * which makes the bitmap sync'ing take the fast path.
1922 candidate = block->offset + block->max_length;
1923 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1925 /* Search for the closest following block
1926 * and find the gap.
1928 RAMBLOCK_FOREACH(next_block) {
1929 if (next_block->offset >= candidate) {
1930 next = MIN(next, next_block->offset);
1934 /* If it fits remember our place and remember the size
1935 * of gap, but keep going so that we might find a smaller
1936 * gap to fill so avoiding fragmentation.
1938 if (next - candidate >= size && next - candidate < mingap) {
1939 offset = candidate;
1940 mingap = next - candidate;
1943 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1946 if (offset == RAM_ADDR_MAX) {
1947 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1948 (uint64_t)size);
1949 abort();
1952 trace_find_ram_offset(size, offset);
1954 return offset;
1957 static unsigned long last_ram_page(void)
1959 RAMBlock *block;
1960 ram_addr_t last = 0;
1962 rcu_read_lock();
1963 RAMBLOCK_FOREACH(block) {
1964 last = MAX(last, block->offset + block->max_length);
1966 rcu_read_unlock();
1967 return last >> TARGET_PAGE_BITS;
1970 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1972 int ret;
1974 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1975 if (!machine_dump_guest_core(current_machine)) {
1976 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1977 if (ret) {
1978 perror("qemu_madvise");
1979 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1980 "but dump_guest_core=off specified\n");
1985 const char *qemu_ram_get_idstr(RAMBlock *rb)
1987 return rb->idstr;
1990 void *qemu_ram_get_host_addr(RAMBlock *rb)
1992 return rb->host;
1995 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1997 return rb->offset;
2000 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2002 return rb->used_length;
2005 bool qemu_ram_is_shared(RAMBlock *rb)
2007 return rb->flags & RAM_SHARED;
2010 /* Note: Only set at the start of postcopy */
2011 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2013 return rb->flags & RAM_UF_ZEROPAGE;
2016 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2018 rb->flags |= RAM_UF_ZEROPAGE;
2021 bool qemu_ram_is_migratable(RAMBlock *rb)
2023 return rb->flags & RAM_MIGRATABLE;
2026 void qemu_ram_set_migratable(RAMBlock *rb)
2028 rb->flags |= RAM_MIGRATABLE;
2031 void qemu_ram_unset_migratable(RAMBlock *rb)
2033 rb->flags &= ~RAM_MIGRATABLE;
2036 /* Called with iothread lock held. */
2037 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2039 RAMBlock *block;
2041 assert(new_block);
2042 assert(!new_block->idstr[0]);
2044 if (dev) {
2045 char *id = qdev_get_dev_path(dev);
2046 if (id) {
2047 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2048 g_free(id);
2051 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2053 rcu_read_lock();
2054 RAMBLOCK_FOREACH(block) {
2055 if (block != new_block &&
2056 !strcmp(block->idstr, new_block->idstr)) {
2057 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2058 new_block->idstr);
2059 abort();
2062 rcu_read_unlock();
2065 /* Called with iothread lock held. */
2066 void qemu_ram_unset_idstr(RAMBlock *block)
2068 /* FIXME: arch_init.c assumes that this is not called throughout
2069 * migration. Ignore the problem since hot-unplug during migration
2070 * does not work anyway.
2072 if (block) {
2073 memset(block->idstr, 0, sizeof(block->idstr));
2077 size_t qemu_ram_pagesize(RAMBlock *rb)
2079 return rb->page_size;
2082 /* Returns the largest size of page in use */
2083 size_t qemu_ram_pagesize_largest(void)
2085 RAMBlock *block;
2086 size_t largest = 0;
2088 RAMBLOCK_FOREACH(block) {
2089 largest = MAX(largest, qemu_ram_pagesize(block));
2092 return largest;
2095 static int memory_try_enable_merging(void *addr, size_t len)
2097 if (!machine_mem_merge(current_machine)) {
2098 /* disabled by the user */
2099 return 0;
2102 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2105 /* Only legal before guest might have detected the memory size: e.g. on
2106 * incoming migration, or right after reset.
2108 * As memory core doesn't know how is memory accessed, it is up to
2109 * resize callback to update device state and/or add assertions to detect
2110 * misuse, if necessary.
2112 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2114 assert(block);
2116 newsize = HOST_PAGE_ALIGN(newsize);
2118 if (block->used_length == newsize) {
2119 return 0;
2122 if (!(block->flags & RAM_RESIZEABLE)) {
2123 error_setg_errno(errp, EINVAL,
2124 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2125 " in != 0x" RAM_ADDR_FMT, block->idstr,
2126 newsize, block->used_length);
2127 return -EINVAL;
2130 if (block->max_length < newsize) {
2131 error_setg_errno(errp, EINVAL,
2132 "Length too large: %s: 0x" RAM_ADDR_FMT
2133 " > 0x" RAM_ADDR_FMT, block->idstr,
2134 newsize, block->max_length);
2135 return -EINVAL;
2138 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2139 block->used_length = newsize;
2140 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2141 DIRTY_CLIENTS_ALL);
2142 memory_region_set_size(block->mr, newsize);
2143 if (block->resized) {
2144 block->resized(block->idstr, newsize, block->host);
2146 return 0;
2149 /* Called with ram_list.mutex held */
2150 static void dirty_memory_extend(ram_addr_t old_ram_size,
2151 ram_addr_t new_ram_size)
2153 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2154 DIRTY_MEMORY_BLOCK_SIZE);
2155 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2156 DIRTY_MEMORY_BLOCK_SIZE);
2157 int i;
2159 /* Only need to extend if block count increased */
2160 if (new_num_blocks <= old_num_blocks) {
2161 return;
2164 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2165 DirtyMemoryBlocks *old_blocks;
2166 DirtyMemoryBlocks *new_blocks;
2167 int j;
2169 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2170 new_blocks = g_malloc(sizeof(*new_blocks) +
2171 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2173 if (old_num_blocks) {
2174 memcpy(new_blocks->blocks, old_blocks->blocks,
2175 old_num_blocks * sizeof(old_blocks->blocks[0]));
2178 for (j = old_num_blocks; j < new_num_blocks; j++) {
2179 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2182 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2184 if (old_blocks) {
2185 g_free_rcu(old_blocks, rcu);
2190 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2192 RAMBlock *block;
2193 RAMBlock *last_block = NULL;
2194 ram_addr_t old_ram_size, new_ram_size;
2195 Error *err = NULL;
2197 old_ram_size = last_ram_page();
2199 qemu_mutex_lock_ramlist();
2200 new_block->offset = find_ram_offset(new_block->max_length);
2202 if (!new_block->host) {
2203 if (xen_enabled()) {
2204 xen_ram_alloc(new_block->offset, new_block->max_length,
2205 new_block->mr, &err);
2206 if (err) {
2207 error_propagate(errp, err);
2208 qemu_mutex_unlock_ramlist();
2209 return;
2211 } else {
2212 new_block->host = phys_mem_alloc(new_block->max_length,
2213 &new_block->mr->align, shared);
2214 if (!new_block->host) {
2215 error_setg_errno(errp, errno,
2216 "cannot set up guest memory '%s'",
2217 memory_region_name(new_block->mr));
2218 qemu_mutex_unlock_ramlist();
2219 return;
2221 memory_try_enable_merging(new_block->host, new_block->max_length);
2225 new_ram_size = MAX(old_ram_size,
2226 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2227 if (new_ram_size > old_ram_size) {
2228 dirty_memory_extend(old_ram_size, new_ram_size);
2230 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2231 * QLIST (which has an RCU-friendly variant) does not have insertion at
2232 * tail, so save the last element in last_block.
