target/arm: Split out S1Translate type
[qemu/ar7.git] / target / arm / ptw.c
blobdee69ee74381b8a47deef2ca5b4ca49f88d2055f
1 /*
2 * ARM page table walking.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "idau.h"
17 typedef struct S1Translate {
18 ARMMMUIdx in_mmu_idx;
19 bool in_secure;
20 bool out_secure;
21 hwaddr out_phys;
22 } S1Translate;
24 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
25 uint64_t address,
26 MMUAccessType access_type, bool s1_is_el0,
27 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
28 __attribute__((nonnull));
30 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
31 static const uint8_t pamax_map[] = {
32 [0] = 32,
33 [1] = 36,
34 [2] = 40,
35 [3] = 42,
36 [4] = 44,
37 [5] = 48,
38 [6] = 52,
41 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
42 unsigned int arm_pamax(ARMCPU *cpu)
44 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
45 unsigned int parange =
46 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
49 * id_aa64mmfr0 is a read-only register so values outside of the
50 * supported mappings can be considered an implementation error.
52 assert(parange < ARRAY_SIZE(pamax_map));
53 return pamax_map[parange];
57 * In machvirt_init, we call arm_pamax on a cpu that is not fully
58 * initialized, so we can't rely on the propagation done in realize.
60 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
61 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
62 /* v7 with LPAE */
63 return 40;
65 /* Anything else */
66 return 32;
70 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
72 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
74 switch (mmu_idx) {
75 case ARMMMUIdx_E10_0:
76 return ARMMMUIdx_Stage1_E0;
77 case ARMMMUIdx_E10_1:
78 return ARMMMUIdx_Stage1_E1;
79 case ARMMMUIdx_E10_1_PAN:
80 return ARMMMUIdx_Stage1_E1_PAN;
81 default:
82 return mmu_idx;
86 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
88 return stage_1_mmu_idx(arm_mmu_idx(env));
91 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
93 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
96 static bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
98 switch (mmu_idx) {
99 case ARMMMUIdx_E20_0:
100 case ARMMMUIdx_Stage1_E0:
101 case ARMMMUIdx_MUser:
102 case ARMMMUIdx_MSUser:
103 case ARMMMUIdx_MUserNegPri:
104 case ARMMMUIdx_MSUserNegPri:
105 return true;
106 default:
107 return false;
108 case ARMMMUIdx_E10_0:
109 case ARMMMUIdx_E10_1:
110 case ARMMMUIdx_E10_1_PAN:
111 g_assert_not_reached();
115 /* Return the TTBR associated with this translation regime */
116 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
118 if (mmu_idx == ARMMMUIdx_Stage2) {
119 return env->cp15.vttbr_el2;
121 if (mmu_idx == ARMMMUIdx_Stage2_S) {
122 return env->cp15.vsttbr_el2;
124 if (ttbrn == 0) {
125 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
126 } else {
127 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
131 /* Return true if the specified stage of address translation is disabled */
132 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
133 bool is_secure)
135 uint64_t hcr_el2;
137 if (arm_feature(env, ARM_FEATURE_M)) {
138 switch (env->v7m.mpu_ctrl[is_secure] &
139 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
140 case R_V7M_MPU_CTRL_ENABLE_MASK:
141 /* Enabled, but not for HardFault and NMI */
142 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
143 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
144 /* Enabled for all cases */
145 return false;
146 case 0:
147 default:
149 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
150 * we warned about that in armv7m_nvic.c when the guest set it.
152 return true;
156 hcr_el2 = arm_hcr_el2_eff_secstate(env, is_secure);
158 switch (mmu_idx) {
159 case ARMMMUIdx_Stage2:
160 case ARMMMUIdx_Stage2_S:
161 /* HCR.DC means HCR.VM behaves as 1 */
162 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
164 case ARMMMUIdx_E10_0:
165 case ARMMMUIdx_E10_1:
166 case ARMMMUIdx_E10_1_PAN:
167 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
168 if (hcr_el2 & HCR_TGE) {
169 return true;
171 break;
173 case ARMMMUIdx_Stage1_E0:
174 case ARMMMUIdx_Stage1_E1:
175 case ARMMMUIdx_Stage1_E1_PAN:
176 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
177 if (hcr_el2 & HCR_DC) {
178 return true;
180 break;
182 case ARMMMUIdx_E20_0:
183 case ARMMMUIdx_E20_2:
184 case ARMMMUIdx_E20_2_PAN:
185 case ARMMMUIdx_E2:
186 case ARMMMUIdx_E3:
187 break;
189 case ARMMMUIdx_Phys_NS:
190 case ARMMMUIdx_Phys_S:
191 /* No translation for physical address spaces. */
192 return true;
194 default:
195 g_assert_not_reached();
198 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
201 static bool ptw_attrs_are_device(uint64_t hcr, ARMCacheAttrs cacheattrs)
204 * For an S1 page table walk, the stage 1 attributes are always
205 * some form of "this is Normal memory". The combined S1+S2
206 * attributes are therefore only Device if stage 2 specifies Device.
207 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
208 * ie when cacheattrs.attrs bits [3:2] are 0b00.
209 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
210 * when cacheattrs.attrs bit [2] is 0.
212 assert(cacheattrs.is_s2_format);
213 if (hcr & HCR_FWB) {
214 return (cacheattrs.attrs & 0x4) == 0;
215 } else {
216 return (cacheattrs.attrs & 0xc) == 0;
220 /* Translate a S1 pagetable walk through S2 if needed. */
221 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
222 hwaddr addr, ARMMMUFaultInfo *fi)
224 bool is_secure = ptw->in_secure;
225 ARMMMUIdx s2_mmu_idx = is_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
227 if (arm_mmu_idx_is_stage1_of_2(ptw->in_mmu_idx) &&
228 !regime_translation_disabled(env, s2_mmu_idx, is_secure)) {
229 GetPhysAddrResult s2 = {};
230 S1Translate s2ptw = {
231 .in_mmu_idx = s2_mmu_idx,
232 .in_secure = is_secure,
234 uint64_t hcr;
235 int ret;
237 ret = get_phys_addr_lpae(env, &s2ptw, addr, MMU_DATA_LOAD,
238 false, &s2, fi);
239 if (ret) {
240 assert(fi->type != ARMFault_None);
241 fi->s2addr = addr;
242 fi->stage2 = true;
243 fi->s1ptw = true;
244 fi->s1ns = !is_secure;
245 return false;
248 hcr = arm_hcr_el2_eff_secstate(env, is_secure);
249 if ((hcr & HCR_PTW) && ptw_attrs_are_device(hcr, s2.cacheattrs)) {
251 * PTW set and S1 walk touched S2 Device memory:
252 * generate Permission fault.
254 fi->type = ARMFault_Permission;
255 fi->s2addr = addr;
256 fi->stage2 = true;
257 fi->s1ptw = true;
258 fi->s1ns = !is_secure;
259 return false;
262 if (arm_is_secure_below_el3(env)) {
263 /* Check if page table walk is to secure or non-secure PA space. */
264 if (is_secure) {
265 is_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
266 } else {
267 is_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
269 } else {
270 assert(!is_secure);
273 addr = s2.f.phys_addr;
276 ptw->out_secure = is_secure;
277 ptw->out_phys = addr;
278 return true;
281 /* All loads done in the course of a page table walk go through here. */
282 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw, hwaddr addr,
283 ARMMMUFaultInfo *fi)
285 CPUState *cs = env_cpu(env);
286 MemTxAttrs attrs = {};
287 MemTxResult result = MEMTX_OK;
288 AddressSpace *as;
289 uint32_t data;
291 if (!S1_ptw_translate(env, ptw, addr, fi)) {
292 return 0;
294 addr = ptw->out_phys;
295 attrs.secure = ptw->out_secure;
296 as = arm_addressspace(cs, attrs);
297 if (regime_translation_big_endian(env, ptw->in_mmu_idx)) {
298 data = address_space_ldl_be(as, addr, attrs, &result);
299 } else {
300 data = address_space_ldl_le(as, addr, attrs, &result);
302 if (result == MEMTX_OK) {
303 return data;
305 fi->type = ARMFault_SyncExternalOnWalk;
306 fi->ea = arm_extabort_type(result);
307 return 0;
310 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw, hwaddr addr,
311 ARMMMUFaultInfo *fi)
313 CPUState *cs = env_cpu(env);
314 MemTxAttrs attrs = {};
315 MemTxResult result = MEMTX_OK;
316 AddressSpace *as;
317 uint64_t data;
319 if (!S1_ptw_translate(env, ptw, addr, fi)) {
320 return 0;
322 addr = ptw->out_phys;
323 attrs.secure = ptw->out_secure;
324 as = arm_addressspace(cs, attrs);
325 if (regime_translation_big_endian(env, ptw->in_mmu_idx)) {
326 data = address_space_ldq_be(as, addr, attrs, &result);
327 } else {
328 data = address_space_ldq_le(as, addr, attrs, &result);
330 if (result == MEMTX_OK) {
331 return data;
333 fi->type = ARMFault_SyncExternalOnWalk;
334 fi->ea = arm_extabort_type(result);
335 return 0;
338 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
339 uint32_t *table, uint32_t address)
341 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
342 uint64_t tcr = regime_tcr(env, mmu_idx);
343 int maskshift = extract32(tcr, 0, 3);
344 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
345 uint32_t base_mask;
347 if (address & mask) {
348 if (tcr & TTBCR_PD1) {
349 /* Translation table walk disabled for TTBR1 */
350 return false;
352 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
353 } else {
354 if (tcr & TTBCR_PD0) {
355 /* Translation table walk disabled for TTBR0 */
356 return false;
358 base_mask = ~((uint32_t)0x3fffu >> maskshift);
359 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
361 *table |= (address >> 18) & 0x3ffc;
362 return true;
366 * Translate section/page access permissions to page R/W protection flags
367 * @env: CPUARMState
368 * @mmu_idx: MMU index indicating required translation regime
369 * @ap: The 3-bit access permissions (AP[2:0])
370 * @domain_prot: The 2-bit domain access permissions
372 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
373 int ap, int domain_prot)
375 bool is_user = regime_is_user(env, mmu_idx);
377 if (domain_prot == 3) {
378 return PAGE_READ | PAGE_WRITE;
381 switch (ap) {
382 case 0:
383 if (arm_feature(env, ARM_FEATURE_V7)) {
384 return 0;
386 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
387 case SCTLR_S:
388 return is_user ? 0 : PAGE_READ;
389 case SCTLR_R:
390 return PAGE_READ;
391 default:
392 return 0;
394 case 1:
395 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
396 case 2:
397 if (is_user) {
398 return PAGE_READ;
399 } else {
400 return PAGE_READ | PAGE_WRITE;
402 case 3:
403 return PAGE_READ | PAGE_WRITE;
404 case 4: /* Reserved. */
405 return 0;
406 case 5:
407 return is_user ? 0 : PAGE_READ;
408 case 6:
409 return PAGE_READ;
410 case 7:
411 if (!arm_feature(env, ARM_FEATURE_V6K)) {
412 return 0;
414 return PAGE_READ;
415 default:
416 g_assert_not_reached();
421 * Translate section/page access permissions to page R/W protection flags.
