MAINTAINERS: Add myself as streams maintainer
[qemu/ar7.git] / target / i386 / kvm.c
blob4901c6dd747db9e43a35db9e98a61a917e08cba3
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
23 #include "cpu.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/hw_accel.h"
26 #include "sysemu/kvm_int.h"
27 #include "sysemu/reset.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_i386.h"
30 #include "hyperv.h"
31 #include "hyperv-proto.h"
33 #include "exec/gdbstub.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "hw/i386/x86.h"
39 #include "hw/i386/apic.h"
40 #include "hw/i386/apic_internal.h"
41 #include "hw/i386/apic-msidef.h"
42 #include "hw/i386/intel_iommu.h"
43 #include "hw/i386/x86-iommu.h"
44 #include "hw/i386/e820_memory_layout.h"
46 #include "hw/pci/pci.h"
47 #include "hw/pci/msi.h"
48 #include "hw/pci/msix.h"
49 #include "migration/blocker.h"
50 #include "exec/memattrs.h"
51 #include "trace.h"
53 //#define DEBUG_KVM
55 #ifdef DEBUG_KVM
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60 do { } while (0)
61 #endif
63 #define MSR_KVM_WALL_CLOCK 0x11
64 #define MSR_KVM_SYSTEM_TIME 0x12
66 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
67 * 255 kvm_msr_entry structs */
68 #define MSR_BUF_SIZE 4096
70 static void kvm_init_msrs(X86CPU *cpu);
72 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
73 KVM_CAP_INFO(SET_TSS_ADDR),
74 KVM_CAP_INFO(EXT_CPUID),
75 KVM_CAP_INFO(MP_STATE),
76 KVM_CAP_LAST_INFO
79 static bool has_msr_star;
80 static bool has_msr_hsave_pa;
81 static bool has_msr_tsc_aux;
82 static bool has_msr_tsc_adjust;
83 static bool has_msr_tsc_deadline;
84 static bool has_msr_feature_control;
85 static bool has_msr_misc_enable;
86 static bool has_msr_smbase;
87 static bool has_msr_bndcfgs;
88 static int lm_capable_kernel;
89 static bool has_msr_hv_hypercall;
90 static bool has_msr_hv_crash;
91 static bool has_msr_hv_reset;
92 static bool has_msr_hv_vpindex;
93 static bool hv_vpindex_settable;
94 static bool has_msr_hv_runtime;
95 static bool has_msr_hv_synic;
96 static bool has_msr_hv_stimer;
97 static bool has_msr_hv_frequencies;
98 static bool has_msr_hv_reenlightenment;
99 static bool has_msr_xss;
100 static bool has_msr_umwait;
101 static bool has_msr_spec_ctrl;
102 static bool has_msr_tsx_ctrl;
103 static bool has_msr_virt_ssbd;
104 static bool has_msr_smi_count;
105 static bool has_msr_arch_capabs;
106 static bool has_msr_core_capabs;
107 static bool has_msr_vmx_vmfunc;
108 static bool has_msr_ucode_rev;
109 static bool has_msr_vmx_procbased_ctls2;
111 static uint32_t has_architectural_pmu_version;
112 static uint32_t num_architectural_pmu_gp_counters;
113 static uint32_t num_architectural_pmu_fixed_counters;
115 static int has_xsave;
116 static int has_xcrs;
117 static int has_pit_state2;
118 static int has_exception_payload;
120 static bool has_msr_mcg_ext_ctl;
122 static struct kvm_cpuid2 *cpuid_cache;
123 static struct kvm_msr_list *kvm_feature_msrs;
125 int kvm_has_pit_state2(void)
127 return has_pit_state2;
130 bool kvm_has_smm(void)
132 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
135 bool kvm_has_adjust_clock_stable(void)
137 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
139 return (ret == KVM_CLOCK_TSC_STABLE);
142 bool kvm_has_exception_payload(void)
144 return has_exception_payload;
147 bool kvm_allows_irq0_override(void)
149 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
152 static bool kvm_x2apic_api_set_flags(uint64_t flags)
154 KVMState *s = KVM_STATE(current_accel());
156 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
159 #define MEMORIZE(fn, _result) \
160 ({ \
161 static bool _memorized; \
163 if (_memorized) { \
164 return _result; \
166 _memorized = true; \
167 _result = fn; \
170 static bool has_x2apic_api;
172 bool kvm_has_x2apic_api(void)
174 return has_x2apic_api;
177 bool kvm_enable_x2apic(void)
179 return MEMORIZE(
180 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
181 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
182 has_x2apic_api);
185 bool kvm_hv_vpindex_settable(void)
187 return hv_vpindex_settable;
190 static int kvm_get_tsc(CPUState *cs)
192 X86CPU *cpu = X86_CPU(cs);
193 CPUX86State *env = &cpu->env;
194 struct {
195 struct kvm_msrs info;
196 struct kvm_msr_entry entries[1];
197 } msr_data = {};
198 int ret;
200 if (env->tsc_valid) {
201 return 0;
204 memset(&msr_data, 0, sizeof(msr_data));
205 msr_data.info.nmsrs = 1;
206 msr_data.entries[0].index = MSR_IA32_TSC;
207 env->tsc_valid = !runstate_is_running();
209 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
210 if (ret < 0) {
211 return ret;
214 assert(ret == 1);
215 env->tsc = msr_data.entries[0].data;
216 return 0;
219 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
221 kvm_get_tsc(cpu);
224 void kvm_synchronize_all_tsc(void)
226 CPUState *cpu;
228 if (kvm_enabled()) {
229 CPU_FOREACH(cpu) {
230 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
235 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
237 struct kvm_cpuid2 *cpuid;
238 int r, size;
240 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
241 cpuid = g_malloc0(size);
242 cpuid->nent = max;
243 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
244 if (r == 0 && cpuid->nent >= max) {
245 r = -E2BIG;
247 if (r < 0) {
248 if (r == -E2BIG) {
249 g_free(cpuid);
250 return NULL;
251 } else {
252 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
253 strerror(-r));
254 exit(1);
257 return cpuid;
260 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
261 * for all entries.
263 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
265 struct kvm_cpuid2 *cpuid;
266 int max = 1;
268 if (cpuid_cache != NULL) {
269 return cpuid_cache;
271 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
272 max *= 2;
274 cpuid_cache = cpuid;
275 return cpuid;
278 static const struct kvm_para_features {
279 int cap;
280 int feature;
281 } para_features[] = {
282 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
283 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
284 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
285 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
288 static int get_para_features(KVMState *s)
290 int i, features = 0;
292 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
293 if (kvm_check_extension(s, para_features[i].cap)) {
294 features |= (1 << para_features[i].feature);
298 return features;
301 static bool host_tsx_blacklisted(void)
303 int family, model, stepping;\
304 char vendor[CPUID_VENDOR_SZ + 1];
306 host_vendor_fms(vendor, &family, &model, &stepping);
308 /* Check if we are running on a Haswell host known to have broken TSX */
309 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
310 (family == 6) &&
311 ((model == 63 && stepping < 4) ||
312 model == 60 || model == 69 || model == 70);
315 /* Returns the value for a specific register on the cpuid entry
317 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
319 uint32_t ret = 0;
320 switch (reg) {
321 case R_EAX:
322 ret = entry->eax;
323 break;
324 case R_EBX:
325 ret = entry->ebx;
326 break;
327 case R_ECX:
328 ret = entry->ecx;
329 break;
330 case R_EDX:
331 ret = entry->edx;
332 break;
334 return ret;
337 /* Find matching entry for function/index on kvm_cpuid2 struct
339 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
340 uint32_t function,
341 uint32_t index)
343 int i;
344 for (i = 0; i < cpuid->nent; ++i) {
345 if (cpuid->entries[i].function == function &&
346 cpuid->entries[i].index == index) {
347 return &cpuid->entries[i];
350 /* not found: */
351 return NULL;
354 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
355 uint32_t index, int reg)
357 struct kvm_cpuid2 *cpuid;
358 uint32_t ret = 0;
359 uint32_t cpuid_1_edx;
360 bool found = false;
362 cpuid = get_supported_cpuid(s);
364 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
365 if (entry) {
366 found = true;
367 ret = cpuid_entry_get_reg(entry, reg);
370 /* Fixups for the data returned by KVM, below */
372 if (function == 1 && reg == R_EDX) {
373 /* KVM before 2.6.30 misreports the following features */
374 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
375 } else if (function == 1 && reg == R_ECX) {
376 /* We can set the hypervisor flag, even if KVM does not return it on
377 * GET_SUPPORTED_CPUID
379 ret |= CPUID_EXT_HYPERVISOR;
380 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
381 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
382 * and the irqchip is in the kernel.