2234 RAMBLOCK_FOREACH(block) {
2235 last_block = block;
2236 if (block->max_length < new_block->max_length) {
2237 break;
2240 if (block) {
2241 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2242 } else if (last_block) {
2243 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2244 } else { /* list is empty */
2245 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2247 ram_list.mru_block = NULL;
2249 /* Write list before version */
2250 smp_wmb();
2251 ram_list.version++;
2252 qemu_mutex_unlock_ramlist();
2254 cpu_physical_memory_set_dirty_range(new_block->offset,
2255 new_block->used_length,
2256 DIRTY_CLIENTS_ALL);
2258 if (new_block->host) {
2259 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2260 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2261 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2262 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2263 ram_block_notify_add(new_block->host, new_block->max_length);
2267 #ifdef CONFIG_POSIX
2268 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2269 uint32_t ram_flags, int fd,
2270 Error **errp)
2272 RAMBlock *new_block;
2273 Error *local_err = NULL;
2274 int64_t file_size;
2276 /* Just support these ram flags by now. */
2277 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2279 if (xen_enabled()) {
2280 error_setg(errp, "-mem-path not supported with Xen");
2281 return NULL;
2284 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2285 error_setg(errp,
2286 "host lacks kvm mmu notifiers, -mem-path unsupported");
2287 return NULL;
2290 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2292 * file_ram_alloc() needs to allocate just like
2293 * phys_mem_alloc, but we haven't bothered to provide
2294 * a hook there.
2296 error_setg(errp,
2297 "-mem-path not supported with this accelerator");
2298 return NULL;
2301 size = HOST_PAGE_ALIGN(size);
2302 file_size = get_file_size(fd);
2303 if (file_size > 0 && file_size < size) {
2304 error_setg(errp, "backing store %s size 0x%" PRIx64
2305 " does not match 'size' option 0x" RAM_ADDR_FMT,
2306 mem_path, file_size, size);
2307 return NULL;
2310 new_block = g_malloc0(sizeof(*new_block));
2311 new_block->mr = mr;
2312 new_block->used_length = size;
2313 new_block->max_length = size;
2314 new_block->flags = ram_flags;
2315 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2316 if (!new_block->host) {
2317 g_free(new_block);
2318 return NULL;
2321 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2322 if (local_err) {
2323 g_free(new_block);
2324 error_propagate(errp, local_err);
2325 return NULL;
2327 return new_block;
2332 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2333 uint32_t ram_flags, const char *mem_path,
2334 Error **errp)
2336 int fd;
2337 bool created;
2338 RAMBlock *block;
2340 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2341 if (fd < 0) {
2342 return NULL;
2345 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2346 if (!block) {
2347 if (created) {
2348 unlink(mem_path);
2350 close(fd);
2351 return NULL;
2354 return block;
2356 #endif
2358 static
2359 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2360 void (*resized)(const char*,
2361 uint64_t length,
2362 void *host),
2363 void *host, bool resizeable, bool share,
2364 MemoryRegion *mr, Error **errp)
2366 RAMBlock *new_block;
2367 Error *local_err = NULL;
2369 size = HOST_PAGE_ALIGN(size);
2370 max_size = HOST_PAGE_ALIGN(max_size);
2371 new_block = g_malloc0(sizeof(*new_block));
2372 new_block->mr = mr;
2373 new_block->resized = resized;
2374 new_block->used_length = size;
2375 new_block->max_length = max_size;
2376 assert(max_size >= size);
2377 new_block->fd = -1;
2378 new_block->page_size = getpagesize();
2379 new_block->host = host;
2380 if (host) {
2381 new_block->flags |= RAM_PREALLOC;
2383 if (resizeable) {
2384 new_block->flags |= RAM_RESIZEABLE;
2386 ram_block_add(new_block, &local_err, share);
2387 if (local_err) {
2388 g_free(new_block);
2389 error_propagate(errp, local_err);
2390 return NULL;
2392 return new_block;
2395 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2396 MemoryRegion *mr, Error **errp)
2398 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2399 false, mr, errp);
2402 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2403 MemoryRegion *mr, Error **errp)
2405 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2406 share, mr, errp);
2409 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2410 void (*resized)(const char*,
2411 uint64_t length,
2412 void *host),
2413 MemoryRegion *mr, Error **errp)
2415 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2416 false, mr, errp);
2419 static void reclaim_ramblock(RAMBlock *block)
2421 if (block->flags & RAM_PREALLOC) {
2423 } else if (xen_enabled()) {
2424 xen_invalidate_map_cache_entry(block->host);
2425 #ifndef _WIN32
2426 } else if (block->fd >= 0) {
2427 qemu_ram_munmap(block->fd, block->host, block->max_length);
2428 close(block->fd);
2429 #endif
2430 } else {
2431 qemu_anon_ram_free(block->host, block->max_length);
2433 g_free(block);
2436 void qemu_ram_free(RAMBlock *block)
2438 if (!block) {
2439 return;
2442 if (block->host) {
2443 ram_block_notify_remove(block->host, block->max_length);
2446 qemu_mutex_lock_ramlist();
2447 QLIST_REMOVE_RCU(block, next);
2448 ram_list.mru_block = NULL;
2449 /* Write list before version */
2450 smp_wmb();
2451 ram_list.version++;
2452 call_rcu(block, reclaim_ramblock, rcu);
2453 qemu_mutex_unlock_ramlist();
2456 #ifndef _WIN32
2457 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2459 RAMBlock *block;
2460 ram_addr_t offset;
2461 int flags;
2462 void *area, *vaddr;
2464 RAMBLOCK_FOREACH(block) {
2465 offset = addr - block->offset;
2466 if (offset < block->max_length) {
2467 vaddr = ramblock_ptr(block, offset);
2468 if (block->flags & RAM_PREALLOC) {
2470 } else if (xen_enabled()) {
2471 abort();
2472 } else {
2473 flags = MAP_FIXED;
2474 if (block->fd >= 0) {
2475 flags |= (block->flags & RAM_SHARED ?
2476 MAP_SHARED : MAP_PRIVATE);
2477 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2478 flags, block->fd, offset);
2479 } else {
2481 * Remap needs to match alloc. Accelerators that
2482 * set phys_mem_alloc never remap. If they did,
2483 * we'd need a remap hook here.
2485 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2487 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2488 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2489 flags, -1, 0);
2491 if (area != vaddr) {
2492 error_report("Could not remap addr: "
2493 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2494 length, addr);
2495 exit(1);
2497 memory_try_enable_merging(vaddr, length);
2498 qemu_ram_setup_dump(vaddr, length);
2503 #endif /* !_WIN32 */
2505 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2506 * This should not be used for general purpose DMA. Use address_space_map
2507 * or address_space_rw instead. For local memory (e.g. video ram) that the
2508 * device owns, use memory_region_get_ram_ptr.
2510 * Called within RCU critical section.