422 * @ap: The 2-bit simple AP (AP[2:1])
423 * @is_user: TRUE if accessing from PL0
425 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
427 switch (ap) {
428 case 0:
429 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
430 case 1:
431 return PAGE_READ | PAGE_WRITE;
432 case 2:
433 return is_user ? 0 : PAGE_READ;
434 case 3:
435 return PAGE_READ;
436 default:
437 g_assert_not_reached();
441 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
443 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
446 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
447 uint32_t address, MMUAccessType access_type,
448 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
450 int level = 1;
451 uint32_t table;
452 uint32_t desc;
453 int type;
454 int ap;
455 int domain = 0;
456 int domain_prot;
457 hwaddr phys_addr;
458 uint32_t dacr;
460 /* Pagetable walk. */
461 /* Lookup l1 descriptor. */
462 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
463 /* Section translation fault if page walk is disabled by PD0 or PD1 */
464 fi->type = ARMFault_Translation;
465 goto do_fault;
467 desc = arm_ldl_ptw(env, ptw, table, fi);
468 if (fi->type != ARMFault_None) {
469 goto do_fault;
471 type = (desc & 3);
472 domain = (desc >> 5) & 0x0f;
473 if (regime_el(env, ptw->in_mmu_idx) == 1) {
474 dacr = env->cp15.dacr_ns;
475 } else {
476 dacr = env->cp15.dacr_s;
478 domain_prot = (dacr >> (domain * 2)) & 3;
479 if (type == 0) {
480 /* Section translation fault. */
481 fi->type = ARMFault_Translation;
482 goto do_fault;
484 if (type != 2) {
485 level = 2;
487 if (domain_prot == 0 || domain_prot == 2) {
488 fi->type = ARMFault_Domain;
489 goto do_fault;
491 if (type == 2) {
492 /* 1Mb section. */
493 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
494 ap = (desc >> 10) & 3;
495 result->f.lg_page_size = 20; /* 1MB */
496 } else {
497 /* Lookup l2 entry. */
498 if (type == 1) {
499 /* Coarse pagetable. */
500 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
501 } else {
502 /* Fine pagetable. */
503 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
505 desc = arm_ldl_ptw(env, ptw, table, fi);
506 if (fi->type != ARMFault_None) {
507 goto do_fault;
509 switch (desc & 3) {
510 case 0: /* Page translation fault. */
511 fi->type = ARMFault_Translation;
512 goto do_fault;
513 case 1: /* 64k page. */
514 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
515 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
516 result->f.lg_page_size = 16;
517 break;
518 case 2: /* 4k page. */
519 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
520 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
521 result->f.lg_page_size = 12;
522 break;
523 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
524 if (type == 1) {
525 /* ARMv6/XScale extended small page format */
526 if (arm_feature(env, ARM_FEATURE_XSCALE)
527 || arm_feature(env, ARM_FEATURE_V6)) {
528 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
529 result->f.lg_page_size = 12;
530 } else {
532 * UNPREDICTABLE in ARMv5; we choose to take a
533 * page translation fault.
535 fi->type = ARMFault_Translation;
536 goto do_fault;
538 } else {
539 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
540 result->f.lg_page_size = 10;
542 ap = (desc >> 4) & 3;
543 break;
544 default:
545 /* Never happens, but compiler isn't smart enough to tell. */
546 g_assert_not_reached();
549 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
550 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
551 if (!(result->f.prot & (1 << access_type))) {
552 /* Access permission fault. */
553 fi->type = ARMFault_Permission;
554 goto do_fault;
556 result->f.phys_addr = phys_addr;
557 return false;
558 do_fault:
559 fi->domain = domain;
560 fi->level = level;
561 return true;
564 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
565 uint32_t address, MMUAccessType access_type,
566 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
568 ARMCPU *cpu = env_archcpu(env);
569 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
570 int level = 1;
571 uint32_t table;
572 uint32_t desc;
573 uint32_t xn;
574 uint32_t pxn = 0;
575 int type;
576 int ap;
577 int domain = 0;
578 int domain_prot;
579 hwaddr phys_addr;
580 uint32_t dacr;
581 bool ns;
583 /* Pagetable walk. */
584 /* Lookup l1 descriptor. */
585 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
586 /* Section translation fault if page walk is disabled by PD0 or PD1 */
587 fi->type = ARMFault_Translation;
588 goto do_fault;
590 desc = arm_ldl_ptw(env, ptw, table, fi);
591 if (fi->type != ARMFault_None) {
592 goto do_fault;
594 type = (desc & 3);
595 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
596 /* Section translation fault, or attempt to use the encoding
597 * which is Reserved on implementations without PXN.
599 fi->type = ARMFault_Translation;
600 goto do_fault;
602 if ((type == 1) || !(desc & (1 << 18))) {
603 /* Page or Section. */
604 domain = (desc >> 5) & 0x0f;
606 if (regime_el(env, mmu_idx) == 1) {
607 dacr = env->cp15.dacr_ns;
608 } else {
609 dacr = env->cp15.dacr_s;
611 if (type == 1) {
612 level = 2;
614 domain_prot = (dacr >> (domain * 2)) & 3;
615 if (domain_prot == 0 || domain_prot == 2) {
616 /* Section or Page domain fault */
617 fi->type = ARMFault_Domain;
618 goto do_fault;
620 if (type != 1) {
621 if (desc & (1 << 18)) {
622 /* Supersection. */
623 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
624 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
625 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
626 result->f.lg_page_size = 24; /* 16MB */
627 } else {
628 /* Section. */
629 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
630 result->f.lg_page_size = 20; /* 1MB */
632 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
633 xn = desc & (1 << 4);
634 pxn = desc & 1;
635 ns = extract32(desc, 19, 1);
636 } else {
637 if (cpu_isar_feature(aa32_pxn, cpu)) {
638 pxn = (desc >> 2) & 1;
640 ns = extract32(desc, 3, 1);
641 /* Lookup l2 entry. */
642 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
643 desc = arm_ldl_ptw(env, ptw, table, fi);
644 if (fi->type != ARMFault_None) {
645 goto do_fault;
647 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
648 switch (desc & 3) {
649 case 0: /* Page translation fault. */
650 fi->type = ARMFault_Translation;
651 goto do_fault;
652 case 1: /* 64k page. */
653 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
654 xn = desc & (1 << 15);
655 result->f.lg_page_size = 16;
656 break;
657 case 2: case 3: /* 4k page. */
658 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
659 xn = desc & 1;
660 result->f.lg_page_size = 12;
661 break;
662 default:
663 /* Never happens, but compiler isn't smart enough to tell. */
664 g_assert_not_reached();
667 if (domain_prot == 3) {
668 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
669 } else {
670 if (pxn && !regime_is_user(env, mmu_idx)) {
671 xn = 1;
673 if (xn && access_type == MMU_INST_FETCH) {
674 fi->type = ARMFault_Permission;
675 goto do_fault;
678 if (arm_feature(env, ARM_FEATURE_V6K) &&
679 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
680 /* The simplified model uses AP[0] as an access control bit. */
681 if ((ap & 1) == 0) {
682 /* Access flag fault. */
683 fi->type = ARMFault_AccessFlag;
684 goto do_fault;
686 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
687 } else {
688 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
690 if (result->f.prot && !xn) {
691 result->f.prot |= PAGE_EXEC;
693 if (!(result->f.prot & (1 << access_type))) {
694 /* Access permission fault. */
695 fi->type = ARMFault_Permission;
696 goto do_fault;
699 if (ns) {
700 /* The NS bit will (as required by the architecture) have no effect if
701 * the CPU doesn't support TZ or this is a non-secure translation
702 * regime, because the attribute will already be non-secure.