384 if (kvm_irqchip_in_kernel() &&
385 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
386 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
389 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
390 * without the in-kernel irqchip
392 if (!kvm_irqchip_in_kernel()) {
393 ret &= ~CPUID_EXT_X2APIC;
396 if (enable_cpu_pm) {
397 int disable_exits = kvm_check_extension(s,
398 KVM_CAP_X86_DISABLE_EXITS);
400 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
401 ret |= CPUID_EXT_MONITOR;
404 } else if (function == 6 && reg == R_EAX) {
405 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
406 } else if (function == 7 && index == 0 && reg == R_EBX) {
407 if (host_tsx_blacklisted()) {
408 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
410 } else if (function == 7 && index == 0 && reg == R_ECX) {
411 if (enable_cpu_pm) {
412 ret |= CPUID_7_0_ECX_WAITPKG;
413 } else {
414 ret &= ~CPUID_7_0_ECX_WAITPKG;
416 } else if (function == 7 && index == 0 && reg == R_EDX) {
418 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
419 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
420 * returned by KVM_GET_MSR_INDEX_LIST.
422 if (!has_msr_arch_capabs) {
423 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
425 } else if (function == 0x80000001 && reg == R_ECX) {
427 * It's safe to enable TOPOEXT even if it's not returned by
428 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
429 * us to keep CPU models including TOPOEXT runnable on older kernels.
431 ret |= CPUID_EXT3_TOPOEXT;
432 } else if (function == 0x80000001 && reg == R_EDX) {
433 /* On Intel, kvm returns cpuid according to the Intel spec,
434 * so add missing bits according to the AMD spec:
436 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
437 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
438 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
439 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
440 * be enabled without the in-kernel irqchip
442 if (!kvm_irqchip_in_kernel()) {
443 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
445 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
446 ret |= 1U << KVM_HINTS_REALTIME;
447 found = 1;
450 /* fallback for older kernels */
451 if ((function == KVM_CPUID_FEATURES) && !found) {
452 ret = get_para_features(s);
455 return ret;
458 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
460 struct {
461 struct kvm_msrs info;
462 struct kvm_msr_entry entries[1];
463 } msr_data = {};
464 uint64_t value;
465 uint32_t ret, can_be_one, must_be_one;
467 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
468 return 0;
471 /* Check if requested MSR is supported feature MSR */
472 int i;
473 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
474 if (kvm_feature_msrs->indices[i] == index) {
475 break;
477 if (i == kvm_feature_msrs->nmsrs) {
478 return 0; /* if the feature MSR is not supported, simply return 0 */
481 msr_data.info.nmsrs = 1;
482 msr_data.entries[0].index = index;
484 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
485 if (ret != 1) {
486 error_report("KVM get MSR (index=0x%x) feature failed, %s",
487 index, strerror(-ret));
488 exit(1);
491 value = msr_data.entries[0].data;
492 switch (index) {
493 case MSR_IA32_VMX_PROCBASED_CTLS2:
494 if (!has_msr_vmx_procbased_ctls2) {
495 /* KVM forgot to add these bits for some time, do this ourselves. */
496 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
497 CPUID_XSAVE_XSAVES) {
498 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
500 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
501 CPUID_EXT_RDRAND) {
502 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
504 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
505 CPUID_7_0_EBX_INVPCID) {
506 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
508 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
509 CPUID_7_0_EBX_RDSEED) {
510 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
512 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
513 CPUID_EXT2_RDTSCP) {
514 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
517 /* fall through */
518 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
519 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
520 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
521 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
523 * Return true for bits that can be one, but do not have to be one.
524 * The SDM tells us which bits could have a "must be one" setting,
525 * so we can do the opposite transformation in make_vmx_msr_value.
527 must_be_one = (uint32_t)value;
528 can_be_one = (uint32_t)(value >> 32);
529 return can_be_one & ~must_be_one;
531 default:
532 return value;
537 typedef struct HWPoisonPage {
538 ram_addr_t ram_addr;
539 QLIST_ENTRY(HWPoisonPage) list;
540 } HWPoisonPage;
542 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
543 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
545 static void kvm_unpoison_all(void *param)
547 HWPoisonPage *page, *next_page;
549 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
550 QLIST_REMOVE(page, list);
551 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
552 g_free(page);
556 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
558 HWPoisonPage *page;
560 QLIST_FOREACH(page, &hwpoison_page_list, list) {
561 if (page->ram_addr == ram_addr) {
562 return;
565 page = g_new(HWPoisonPage, 1);
566 page->ram_addr = ram_addr;
567 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
570 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
571 int *max_banks)
573 int r;
575 r = kvm_check_extension(s, KVM_CAP_MCE);
576 if (r > 0) {
577 *max_banks = r;
578 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
580 return -ENOSYS;
583 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
585 CPUState *cs = CPU(cpu);
586 CPUX86State *env = &cpu->env;
587 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
588 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
589 uint64_t mcg_status = MCG_STATUS_MCIP;
590 int flags = 0;
592 if (code == BUS_MCEERR_AR) {
593 status |= MCI_STATUS_AR | 0x134;
594 mcg_status |= MCG_STATUS_EIPV;
595 } else {
596 status |= 0xc0;
597 mcg_status |= MCG_STATUS_RIPV;
600 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
601 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
602 * guest kernel back into env->mcg_ext_ctl.
604 cpu_synchronize_state(cs);
605 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
606 mcg_status |= MCG_STATUS_LMCE;
607 flags = 0;
610 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
611 (MCM_ADDR_PHYS << 6) | 0xc, flags);
614 static void hardware_memory_error(void *host_addr)
616 error_report("QEMU got Hardware memory error at addr %p", host_addr);
617 exit(1);
620 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
622 X86CPU *cpu = X86_CPU(c);
623 CPUX86State *env = &cpu->env;
624 ram_addr_t ram_addr;
625 hwaddr paddr;
627 /* If we get an action required MCE, it has been injected by KVM
628 * while the VM was running. An action optional MCE instead should
629 * be coming from the main thread, which qemu_init_sigbus identifies
630 * as the "early kill" thread.
632 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
634 if ((env->mcg_cap & MCG_SER_P) && addr) {
635 ram_addr = qemu_ram_addr_from_host(addr);
636 if (ram_addr != RAM_ADDR_INVALID &&
637 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
638 kvm_hwpoison_page_add(ram_addr);
639 kvm_mce_inject(cpu, paddr, code);
642 * Use different logging severity based on error type.
643 * If there is additional MCE reporting on the hypervisor, QEMU VA
644 * could be another source to identify the PA and MCE details.
646 if (code == BUS_MCEERR_AR) {
647 error_report("Guest MCE Memory Error at QEMU addr %p and "
648 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
649 addr, paddr, "BUS_MCEERR_AR");
650 } else {
651 warn_report("Guest MCE Memory Error at QEMU addr %p and "
652 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
653 addr, paddr, "BUS_MCEERR_AO");
656 return;
659 if (code == BUS_MCEERR_AO) {
660 warn_report("Hardware memory error at addr %p of type %s "
661 "for memory used by QEMU itself instead of guest system!",
662 addr, "BUS_MCEERR_AO");
666 if (code == BUS_MCEERR_AR) {
667 hardware_memory_error(addr);
670 /* Hope we are lucky for AO MCE */
673 static void kvm_reset_exception(CPUX86State *env)
675 env->exception_nr = -1;
676 env->exception_pending = 0;
677 env->exception_injected = 0;
678 env->exception_has_payload = false;
679 env->exception_payload = 0;
682 static void kvm_queue_exception(CPUX86State *env,
683 int32_t exception_nr,
684 uint8_t exception_has_payload,
685 uint64_t exception_payload)
687 assert(env->exception_nr == -1);
688 assert(!env->exception_pending);
689 assert(!env->exception_injected);
690 assert(!env->exception_has_payload);
692 env->exception_nr = exception_nr;
694 if (has_exception_payload) {
695 env->exception_pending = 1;
697 env->exception_has_payload = exception_has_payload;
698 env->exception_payload = exception_payload;
699 } else {
700 env->exception_injected = 1;
702 if (exception_nr == EXCP01_DB) {
703 assert(exception_has_payload);
704 env->dr[6] = exception_payload;
705 } else if (exception_nr == EXCP0E_PAGE) {
706 assert(exception_has_payload);
707 env->cr[2] = exception_payload;
708 } else {
709 assert(!exception_has_payload);
714 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
716 CPUX86State *env = &cpu->env;
718 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
719 unsigned int bank, bank_num = env->mcg_cap & 0xff;
720 struct kvm_x86_mce mce;
722 kvm_reset_exception(env);
725 * There must be at least one bank in use if an MCE is pending.