2512 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2514 RAMBlock *block = ram_block;
2516 if (block == NULL) {
2517 block = qemu_get_ram_block(addr);
2518 addr -= block->offset;
2521 if (xen_enabled() && block->host == NULL) {
2522 /* We need to check if the requested address is in the RAM
2523 * because we don't want to map the entire memory in QEMU.
2524 * In that case just map until the end of the page.
2526 if (block->offset == 0) {
2527 return xen_map_cache(addr, 0, 0, false);
2530 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2532 return ramblock_ptr(block, addr);
2535 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2536 * but takes a size argument.
2538 * Called within RCU critical section.
2540 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2541 hwaddr *size, bool lock)
2543 RAMBlock *block = ram_block;
2544 if (*size == 0) {
2545 return NULL;
2548 if (block == NULL) {
2549 block = qemu_get_ram_block(addr);
2550 addr -= block->offset;
2552 *size = MIN(*size, block->max_length - addr);
2554 if (xen_enabled() && block->host == NULL) {
2555 /* We need to check if the requested address is in the RAM
2556 * because we don't want to map the entire memory in QEMU.
2557 * In that case just map the requested area.
2559 if (block->offset == 0) {
2560 return xen_map_cache(addr, *size, lock, lock);
2563 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2566 return ramblock_ptr(block, addr);
2569 /* Return the offset of a hostpointer within a ramblock */
2570 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2572 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2573 assert((uintptr_t)host >= (uintptr_t)rb->host);
2574 assert(res < rb->max_length);
2576 return res;
2580 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2581 * in that RAMBlock.
2583 * ptr: Host pointer to look up
2584 * round_offset: If true round the result offset down to a page boundary
2585 * *ram_addr: set to result ram_addr
2586 * *offset: set to result offset within the RAMBlock
2588 * Returns: RAMBlock (or NULL if not found)
2590 * By the time this function returns, the returned pointer is not protected
2591 * by RCU anymore. If the caller is not within an RCU critical section and
2592 * does not hold the iothread lock, it must have other means of protecting the
2593 * pointer, such as a reference to the region that includes the incoming
2594 * ram_addr_t.
2596 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2597 ram_addr_t *offset)
2599 RAMBlock *block;
2600 uint8_t *host = ptr;
2602 if (xen_enabled()) {
2603 ram_addr_t ram_addr;
2604 rcu_read_lock();
2605 ram_addr = xen_ram_addr_from_mapcache(ptr);
2606 block = qemu_get_ram_block(ram_addr);
2607 if (block) {
2608 *offset = ram_addr - block->offset;
2610 rcu_read_unlock();
2611 return block;
2614 rcu_read_lock();
2615 block = atomic_rcu_read(&ram_list.mru_block);
2616 if (block && block->host && host - block->host < block->max_length) {
2617 goto found;
2620 RAMBLOCK_FOREACH(block) {
2621 /* This case append when the block is not mapped. */
2622 if (block->host == NULL) {
2623 continue;
2625 if (host - block->host < block->max_length) {
2626 goto found;
2630 rcu_read_unlock();
2631 return NULL;
2633 found:
2634 *offset = (host - block->host);
2635 if (round_offset) {
2636 *offset &= TARGET_PAGE_MASK;
2638 rcu_read_unlock();
2639 return block;
2643 * Finds the named RAMBlock
2645 * name: The name of RAMBlock to find
2647 * Returns: RAMBlock (or NULL if not found)
2649 RAMBlock *qemu_ram_block_by_name(const char *name)
2651 RAMBlock *block;
2653 RAMBLOCK_FOREACH(block) {
2654 if (!strcmp(name, block->idstr)) {
2655 return block;
2659 return NULL;
2662 /* Some of the softmmu routines need to translate from a host pointer
2663 (typically a TLB entry) back to a ram offset. */
2664 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2666 RAMBlock *block;
2667 ram_addr_t offset;
2669 block = qemu_ram_block_from_host(ptr, false, &offset);
2670 if (!block) {
2671 return RAM_ADDR_INVALID;
2674 return block->offset + offset;
2677 /* Called within RCU critical section. */
2678 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2679 CPUState *cpu,
2680 vaddr mem_vaddr,
2681 ram_addr_t ram_addr,
2682 unsigned size)
2684 ndi->cpu = cpu;
2685 ndi->ram_addr = ram_addr;
2686 ndi->mem_vaddr = mem_vaddr;
2687 ndi->size = size;
2688 ndi->pages = NULL;
2690 assert(tcg_enabled());
2691 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2692 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2693 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2697 /* Called within RCU critical section. */
2698 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2700 if (ndi->pages) {
2701 assert(tcg_enabled());
2702 page_collection_unlock(ndi->pages);
2703 ndi->pages = NULL;
2706 /* Set both VGA and migration bits for simplicity and to remove
2707 * the notdirty callback faster.
2709 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2710 DIRTY_CLIENTS_NOCODE);
2711 /* we remove the notdirty callback only if the code has been
2712 flushed */
2713 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2714 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2718 /* Called within RCU critical section. */
2719 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2720 uint64_t val, unsigned size)
2722 NotDirtyInfo ndi;
2724 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2725 ram_addr, size);
2727 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2728 memory_notdirty_write_complete(&ndi);
2731 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2732 unsigned size, bool is_write,
2733 MemTxAttrs attrs)
2735 return is_write;
2738 static const MemoryRegionOps notdirty_mem_ops = {
2739 .write = notdirty_mem_write,
2740 .valid.accepts = notdirty_mem_accepts,
2741 .endianness = DEVICE_NATIVE_ENDIAN,
2742 .valid = {
2743 .min_access_size = 1,
2744 .max_access_size = 8,
2745 .unaligned = false,
2747 .impl = {
2748 .min_access_size = 1,
2749 .max_access_size = 8,
2750 .unaligned = false,
2754 /* Generate a debug exception if a watchpoint has been hit. */
2755 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2757 CPUState *cpu = current_cpu;
2758 CPUClass *cc = CPU_GET_CLASS(cpu);
2759 target_ulong vaddr;
2760 CPUWatchpoint *wp;
2762 assert(tcg_enabled());
2763 if (cpu->watchpoint_hit) {
2764 /* We re-entered the check after replacing the TB. Now raise
2765 * the debug interrupt so that is will trigger after the
2766 * current instruction. */
2767 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2768 return;
2770 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2771 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2772 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2773 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2774 && (wp->flags & flags)) {
2775 if (flags == BP_MEM_READ) {
2776 wp->flags |= BP_WATCHPOINT_HIT_READ;
2777 } else {
2778 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2780 wp->hitaddr = vaddr;
2781 wp->hitattrs = attrs;
2782 if (!cpu->watchpoint_hit) {
2783 if (wp->flags & BP_CPU &&
2784 !cc->debug_check_watchpoint(cpu, wp)) {
2785 wp->flags &= ~BP_WATCHPOINT_HIT;
2786 continue;
2788 cpu->watchpoint_hit = wp;
2790 mmap_lock();
2791 tb_check_watchpoint(cpu);
2792 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2793 cpu->exception_index = EXCP_DEBUG;
2794 mmap_unlock();
2795 cpu_loop_exit(cpu);
2796 } else {
2797 /* Force execution of one insn next time. */
2798 cpu->cflags_next_tb = 1 | curr_cflags();
2799 mmap_unlock();
2800 cpu_loop_exit_noexc(cpu);
2803 } else {
2804 wp->flags &= ~BP_WATCHPOINT_HIT;
2809 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2810 so these check for a hit then pass through to the normal out-of-line