704 result->f.attrs.secure = false;
706 result->f.phys_addr = phys_addr;
707 return false;
708 do_fault:
709 fi->domain = domain;
710 fi->level = level;
711 return true;
715 * Translate S2 section/page access permissions to protection flags
716 * @env: CPUARMState
717 * @s2ap: The 2-bit stage2 access permissions (S2AP)
718 * @xn: XN (execute-never) bits
719 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
721 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
723 int prot = 0;
725 if (s2ap & 1) {
726 prot |= PAGE_READ;
728 if (s2ap & 2) {
729 prot |= PAGE_WRITE;
732 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
733 switch (xn) {
734 case 0:
735 prot |= PAGE_EXEC;
736 break;
737 case 1:
738 if (s1_is_el0) {
739 prot |= PAGE_EXEC;
741 break;
742 case 2:
743 break;
744 case 3:
745 if (!s1_is_el0) {
746 prot |= PAGE_EXEC;
748 break;
749 default:
750 g_assert_not_reached();
752 } else {
753 if (!extract32(xn, 1, 1)) {
754 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
755 prot |= PAGE_EXEC;
759 return prot;
763 * Translate section/page access permissions to protection flags
764 * @env: CPUARMState
765 * @mmu_idx: MMU index indicating required translation regime
766 * @is_aa64: TRUE if AArch64
767 * @ap: The 2-bit simple AP (AP[2:1])
768 * @ns: NS (non-secure) bit
769 * @xn: XN (execute-never) bit
770 * @pxn: PXN (privileged execute-never) bit
772 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
773 int ap, int ns, int xn, int pxn)
775 bool is_user = regime_is_user(env, mmu_idx);
776 int prot_rw, user_rw;
777 bool have_wxn;
778 int wxn = 0;
780 assert(mmu_idx != ARMMMUIdx_Stage2);
781 assert(mmu_idx != ARMMMUIdx_Stage2_S);
783 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
784 if (is_user) {
785 prot_rw = user_rw;
786 } else {
787 if (user_rw && regime_is_pan(env, mmu_idx)) {
788 /* PAN forbids data accesses but doesn't affect insn fetch */
789 prot_rw = 0;
790 } else {
791 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
795 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
796 return prot_rw;
799 /* TODO have_wxn should be replaced with
800 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
801 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
802 * compatible processors have EL2, which is required for [U]WXN.
804 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
806 if (have_wxn) {
807 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
810 if (is_aa64) {
811 if (regime_has_2_ranges(mmu_idx) && !is_user) {
812 xn = pxn || (user_rw & PAGE_WRITE);
814 } else if (arm_feature(env, ARM_FEATURE_V7)) {
815 switch (regime_el(env, mmu_idx)) {
816 case 1:
817 case 3:
818 if (is_user) {
819 xn = xn || !(user_rw & PAGE_READ);
820 } else {
821 int uwxn = 0;
822 if (have_wxn) {
823 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
825 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
826 (uwxn && (user_rw & PAGE_WRITE));
828 break;
829 case 2:
830 break;
832 } else {
833 xn = wxn = 0;
836 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
837 return prot_rw;
839 return prot_rw | PAGE_EXEC;
842 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
843 ARMMMUIdx mmu_idx)
845 uint64_t tcr = regime_tcr(env, mmu_idx);
846 uint32_t el = regime_el(env, mmu_idx);
847 int select, tsz;
848 bool epd, hpd;
850 assert(mmu_idx != ARMMMUIdx_Stage2_S);
852 if (mmu_idx == ARMMMUIdx_Stage2) {
853 /* VTCR */
854 bool sext = extract32(tcr, 4, 1);
855 bool sign = extract32(tcr, 3, 1);
858 * If the sign-extend bit is not the same as t0sz[3], the result
859 * is unpredictable. Flag this as a guest error.
861 if (sign != sext) {
862 qemu_log_mask(LOG_GUEST_ERROR,
863 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
865 tsz = sextract32(tcr, 0, 4) + 8;
866 select = 0;
867 hpd = false;
868 epd = false;
869 } else if (el == 2) {
870 /* HTCR */
871 tsz = extract32(tcr, 0, 3);
872 select = 0;
873 hpd = extract64(tcr, 24, 1);
874 epd = false;
875 } else {
876 int t0sz = extract32(tcr, 0, 3);
877 int t1sz = extract32(tcr, 16, 3);
879 if (t1sz == 0) {
880 select = va > (0xffffffffu >> t0sz);
881 } else {
882 /* Note that we will detect errors later. */
883 select = va >= ~(0xffffffffu >> t1sz);
885 if (!select) {
886 tsz = t0sz;
887 epd = extract32(tcr, 7, 1);
888 hpd = extract64(tcr, 41, 1);
889 } else {
890 tsz = t1sz;
891 epd = extract32(tcr, 23, 1);
892 hpd = extract64(tcr, 42, 1);
894 /* For aarch32, hpd0 is not enabled without t2e as well. */
895 hpd &= extract32(tcr, 6, 1);
898 return (ARMVAParameters) {
899 .tsz = tsz,
900 .select = select,
901 .epd = epd,
902 .hpd = hpd,
907 * check_s2_mmu_setup
908 * @cpu: ARMCPU
909 * @is_aa64: True if the translation regime is in AArch64 state
910 * @startlevel: Suggested starting level
911 * @inputsize: Bitsize of IPAs
912 * @stride: Page-table stride (See the ARM ARM)
914 * Returns true if the suggested S2 translation parameters are OK and
915 * false otherwise.
917 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
918 int inputsize, int stride, int outputsize)
920 const int grainsize = stride + 3;
921 int startsizecheck;
924 * Negative levels are usually not allowed...
925 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
926 * begins with level -1. Note that previous feature tests will have
927 * eliminated this combination if it is not enabled.
929 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
930 return false;
933 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
934 if (startsizecheck < 1 || startsizecheck > stride + 4) {
935 return false;
938 if (is_aa64) {
939 switch (stride) {
940 case 13: /* 64KB Pages. */
941 if (level == 0 || (level == 1 && outputsize <= 42)) {
942 return false;
944 break;
945 case 11: /* 16KB Pages. */
946 if (level == 0 || (level == 1 && outputsize <= 40)) {
947 return false;
949 break;
950 case 9: /* 4KB Pages. */
951 if (level == 0 && outputsize <= 42) {
952 return false;
954 break;
955 default:
956 g_assert_not_reached();
959 /* Inputsize checks. */
960 if (inputsize > outputsize &&
961 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
962 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
963 return false;
965 } else {
966 /* AArch32 only supports 4KB pages. Assert on that. */
967 assert(stride == 9);
969 if (level == 0) {
970 return false;
973 return true;
977 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
979 * Returns false if the translation was successful. Otherwise, phys_ptr,
980 * attrs, prot and page_size may not be filled in, and the populated fsr
981 * value provides information on why the translation aborted, in the format
982 * of a long-format DFSR/IFSR fault register, with the following caveat:
983 * the WnR bit is never set (the caller must do this).
985 * @env: CPUARMState
986 * @ptw: Current and next stage parameters for the walk.
987 * @address: virtual address to get physical address for
988 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
989 * @s1_is_el0: if @ptw->in_mmu_idx is ARMMMUIdx_Stage2
990 * (so this is a stage 2 page table walk),
991 * must be true if this is stage 2 of a stage 1+2
992 * walk for an EL0 access. If @mmu_idx is anything else,
993 * @s1_is_el0 is ignored.
994 * @result: set on translation success,
995 * @fi: set to fault info if the translation fails
997 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
998 uint64_t address,
999 MMUAccessType access_type, bool s1_is_el0,
1000 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1002 ARMCPU *cpu = env_archcpu(env);
1003 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1004 bool is_secure = ptw->in_secure;
1005 /* Read an LPAE long-descriptor translation table. */
1006 ARMFaultType fault_type = ARMFault_Translation;
1007 uint32_t level;
1008 ARMVAParameters param;
1009 uint64_t ttbr;
1010 hwaddr descaddr, indexmask, indexmask_grainsize;
1011 uint32_t tableattrs;
1012 target_ulong page_size;
1013 uint32_t attrs;
1014 int32_t stride;
1015 int addrsize, inputsize, outputsize;
1016 uint64_t tcr = regime_tcr(env, mmu_idx);
1017 int ap, ns, xn, pxn;
1018 uint32_t el = regime_el(env, mmu_idx);
1019 uint64_t descaddrmask;
1020 bool aarch64 = arm_el_is_aa64(env, el);
1021 bool guarded = false;
1023 /* TODO: This code does not support shareability levels. */
1024 if (aarch64) {
1025 int ps;
1027 param = aa64_va_parameters(env, address, mmu_idx,
1028 access_type != MMU_INST_FETCH);
1029 level = 0;
1032 * If TxSZ is programmed to a value larger than the maximum,
1033 * or smaller than the effective minimum, it is IMPLEMENTATION
1034 * DEFINED whether we behave as if the field were programmed
1035 * within bounds, or if a level 0 Translation fault is generated.