726 * Find it and use its values for the event injection.
728 for (bank = 0; bank < bank_num; bank++) {
729 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
730 break;
733 assert(bank < bank_num);
735 mce.bank = bank;
736 mce.status = env->mce_banks[bank * 4 + 1];
737 mce.mcg_status = env->mcg_status;
738 mce.addr = env->mce_banks[bank * 4 + 2];
739 mce.misc = env->mce_banks[bank * 4 + 3];
741 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
743 return 0;
746 static void cpu_update_state(void *opaque, int running, RunState state)
748 CPUX86State *env = opaque;
750 if (running) {
751 env->tsc_valid = false;
755 unsigned long kvm_arch_vcpu_id(CPUState *cs)
757 X86CPU *cpu = X86_CPU(cs);
758 return cpu->apic_id;
761 #ifndef KVM_CPUID_SIGNATURE_NEXT
762 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
763 #endif
765 static bool hyperv_enabled(X86CPU *cpu)
767 CPUState *cs = CPU(cpu);
768 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
769 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
770 cpu->hyperv_features || cpu->hyperv_passthrough);
773 static int kvm_arch_set_tsc_khz(CPUState *cs)
775 X86CPU *cpu = X86_CPU(cs);
776 CPUX86State *env = &cpu->env;
777 int r;
779 if (!env->tsc_khz) {
780 return 0;
783 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
784 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
785 -ENOTSUP;
786 if (r < 0) {
787 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
788 * TSC frequency doesn't match the one we want.
790 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
791 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
792 -ENOTSUP;
793 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
794 warn_report("TSC frequency mismatch between "
795 "VM (%" PRId64 " kHz) and host (%d kHz), "
796 "and TSC scaling unavailable",
797 env->tsc_khz, cur_freq);
798 return r;
802 return 0;
805 static bool tsc_is_stable_and_known(CPUX86State *env)
807 if (!env->tsc_khz) {
808 return false;
810 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
811 || env->user_tsc_khz;
814 static struct {
815 const char *desc;
816 struct {
817 uint32_t fw;
818 uint32_t bits;
819 } flags[2];
820 uint64_t dependencies;
821 } kvm_hyperv_properties[] = {
822 [HYPERV_FEAT_RELAXED] = {
823 .desc = "relaxed timing (hv-relaxed)",
824 .flags = {
825 {.fw = FEAT_HYPERV_EAX,
826 .bits = HV_HYPERCALL_AVAILABLE},
827 {.fw = FEAT_HV_RECOMM_EAX,
828 .bits = HV_RELAXED_TIMING_RECOMMENDED}
831 [HYPERV_FEAT_VAPIC] = {
832 .desc = "virtual APIC (hv-vapic)",
833 .flags = {
834 {.fw = FEAT_HYPERV_EAX,
835 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
836 {.fw = FEAT_HV_RECOMM_EAX,
837 .bits = HV_APIC_ACCESS_RECOMMENDED}
840 [HYPERV_FEAT_TIME] = {
841 .desc = "clocksources (hv-time)",
842 .flags = {
843 {.fw = FEAT_HYPERV_EAX,
844 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
845 HV_REFERENCE_TSC_AVAILABLE}
848 [HYPERV_FEAT_CRASH] = {
849 .desc = "crash MSRs (hv-crash)",
850 .flags = {
851 {.fw = FEAT_HYPERV_EDX,
852 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
855 [HYPERV_FEAT_RESET] = {
856 .desc = "reset MSR (hv-reset)",
857 .flags = {
858 {.fw = FEAT_HYPERV_EAX,
859 .bits = HV_RESET_AVAILABLE}
862 [HYPERV_FEAT_VPINDEX] = {
863 .desc = "VP_INDEX MSR (hv-vpindex)",
864 .flags = {
865 {.fw = FEAT_HYPERV_EAX,
866 .bits = HV_VP_INDEX_AVAILABLE}
869 [HYPERV_FEAT_RUNTIME] = {
870 .desc = "VP_RUNTIME MSR (hv-runtime)",
871 .flags = {
872 {.fw = FEAT_HYPERV_EAX,
873 .bits = HV_VP_RUNTIME_AVAILABLE}
876 [HYPERV_FEAT_SYNIC] = {
877 .desc = "synthetic interrupt controller (hv-synic)",
878 .flags = {
879 {.fw = FEAT_HYPERV_EAX,
880 .bits = HV_SYNIC_AVAILABLE}
883 [HYPERV_FEAT_STIMER] = {
884 .desc = "synthetic timers (hv-stimer)",
885 .flags = {
886 {.fw = FEAT_HYPERV_EAX,
887 .bits = HV_SYNTIMERS_AVAILABLE}
889 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
891 [HYPERV_FEAT_FREQUENCIES] = {
892 .desc = "frequency MSRs (hv-frequencies)",
893 .flags = {
894 {.fw = FEAT_HYPERV_EAX,
895 .bits = HV_ACCESS_FREQUENCY_MSRS},
896 {.fw = FEAT_HYPERV_EDX,
897 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
900 [HYPERV_FEAT_REENLIGHTENMENT] = {
901 .desc = "reenlightenment MSRs (hv-reenlightenment)",
902 .flags = {
903 {.fw = FEAT_HYPERV_EAX,
904 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
907 [HYPERV_FEAT_TLBFLUSH] = {
908 .desc = "paravirtualized TLB flush (hv-tlbflush)",
909 .flags = {
910 {.fw = FEAT_HV_RECOMM_EAX,
911 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
912 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
914 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
916 [HYPERV_FEAT_EVMCS] = {
917 .desc = "enlightened VMCS (hv-evmcs)",
918 .flags = {
919 {.fw = FEAT_HV_RECOMM_EAX,
920 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
922 .dependencies = BIT(HYPERV_FEAT_VAPIC)
924 [HYPERV_FEAT_IPI] = {
925 .desc = "paravirtualized IPI (hv-ipi)",
926 .flags = {
927 {.fw = FEAT_HV_RECOMM_EAX,
928 .bits = HV_CLUSTER_IPI_RECOMMENDED |
929 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
931 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
933 [HYPERV_FEAT_STIMER_DIRECT] = {
934 .desc = "direct mode synthetic timers (hv-stimer-direct)",
935 .flags = {
936 {.fw = FEAT_HYPERV_EDX,
937 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
939 .dependencies = BIT(HYPERV_FEAT_STIMER)
943 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
945 struct kvm_cpuid2 *cpuid;
946 int r, size;
948 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
949 cpuid = g_malloc0(size);
950 cpuid->nent = max;
952 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
953 if (r == 0 && cpuid->nent >= max) {
954 r = -E2BIG;
956 if (r < 0) {
957 if (r == -E2BIG) {
958 g_free(cpuid);
959 return NULL;
960 } else {
961 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
962 strerror(-r));
963 exit(1);
966 return cpuid;
970 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
971 * for all entries.
973 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
975 struct kvm_cpuid2 *cpuid;
976 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
979 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
980 * -E2BIG, however, it doesn't report back the right size. Keep increasing
981 * it and re-trying until we succeed.
983 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
984 max++;
986 return cpuid;
990 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
991 * leaves from KVM_CAP_HYPERV* and present MSRs data.