2811 phys routines. */
2812 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2813 unsigned size, MemTxAttrs attrs)
2815 MemTxResult res;
2816 uint64_t data;
2817 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2818 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2820 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2821 switch (size) {
2822 case 1:
2823 data = address_space_ldub(as, addr, attrs, &res);
2824 break;
2825 case 2:
2826 data = address_space_lduw(as, addr, attrs, &res);
2827 break;
2828 case 4:
2829 data = address_space_ldl(as, addr, attrs, &res);
2830 break;
2831 case 8:
2832 data = address_space_ldq(as, addr, attrs, &res);
2833 break;
2834 default: abort();
2836 *pdata = data;
2837 return res;
2840 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2841 uint64_t val, unsigned size,
2842 MemTxAttrs attrs)
2844 MemTxResult res;
2845 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2846 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2848 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2849 switch (size) {
2850 case 1:
2851 address_space_stb(as, addr, val, attrs, &res);
2852 break;
2853 case 2:
2854 address_space_stw(as, addr, val, attrs, &res);
2855 break;
2856 case 4:
2857 address_space_stl(as, addr, val, attrs, &res);
2858 break;
2859 case 8:
2860 address_space_stq(as, addr, val, attrs, &res);
2861 break;
2862 default: abort();
2864 return res;
2867 static const MemoryRegionOps watch_mem_ops = {
2868 .read_with_attrs = watch_mem_read,
2869 .write_with_attrs = watch_mem_write,
2870 .endianness = DEVICE_NATIVE_ENDIAN,
2871 .valid = {
2872 .min_access_size = 1,
2873 .max_access_size = 8,
2874 .unaligned = false,
2876 .impl = {
2877 .min_access_size = 1,
2878 .max_access_size = 8,
2879 .unaligned = false,
2883 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2884 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2885 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2886 const uint8_t *buf, hwaddr len);
2887 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2888 bool is_write, MemTxAttrs attrs);
2890 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2891 unsigned len, MemTxAttrs attrs)
2893 subpage_t *subpage = opaque;
2894 uint8_t buf[8];
2895 MemTxResult res;
2897 #if defined(DEBUG_SUBPAGE)
2898 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2899 subpage, len, addr);
2900 #endif
2901 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2902 if (res) {
2903 return res;
2905 *data = ldn_p(buf, len);
2906 return MEMTX_OK;
2909 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2910 uint64_t value, unsigned len, MemTxAttrs attrs)
2912 subpage_t *subpage = opaque;
2913 uint8_t buf[8];
2915 #if defined(DEBUG_SUBPAGE)
2916 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2917 " value %"PRIx64"\n",
2918 __func__, subpage, len, addr, value);
2919 #endif
2920 stn_p(buf, len, value);
2921 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2924 static bool subpage_accepts(void *opaque, hwaddr addr,
2925 unsigned len, bool is_write,
2926 MemTxAttrs attrs)
2928 subpage_t *subpage = opaque;
2929 #if defined(DEBUG_SUBPAGE)
2930 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2931 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2932 #endif
2934 return flatview_access_valid(subpage->fv, addr + subpage->base,
2935 len, is_write, attrs);
2938 static const MemoryRegionOps subpage_ops = {
2939 .read_with_attrs = subpage_read,
2940 .write_with_attrs = subpage_write,
2941 .impl.min_access_size = 1,
2942 .impl.max_access_size = 8,
2943 .valid.min_access_size = 1,
2944 .valid.max_access_size = 8,
2945 .valid.accepts = subpage_accepts,
2946 .endianness = DEVICE_NATIVE_ENDIAN,
2949 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2950 uint16_t section)
2952 int idx, eidx;
2954 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2955 return -1;
2956 idx = SUBPAGE_IDX(start);
2957 eidx = SUBPAGE_IDX(end);
2958 #if defined(DEBUG_SUBPAGE)
2959 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2960 __func__, mmio, start, end, idx, eidx, section);
2961 #endif
2962 for (; idx <= eidx; idx++) {
2963 mmio->sub_section[idx] = section;
2966 return 0;
2969 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2971 subpage_t *mmio;
2973 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2974 mmio->fv = fv;
2975 mmio->base = base;
2976 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2977 NULL, TARGET_PAGE_SIZE);
2978 mmio->iomem.subpage = true;
2979 #if defined(DEBUG_SUBPAGE)
2980 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2981 mmio, base, TARGET_PAGE_SIZE);
2982 #endif
2983 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2985 return mmio;
2988 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2990 assert(fv);
2991 MemoryRegionSection section = {
2992 .fv = fv,
2993 .mr = mr,
2994 .offset_within_address_space = 0,
2995 .offset_within_region = 0,
2996 .size = int128_2_64(),
2999 return phys_section_add(map, &section);
3002 static void readonly_mem_write(void *opaque, hwaddr addr,
3003 uint64_t val, unsigned size)
3005 /* Ignore any write to ROM. */
3008 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3009 unsigned size, bool is_write,
3010 MemTxAttrs attrs)
3012 return is_write;
3015 /* This will only be used for writes, because reads are special cased
3016 * to directly access the underlying host ram.
3018 static const MemoryRegionOps readonly_mem_ops = {
3019 .write = readonly_mem_write,
3020 .valid.accepts = readonly_mem_accepts,
3021 .endianness = DEVICE_NATIVE_ENDIAN,
3022 .valid = {
3023 .min_access_size = 1,
3024 .max_access_size = 8,
3025 .unaligned = false,
3027 .impl = {
3028 .min_access_size = 1,
3029 .max_access_size = 8,
3030 .unaligned = false,
3034 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3035 hwaddr index, MemTxAttrs attrs)
3037 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3038 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3039 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3040 MemoryRegionSection *sections = d->map.sections;
3042 return &sections[index & ~TARGET_PAGE_MASK];
3045 static void io_mem_init(void)
3047 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3048 NULL, NULL, UINT64_MAX);
3049 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3050 NULL, UINT64_MAX);
3052 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3053 * which can be called without the iothread mutex.
3055 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3056 NULL, UINT64_MAX);
3057 memory_region_clear_global_locking(&io_mem_notdirty);
3059 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3060 NULL, UINT64_MAX);
3063 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3065 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3066 uint16_t n;
3068 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3069 assert(n == PHYS_SECTION_UNASSIGNED);
3070 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3071 assert(n == PHYS_SECTION_NOTDIRTY);
3072 n = dummy_section(&d->map, fv, &io_mem_rom);
3073 assert(n == PHYS_SECTION_ROM);
3074 n = dummy_section(&d->map, fv, &io_mem_watch);
3075 assert(n == PHYS_SECTION_WATCH);
3077 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3079 return d;
3082 void address_space_dispatch_free(AddressSpaceDispatch *d)
3084 phys_sections_free(&d->map);
3085 g_free(d);
3088 static void tcg_commit(MemoryListener *listener)
3090 CPUAddressSpace *cpuas;
3091 AddressSpaceDispatch *d;
3093 assert(tcg_enabled());
3094 /* since each CPU stores ram addresses in its TLB cache, we must
3095 reset the modified entries */
3096 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3097 cpu_reloading_memory_map();
3098 /* The CPU and TLB are protected by the iothread lock.