1037 * With FEAT_LVA, fault on less than minimum becomes required,
1038 * so our choice is to always raise the fault.
1040 if (param.tsz_oob) {
1041 fault_type = ARMFault_Translation;
1042 goto do_fault;
1045 addrsize = 64 - 8 * param.tbi;
1046 inputsize = 64 - param.tsz;
1049 * Bound PS by PARANGE to find the effective output address size.
1050 * ID_AA64MMFR0 is a read-only register so values outside of the
1051 * supported mappings can be considered an implementation error.
1053 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1054 ps = MIN(ps, param.ps);
1055 assert(ps < ARRAY_SIZE(pamax_map));
1056 outputsize = pamax_map[ps];
1057 } else {
1058 param = aa32_va_parameters(env, address, mmu_idx);
1059 level = 1;
1060 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1061 inputsize = addrsize - param.tsz;
1062 outputsize = 40;
1066 * We determined the region when collecting the parameters, but we
1067 * have not yet validated that the address is valid for the region.
1068 * Extract the top bits and verify that they all match select.
1070 * For aa32, if inputsize == addrsize, then we have selected the
1071 * region by exclusion in aa32_va_parameters and there is no more
1072 * validation to do here.
1074 if (inputsize < addrsize) {
1075 target_ulong top_bits = sextract64(address, inputsize,
1076 addrsize - inputsize);
1077 if (-top_bits != param.select) {
1078 /* The gap between the two regions is a Translation fault */
1079 fault_type = ARMFault_Translation;
1080 goto do_fault;
1084 stride = arm_granule_bits(param.gran) - 3;
1087 * Note that QEMU ignores shareability and cacheability attributes,
1088 * so we don't need to do anything with the SH, ORGN, IRGN fields
1089 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1090 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1091 * implement any ASID-like capability so we can ignore it (instead
1092 * we will always flush the TLB any time the ASID is changed).
1094 ttbr = regime_ttbr(env, mmu_idx, param.select);
1097 * Here we should have set up all the parameters for the translation:
1098 * inputsize, ttbr, epd, stride, tbi
1101 if (param.epd) {
1103 * Translation table walk disabled => Translation fault on TLB miss
1104 * Note: This is always 0 on 64-bit EL2 and EL3.
1106 goto do_fault;
1109 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
1111 * The starting level depends on the virtual address size (which can
1112 * be up to 48 bits) and the translation granule size. It indicates
1113 * the number of strides (stride bits at a time) needed to
1114 * consume the bits of the input address. In the pseudocode this is:
1115 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1116 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1117 * our 'stride + 3' and 'stride' is our 'stride'.
1118 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1119 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1120 * = 4 - (inputsize - 4) / stride;
1122 level = 4 - (inputsize - 4) / stride;
1123 } else {
1125 * For stage 2 translations the starting level is specified by the
1126 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
1128 uint32_t sl0 = extract32(tcr, 6, 2);
1129 uint32_t sl2 = extract64(tcr, 33, 1);
1130 uint32_t startlevel;
1131 bool ok;
1133 /* SL2 is RES0 unless DS=1 & 4kb granule. */
1134 if (param.ds && stride == 9 && sl2) {
1135 if (sl0 != 0) {
1136 level = 0;
1137 fault_type = ARMFault_Translation;
1138 goto do_fault;
1140 startlevel = -1;
1141 } else if (!aarch64 || stride == 9) {
1142 /* AArch32 or 4KB pages */
1143 startlevel = 2 - sl0;
1145 if (cpu_isar_feature(aa64_st, cpu)) {
1146 startlevel &= 3;
1148 } else {
1149 /* 16KB or 64KB pages */
1150 startlevel = 3 - sl0;
1153 /* Check that the starting level is valid. */
1154 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1155 inputsize, stride, outputsize);
1156 if (!ok) {
1157 fault_type = ARMFault_Translation;
1158 goto do_fault;
1160 level = startlevel;
1163 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1164 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1166 /* Now we can extract the actual base address from the TTBR */
1167 descaddr = extract64(ttbr, 0, 48);
1170 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1172 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1173 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1174 * but we've just cleared the bits above 47, so simplify the test.
1176 if (outputsize > 48) {
1177 descaddr |= extract64(ttbr, 2, 4) << 48;
1178 } else if (descaddr >> outputsize) {
1179 level = 0;
1180 fault_type = ARMFault_AddressSize;
1181 goto do_fault;
1185 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1186 * and also to mask out CnP (bit 0) which could validly be non-zero.
1188 descaddr &= ~indexmask;
1191 * For AArch32, the address field in the descriptor goes up to bit 39
1192 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1193 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1194 * bits as part of the address, which will be checked via outputsize.
1195 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1196 * the highest bits of a 52-bit output are placed elsewhere.
1198 if (param.ds) {
1199 descaddrmask = MAKE_64BIT_MASK(0, 50);
1200 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1201 descaddrmask = MAKE_64BIT_MASK(0, 48);
1202 } else {
1203 descaddrmask = MAKE_64BIT_MASK(0, 40);
1205 descaddrmask &= ~indexmask_grainsize;
1208 * Secure accesses start with the page table in secure memory and
1209 * can be downgraded to non-secure at any step. Non-secure accesses
1210 * remain non-secure. We implement this by just ORing in the NSTable/NS
1211 * bits at each step.
1213 tableattrs = is_secure ? 0 : (1 << 4);
1214 for (;;) {
1215 uint64_t descriptor;
1216 bool nstable;
1218 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1219 descaddr &= ~7ULL;
1220 nstable = extract32(tableattrs, 4, 1);
1221 ptw->in_secure = !nstable;
1222 descriptor = arm_ldq_ptw(env, ptw, descaddr, fi);
1223 if (fi->type != ARMFault_None) {
1224 goto do_fault;
1227 if (!(descriptor & 1) ||
1228 (!(descriptor & 2) && (level == 3))) {
1229 /* Invalid, or the Reserved level 3 encoding */
1230 goto do_fault;
1233 descaddr = descriptor & descaddrmask;
1236 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1237 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1238 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1239 * raise AddressSizeFault.
1241 if (outputsize > 48) {
1242 if (param.ds) {
1243 descaddr |= extract64(descriptor, 8, 2) << 50;
1244 } else {
1245 descaddr |= extract64(descriptor, 12, 4) << 48;
1247 } else if (descaddr >> outputsize) {
1248 fault_type = ARMFault_AddressSize;
1249 goto do_fault;
1252 if ((descriptor & 2) && (level < 3)) {
1254 * Table entry. The top five bits are attributes which may
1255 * propagate down through lower levels of the table (and
1256 * which are all arranged so that 0 means "no effect", so
1257 * we can gather them up by ORing in the bits at each level).
1259 tableattrs |= extract64(descriptor, 59, 5);
1260 level++;
1261 indexmask = indexmask_grainsize;
1262 continue;
1265 * Block entry at level 1 or 2, or page entry at level 3.
1266 * These are basically the same thing, although the number
1267 * of bits we pull in from the vaddr varies. Note that although
1268 * descaddrmask masks enough of the low bits of the descriptor
1269 * to give a correct page or table address, the address field
1270 * in a block descriptor is smaller; so we need to explicitly
1271 * clear the lower bits here before ORing in the low vaddr bits.
1273 page_size = (1ULL << ((stride * (4 - level)) + 3));
1274 descaddr &= ~(hwaddr)(page_size - 1);
1275 descaddr |= (address & (page_size - 1));
1276 /* Extract attributes from the descriptor */
1277 attrs = extract64(descriptor, 2, 10)
1278 | (extract64(descriptor, 52, 12) << 10);
1280 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1281 /* Stage 2 table descriptors do not include any attribute fields */
1282 break;
1284 /* Merge in attributes from table descriptors */
1285 attrs |= nstable << 3; /* NS */
1286 guarded = extract64(descriptor, 50, 1); /* GP */
1287 if (param.hpd) {
1288 /* HPD disables all the table attributes except NSTable. */
1289 break;
1291 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
1293 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1294 * means "force PL1 access only", which means forcing AP[1] to 0.
1296 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
1297 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
1298 break;
1301 * Here descaddr is the final physical address, and attributes
1302 * are all in attrs.
1304 fault_type = ARMFault_AccessFlag;
1305 if ((attrs & (1 << 8)) == 0) {
1306 /* Access flag */
1307 goto do_fault;
1310 ap = extract32(attrs, 4, 2);
1312 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1313 ns = mmu_idx == ARMMMUIdx_Stage2;
1314 xn = extract32(attrs, 11, 2);
1315 result->f.prot = get_S2prot(env, ap, xn, s1_is_el0);
1316 } else {
1317 ns = extract32(attrs, 3, 1);
1318 xn = extract32(attrs, 12, 1);
1319 pxn = extract32(attrs, 11, 1);
1320 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1323 fault_type = ARMFault_Permission;
1324 if (!(result->f.prot & (1 << access_type))) {
1325 goto do_fault;
1328 if (ns) {
1330 * The NS bit will (as required by the architecture) have no effect if
1331 * the CPU doesn't support TZ or this is a non-secure translation
1332 * regime, because the attribute will already be non-secure.