993 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
995 X86CPU *cpu = X86_CPU(cs);
996 struct kvm_cpuid2 *cpuid;
997 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
999 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1000 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1001 cpuid->nent = 2;
1003 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1004 entry_feat = &cpuid->entries[0];
1005 entry_feat->function = HV_CPUID_FEATURES;
1007 entry_recomm = &cpuid->entries[1];
1008 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1009 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1011 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1012 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1013 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1014 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1015 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1016 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1019 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1020 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1021 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1024 if (has_msr_hv_frequencies) {
1025 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1026 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1029 if (has_msr_hv_crash) {
1030 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1033 if (has_msr_hv_reenlightenment) {
1034 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1037 if (has_msr_hv_reset) {
1038 entry_feat->eax |= HV_RESET_AVAILABLE;
1041 if (has_msr_hv_vpindex) {
1042 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1045 if (has_msr_hv_runtime) {
1046 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1049 if (has_msr_hv_synic) {
1050 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1051 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1053 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1054 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1058 if (has_msr_hv_stimer) {
1059 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1062 if (kvm_check_extension(cs->kvm_state,
1063 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1064 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1065 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1068 if (kvm_check_extension(cs->kvm_state,
1069 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1070 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1073 if (kvm_check_extension(cs->kvm_state,
1074 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1075 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1076 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1079 return cpuid;
1082 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1084 struct kvm_cpuid_entry2 *entry;
1085 uint32_t func;
1086 int reg;
1088 switch (fw) {
1089 case FEAT_HYPERV_EAX:
1090 reg = R_EAX;
1091 func = HV_CPUID_FEATURES;
1092 break;
1093 case FEAT_HYPERV_EDX:
1094 reg = R_EDX;
1095 func = HV_CPUID_FEATURES;
1096 break;
1097 case FEAT_HV_RECOMM_EAX:
1098 reg = R_EAX;
1099 func = HV_CPUID_ENLIGHTMENT_INFO;
1100 break;
1101 default:
1102 return -EINVAL;
1105 entry = cpuid_find_entry(cpuid, func, 0);
1106 if (!entry) {
1107 return -ENOENT;
1110 switch (reg) {
1111 case R_EAX:
1112 *r = entry->eax;
1113 break;
1114 case R_EDX:
1115 *r = entry->edx;
1116 break;
1117 default:
1118 return -EINVAL;
1121 return 0;
1124 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1125 int feature)
1127 X86CPU *cpu = X86_CPU(cs);
1128 CPUX86State *env = &cpu->env;
1129 uint32_t r, fw, bits;
1130 uint64_t deps;
1131 int i, dep_feat;
1133 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1134 return 0;
1137 deps = kvm_hyperv_properties[feature].dependencies;
1138 while (deps) {
1139 dep_feat = ctz64(deps);
1140 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1141 fprintf(stderr,
1142 "Hyper-V %s requires Hyper-V %s\n",
1143 kvm_hyperv_properties[feature].desc,
1144 kvm_hyperv_properties[dep_feat].desc);
1145 return 1;
1147 deps &= ~(1ull << dep_feat);
1150 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1151 fw = kvm_hyperv_properties[feature].flags[i].fw;
1152 bits = kvm_hyperv_properties[feature].flags[i].bits;
1154 if (!fw) {
1155 continue;
1158 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1159 if (hyperv_feat_enabled(cpu, feature)) {
1160 fprintf(stderr,
1161 "Hyper-V %s is not supported by kernel\n",
1162 kvm_hyperv_properties[feature].desc);
1163 return 1;
1164 } else {
1165 return 0;
1169 env->features[fw] |= bits;
1172 if (cpu->hyperv_passthrough) {
1173 cpu->hyperv_features |= BIT(feature);
1176 return 0;
1180 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1181 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1182 * extentions are enabled.
1184 static int hyperv_handle_properties(CPUState *cs,
1185 struct kvm_cpuid_entry2 *cpuid_ent)
1187 X86CPU *cpu = X86_CPU(cs);
1188 CPUX86State *env = &cpu->env;
1189 struct kvm_cpuid2 *cpuid;
1190 struct kvm_cpuid_entry2 *c;
1191 uint32_t signature[3];
1192 uint32_t cpuid_i = 0;
1193 int r;
1195 if (!hyperv_enabled(cpu))
1196 return 0;
1198 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1199 cpu->hyperv_passthrough) {
1200 uint16_t evmcs_version;
1202 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1203 (uintptr_t)&evmcs_version);
1205 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1206 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1207 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1208 return -ENOSYS;
1211 if (!r) {
1212 env->features[FEAT_HV_RECOMM_EAX] |=
1213 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1214 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1218 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1219 cpuid = get_supported_hv_cpuid(cs);
1220 } else {
1221 cpuid = get_supported_hv_cpuid_legacy(cs);
1224 if (cpu->hyperv_passthrough) {
1225 memcpy(cpuid_ent, &cpuid->entries[0],
1226 cpuid->nent * sizeof(cpuid->entries[0]));
1228 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1229 if (c) {
1230 env->features[FEAT_HYPERV_EAX] = c->eax;
1231 env->features[FEAT_HYPERV_EBX] = c->ebx;
1232 env->features[FEAT_HYPERV_EDX] = c->eax;
1234 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1235 if (c) {
1236 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1238 /* hv-spinlocks may have been overriden */
1239 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1240 c->ebx = cpu->hyperv_spinlock_attempts;
1243 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1244 if (c) {
1245 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1249 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1250 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1251 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1252 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1253 if (c) {
1254 env->features[FEAT_HV_RECOMM_EAX] |=
1255 c->eax & HV_NO_NONARCH_CORESHARING;
1259 /* Features */
1260 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1261 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1262 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1263 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1264 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1265 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1266 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1267 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1268 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1269 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1270 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1271 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1272 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1273 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1274 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1276 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1277 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1278 !cpu->hyperv_synic_kvm_only &&
1279 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1280 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1281 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1282 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1283 r |= 1;
1286 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1287 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1289 if (r) {
1290 r = -ENOSYS;
1291 goto free;
1294 if (cpu->hyperv_passthrough) {
1295 /* We already copied all feature words from KVM as is */
1296 r = cpuid->nent;
1297 goto free;
1300 c = &cpuid_ent[cpuid_i++];
1301 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1302 if (!cpu->hyperv_vendor_id) {
1303 memcpy(signature, "Microsoft Hv", 12);
1304 } else {
1305 size_t len = strlen(cpu->hyperv_vendor_id);
1307 if (len > 12) {
1308 error_report("hv-vendor-id truncated to 12 characters");
1309 len = 12;
1311 memset(signature, 0, 12);
1312 memcpy(signature, cpu->hyperv_vendor_id, len);
1314 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1315 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1316 c->ebx = signature[0];
1317 c->ecx = signature[1];
1318 c->edx = signature[2];
1320 c = &cpuid_ent[cpuid_i++];
1321 c->function = HV_CPUID_INTERFACE;
1322 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1323 c->eax = signature[0];
1324 c->ebx = 0;
1325 c->ecx = 0;
1326 c->edx = 0;
1328 c = &cpuid_ent[cpuid_i++];
1329 c->function = HV_CPUID_VERSION;
1330 c->eax = 0x00001bbc;
1331 c->ebx = 0x00060001;
1333 c = &cpuid_ent[cpuid_i++];
1334 c->function = HV_CPUID_FEATURES;
1335 c->eax = env->features[FEAT_HYPERV_EAX];
1336 c->ebx = env->features[FEAT_HYPERV_EBX];
1337 c->edx = env->features[FEAT_HYPERV_EDX];
1339 c = &cpuid_ent[cpuid_i++];
1340 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1341 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1342 c->ebx = cpu->hyperv_spinlock_attempts;
1344 c = &cpuid_ent[cpuid_i++];
1345 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1346 c->eax = cpu->hv_max_vps;
1347 c->ebx = 0x40;
1349 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1350 __u32 function;
1352 /* Create zeroed 0x40000006..0x40000009 leaves */
1353 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1354 function < HV_CPUID_NESTED_FEATURES; function++) {
1355 c = &cpuid_ent[cpuid_i++];
1356 c->function = function;
1359 c = &cpuid_ent[cpuid_i++];
1360 c->function = HV_CPUID_NESTED_FEATURES;
1361 c->eax = env->features[FEAT_HV_NESTED_EAX];
1363 r = cpuid_i;
1365 free:
1366 g_free(cpuid);
1368 return r;
1371 static Error *hv_passthrough_mig_blocker;
1372 static Error *hv_no_nonarch_cs_mig_blocker;
1374 static int hyperv_init_vcpu(X86CPU *cpu)
1376 CPUState *cs = CPU(cpu);
1377 Error *local_err = NULL;
1378 int ret;
1380 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1381 error_setg(&hv_passthrough_mig_blocker,
1382 "'hv-passthrough' CPU flag prevents migration, use explicit"
1383 " set of hv-* flags instead");
1384 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1385 if (local_err) {
1386 error_report_err(local_err);
1387 error_free(hv_passthrough_mig_blocker);
1388 return ret;
1392 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1393 hv_no_nonarch_cs_mig_blocker == NULL) {
1394 error_setg(&hv_no_nonarch_cs_mig_blocker,
1395 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1396 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1397 " make sure SMT is disabled and/or that vCPUs are properly"
1398 " pinned)");
1399 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1400 if (local_err) {
1401 error_report_err(local_err);
1402 error_free(hv_no_nonarch_cs_mig_blocker);
1403 return ret;
1407 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1409 * the kernel doesn't support setting vp_index; assert that its value
1410 * is in sync
1412 struct {
1413 struct kvm_msrs info;
1414 struct kvm_msr_entry entries[1];
1415 } msr_data = {
1416 .info.nmsrs = 1,
1417 .entries[0].index = HV_X64_MSR_VP_INDEX,
1420 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1421 if (ret < 0) {
1422 return ret;
1424 assert(ret == 1);
1426 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1427 error_report("kernel's vp_index != QEMU's vp_index");
1428 return -ENXIO;
1432 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1433 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1434 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1435 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1436 if (ret < 0) {
1437 error_report("failed to turn on HyperV SynIC in KVM: %s",
1438 strerror(-ret));
1439 return ret;
1442 if (!cpu->hyperv_synic_kvm_only) {
1443 ret = hyperv_x86_synic_add(cpu);
1444 if (ret < 0) {
1445 error_report("failed to create HyperV SynIC: %s",
1446 strerror(-ret));
1447 return ret;
1452 return 0;
1455 static Error *invtsc_mig_blocker;
1457 #define KVM_MAX_CPUID_ENTRIES 100
1459 int kvm_arch_init_vcpu(CPUState *cs)
1461 struct {
1462 struct kvm_cpuid2 cpuid;
1463 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1464 } cpuid_data;
1466 * The kernel defines these structs with padding fields so there
1467 * should be no extra padding in our cpuid_data struct.