3099 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3100 * may have split the RCU critical section.
3102 d = address_space_to_dispatch(cpuas->as);
3103 atomic_rcu_set(&cpuas->memory_dispatch, d);
3104 tlb_flush(cpuas->cpu);
3107 static void memory_map_init(void)
3109 system_memory = g_malloc(sizeof(*system_memory));
3111 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3112 address_space_init(&address_space_memory, system_memory, "memory");
3114 system_io = g_malloc(sizeof(*system_io));
3115 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3116 65536);
3117 address_space_init(&address_space_io, system_io, "I/O");
3120 MemoryRegion *get_system_memory(void)
3122 return system_memory;
3125 MemoryRegion *get_system_io(void)
3127 return system_io;
3130 #endif /* !defined(CONFIG_USER_ONLY) */
3132 /* physical memory access (slow version, mainly for debug) */
3133 #if defined(CONFIG_USER_ONLY)
3134 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3135 uint8_t *buf, target_ulong len, int is_write)
3137 int flags;
3138 target_ulong l, page;
3139 void * p;
3141 while (len > 0) {
3142 page = addr & TARGET_PAGE_MASK;
3143 l = (page + TARGET_PAGE_SIZE) - addr;
3144 if (l > len)
3145 l = len;
3146 flags = page_get_flags(page);
3147 if (!(flags & PAGE_VALID))
3148 return -1;
3149 if (is_write) {
3150 if (!(flags & PAGE_WRITE))
3151 return -1;
3152 /* XXX: this code should not depend on lock_user */
3153 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3154 return -1;
3155 memcpy(p, buf, l);
3156 unlock_user(p, addr, l);
3157 } else {
3158 if (!(flags & PAGE_READ))
3159 return -1;
3160 /* XXX: this code should not depend on lock_user */
3161 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3162 return -1;
3163 memcpy(buf, p, l);
3164 unlock_user(p, addr, 0);
3166 len -= l;
3167 buf += l;
3168 addr += l;
3170 return 0;
3173 #else
3175 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3176 hwaddr length)
3178 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3179 addr += memory_region_get_ram_addr(mr);
3181 /* No early return if dirty_log_mask is or becomes 0, because
3182 * cpu_physical_memory_set_dirty_range will still call
3183 * xen_modified_memory.
3185 if (dirty_log_mask) {
3186 dirty_log_mask =
3187 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3189 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3190 assert(tcg_enabled());
3191 tb_invalidate_phys_range(addr, addr + length);
3192 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3194 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3197 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3200 * In principle this function would work on other memory region types too,
3201 * but the ROM device use case is the only one where this operation is
3202 * necessary. Other memory regions should use the
3203 * address_space_read/write() APIs.
3205 assert(memory_region_is_romd(mr));
3207 invalidate_and_set_dirty(mr, addr, size);
3210 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3212 unsigned access_size_max = mr->ops->valid.max_access_size;
3214 /* Regions are assumed to support 1-4 byte accesses unless
3215 otherwise specified. */
3216 if (access_size_max == 0) {
3217 access_size_max = 4;
3220 /* Bound the maximum access by the alignment of the address. */
3221 if (!mr->ops->impl.unaligned) {
3222 unsigned align_size_max = addr & -addr;
3223 if (align_size_max != 0 && align_size_max < access_size_max) {
3224 access_size_max = align_size_max;
3228 /* Don't attempt accesses larger than the maximum. */
3229 if (l > access_size_max) {
3230 l = access_size_max;
3232 l = pow2floor(l);
3234 return l;
3237 static bool prepare_mmio_access(MemoryRegion *mr)
3239 bool unlocked = !qemu_mutex_iothread_locked();
3240 bool release_lock = false;
3242 if (unlocked && mr->global_locking) {
3243 qemu_mutex_lock_iothread();
3244 unlocked = false;
3245 release_lock = true;
3247 if (mr->flush_coalesced_mmio) {
3248 if (unlocked) {
3249 qemu_mutex_lock_iothread();
3251 qemu_flush_coalesced_mmio_buffer();
3252 if (unlocked) {
3253 qemu_mutex_unlock_iothread();
3257 return release_lock;
3260 /* Called within RCU critical section. */
3261 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3262 MemTxAttrs attrs,
3263 const uint8_t *buf,
3264 hwaddr len, hwaddr addr1,
3265 hwaddr l, MemoryRegion *mr)
3267 uint8_t *ptr;
3268 uint64_t val;
3269 MemTxResult result = MEMTX_OK;
3270 bool release_lock = false;
3272 for (;;) {
3273 if (!memory_access_is_direct(mr, true)) {
3274 release_lock |= prepare_mmio_access(mr);
3275 l = memory_access_size(mr, l, addr1);
3276 /* XXX: could force current_cpu to NULL to avoid
3277 potential bugs */
3278 val = ldn_p(buf, l);
3279 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3280 } else {
3281 /* RAM case */
3282 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3283 memcpy(ptr, buf, l);
3284 invalidate_and_set_dirty(mr, addr1, l);
3287 if (release_lock) {
3288 qemu_mutex_unlock_iothread();
3289 release_lock = false;
3292 len -= l;
3293 buf += l;
3294 addr += l;
3296 if (!len) {
3297 break;
3300 l = len;
3301 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3304 return result;
3307 /* Called from RCU critical section. */
3308 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3309 const uint8_t *buf, hwaddr len)
3311 hwaddr l;
3312 hwaddr addr1;
3313 MemoryRegion *mr;
3314 MemTxResult result = MEMTX_OK;
3316 l = len;
3317 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3318 result = flatview_write_continue(fv, addr, attrs, buf, len,
3319 addr1, l, mr);
3321 return result;
3324 /* Called within RCU critical section. */
3325 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3326 MemTxAttrs attrs, uint8_t *buf,
3327 hwaddr len, hwaddr addr1, hwaddr l,
3328 MemoryRegion *mr)
3330 uint8_t *ptr;
3331 uint64_t val;
3332 MemTxResult result = MEMTX_OK;
3333 bool release_lock = false;
3335 for (;;) {
3336 if (!memory_access_is_direct(mr, false)) {
3337 /* I/O case */
3338 release_lock |= prepare_mmio_access(mr);
3339 l = memory_access_size(mr, l, addr1);
3340 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3341 stn_p(buf, l, val);
3342 } else {
3343 /* RAM case */
3344 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3345 memcpy(buf, ptr, l);
3348 if (release_lock) {
3349 qemu_mutex_unlock_iothread();
3350 release_lock = false;
3353 len -= l;
3354 buf += l;
3355 addr += l;
3357 if (!len) {
3358 break;
3361 l = len;
3362 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3365 return result;
3368 /* Called from RCU critical section. */
3369 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3370 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3372 hwaddr l;
3373 hwaddr addr1;
3374 MemoryRegion *mr;
3376 l = len;
3377 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3378 return flatview_read_continue(fv, addr, attrs, buf, len,