1334 result->f.attrs.secure = false;
1337 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
1338 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
1339 result->f.guarded = guarded;
1342 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1343 result->cacheattrs.is_s2_format = true;
1344 result->cacheattrs.attrs = extract32(attrs, 0, 4);
1345 } else {
1346 /* Index into MAIR registers for cache attributes */
1347 uint8_t attrindx = extract32(attrs, 0, 3);
1348 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1349 assert(attrindx <= 7);
1350 result->cacheattrs.is_s2_format = false;
1351 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1355 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1356 * was re-purposed for output address bits. The SH attribute in
1357 * that case comes from TCR_ELx, which we extracted earlier.
1359 if (param.ds) {
1360 result->cacheattrs.shareability = param.sh;
1361 } else {
1362 result->cacheattrs.shareability = extract32(attrs, 6, 2);
1365 result->f.phys_addr = descaddr;
1366 result->f.lg_page_size = ctz64(page_size);
1367 return false;
1369 do_fault:
1370 fi->type = fault_type;
1371 fi->level = level;
1372 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
1373 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
1374 mmu_idx == ARMMMUIdx_Stage2_S);
1375 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1376 return true;
1379 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1380 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1381 bool is_secure, GetPhysAddrResult *result,
1382 ARMMMUFaultInfo *fi)
1384 int n;
1385 uint32_t mask;
1386 uint32_t base;
1387 bool is_user = regime_is_user(env, mmu_idx);
1389 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
1390 /* MPU disabled. */
1391 result->f.phys_addr = address;
1392 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1393 return false;
1396 result->f.phys_addr = address;
1397 for (n = 7; n >= 0; n--) {
1398 base = env->cp15.c6_region[n];
1399 if ((base & 1) == 0) {
1400 continue;
1402 mask = 1 << ((base >> 1) & 0x1f);
1403 /* Keep this shift separate from the above to avoid an
1404 (undefined) << 32. */
1405 mask = (mask << 1) - 1;
1406 if (((base ^ address) & ~mask) == 0) {
1407 break;
1410 if (n < 0) {
1411 fi->type = ARMFault_Background;
1412 return true;
1415 if (access_type == MMU_INST_FETCH) {
1416 mask = env->cp15.pmsav5_insn_ap;
1417 } else {
1418 mask = env->cp15.pmsav5_data_ap;
1420 mask = (mask >> (n * 4)) & 0xf;
1421 switch (mask) {
1422 case 0:
1423 fi->type = ARMFault_Permission;
1424 fi->level = 1;
1425 return true;
1426 case 1:
1427 if (is_user) {
1428 fi->type = ARMFault_Permission;
1429 fi->level = 1;
1430 return true;
1432 result->f.prot = PAGE_READ | PAGE_WRITE;
1433 break;
1434 case 2:
1435 result->f.prot = PAGE_READ;
1436 if (!is_user) {
1437 result->f.prot |= PAGE_WRITE;
1439 break;
1440 case 3:
1441 result->f.prot = PAGE_READ | PAGE_WRITE;
1442 break;
1443 case 5:
1444 if (is_user) {
1445 fi->type = ARMFault_Permission;
1446 fi->level = 1;
1447 return true;
1449 result->f.prot = PAGE_READ;
1450 break;
1451 case 6:
1452 result->f.prot = PAGE_READ;
1453 break;
1454 default:
1455 /* Bad permission. */
1456 fi->type = ARMFault_Permission;
1457 fi->level = 1;
1458 return true;
1460 result->f.prot |= PAGE_EXEC;
1461 return false;
1464 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1465 int32_t address, uint8_t *prot)
1467 if (!arm_feature(env, ARM_FEATURE_M)) {
1468 *prot = PAGE_READ | PAGE_WRITE;
1469 switch (address) {
1470 case 0xF0000000 ... 0xFFFFFFFF:
1471 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1472 /* hivecs execing is ok */
1473 *prot |= PAGE_EXEC;
1475 break;
1476 case 0x00000000 ... 0x7FFFFFFF:
1477 *prot |= PAGE_EXEC;
1478 break;
1480 } else {
1481 /* Default system address map for M profile cores.
1482 * The architecture specifies which regions are execute-never;
1483 * at the MPU level no other checks are defined.
1485 switch (address) {
1486 case 0x00000000 ... 0x1fffffff: /* ROM */
1487 case 0x20000000 ... 0x3fffffff: /* SRAM */
1488 case 0x60000000 ... 0x7fffffff: /* RAM */
1489 case 0x80000000 ... 0x9fffffff: /* RAM */
1490 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1491 break;
1492 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1493 case 0xa0000000 ... 0xbfffffff: /* Device */
1494 case 0xc0000000 ... 0xdfffffff: /* Device */
1495 case 0xe0000000 ... 0xffffffff: /* System */
1496 *prot = PAGE_READ | PAGE_WRITE;
1497 break;
1498 default:
1499 g_assert_not_reached();
1504 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1506 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1507 return arm_feature(env, ARM_FEATURE_M) &&
1508 extract32(address, 20, 12) == 0xe00;
1511 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1514 * True if address is in the M profile system region
1515 * 0xe0000000 - 0xffffffff
1517 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1520 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1521 bool is_secure, bool is_user)
1524 * Return true if we should use the default memory map as a
1525 * "background" region if there are no hits against any MPU regions.
1527 CPUARMState *env = &cpu->env;
1529 if (is_user) {
1530 return false;
1533 if (arm_feature(env, ARM_FEATURE_M)) {
1534 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1535 } else {
1536 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1540 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1541 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1542 bool secure, GetPhysAddrResult *result,
1543 ARMMMUFaultInfo *fi)
1545 ARMCPU *cpu = env_archcpu(env);
1546 int n;
1547 bool is_user = regime_is_user(env, mmu_idx);
1549 result->f.phys_addr = address;
1550 result->f.lg_page_size = TARGET_PAGE_BITS;
1551 result->f.prot = 0;
1553 if (regime_translation_disabled(env, mmu_idx, secure) ||
1554 m_is_ppb_region(env, address)) {
1556 * MPU disabled or M profile PPB access: use default memory map.
1557 * The other case which uses the default memory map in the
1558 * v7M ARM ARM pseudocode is exception vector reads from the vector
1559 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1560 * which always does a direct read using address_space_ldl(), rather
1561 * than going via this function, so we don't need to check that here.
1563 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1564 } else { /* MPU enabled */
1565 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1566 /* region search */
1567 uint32_t base = env->pmsav7.drbar[n];
1568 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1569 uint32_t rmask;
1570 bool srdis = false;
1572 if (!(env->pmsav7.drsr[n] & 0x1)) {
1573 continue;
1576 if (!rsize) {
1577 qemu_log_mask(LOG_GUEST_ERROR,
1578 "DRSR[%d]: Rsize field cannot be 0\n", n);
1579 continue;
1581 rsize++;
1582 rmask = (1ull << rsize) - 1;
1584 if (base & rmask) {
1585 qemu_log_mask(LOG_GUEST_ERROR,
1586 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1587 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1588 n, base, rmask);
1589 continue;
1592 if (address < base || address > base + rmask) {
1594 * Address not in this region. We must check whether the
1595 * region covers addresses in the same page as our address.
1596 * In that case we must not report a size that covers the
1597 * whole page for a subsequent hit against a different MPU
1598 * region or the background region, because it would result in
1599 * incorrect TLB hits for subsequent accesses to addresses that
1600 * are in this MPU region.
1602 if (ranges_overlap(base, rmask,
1603 address & TARGET_PAGE_MASK,
1604 TARGET_PAGE_SIZE)) {
1605 result->f.lg_page_size = 0;
1607 continue;
1610 /* Region matched */
1612 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1613 int i, snd;
1614 uint32_t srdis_mask;
1616 rsize -= 3; /* sub region size (power of 2) */
1617 snd = ((address - base) >> rsize) & 0x7;
1618 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1620 srdis_mask = srdis ? 0x3 : 0x0;
1621 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1623 * This will check in groups of 2, 4 and then 8, whether
1624 * the subregion bits are consistent. rsize is incremented
1625 * back up to give the region size, considering consistent
1626 * adjacent subregions as one region. Stop testing if rsize
1627 * is already big enough for an entire QEMU page.