1469 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1470 sizeof(struct kvm_cpuid2) +
1471 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1473 X86CPU *cpu = X86_CPU(cs);
1474 CPUX86State *env = &cpu->env;
1475 uint32_t limit, i, j, cpuid_i;
1476 uint32_t unused;
1477 struct kvm_cpuid_entry2 *c;
1478 uint32_t signature[3];
1479 int kvm_base = KVM_CPUID_SIGNATURE;
1480 int max_nested_state_len;
1481 int r;
1482 Error *local_err = NULL;
1484 memset(&cpuid_data, 0, sizeof(cpuid_data));
1486 cpuid_i = 0;
1488 r = kvm_arch_set_tsc_khz(cs);
1489 if (r < 0) {
1490 return r;
1493 /* vcpu's TSC frequency is either specified by user, or following
1494 * the value used by KVM if the former is not present. In the
1495 * latter case, we query it from KVM and record in env->tsc_khz,
1496 * so that vcpu's TSC frequency can be migrated later via this field.
1498 if (!env->tsc_khz) {
1499 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1500 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1501 -ENOTSUP;
1502 if (r > 0) {
1503 env->tsc_khz = r;
1507 /* Paravirtualization CPUIDs */
1508 r = hyperv_handle_properties(cs, cpuid_data.entries);
1509 if (r < 0) {
1510 return r;
1511 } else if (r > 0) {
1512 cpuid_i = r;
1513 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1514 has_msr_hv_hypercall = true;
1517 if (cpu->expose_kvm) {
1518 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1519 c = &cpuid_data.entries[cpuid_i++];
1520 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1521 c->eax = KVM_CPUID_FEATURES | kvm_base;
1522 c->ebx = signature[0];
1523 c->ecx = signature[1];
1524 c->edx = signature[2];
1526 c = &cpuid_data.entries[cpuid_i++];
1527 c->function = KVM_CPUID_FEATURES | kvm_base;
1528 c->eax = env->features[FEAT_KVM];
1529 c->edx = env->features[FEAT_KVM_HINTS];
1532 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1534 for (i = 0; i <= limit; i++) {
1535 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1536 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1537 abort();
1539 c = &cpuid_data.entries[cpuid_i++];
1541 switch (i) {
1542 case 2: {
1543 /* Keep reading function 2 till all the input is received */
1544 int times;
1546 c->function = i;
1547 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1548 KVM_CPUID_FLAG_STATE_READ_NEXT;
1549 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1550 times = c->eax & 0xff;
1552 for (j = 1; j < times; ++j) {
1553 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1554 fprintf(stderr, "cpuid_data is full, no space for "
1555 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1556 abort();
1558 c = &cpuid_data.entries[cpuid_i++];
1559 c->function = i;
1560 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1561 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1563 break;
1565 case 0x1f:
1566 if (env->nr_dies < 2) {
1567 break;
1569 case 4:
1570 case 0xb:
1571 case 0xd:
1572 for (j = 0; ; j++) {
1573 if (i == 0xd && j == 64) {
1574 break;
1577 if (i == 0x1f && j == 64) {
1578 break;
1581 c->function = i;
1582 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1583 c->index = j;
1584 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1586 if (i == 4 && c->eax == 0) {
1587 break;
1589 if (i == 0xb && !(c->ecx & 0xff00)) {
1590 break;
1592 if (i == 0x1f && !(c->ecx & 0xff00)) {
1593 break;
1595 if (i == 0xd && c->eax == 0) {
1596 continue;
1598 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1599 fprintf(stderr, "cpuid_data is full, no space for "
1600 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1601 abort();
1603 c = &cpuid_data.entries[cpuid_i++];
1605 break;
1606 case 0x7:
1607 case 0x14: {
1608 uint32_t times;
1610 c->function = i;
1611 c->index = 0;
1612 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1613 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1614 times = c->eax;
1616 for (j = 1; j <= times; ++j) {
1617 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1618 fprintf(stderr, "cpuid_data is full, no space for "
1619 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1620 abort();
1622 c = &cpuid_data.entries[cpuid_i++];
1623 c->function = i;
1624 c->index = j;
1625 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1626 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1628 break;
1630 default:
1631 c->function = i;
1632 c->flags = 0;
1633 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1634 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1636 * KVM already returns all zeroes if a CPUID entry is missing,
1637 * so we can omit it and avoid hitting KVM's 80-entry limit.
1639 cpuid_i--;
1641 break;
1645 if (limit >= 0x0a) {
1646 uint32_t eax, edx;
1648 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1650 has_architectural_pmu_version = eax & 0xff;
1651 if (has_architectural_pmu_version > 0) {
1652 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1654 /* Shouldn't be more than 32, since that's the number of bits
1655 * available in EBX to tell us _which_ counters are available.
1656 * Play it safe.
1658 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1659 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1662 if (has_architectural_pmu_version > 1) {
1663 num_architectural_pmu_fixed_counters = edx & 0x1f;
1665 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1666 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1672 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1674 for (i = 0x80000000; i <= limit; i++) {
1675 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1676 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1677 abort();
1679 c = &cpuid_data.entries[cpuid_i++];
1681 switch (i) {
1682 case 0x8000001d:
1683 /* Query for all AMD cache information leaves */
1684 for (j = 0; ; j++) {
1685 c->function = i;
1686 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1687 c->index = j;
1688 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1690 if (c->eax == 0) {
1691 break;
1693 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1694 fprintf(stderr, "cpuid_data is full, no space for "
1695 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1696 abort();
1698 c = &cpuid_data.entries[cpuid_i++];
1700 break;
1701 default:
1702 c->function = i;
1703 c->flags = 0;
1704 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1705 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1707 * KVM already returns all zeroes if a CPUID entry is missing,
1708 * so we can omit it and avoid hitting KVM's 80-entry limit.