3379 addr1, l, mr);
3382 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3383 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3385 MemTxResult result = MEMTX_OK;
3386 FlatView *fv;
3388 if (len > 0) {
3389 rcu_read_lock();
3390 fv = address_space_to_flatview(as);
3391 result = flatview_read(fv, addr, attrs, buf, len);
3392 rcu_read_unlock();
3395 return result;
3398 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3399 MemTxAttrs attrs,
3400 const uint8_t *buf, hwaddr len)
3402 MemTxResult result = MEMTX_OK;
3403 FlatView *fv;
3405 if (len > 0) {
3406 rcu_read_lock();
3407 fv = address_space_to_flatview(as);
3408 result = flatview_write(fv, addr, attrs, buf, len);
3409 rcu_read_unlock();
3412 return result;
3415 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3416 uint8_t *buf, hwaddr len, bool is_write)
3418 if (is_write) {
3419 return address_space_write(as, addr, attrs, buf, len);
3420 } else {
3421 return address_space_read_full(as, addr, attrs, buf, len);
3425 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3426 hwaddr len, int is_write)
3428 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3429 buf, len, is_write);
3432 enum write_rom_type {
3433 WRITE_DATA,
3434 FLUSH_CACHE,
3437 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3438 hwaddr addr,
3439 MemTxAttrs attrs,
3440 const uint8_t *buf,
3441 hwaddr len,
3442 enum write_rom_type type)
3444 hwaddr l;
3445 uint8_t *ptr;
3446 hwaddr addr1;
3447 MemoryRegion *mr;
3449 rcu_read_lock();
3450 while (len > 0) {
3451 l = len;
3452 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3454 if (!(memory_region_is_ram(mr) ||
3455 memory_region_is_romd(mr))) {
3456 l = memory_access_size(mr, l, addr1);
3457 } else {
3458 /* ROM/RAM case */
3459 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3460 switch (type) {
3461 case WRITE_DATA:
3462 memcpy(ptr, buf, l);
3463 invalidate_and_set_dirty(mr, addr1, l);
3464 break;
3465 case FLUSH_CACHE:
3466 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3467 break;
3470 len -= l;
3471 buf += l;
3472 addr += l;
3474 rcu_read_unlock();
3475 return MEMTX_OK;
3478 /* used for ROM loading : can write in RAM and ROM */
3479 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3480 MemTxAttrs attrs,
3481 const uint8_t *buf, hwaddr len)
3483 return address_space_write_rom_internal(as, addr, attrs,
3484 buf, len, WRITE_DATA);
3487 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3490 * This function should do the same thing as an icache flush that was
3491 * triggered from within the guest. For TCG we are always cache coherent,
3492 * so there is no need to flush anything. For KVM / Xen we need to flush
3493 * the host's instruction cache at least.
3495 if (tcg_enabled()) {
3496 return;
3499 address_space_write_rom_internal(&address_space_memory,
3500 start, MEMTXATTRS_UNSPECIFIED,
3501 NULL, len, FLUSH_CACHE);
3504 typedef struct {
3505 MemoryRegion *mr;
3506 void *buffer;
3507 hwaddr addr;
3508 hwaddr len;
3509 bool in_use;
3510 } BounceBuffer;
3512 static BounceBuffer bounce;
3514 typedef struct MapClient {
3515 QEMUBH *bh;
3516 QLIST_ENTRY(MapClient) link;
3517 } MapClient;
3519 QemuMutex map_client_list_lock;
3520 static QLIST_HEAD(, MapClient) map_client_list
3521 = QLIST_HEAD_INITIALIZER(map_client_list);
3523 static void cpu_unregister_map_client_do(MapClient *client)
3525 QLIST_REMOVE(client, link);
3526 g_free(client);
3529 static void cpu_notify_map_clients_locked(void)
3531 MapClient *client;
3533 while (!QLIST_EMPTY(&map_client_list)) {
3534 client = QLIST_FIRST(&map_client_list);
3535 qemu_bh_schedule(client->bh);
3536 cpu_unregister_map_client_do(client);
3540 void cpu_register_map_client(QEMUBH *bh)
3542 MapClient *client = g_malloc(sizeof(*client));
3544 qemu_mutex_lock(&map_client_list_lock);
3545 client->bh = bh;
3546 QLIST_INSERT_HEAD(&map_client_list, client, link);
3547 if (!atomic_read(&bounce.in_use)) {
3548 cpu_notify_map_clients_locked();
3550 qemu_mutex_unlock(&map_client_list_lock);
3553 void cpu_exec_init_all(void)
3555 qemu_mutex_init(&ram_list.mutex);
3556 /* The data structures we set up here depend on knowing the page size,
3557 * so no more changes can be made after this point.
3558 * In an ideal world, nothing we did before we had finished the
3559 * machine setup would care about the target page size, and we could
3560 * do this much later, rather than requiring board models to state
3561 * up front what their requirements are.
3563 finalize_target_page_bits();
3564 io_mem_init();
3565 memory_map_init();
3566 qemu_mutex_init(&map_client_list_lock);
3569 void cpu_unregister_map_client(QEMUBH *bh)
3571 MapClient *client;
3573 qemu_mutex_lock(&map_client_list_lock);
3574 QLIST_FOREACH(client, &map_client_list, link) {
3575 if (client->bh == bh) {
3576 cpu_unregister_map_client_do(client);
3577 break;
3580 qemu_mutex_unlock(&map_client_list_lock);
3583 static void cpu_notify_map_clients(void)
3585 qemu_mutex_lock(&map_client_list_lock);
3586 cpu_notify_map_clients_locked();
3587 qemu_mutex_unlock(&map_client_list_lock);
3590 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3591 bool is_write, MemTxAttrs attrs)
3593 MemoryRegion *mr;
3594 hwaddr l, xlat;
3596 while (len > 0) {
3597 l = len;
3598 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3599 if (!memory_access_is_direct(mr, is_write)) {
3600 l = memory_access_size(mr, l, addr);
3601 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3602 return false;
3606 len -= l;
3607 addr += l;
3609 return true;
3612 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3613 hwaddr len, bool is_write,
3614 MemTxAttrs attrs)
3616 FlatView *fv;
3617 bool result;
3619 rcu_read_lock();
3620 fv = address_space_to_flatview(as);
3621 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3622 rcu_read_unlock();
3623 return result;
3626 static hwaddr
3627 flatview_extend_translation(FlatView *fv, hwaddr addr,
3628 hwaddr target_len,
3629 MemoryRegion *mr, hwaddr base, hwaddr len,
3630 bool is_write, MemTxAttrs attrs)
3632 hwaddr done = 0;
3633 hwaddr xlat;
3634 MemoryRegion *this_mr;
3636 for (;;) {
3637 target_len -= len;
3638 addr += len;
3639 done += len;
3640 if (target_len == 0) {
3641 return done;
3644 len = target_len;
3645 this_mr = flatview_translate(fv, addr, &xlat,
3646 &len, is_write, attrs);
3647 if (this_mr != mr || xlat != base + done) {
3648 return done;
3653 /* Map a physical memory region into a host virtual address.
3654 * May map a subset of the requested range, given by and returned in *plen.
3655 * May return NULL if resources needed to perform the mapping are exhausted.
3656 * Use only for reads OR writes - not for read-modify-write operations.
3657 * Use cpu_register_map_client() to know when retrying the map operation is
3658 * likely to succeed.