1629 int snd_rounded = snd & ~(i - 1);
1630 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1631 snd_rounded + 8, i);
1632 if (srdis_mask ^ srdis_multi) {
1633 break;
1635 srdis_mask = (srdis_mask << i) | srdis_mask;
1636 rsize++;
1639 if (srdis) {
1640 continue;
1642 if (rsize < TARGET_PAGE_BITS) {
1643 result->f.lg_page_size = rsize;
1645 break;
1648 if (n == -1) { /* no hits */
1649 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1650 /* background fault */
1651 fi->type = ARMFault_Background;
1652 return true;
1654 get_phys_addr_pmsav7_default(env, mmu_idx, address,
1655 &result->f.prot);
1656 } else { /* a MPU hit! */
1657 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1658 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1660 if (m_is_system_region(env, address)) {
1661 /* System space is always execute never */
1662 xn = 1;
1665 if (is_user) { /* User mode AP bit decoding */
1666 switch (ap) {
1667 case 0:
1668 case 1:
1669 case 5:
1670 break; /* no access */
1671 case 3:
1672 result->f.prot |= PAGE_WRITE;
1673 /* fall through */
1674 case 2:
1675 case 6:
1676 result->f.prot |= PAGE_READ | PAGE_EXEC;
1677 break;
1678 case 7:
1679 /* for v7M, same as 6; for R profile a reserved value */
1680 if (arm_feature(env, ARM_FEATURE_M)) {
1681 result->f.prot |= PAGE_READ | PAGE_EXEC;
1682 break;
1684 /* fall through */
1685 default:
1686 qemu_log_mask(LOG_GUEST_ERROR,
1687 "DRACR[%d]: Bad value for AP bits: 0x%"
1688 PRIx32 "\n", n, ap);
1690 } else { /* Priv. mode AP bits decoding */
1691 switch (ap) {
1692 case 0:
1693 break; /* no access */
1694 case 1:
1695 case 2:
1696 case 3:
1697 result->f.prot |= PAGE_WRITE;
1698 /* fall through */
1699 case 5:
1700 case 6:
1701 result->f.prot |= PAGE_READ | PAGE_EXEC;
1702 break;
1703 case 7:
1704 /* for v7M, same as 6; for R profile a reserved value */
1705 if (arm_feature(env, ARM_FEATURE_M)) {
1706 result->f.prot |= PAGE_READ | PAGE_EXEC;
1707 break;
1709 /* fall through */
1710 default:
1711 qemu_log_mask(LOG_GUEST_ERROR,
1712 "DRACR[%d]: Bad value for AP bits: 0x%"
1713 PRIx32 "\n", n, ap);
1717 /* execute never */
1718 if (xn) {
1719 result->f.prot &= ~PAGE_EXEC;
1724 fi->type = ARMFault_Permission;
1725 fi->level = 1;
1726 return !(result->f.prot & (1 << access_type));
1729 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1730 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1731 bool secure, GetPhysAddrResult *result,
1732 ARMMMUFaultInfo *fi, uint32_t *mregion)
1735 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
1736 * that a full phys-to-virt translation does).
1737 * mregion is (if not NULL) set to the region number which matched,
1738 * or -1 if no region number is returned (MPU off, address did not
1739 * hit a region, address hit in multiple regions).
1740 * If the region hit doesn't cover the entire TARGET_PAGE the address
1741 * is within, then we set the result page_size to 1 to force the
1742 * memory system to use a subpage.
1744 ARMCPU *cpu = env_archcpu(env);
1745 bool is_user = regime_is_user(env, mmu_idx);
1746 int n;
1747 int matchregion = -1;
1748 bool hit = false;
1749 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1750 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1752 result->f.lg_page_size = TARGET_PAGE_BITS;
1753 result->f.phys_addr = address;
1754 result->f.prot = 0;
1755 if (mregion) {
1756 *mregion = -1;
1760 * Unlike the ARM ARM pseudocode, we don't need to check whether this
1761 * was an exception vector read from the vector table (which is always
1762 * done using the default system address map), because those accesses
1763 * are done in arm_v7m_load_vector(), which always does a direct
1764 * read using address_space_ldl(), rather than going via this function.
1766 if (regime_translation_disabled(env, mmu_idx, secure)) { /* MPU disabled */
1767 hit = true;
1768 } else if (m_is_ppb_region(env, address)) {
1769 hit = true;
1770 } else {
1771 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1772 hit = true;
1775 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1776 /* region search */
1778 * Note that the base address is bits [31:5] from the register
1779 * with bits [4:0] all zeroes, but the limit address is bits
1780 * [31:5] from the register with bits [4:0] all ones.
1782 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
1783 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
1785 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
1786 /* Region disabled */
1787 continue;
1790 if (address < base || address > limit) {
1792 * Address not in this region. We must check whether the
1793 * region covers addresses in the same page as our address.
1794 * In that case we must not report a size that covers the
1795 * whole page for a subsequent hit against a different MPU
1796 * region or the background region, because it would result in
1797 * incorrect TLB hits for subsequent accesses to addresses that
1798 * are in this MPU region.
1800 if (limit >= base &&
1801 ranges_overlap(base, limit - base + 1,
1802 addr_page_base,
1803 TARGET_PAGE_SIZE)) {
1804 result->f.lg_page_size = 0;
1806 continue;
1809 if (base > addr_page_base || limit < addr_page_limit) {
1810 result->f.lg_page_size = 0;
1813 if (matchregion != -1) {
1815 * Multiple regions match -- always a failure (unlike
1816 * PMSAv7 where highest-numbered-region wins)
1818 fi->type = ARMFault_Permission;
1819 fi->level = 1;
1820 return true;
1823 matchregion = n;
1824 hit = true;
1828 if (!hit) {
1829 /* background fault */
1830 fi->type = ARMFault_Background;
1831 return true;
1834 if (matchregion == -1) {
1835 /* hit using the background region */
1836 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
1837 } else {
1838 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
1839 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
1840 bool pxn = false;
1842 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
1843 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
1846 if (m_is_system_region(env, address)) {
1847 /* System space is always execute never */
1848 xn = 1;
1851 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
1852 if (result->f.prot && !xn && !(pxn && !is_user)) {
1853 result->f.prot |= PAGE_EXEC;
1856 * We don't need to look the attribute up in the MAIR0/MAIR1
1857 * registers because that only tells us about cacheability.
1859 if (mregion) {
1860 *mregion = matchregion;
1864 fi->type = ARMFault_Permission;
1865 fi->level = 1;
1866 return !(result->f.prot & (1 << access_type));
1869 static bool v8m_is_sau_exempt(CPUARMState *env,
1870 uint32_t address, MMUAccessType access_type)
1873 * The architecture specifies that certain address ranges are
1874 * exempt from v8M SAU/IDAU checks.
1876 return
1877 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
1878 (address >= 0xe0000000 && address <= 0xe0002fff) ||
1879 (address >= 0xe000e000 && address <= 0xe000efff) ||
1880 (address >= 0xe002e000 && address <= 0xe002efff) ||
1881 (address >= 0xe0040000 && address <= 0xe0041fff) ||
1882 (address >= 0xe00ff000 && address <= 0xe00fffff);
1885 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1886 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1887 bool is_secure, V8M_SAttributes *sattrs)
1890 * Look up the security attributes for this address. Compare the
1891 * pseudocode SecurityCheck() function.
1892 * We assume the caller has zero-initialized *sattrs.
1894 ARMCPU *cpu = env_archcpu(env);
1895 int r;
1896 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
1897 int idau_region = IREGION_NOTVALID;
1898 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1899 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1901 if (cpu->idau) {
1902 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
1903 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
1905 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
1906 &idau_nsc);
1909 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
1910 /* 0xf0000000..0xffffffff is always S for insn fetches */
1911 return;
1914 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
1915 sattrs->ns = !is_secure;
1916 return;
1919 if (idau_region != IREGION_NOTVALID) {
1920 sattrs->irvalid = true;
1921 sattrs->iregion = idau_region;
1924 switch (env->sau.ctrl & 3) {
1925 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
1926 break;
1927 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
1928 sattrs->ns = true;
1929 break;
1930 default: /* SAU.ENABLE == 1 */
1931 for (r = 0; r < cpu->sau_sregion; r++) {
1932 if (env->sau.rlar[r] & 1) {
1933 uint32_t base = env->sau.rbar[r] & ~0x1f;
1934 uint32_t limit = env->sau.rlar[r] | 0x1f;
1936 if (base <= address && limit >= address) {
1937 if (base > addr_page_base || limit < addr_page_limit) {
1938 sattrs->subpage = true;
1940 if (sattrs->srvalid) {
1942 * If we hit in more than one region then we must report
1943 * as Secure, not NS-Callable, with no valid region
1944 * number info.
1946 sattrs->ns = false;
1947 sattrs->nsc = false;
1948 sattrs->sregion = 0;
1949 sattrs->srvalid = false;
1950 break;
1951 } else {
1952 if (env->sau.rlar[r] & 2) {
1953 sattrs->nsc = true;
1954 } else {
1955 sattrs->ns = true;
1957 sattrs->srvalid = true;
1958 sattrs->sregion = r;
1960 } else {
1962 * Address not in this region. We must check whether the
1963 * region covers addresses in the same page as our address.
1964 * In that case we must not report a size that covers the
1965 * whole page for a subsequent hit against a different MPU
1966 * region or the background region, because it would result
1967 * in incorrect TLB hits for subsequent accesses to
1968 * addresses that are in this MPU region.
1970 if (limit >= base &&
1971 ranges_overlap(base, limit - base + 1,
1972 addr_page_base,
1973 TARGET_PAGE_SIZE)) {
1974 sattrs->subpage = true;
1979 break;
1983 * The IDAU will override the SAU lookup results if it specifies
1984 * higher security than the SAU does.
1986 if (!idau_ns) {
1987 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
1988 sattrs->ns = false;
1989 sattrs->nsc = idau_nsc;
1994 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
1995 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1996 bool secure, GetPhysAddrResult *result,
1997 ARMMMUFaultInfo *fi)
1999 V8M_SAttributes sattrs = {};
2000 bool ret;
2002 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2003 v8m_security_lookup(env, address, access_type, mmu_idx,
2004 secure, &sattrs);
2005 if (access_type == MMU_INST_FETCH) {
2007 * Instruction fetches always use the MMU bank and the
2008 * transaction attribute determined by the fetch address,
2009 * regardless of CPU state. This is painful for QEMU
2010 * to handle, because it would mean we need to encode
2011 * into the mmu_idx not just the (user, negpri) information
2012 * for the current security state but also that for the
2013 * other security state, which would balloon the number
2014 * of mmu_idx values needed alarmingly.