1710 cpuid_i--;
1712 break;
1716 /* Call Centaur's CPUID instructions they are supported. */
1717 if (env->cpuid_xlevel2 > 0) {
1718 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1720 for (i = 0xC0000000; i <= limit; i++) {
1721 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1722 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1723 abort();
1725 c = &cpuid_data.entries[cpuid_i++];
1727 c->function = i;
1728 c->flags = 0;
1729 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1733 cpuid_data.cpuid.nent = cpuid_i;
1735 if (((env->cpuid_version >> 8)&0xF) >= 6
1736 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1737 (CPUID_MCE | CPUID_MCA)
1738 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1739 uint64_t mcg_cap, unsupported_caps;
1740 int banks;
1741 int ret;
1743 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1744 if (ret < 0) {
1745 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1746 return ret;
1749 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1750 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1751 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1752 return -ENOTSUP;
1755 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1756 if (unsupported_caps) {
1757 if (unsupported_caps & MCG_LMCE_P) {
1758 error_report("kvm: LMCE not supported");
1759 return -ENOTSUP;
1761 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1762 unsupported_caps);
1765 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1766 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1767 if (ret < 0) {
1768 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1769 return ret;
1773 qemu_add_vm_change_state_handler(cpu_update_state, env);
1775 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1776 if (c) {
1777 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1778 !!(c->ecx & CPUID_EXT_SMX);
1781 if (env->mcg_cap & MCG_LMCE_P) {
1782 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1785 if (!env->user_tsc_khz) {
1786 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1787 invtsc_mig_blocker == NULL) {
1788 error_setg(&invtsc_mig_blocker,
1789 "State blocked by non-migratable CPU device"
1790 " (invtsc flag)");
1791 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1792 if (local_err) {
1793 error_report_err(local_err);
1794 error_free(invtsc_mig_blocker);
1795 return r;
1800 if (cpu->vmware_cpuid_freq
1801 /* Guests depend on 0x40000000 to detect this feature, so only expose
1802 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1803 && cpu->expose_kvm
1804 && kvm_base == KVM_CPUID_SIGNATURE
1805 /* TSC clock must be stable and known for this feature. */
1806 && tsc_is_stable_and_known(env)) {
1808 c = &cpuid_data.entries[cpuid_i++];
1809 c->function = KVM_CPUID_SIGNATURE | 0x10;
1810 c->eax = env->tsc_khz;
1811 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1812 * APIC_BUS_CYCLE_NS */
1813 c->ebx = 1000000;
1814 c->ecx = c->edx = 0;
1816 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1817 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1820 cpuid_data.cpuid.nent = cpuid_i;
1822 cpuid_data.cpuid.padding = 0;
1823 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1824 if (r) {
1825 goto fail;
1828 if (has_xsave) {
1829 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1830 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1833 max_nested_state_len = kvm_max_nested_state_length();
1834 if (max_nested_state_len > 0) {
1835 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1837 if (cpu_has_vmx(env)) {
1838 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1840 env->nested_state = g_malloc0(max_nested_state_len);
1841 env->nested_state->size = max_nested_state_len;
1842 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1844 vmx_hdr = &env->nested_state->hdr.vmx;
1845 vmx_hdr->vmxon_pa = -1ull;
1846 vmx_hdr->vmcs12_pa = -1ull;
1850 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1852 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1853 has_msr_tsc_aux = false;
1856 kvm_init_msrs(cpu);
1858 r = hyperv_init_vcpu(cpu);
1859 if (r) {
1860 goto fail;
1863 return 0;
1865 fail:
1866 migrate_del_blocker(invtsc_mig_blocker);
1868 return r;
1871 int kvm_arch_destroy_vcpu(CPUState *cs)
1873 X86CPU *cpu = X86_CPU(cs);
1874 CPUX86State *env = &cpu->env;
1876 if (cpu->kvm_msr_buf) {
1877 g_free(cpu->kvm_msr_buf);
1878 cpu->kvm_msr_buf = NULL;
1881 if (env->nested_state) {
1882 g_free(env->nested_state);
1883 env->nested_state = NULL;
1886 return 0;
1889 void kvm_arch_reset_vcpu(X86CPU *cpu)
1891 CPUX86State *env = &cpu->env;
1893 env->xcr0 = 1;
1894 if (kvm_irqchip_in_kernel()) {
1895 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1896 KVM_MP_STATE_UNINITIALIZED;
1897 } else {
1898 env->mp_state = KVM_MP_STATE_RUNNABLE;
1901 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1902 int i;
1903 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1904 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1907 hyperv_x86_synic_reset(cpu);
1909 /* enabled by default */
1910 env->poll_control_msr = 1;
1913 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1915 CPUX86State *env = &cpu->env;
1917 /* APs get directly into wait-for-SIPI state. */
1918 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1919 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1923 static int kvm_get_supported_feature_msrs(KVMState *s)
1925 int ret = 0;
1927 if (kvm_feature_msrs != NULL) {
1928 return 0;
1931 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1932 return 0;
1935 struct kvm_msr_list msr_list;
1937 msr_list.nmsrs = 0;
1938 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1939 if (ret < 0 && ret != -E2BIG) {
1940 error_report("Fetch KVM feature MSR list failed: %s",
1941 strerror(-ret));
1942 return ret;
1945 assert(msr_list.nmsrs > 0);
1946 kvm_feature_msrs = (struct kvm_msr_list *) \
1947 g_malloc0(sizeof(msr_list) +
1948 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1950 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1951 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1953 if (ret < 0) {
1954 error_report("Fetch KVM feature MSR list failed: %s",
1955 strerror(-ret));
1956 g_free(kvm_feature_msrs);
1957 kvm_feature_msrs = NULL;
1958 return ret;
1961 return 0;
1964 static int kvm_get_supported_msrs(KVMState *s)
1966 int ret = 0;
1967 struct kvm_msr_list msr_list, *kvm_msr_list;
1970 * Obtain MSR list from KVM. These are the MSRs that we must
1971 * save/restore.
1973 msr_list.nmsrs = 0;
1974 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1975 if (ret < 0 && ret != -E2BIG) {
1976 return ret;
1979 * Old kernel modules had a bug and could write beyond the provided
1980 * memory. Allocate at least a safe amount of 1K.
1982 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1983 msr_list.nmsrs *
1984 sizeof(msr_list.indices[0])));
1986 kvm_msr_list->nmsrs = msr_list.nmsrs;
1987 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1988 if (ret >= 0) {
1989 int i;
1991 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1992 switch (kvm_msr_list->indices[i]) {
1993 case MSR_STAR:
1994 has_msr_star = true;
1995 break;
1996 case MSR_VM_HSAVE_PA:
1997 has_msr_hsave_pa = true;
1998 break;
1999 case MSR_TSC_AUX:
2000 has_msr_tsc_aux = true;
2001 break;
2002 case MSR_TSC_ADJUST:
2003 has_msr_tsc_adjust = true;
2004 break;
2005 case MSR_IA32_TSCDEADLINE:
2006 has_msr_tsc_deadline = true;
2007 break;
2008 case MSR_IA32_SMBASE:
2009 has_msr_smbase = true;
2010 break;
2011 case MSR_SMI_COUNT:
2012 has_msr_smi_count = true;
2013 break;
2014 case MSR_IA32_MISC_ENABLE:
2015 has_msr_misc_enable = true;
2016 break;
2017 case MSR_IA32_BNDCFGS:
2018 has_msr_bndcfgs = true;
2019 break;
2020 case MSR_IA32_XSS:
2021 has_msr_xss = true;
2022 break;
2023 case MSR_IA32_UMWAIT_CONTROL:
2024 has_msr_umwait = true;
2025 break;
2026 case HV_X64_MSR_CRASH_CTL:
2027 has_msr_hv_crash = true;
2028 break;
2029 case HV_X64_MSR_RESET:
2030 has_msr_hv_reset = true;
2031 break;
2032 case HV_X64_MSR_VP_INDEX:
2033 has_msr_hv_vpindex = true;
2034 break;
2035 case HV_X64_MSR_VP_RUNTIME:
2036 has_msr_hv_runtime = true;
2037 break;
2038 case HV_X64_MSR_SCONTROL:
2039 has_msr_hv_synic = true;
2040 break;
2041 case HV_X64_MSR_STIMER0_CONFIG:
2042 has_msr_hv_stimer = true;
2043 break;
2044 case HV_X64_MSR_TSC_FREQUENCY:
2045 has_msr_hv_frequencies = true;
2046 break;
2047 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2048 has_msr_hv_reenlightenment = true;
2049 break;
2050 case MSR_IA32_SPEC_CTRL:
2051 has_msr_spec_ctrl = true;
2052 break;
2053 case MSR_IA32_TSX_CTRL:
2054 has_msr_tsx_ctrl = true;
2055 break;
2056 case MSR_VIRT_SSBD:
2057 has_msr_virt_ssbd = true;
2058 break;
2059 case MSR_IA32_ARCH_CAPABILITIES:
2060 has_msr_arch_capabs = true;
2061 break;
2062 case MSR_IA32_CORE_CAPABILITY:
2063 has_msr_core_capabs = true;
2064 break;
2065 case MSR_IA32_VMX_VMFUNC:
2066 has_msr_vmx_vmfunc = true;
2067 break;
2068 case MSR_IA32_UCODE_REV:
2069 has_msr_ucode_rev = true;
2070 break;
2071 case MSR_IA32_VMX_PROCBASED_CTLS2:
2072 has_msr_vmx_procbased_ctls2 = true;
2073 break;
2078 g_free(kvm_msr_list);
2080 return ret;
2083 static Notifier smram_machine_done;
2084 static KVMMemoryListener smram_listener;
2085 static AddressSpace smram_address_space;
2086 static MemoryRegion smram_as_root;
2087 static MemoryRegion smram_as_mem;
2089 static void register_smram_listener(Notifier *n, void *unused)
2091 MemoryRegion *smram =
2092 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2094 /* Outer container... */
2095 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2096 memory_region_set_enabled(&smram_as_root, true);
2098 /* ... with two regions inside: normal system memory with low
2099 * priority, and...