3660 void *address_space_map(AddressSpace *as,
3661 hwaddr addr,
3662 hwaddr *plen,
3663 bool is_write,
3664 MemTxAttrs attrs)
3666 hwaddr len = *plen;
3667 hwaddr l, xlat;
3668 MemoryRegion *mr;
3669 void *ptr;
3670 FlatView *fv;
3672 if (len == 0) {
3673 return NULL;
3676 l = len;
3677 rcu_read_lock();
3678 fv = address_space_to_flatview(as);
3679 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3681 if (!memory_access_is_direct(mr, is_write)) {
3682 if (atomic_xchg(&bounce.in_use, true)) {
3683 rcu_read_unlock();
3684 return NULL;
3686 /* Avoid unbounded allocations */
3687 l = MIN(l, TARGET_PAGE_SIZE);
3688 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3689 bounce.addr = addr;
3690 bounce.len = l;
3692 memory_region_ref(mr);
3693 bounce.mr = mr;
3694 if (!is_write) {
3695 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3696 bounce.buffer, l);
3699 rcu_read_unlock();
3700 *plen = l;
3701 return bounce.buffer;
3705 memory_region_ref(mr);
3706 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3707 l, is_write, attrs);
3708 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3709 rcu_read_unlock();
3711 return ptr;
3714 /* Unmaps a memory region previously mapped by address_space_map().
3715 * Will also mark the memory as dirty if is_write == 1. access_len gives
3716 * the amount of memory that was actually read or written by the caller.
3718 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3719 int is_write, hwaddr access_len)
3721 if (buffer != bounce.buffer) {
3722 MemoryRegion *mr;
3723 ram_addr_t addr1;
3725 mr = memory_region_from_host(buffer, &addr1);
3726 assert(mr != NULL);
3727 if (is_write) {
3728 invalidate_and_set_dirty(mr, addr1, access_len);
3730 if (xen_enabled()) {
3731 xen_invalidate_map_cache_entry(buffer);
3733 memory_region_unref(mr);
3734 return;
3736 if (is_write) {
3737 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3738 bounce.buffer, access_len);
3740 qemu_vfree(bounce.buffer);
3741 bounce.buffer = NULL;
3742 memory_region_unref(bounce.mr);
3743 atomic_mb_set(&bounce.in_use, false);
3744 cpu_notify_map_clients();
3747 void *cpu_physical_memory_map(hwaddr addr,
3748 hwaddr *plen,
3749 int is_write)
3751 return address_space_map(&address_space_memory, addr, plen, is_write,
3752 MEMTXATTRS_UNSPECIFIED);
3755 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3756 int is_write, hwaddr access_len)
3758 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3761 #define ARG1_DECL AddressSpace *as
3762 #define ARG1 as
3763 #define SUFFIX
3764 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3765 #define RCU_READ_LOCK(...) rcu_read_lock()
3766 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3767 #include "memory_ldst.inc.c"
3769 int64_t address_space_cache_init(MemoryRegionCache *cache,
3770 AddressSpace *as,
3771 hwaddr addr,
3772 hwaddr len,
3773 bool is_write)
3775 AddressSpaceDispatch *d;
3776 hwaddr l;
3777 MemoryRegion *mr;
3779 assert(len > 0);
3781 l = len;
3782 cache->fv = address_space_get_flatview(as);
3783 d = flatview_to_dispatch(cache->fv);
3784 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3786 mr = cache->mrs.mr;
3787 memory_region_ref(mr);
3788 if (memory_access_is_direct(mr, is_write)) {
3789 /* We don't care about the memory attributes here as we're only
3790 * doing this if we found actual RAM, which behaves the same
3791 * regardless of attributes; so UNSPECIFIED is fine.
3793 l = flatview_extend_translation(cache->fv, addr, len, mr,
3794 cache->xlat, l, is_write,
3795 MEMTXATTRS_UNSPECIFIED);
3796 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3797 } else {
3798 cache->ptr = NULL;
3801 cache->len = l;
3802 cache->is_write = is_write;
3803 return l;
3806 void address_space_cache_invalidate(MemoryRegionCache *cache,
3807 hwaddr addr,
3808 hwaddr access_len)
3810 assert(cache->is_write);
3811 if (likely(cache->ptr)) {
3812 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3816 void address_space_cache_destroy(MemoryRegionCache *cache)
3818 if (!cache->mrs.mr) {
3819 return;
3822 if (xen_enabled()) {
3823 xen_invalidate_map_cache_entry(cache->ptr);
3825 memory_region_unref(cache->mrs.mr);
3826 flatview_unref(cache->fv);
3827 cache->mrs.mr = NULL;
3828 cache->fv = NULL;
3831 /* Called from RCU critical section. This function has the same
3832 * semantics as address_space_translate, but it only works on a
3833 * predefined range of a MemoryRegion that was mapped with
3834 * address_space_cache_init.
3836 static inline MemoryRegion *address_space_translate_cached(
3837 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3838 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3840 MemoryRegionSection section;
3841 MemoryRegion *mr;
3842 IOMMUMemoryRegion *iommu_mr;
3843 AddressSpace *target_as;
3845 assert(!cache->ptr);
3846 *xlat = addr + cache->xlat;
3848 mr = cache->mrs.mr;
3849 iommu_mr = memory_region_get_iommu(mr);
3850 if (!iommu_mr) {
3851 /* MMIO region. */
3852 return mr;
3855 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3856 NULL, is_write, true,
3857 &target_as, attrs);
3858 return section.mr;
3861 /* Called from RCU critical section. address_space_read_cached uses this
3862 * out of line function when the target is an MMIO or IOMMU region.
3864 void
3865 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3866 void *buf, hwaddr len)
3868 hwaddr addr1, l;
3869 MemoryRegion *mr;
3871 l = len;
3872 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3873 MEMTXATTRS_UNSPECIFIED);
3874 flatview_read_continue(cache->fv,
3875 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3876 addr1, l, mr);
3879 /* Called from RCU critical section. address_space_write_cached uses this
3880 * out of line function when the target is an MMIO or IOMMU region.
3882 void
3883 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3884 const void *buf, hwaddr len)
3886 hwaddr addr1, l;
3887 MemoryRegion *mr;
3889 l = len;
3890 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3891 MEMTXATTRS_UNSPECIFIED);
3892 flatview_write_continue(cache->fv,
3893 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3894 addr1, l, mr);
3897 #define ARG1_DECL MemoryRegionCache *cache
3898 #define ARG1 cache
3899 #define SUFFIX _cached_slow
3900 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3901 #define RCU_READ_LOCK() ((void)0)
3902 #define RCU_READ_UNLOCK() ((void)0)
3903 #include "memory_ldst.inc.c"
3905 /* virtual memory access for debug (includes writing to ROM) */
3906 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3907 uint8_t *buf, target_ulong len, int is_write)
3909 hwaddr phys_addr;
3910 target_ulong l, page;
3912 cpu_synchronize_state(cpu);
3913 while (len > 0) {
3914 int asidx;
3915 MemTxAttrs attrs;
3917 page = addr & TARGET_PAGE_MASK;
3918 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3919 asidx = cpu_asidx_from_attrs(cpu, attrs);
3920 /* if no physical page mapped, return an error */
3921 if (phys_addr == -1)
3922 return -1;
3923 l = (page + TARGET_PAGE_SIZE) - addr;
3924 if (l > len)
3925 l = len;
3926 phys_addr += (addr & ~TARGET_PAGE_MASK);
3927 if (is_write) {
3928 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3929 attrs, buf, l);
3930 } else {
3931 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3932 attrs, buf, l, 0);
3934 len -= l;
3935 buf += l;
3936 addr += l;
3938 return 0;
3942 * Allows code that needs to deal with migration bitmaps etc to still be built
3943 * target independent.