2015 * Fortunately we can avoid this because it's not actually
2016 * possible to arbitrarily execute code from memory with
2017 * the wrong security attribute: it will always generate
2018 * an exception of some kind or another, apart from the
2019 * special case of an NS CPU executing an SG instruction
2020 * in S&NSC memory. So we always just fail the translation
2021 * here and sort things out in the exception handler
2022 * (including possibly emulating an SG instruction).
2024 if (sattrs.ns != !secure) {
2025 if (sattrs.nsc) {
2026 fi->type = ARMFault_QEMU_NSCExec;
2027 } else {
2028 fi->type = ARMFault_QEMU_SFault;
2030 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2031 result->f.phys_addr = address;
2032 result->f.prot = 0;
2033 return true;
2035 } else {
2037 * For data accesses we always use the MMU bank indicated
2038 * by the current CPU state, but the security attributes
2039 * might downgrade a secure access to nonsecure.
2041 if (sattrs.ns) {
2042 result->f.attrs.secure = false;
2043 } else if (!secure) {
2045 * NS access to S memory must fault.
2046 * Architecturally we should first check whether the
2047 * MPU information for this address indicates that we
2048 * are doing an unaligned access to Device memory, which
2049 * should generate a UsageFault instead. QEMU does not
2050 * currently check for that kind of unaligned access though.
2051 * If we added it we would need to do so as a special case
2052 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2054 fi->type = ARMFault_QEMU_SFault;
2055 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2056 result->f.phys_addr = address;
2057 result->f.prot = 0;
2058 return true;
2063 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2064 result, fi, NULL);
2065 if (sattrs.subpage) {
2066 result->f.lg_page_size = 0;
2068 return ret;
2072 * Translate from the 4-bit stage 2 representation of
2073 * memory attributes (without cache-allocation hints) to
2074 * the 8-bit representation of the stage 1 MAIR registers
2075 * (which includes allocation hints).
2077 * ref: shared/translation/attrs/S2AttrDecode()
2078 * .../S2ConvertAttrsHints()
2080 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2082 uint8_t hiattr = extract32(s2attrs, 2, 2);
2083 uint8_t loattr = extract32(s2attrs, 0, 2);
2084 uint8_t hihint = 0, lohint = 0;
2086 if (hiattr != 0) { /* normal memory */
2087 if (hcr & HCR_CD) { /* cache disabled */
2088 hiattr = loattr = 1; /* non-cacheable */
2089 } else {
2090 if (hiattr != 1) { /* Write-through or write-back */
2091 hihint = 3; /* RW allocate */
2093 if (loattr != 1) { /* Write-through or write-back */
2094 lohint = 3; /* RW allocate */
2099 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2103 * Combine either inner or outer cacheability attributes for normal
2104 * memory, according to table D4-42 and pseudocode procedure
2105 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2107 * NB: only stage 1 includes allocation hints (RW bits), leading to
2108 * some asymmetry.
2110 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2112 if (s1 == 4 || s2 == 4) {
2113 /* non-cacheable has precedence */
2114 return 4;
2115 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2116 /* stage 1 write-through takes precedence */
2117 return s1;
2118 } else if (extract32(s2, 2, 2) == 2) {
2119 /* stage 2 write-through takes precedence, but the allocation hint
2120 * is still taken from stage 1
2122 return (2 << 2) | extract32(s1, 0, 2);
2123 } else { /* write-back */
2124 return s1;
2129 * Combine the memory type and cacheability attributes of
2130 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2131 * combined attributes in MAIR_EL1 format.
2133 static uint8_t combined_attrs_nofwb(uint64_t hcr,
2134 ARMCacheAttrs s1, ARMCacheAttrs s2)
2136 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2138 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
2140 s1lo = extract32(s1.attrs, 0, 4);
2141 s2lo = extract32(s2_mair_attrs, 0, 4);
2142 s1hi = extract32(s1.attrs, 4, 4);
2143 s2hi = extract32(s2_mair_attrs, 4, 4);
2145 /* Combine memory type and cacheability attributes */
2146 if (s1hi == 0 || s2hi == 0) {
2147 /* Device has precedence over normal */
2148 if (s1lo == 0 || s2lo == 0) {
2149 /* nGnRnE has precedence over anything */
2150 ret_attrs = 0;
2151 } else if (s1lo == 4 || s2lo == 4) {
2152 /* non-Reordering has precedence over Reordering */
2153 ret_attrs = 4; /* nGnRE */
2154 } else if (s1lo == 8 || s2lo == 8) {
2155 /* non-Gathering has precedence over Gathering */
2156 ret_attrs = 8; /* nGRE */
2157 } else {
2158 ret_attrs = 0xc; /* GRE */
2160 } else { /* Normal memory */
2161 /* Outer/inner cacheability combine independently */
2162 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2163 | combine_cacheattr_nibble(s1lo, s2lo);
2165 return ret_attrs;
2168 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2171 * Given the 4 bits specifying the outer or inner cacheability
2172 * in MAIR format, return a value specifying Normal Write-Back,
2173 * with the allocation and transient hints taken from the input
2174 * if the input specified some kind of cacheable attribute.
2176 if (attr == 0 || attr == 4) {
2178 * 0 == an UNPREDICTABLE encoding
2179 * 4 == Non-cacheable
2180 * Either way, force Write-Back RW allocate non-transient
2182 return 0xf;
2184 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2185 return attr | 4;
2189 * Combine the memory type and cacheability attributes of
2190 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2191 * combined attributes in MAIR_EL1 format.
2193 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
2195 switch (s2.attrs) {
2196 case 7:
2197 /* Use stage 1 attributes */
2198 return s1.attrs;
2199 case 6:
2201 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2202 * then we take the allocation hints from it; otherwise it is
2203 * RW allocate, non-transient.
2205 if ((s1.attrs & 0xf0) == 0) {
2206 /* S1 is Device */
2207 return 0xff;
2209 /* Need to check the Inner and Outer nibbles separately */
2210 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2211 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2212 case 5:
2213 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2214 if ((s1.attrs & 0xf0) == 0) {
2215 return s1.attrs;
2217 return 0x44;
2218 case 0 ... 3:
2219 /* Force Device, of subtype specified by S2 */
2220 return s2.attrs << 2;
2221 default:
2223 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2224 * arbitrarily force Device.
2226 return 0;
2231 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2232 * and CombineS1S2Desc()
2234 * @env: CPUARMState
2235 * @s1: Attributes from stage 1 walk
2236 * @s2: Attributes from stage 2 walk
2238 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
2239 ARMCacheAttrs s1, ARMCacheAttrs s2)
2241 ARMCacheAttrs ret;
2242 bool tagged = false;
2244 assert(s2.is_s2_format && !s1.is_s2_format);
2245 ret.is_s2_format = false;
2247 if (s1.attrs == 0xf0) {
2248 tagged = true;
2249 s1.attrs = 0xff;
2252 /* Combine shareability attributes (table D4-43) */
2253 if (s1.shareability == 2 || s2.shareability == 2) {
2254 /* if either are outer-shareable, the result is outer-shareable */
2255 ret.shareability = 2;
2256 } else if (s1.shareability == 3 || s2.shareability == 3) {
2257 /* if either are inner-shareable, the result is inner-shareable */
2258 ret.shareability = 3;
2259 } else {
2260 /* both non-shareable */
2261 ret.shareability = 0;
2264 /* Combine memory type and cacheability attributes */
2265 if (hcr & HCR_FWB) {
2266 ret.attrs = combined_attrs_fwb(s1, s2);
2267 } else {
2268 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
2272 * Any location for which the resultant memory type is any
2273 * type of Device memory is always treated as Outer Shareable.
2274 * Any location for which the resultant memory type is Normal
2275 * Inner Non-cacheable, Outer Non-cacheable is always treated
2276 * as Outer Shareable.
2277 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2279 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2280 ret.shareability = 2;
2283 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2284 if (tagged && ret.attrs == 0xff) {
2285 ret.attrs = 0xf0;
2288 return ret;
2292 * MMU disabled. S1 addresses within aa64 translation regimes are
2293 * still checked for bounds -- see AArch64.S1DisabledOutput().
2295 static bool get_phys_addr_disabled(CPUARMState *env, target_ulong address,
2296 MMUAccessType access_type,
2297 ARMMMUIdx mmu_idx, bool is_secure,
2298 GetPhysAddrResult *result,
2299 ARMMMUFaultInfo *fi)
2301 uint8_t memattr = 0x00; /* Device nGnRnE */
2302 uint8_t shareability = 0; /* non-sharable */
2303 int r_el;
2305 switch (mmu_idx) {
2306 case ARMMMUIdx_Stage2:
2307 case ARMMMUIdx_Stage2_S:
2308 case ARMMMUIdx_Phys_NS:
2309 case ARMMMUIdx_Phys_S:
2310 break;
2312 default:
2313 r_el = regime_el(env, mmu_idx);
2314 if (arm_el_is_aa64(env, r_el)) {
2315 int pamax = arm_pamax(env_archcpu(env));
2316 uint64_t tcr = env->cp15.tcr_el[r_el];
2317 int addrtop, tbi;
2319 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2320 if (access_type == MMU_INST_FETCH) {
2321 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2323 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2324 addrtop = (tbi ? 55 : 63);
2326 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2327 fi->type = ARMFault_AddressSize;
2328 fi->level = 0;
2329 fi->stage2 = false;
2330 return 1;
2334 * When TBI is disabled, we've just validated that all of the
2335 * bits above PAMax are zero, so logically we only need to
2336 * clear the top byte for TBI. But it's clearer to follow
2337 * the pseudocode set of addrdesc.paddress.