2101 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2102 get_system_memory(), 0, ~0ull);
2103 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2104 memory_region_set_enabled(&smram_as_mem, true);
2106 if (smram) {
2107 /* ... SMRAM with higher priority */
2108 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2109 memory_region_set_enabled(smram, true);
2112 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2113 kvm_memory_listener_register(kvm_state, &smram_listener,
2114 &smram_address_space, 1);
2117 int kvm_arch_init(MachineState *ms, KVMState *s)
2119 uint64_t identity_base = 0xfffbc000;
2120 uint64_t shadow_mem;
2121 int ret;
2122 struct utsname utsname;
2124 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2125 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2126 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2128 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2130 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2131 if (has_exception_payload) {
2132 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2133 if (ret < 0) {
2134 error_report("kvm: Failed to enable exception payload cap: %s",
2135 strerror(-ret));
2136 return ret;
2140 ret = kvm_get_supported_msrs(s);
2141 if (ret < 0) {
2142 return ret;
2145 kvm_get_supported_feature_msrs(s);
2147 uname(&utsname);
2148 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2151 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2152 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2153 * Since these must be part of guest physical memory, we need to allocate
2154 * them, both by setting their start addresses in the kernel and by
2155 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2157 * Older KVM versions may not support setting the identity map base. In
2158 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2159 * size.
2161 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2162 /* Allows up to 16M BIOSes. */
2163 identity_base = 0xfeffc000;
2165 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2166 if (ret < 0) {
2167 return ret;
2171 /* Set TSS base one page after EPT identity map. */
2172 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2173 if (ret < 0) {
2174 return ret;
2177 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2178 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2179 if (ret < 0) {
2180 fprintf(stderr, "e820_add_entry() table is full\n");
2181 return ret;
2183 qemu_register_reset(kvm_unpoison_all, NULL);
2185 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2186 if (shadow_mem != -1) {
2187 shadow_mem /= 4096;
2188 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2189 if (ret < 0) {
2190 return ret;
2194 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2195 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2196 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2197 smram_machine_done.notify = register_smram_listener;
2198 qemu_add_machine_init_done_notifier(&smram_machine_done);
2201 if (enable_cpu_pm) {
2202 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2203 int ret;
2205 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2206 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2207 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2208 #endif
2209 if (disable_exits) {
2210 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2211 KVM_X86_DISABLE_EXITS_HLT |
2212 KVM_X86_DISABLE_EXITS_PAUSE |
2213 KVM_X86_DISABLE_EXITS_CSTATE);
2216 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2217 disable_exits);
2218 if (ret < 0) {
2219 error_report("kvm: guest stopping CPU not supported: %s",
2220 strerror(-ret));
2224 return 0;
2227 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2229 lhs->selector = rhs->selector;
2230 lhs->base = rhs->base;
2231 lhs->limit = rhs->limit;
2232 lhs->type = 3;
2233 lhs->present = 1;
2234 lhs->dpl = 3;
2235 lhs->db = 0;
2236 lhs->s = 1;
2237 lhs->l = 0;
2238 lhs->g = 0;
2239 lhs->avl = 0;
2240 lhs->unusable = 0;
2243 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2245 unsigned flags = rhs->flags;
2246 lhs->selector = rhs->selector;
2247 lhs->base = rhs->base;
2248 lhs->limit = rhs->limit;
2249 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2250 lhs->present = (flags & DESC_P_MASK) != 0;
2251 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2252 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2253 lhs->s = (flags & DESC_S_MASK) != 0;
2254 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2255 lhs->g = (flags & DESC_G_MASK) != 0;
2256 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2257 lhs->unusable = !lhs->present;
2258 lhs->padding = 0;
2261 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2263 lhs->selector = rhs->selector;
2264 lhs->base = rhs->base;
2265 lhs->limit = rhs->limit;
2266 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2267 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2268 (rhs->dpl << DESC_DPL_SHIFT) |
2269 (rhs->db << DESC_B_SHIFT) |
2270 (rhs->s * DESC_S_MASK) |
2271 (rhs->l << DESC_L_SHIFT) |
2272 (rhs->g * DESC_G_MASK) |
2273 (rhs->avl * DESC_AVL_MASK);
2276 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2278 if (set) {
2279 *kvm_reg = *qemu_reg;
2280 } else {
2281 *qemu_reg = *kvm_reg;
2285 static int kvm_getput_regs(X86CPU *cpu, int set)
2287 CPUX86State *env = &cpu->env;
2288 struct kvm_regs regs;
2289 int ret = 0;
2291 if (!set) {
2292 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2293 if (ret < 0) {
2294 return ret;
2298 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2299 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2300 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2301 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2302 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2303 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2304 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2305 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2306 #ifdef TARGET_X86_64
2307 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2308 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2309 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2310 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2311 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2312 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2313 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2314 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2315 #endif
2317 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2318 kvm_getput_reg(&regs.rip, &env->eip, set);
2320 if (set) {
2321 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2324 return ret;
2327 static int kvm_put_fpu(X86CPU *cpu)
2329 CPUX86State *env = &cpu->env;
2330 struct kvm_fpu fpu;
2331 int i;
2333 memset(&fpu, 0, sizeof fpu);
2334 fpu.fsw = env->fpus & ~(7 << 11);
2335 fpu.fsw |= (env->fpstt & 7) << 11;
2336 fpu.fcw = env->fpuc;
2337 fpu.last_opcode = env->fpop;
2338 fpu.last_ip = env->fpip;
2339 fpu.last_dp = env->fpdp;
2340 for (i = 0; i < 8; ++i) {
2341 fpu.ftwx |= (!env->fptags[i]) << i;
2343 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2344 for (i = 0; i < CPU_NB_REGS; i++) {
2345 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2346 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2348 fpu.mxcsr = env->mxcsr;
2350 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2353 #define XSAVE_FCW_FSW 0
2354 #define XSAVE_FTW_FOP 1
2355 #define XSAVE_CWD_RIP 2
2356 #define XSAVE_CWD_RDP 4
2357 #define XSAVE_MXCSR 6
2358 #define XSAVE_ST_SPACE 8
2359 #define XSAVE_XMM_SPACE 40
2360 #define XSAVE_XSTATE_BV 128
2361 #define XSAVE_YMMH_SPACE 144
2362 #define XSAVE_BNDREGS 240
2363 #define XSAVE_BNDCSR 256
2364 #define XSAVE_OPMASK 272
2365 #define XSAVE_ZMM_Hi256 288
2366 #define XSAVE_Hi16_ZMM 416
2367 #define XSAVE_PKRU 672
2369 #define XSAVE_BYTE_OFFSET(word_offset) \
2370 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2372 #define ASSERT_OFFSET(word_offset, field) \
2373 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2374 offsetof(X86XSaveArea, field))
2376 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2377 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2378 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2379 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2380 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2381 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2382 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2383 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2384 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2385 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2386 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2387 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2388 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2389 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2390 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2392 static int kvm_put_xsave(X86CPU *cpu)
2394 CPUX86State *env = &cpu->env;
2395 X86XSaveArea *xsave = env->xsave_buf;
2397 if (!has_xsave) {
2398 return kvm_put_fpu(cpu);
2400 x86_cpu_xsave_all_areas(cpu, xsave);
2402 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2405 static int kvm_put_xcrs(X86CPU *cpu)
2407 CPUX86State *env = &cpu->env;
2408 struct kvm_xcrs xcrs = {};
2410 if (!has_xcrs) {
2411 return 0;
2414 xcrs.nr_xcrs = 1;
2415 xcrs.flags = 0;
2416 xcrs.xcrs[0].xcr = 0;
2417 xcrs.xcrs[0].value = env->xcr0;
2418 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2421 static int kvm_put_sregs(X86CPU *cpu)
2423 CPUX86State *env = &cpu->env;
2424 struct kvm_sregs sregs;
2426 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2427 if (env->interrupt_injected >= 0) {
2428 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2429 (uint64_t)1 << (env->interrupt_injected % 64);
2432 if ((env->eflags & VM_MASK)) {
2433 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2434 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2435 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2436 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2437 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2438 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2439 } else {
2440 set_seg(&sregs.cs, &env->segs[R_CS]);
2441 set_seg(&sregs.ds, &env->segs[R_DS]);
2442 set_seg(&sregs.es, &env->segs[R_ES]);
2443 set_seg(&sregs.fs, &env->segs[R_FS]);
2444 set_seg(&sregs.gs, &env->segs[R_GS]);
2445 set_seg(&sregs.ss, &env->segs[R_SS]);
2448 set_seg(&sregs.tr, &env->tr);
2449 set_seg(&sregs.ldt, &env->ldt);
2451 sregs.idt.limit = env->idt.limit;
2452 sregs.idt.base = env->idt.base;
2453 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2454 sregs.gdt.limit = env->gdt.limit;
2455 sregs.gdt.base = env->gdt.base;
2456 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2458 sregs.cr0 = env->cr[0];
2459 sregs.cr2 = env->cr[2];
2460 sregs.cr3 = env->cr[3];
2461 sregs.cr4 = env->cr[4];
2463 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2464 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2466 sregs.efer = env->efer;
2468 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2471 static void kvm_msr_buf_reset(X86CPU *cpu)
2473 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2476 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2478 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2479 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2480 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2482 assert((void *)(entry + 1) <= limit);
2484 entry->index = index;
2485 entry->reserved = 0;
2486 entry->data = value;
2487 msrs->nmsrs++;
2490 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2492 kvm_msr_buf_reset(cpu);
2493 kvm_msr_entry_add(cpu, index, value);
2495 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2498 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2500 int ret;
2502 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2503 assert(ret == 1);
2506 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2508 CPUX86State *env = &cpu->env;
2509 int ret;
2511 if (!has_msr_tsc_deadline) {
2512 return 0;
2515 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2516 if (ret < 0) {
2517 return ret;
2520 assert(ret == 1);
2521 return 0;
2525 * Provide a separate write service for the feature control MSR in order to
2526 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2527 * before writing any other state because forcibly leaving nested mode
2528 * invalidates the VCPU state.