3945 size_t qemu_target_page_size(void)
3947 return TARGET_PAGE_SIZE;
3950 int qemu_target_page_bits(void)
3952 return TARGET_PAGE_BITS;
3955 int qemu_target_page_bits_min(void)
3957 return TARGET_PAGE_BITS_MIN;
3959 #endif
3961 bool target_words_bigendian(void)
3963 #if defined(TARGET_WORDS_BIGENDIAN)
3964 return true;
3965 #else
3966 return false;
3967 #endif
3970 #ifndef CONFIG_USER_ONLY
3971 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3973 MemoryRegion*mr;
3974 hwaddr l = 1;
3975 bool res;
3977 rcu_read_lock();
3978 mr = address_space_translate(&address_space_memory,
3979 phys_addr, &phys_addr, &l, false,
3980 MEMTXATTRS_UNSPECIFIED);
3982 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3983 rcu_read_unlock();
3984 return res;
3987 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3989 RAMBlock *block;
3990 int ret = 0;
3992 rcu_read_lock();
3993 RAMBLOCK_FOREACH(block) {
3994 ret = func(block, opaque);
3995 if (ret) {
3996 break;
3999 rcu_read_unlock();
4000 return ret;
4004 * Unmap pages of memory from start to start+length such that
4005 * they a) read as 0, b) Trigger whatever fault mechanism
4006 * the OS provides for postcopy.
4007 * The pages must be unmapped by the end of the function.
4008 * Returns: 0 on success, none-0 on failure
4011 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4013 int ret = -1;
4015 uint8_t *host_startaddr = rb->host + start;
4017 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4018 error_report("ram_block_discard_range: Unaligned start address: %p",
4019 host_startaddr);
4020 goto err;
4023 if ((start + length) <= rb->used_length) {
4024 bool need_madvise, need_fallocate;
4025 uint8_t *host_endaddr = host_startaddr + length;
4026 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4027 error_report("ram_block_discard_range: Unaligned end address: %p",
4028 host_endaddr);
4029 goto err;
4032 errno = ENOTSUP; /* If we are missing MADVISE etc */
4034 /* The logic here is messy;
4035 * madvise DONTNEED fails for hugepages
4036 * fallocate works on hugepages and shmem
4038 need_madvise = (rb->page_size == qemu_host_page_size);
4039 need_fallocate = rb->fd != -1;
4040 if (need_fallocate) {
4041 /* For a file, this causes the area of the file to be zero'd
4042 * if read, and for hugetlbfs also causes it to be unmapped
4043 * so a userfault will trigger.
4045 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4046 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4047 start, length);
4048 if (ret) {
4049 ret = -errno;
4050 error_report("ram_block_discard_range: Failed to fallocate "
4051 "%s:%" PRIx64 " +%zx (%d)",
4052 rb->idstr, start, length, ret);
4053 goto err;
4055 #else
4056 ret = -ENOSYS;
4057 error_report("ram_block_discard_range: fallocate not available/file"
4058 "%s:%" PRIx64 " +%zx (%d)",
4059 rb->idstr, start, length, ret);
4060 goto err;
4061 #endif
4063 if (need_madvise) {
4064 /* For normal RAM this causes it to be unmapped,
4065 * for shared memory it causes the local mapping to disappear
4066 * and to fall back on the file contents (which we just
4067 * fallocate'd away).
4069 #if defined(CONFIG_MADVISE)
4070 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4071 if (ret) {
4072 ret = -errno;
4073 error_report("ram_block_discard_range: Failed to discard range "
4074 "%s:%" PRIx64 " +%zx (%d)",
4075 rb->idstr, start, length, ret);
4076 goto err;
4078 #else
4079 ret = -ENOSYS;
4080 error_report("ram_block_discard_range: MADVISE not available"
4081 "%s:%" PRIx64 " +%zx (%d)",
4082 rb->idstr, start, length, ret);
4083 goto err;
4084 #endif
4086 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4087 need_madvise, need_fallocate, ret);
4088 } else {
4089 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4090 "/%zx/" RAM_ADDR_FMT")",
4091 rb->idstr, start, length, rb->used_length);
4094 err:
4095 return ret;
4098 bool ramblock_is_pmem(RAMBlock *rb)
4100 return rb->flags & RAM_PMEM;
4103 #endif
4105 void page_size_init(void)
4107 /* NOTE: we can always suppose that qemu_host_page_size >=
4108 TARGET_PAGE_SIZE */
4109 if (qemu_host_page_size == 0) {
4110 qemu_host_page_size = qemu_real_host_page_size;
4112 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4113 qemu_host_page_size = TARGET_PAGE_SIZE;
4115 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4118 #if !defined(CONFIG_USER_ONLY)
4120 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4121 int start, int end, int skip, int ptr)
4123 if (start == end - 1) {
4124 mon(f, "\t%3d ", start);
4125 } else {
4126 mon(f, "\t%3d..%-3d ", start, end - 1);
4128 mon(f, " skip=%d ", skip);
4129 if (ptr == PHYS_MAP_NODE_NIL) {
4130 mon(f, " ptr=NIL");
4131 } else if (!skip) {
4132 mon(f, " ptr=#%d", ptr);
4133 } else {
4134 mon(f, " ptr=[%d]", ptr);
4136 mon(f, "\n");
4139 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4140 int128_sub((size), int128_one())) : 0)
4142 void mtree_print_dispatch(fprintf_function mon, void *f,
4143 AddressSpaceDispatch *d, MemoryRegion *root)
4145 int i;
4147 mon(f, " Dispatch\n");
4148 mon(f, " Physical sections\n");
4150 for (i = 0; i < d->map.sections_nb; ++i) {
4151 MemoryRegionSection *s = d->map.sections + i;
4152 const char *names[] = { " [unassigned]", " [not dirty]",
4153 " [ROM]", " [watch]" };
4155 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4157 s->offset_within_address_space,
4158 s->offset_within_address_space + MR_SIZE(s->mr->size),
4159 s->mr->name ? s->mr->name : "(noname)",
4160 i < ARRAY_SIZE(names) ? names[i] : "",
4161 s->mr == root ? " [ROOT]" : "",
4162 s == d->mru_section ? " [MRU]" : "",
4163 s->mr->is_iommu ? " [iommu]" : "");
4165 if (s->mr->alias) {
4166 mon(f, " alias=%s", s->mr->alias->name ?
4167 s->mr->alias->name : "noname");
4169 mon(f, "\n");
4172 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4173 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4174 for (i = 0; i < d->map.nodes_nb; ++i) {
4175 int j, jprev;
4176 PhysPageEntry prev;
4177 Node *n = d->map.nodes + i;
4179 mon(f, " [%d]\n", i);
4181 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4182 PhysPageEntry *pe = *n + j;
4184 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4185 continue;
4188 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4190 jprev = j;
4191 prev = *pe;
4194 if (jprev != ARRAY_SIZE(*n)) {
4195 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4200 #endif