2339 address = extract64(address, 0, 52);
2342 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2343 if (r_el == 1) {
2344 uint64_t hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2345 if (hcr & HCR_DC) {
2346 if (hcr & HCR_DCT) {
2347 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2348 } else {
2349 memattr = 0xff; /* Normal, WB, RWA */
2353 if (memattr == 0 && access_type == MMU_INST_FETCH) {
2354 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2355 memattr = 0xee; /* Normal, WT, RA, NT */
2356 } else {
2357 memattr = 0x44; /* Normal, NC, No */
2359 shareability = 2; /* outer sharable */
2361 result->cacheattrs.is_s2_format = false;
2362 break;
2365 result->f.phys_addr = address;
2366 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2367 result->f.lg_page_size = TARGET_PAGE_BITS;
2368 result->cacheattrs.shareability = shareability;
2369 result->cacheattrs.attrs = memattr;
2370 return 0;
2373 bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
2374 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2375 bool is_secure, GetPhysAddrResult *result,
2376 ARMMMUFaultInfo *fi)
2378 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
2379 S1Translate ptw;
2381 if (mmu_idx != s1_mmu_idx) {
2383 * Call ourselves recursively to do the stage 1 and then stage 2
2384 * translations if mmu_idx is a two-stage regime.
2386 if (arm_feature(env, ARM_FEATURE_EL2)) {
2387 hwaddr ipa;
2388 int s1_prot;
2389 int ret;
2390 bool ipa_secure, s2walk_secure;
2391 ARMCacheAttrs cacheattrs1;
2392 bool is_el0;
2393 uint64_t hcr;
2395 ret = get_phys_addr_with_secure(env, address, access_type,
2396 s1_mmu_idx, is_secure, result, fi);
2398 /* If S1 fails or S2 is disabled, return early. */
2399 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2,
2400 is_secure)) {
2401 return ret;
2404 ipa = result->f.phys_addr;
2405 ipa_secure = result->f.attrs.secure;
2406 if (is_secure) {
2407 /* Select TCR based on the NS bit from the S1 walk. */
2408 s2walk_secure = !(ipa_secure
2409 ? env->cp15.vstcr_el2 & VSTCR_SW
2410 : env->cp15.vtcr_el2 & VTCR_NSW);
2411 } else {
2412 assert(!ipa_secure);
2413 s2walk_secure = false;
2416 ptw.in_mmu_idx =
2417 s2walk_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
2418 ptw.in_secure = s2walk_secure;
2419 is_el0 = mmu_idx == ARMMMUIdx_E10_0;
2422 * S1 is done, now do S2 translation.
2423 * Save the stage1 results so that we may merge
2424 * prot and cacheattrs later.
2426 s1_prot = result->f.prot;
2427 cacheattrs1 = result->cacheattrs;
2428 memset(result, 0, sizeof(*result));
2430 ret = get_phys_addr_lpae(env, &ptw, ipa, access_type,
2431 is_el0, result, fi);
2432 fi->s2addr = ipa;
2434 /* Combine the S1 and S2 perms. */
2435 result->f.prot &= s1_prot;
2437 /* If S2 fails, return early. */
2438 if (ret) {
2439 return ret;
2442 /* Combine the S1 and S2 cache attributes. */
2443 hcr = arm_hcr_el2_eff_secstate(env, is_secure);
2444 if (hcr & HCR_DC) {
2446 * HCR.DC forces the first stage attributes to
2447 * Normal Non-Shareable,
2448 * Inner Write-Back Read-Allocate Write-Allocate,
2449 * Outer Write-Back Read-Allocate Write-Allocate.
2450 * Do not overwrite Tagged within attrs.
2452 if (cacheattrs1.attrs != 0xf0) {
2453 cacheattrs1.attrs = 0xff;
2455 cacheattrs1.shareability = 0;
2457 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
2458 result->cacheattrs);
2461 * Check if IPA translates to secure or non-secure PA space.
2462 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
2464 result->f.attrs.secure =
2465 (is_secure
2466 && !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
2467 && (ipa_secure
2468 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))));
2470 return 0;
2471 } else {
2473 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
2475 mmu_idx = stage_1_mmu_idx(mmu_idx);
2480 * The page table entries may downgrade secure to non-secure, but
2481 * cannot upgrade an non-secure translation regime's attributes
2482 * to secure.
2484 result->f.attrs.secure = is_secure;
2485 result->f.attrs.user = regime_is_user(env, mmu_idx);
2488 * Fast Context Switch Extension. This doesn't exist at all in v8.
2489 * In v7 and earlier it affects all stage 1 translations.
2491 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2492 && !arm_feature(env, ARM_FEATURE_V8)) {
2493 if (regime_el(env, mmu_idx) == 3) {
2494 address += env->cp15.fcseidr_s;
2495 } else {
2496 address += env->cp15.fcseidr_ns;
2500 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2501 bool ret;
2502 result->f.lg_page_size = TARGET_PAGE_BITS;
2504 if (arm_feature(env, ARM_FEATURE_V8)) {
2505 /* PMSAv8 */
2506 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2507 is_secure, result, fi);
2508 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2509 /* PMSAv7 */
2510 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2511 is_secure, result, fi);
2512 } else {
2513 /* Pre-v7 MPU */
2514 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2515 is_secure, result, fi);
2517 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2518 " mmu_idx %u -> %s (prot %c%c%c)\n",
2519 access_type == MMU_DATA_LOAD ? "reading" :
2520 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2521 (uint32_t)address, mmu_idx,
2522 ret ? "Miss" : "Hit",
2523 result->f.prot & PAGE_READ ? 'r' : '-',
2524 result->f.prot & PAGE_WRITE ? 'w' : '-',
2525 result->f.prot & PAGE_EXEC ? 'x' : '-');
2527 return ret;
2530 /* Definitely a real MMU, not an MPU */
2532 if (regime_translation_disabled(env, mmu_idx, is_secure)) {
2533 return get_phys_addr_disabled(env, address, access_type, mmu_idx,
2534 is_secure, result, fi);
2537 ptw.in_mmu_idx = mmu_idx;
2538 ptw.in_secure = is_secure;
2540 if (regime_using_lpae_format(env, mmu_idx)) {
2541 return get_phys_addr_lpae(env, &ptw, address, access_type, false,
2542 result, fi);
2543 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2544 return get_phys_addr_v6(env, &ptw, address, access_type, result, fi);
2545 } else {
2546 return get_phys_addr_v5(env, &ptw, address, access_type, result, fi);
2550 bool get_phys_addr(CPUARMState *env, target_ulong address,
2551 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2552 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2554 bool is_secure;
2556 switch (mmu_idx) {
2557 case ARMMMUIdx_E10_0:
2558 case ARMMMUIdx_E10_1:
2559 case ARMMMUIdx_E10_1_PAN:
2560 case ARMMMUIdx_E20_0:
2561 case ARMMMUIdx_E20_2:
2562 case ARMMMUIdx_E20_2_PAN:
2563 case ARMMMUIdx_Stage1_E0:
2564 case ARMMMUIdx_Stage1_E1:
2565 case ARMMMUIdx_Stage1_E1_PAN:
2566 case ARMMMUIdx_E2:
2567 is_secure = arm_is_secure_below_el3(env);
2568 break;
2569 case ARMMMUIdx_Stage2:
2570 case ARMMMUIdx_Phys_NS:
2571 case ARMMMUIdx_MPrivNegPri:
2572 case ARMMMUIdx_MUserNegPri:
2573 case ARMMMUIdx_MPriv:
2574 case ARMMMUIdx_MUser:
2575 is_secure = false;
2576 break;
2577 case ARMMMUIdx_E3:
2578 case ARMMMUIdx_Stage2_S:
2579 case ARMMMUIdx_Phys_S:
2580 case ARMMMUIdx_MSPrivNegPri:
2581 case ARMMMUIdx_MSUserNegPri:
2582 case ARMMMUIdx_MSPriv:
2583 case ARMMMUIdx_MSUser:
2584 is_secure = true;
2585 break;
2586 default:
2587 g_assert_not_reached();
2589 return get_phys_addr_with_secure(env, address, access_type, mmu_idx,
2590 is_secure, result, fi);
2593 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2594 MemTxAttrs *attrs)
2596 ARMCPU *cpu = ARM_CPU(cs);
2597 CPUARMState *env = &cpu->env;
2598 GetPhysAddrResult res = {};
2599 ARMMMUFaultInfo fi = {};
2600 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
2601 bool ret;
2603 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &res, &fi);
2604 *attrs = res.f.attrs;
2606 if (ret) {
2607 return -1;
2609 return res.f.phys_addr;