2530 static int kvm_put_msr_feature_control(X86CPU *cpu)
2532 int ret;
2534 if (!has_msr_feature_control) {
2535 return 0;
2538 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2539 cpu->env.msr_ia32_feature_control);
2540 if (ret < 0) {
2541 return ret;
2544 assert(ret == 1);
2545 return 0;
2548 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2550 uint32_t default1, can_be_one, can_be_zero;
2551 uint32_t must_be_one;
2553 switch (index) {
2554 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2555 default1 = 0x00000016;
2556 break;
2557 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2558 default1 = 0x0401e172;
2559 break;
2560 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2561 default1 = 0x000011ff;
2562 break;
2563 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2564 default1 = 0x00036dff;
2565 break;
2566 case MSR_IA32_VMX_PROCBASED_CTLS2:
2567 default1 = 0;
2568 break;
2569 default:
2570 abort();
2573 /* If a feature bit is set, the control can be either set or clear.
2574 * Otherwise the value is limited to either 0 or 1 by default1.
2576 can_be_one = features | default1;
2577 can_be_zero = features | ~default1;
2578 must_be_one = ~can_be_zero;
2581 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2582 * Bit 32:63 -> 1 if the control bit can be one.
2584 return must_be_one | (((uint64_t)can_be_one) << 32);
2587 #define VMCS12_MAX_FIELD_INDEX (0x17)
2589 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2591 uint64_t kvm_vmx_basic =
2592 kvm_arch_get_supported_msr_feature(kvm_state,
2593 MSR_IA32_VMX_BASIC);
2595 if (!kvm_vmx_basic) {
2596 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2597 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2599 return;
2602 uint64_t kvm_vmx_misc =
2603 kvm_arch_get_supported_msr_feature(kvm_state,
2604 MSR_IA32_VMX_MISC);
2605 uint64_t kvm_vmx_ept_vpid =
2606 kvm_arch_get_supported_msr_feature(kvm_state,
2607 MSR_IA32_VMX_EPT_VPID_CAP);
2610 * If the guest is 64-bit, a value of 1 is allowed for the host address
2611 * space size vmexit control.
2613 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2614 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2617 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2618 * not change them for backwards compatibility.
2620 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2621 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2622 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2623 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2626 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2627 * change in the future but are always zero for now, clear them to be
2628 * future proof. Bits 32-63 in theory could change, though KVM does
2629 * not support dual-monitor treatment and probably never will; mask
2630 * them out as well.
2632 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2633 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2634 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2637 * EPT memory types should not change either, so we do not bother
2638 * adding features for them.
2640 uint64_t fixed_vmx_ept_mask =
2641 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2642 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2643 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2645 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2646 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2647 f[FEAT_VMX_PROCBASED_CTLS]));
2648 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2649 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2650 f[FEAT_VMX_PINBASED_CTLS]));
2651 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2652 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2653 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2654 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2655 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2656 f[FEAT_VMX_ENTRY_CTLS]));
2657 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2658 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2659 f[FEAT_VMX_SECONDARY_CTLS]));
2660 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2661 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2662 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2663 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2664 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2665 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2666 if (has_msr_vmx_vmfunc) {
2667 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2671 * Just to be safe, write these with constant values. The CRn_FIXED1
2672 * MSRs are generated by KVM based on the vCPU's CPUID.
2674 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2675 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2676 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2677 CR4_VMXE_MASK);
2678 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2679 VMCS12_MAX_FIELD_INDEX << 1);
2682 static int kvm_buf_set_msrs(X86CPU *cpu)
2684 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2685 if (ret < 0) {
2686 return ret;
2689 if (ret < cpu->kvm_msr_buf->nmsrs) {
2690 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2691 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2692 (uint32_t)e->index, (uint64_t)e->data);
2695 assert(ret == cpu->kvm_msr_buf->nmsrs);
2696 return 0;
2699 static void kvm_init_msrs(X86CPU *cpu)
2701 CPUX86State *env = &cpu->env;
2703 kvm_msr_buf_reset(cpu);
2704 if (has_msr_arch_capabs) {
2705 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2706 env->features[FEAT_ARCH_CAPABILITIES]);
2709 if (has_msr_core_capabs) {
2710 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2711 env->features[FEAT_CORE_CAPABILITY]);
2714 if (has_msr_ucode_rev) {
2715 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2719 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2720 * all kernels with MSR features should have them.
2722 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2723 kvm_msr_entry_add_vmx(cpu, env->features);
2726 assert(kvm_buf_set_msrs(cpu) == 0);
2729 static int kvm_put_msrs(X86CPU *cpu, int level)
2731 CPUX86State *env = &cpu->env;
2732 int i;
2734 kvm_msr_buf_reset(cpu);
2736 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2737 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2738 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2739 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2740 if (has_msr_star) {
2741 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2743 if (has_msr_hsave_pa) {
2744 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2746 if (has_msr_tsc_aux) {
2747 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2749 if (has_msr_tsc_adjust) {
2750 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2752 if (has_msr_misc_enable) {
2753 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2754 env->msr_ia32_misc_enable);
2756 if (has_msr_smbase) {
2757 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2759 if (has_msr_smi_count) {
2760 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2762 if (has_msr_bndcfgs) {
2763 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2765 if (has_msr_xss) {
2766 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2768 if (has_msr_umwait) {
2769 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2771 if (has_msr_spec_ctrl) {
2772 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2774 if (has_msr_tsx_ctrl) {
2775 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2777 if (has_msr_virt_ssbd) {
2778 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2781 #ifdef TARGET_X86_64
2782 if (lm_capable_kernel) {
2783 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2784 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2785 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2786 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2788 #endif
2791 * The following MSRs have side effects on the guest or are too heavy
2792 * for normal writeback. Limit them to reset or full state updates.
2794 if (level >= KVM_PUT_RESET_STATE) {
2795 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2796 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2797 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2798 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2799 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2801 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2802 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2804 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2805 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2808 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2809 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2812 if (has_architectural_pmu_version > 0) {
2813 if (has_architectural_pmu_version > 1) {
2814 /* Stop the counter. */
2815 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2816 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2819 /* Set the counter values. */
2820 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2821 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2822 env->msr_fixed_counters[i]);
2824 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2825 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2826 env->msr_gp_counters[i]);
2827 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2828 env->msr_gp_evtsel[i]);
2830 if (has_architectural_pmu_version > 1) {
2831 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2832 env->msr_global_status);
2833 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2834 env->msr_global_ovf_ctrl);
2836 /* Now start the PMU. */
2837 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2838 env->msr_fixed_ctr_ctrl);
2839 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2840 env->msr_global_ctrl);
2844 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2845 * only sync them to KVM on the first cpu
2847 if (current_cpu == first_cpu) {
2848 if (has_msr_hv_hypercall) {
2849 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2850 env->msr_hv_guest_os_id);
2851 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2852 env->msr_hv_hypercall);
2854 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2855 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2856 env->msr_hv_tsc);
2858 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2859 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2860 env->msr_hv_reenlightenment_control);
2861 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2862 env->msr_hv_tsc_emulation_control);
2863 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2864 env->msr_hv_tsc_emulation_status);
2867 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2868 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2869 env->msr_hv_vapic);
2871 if (has_msr_hv_crash) {
2872 int j;
2874 for (j = 0; j < HV_CRASH_PARAMS; j++)
2875 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2876 env->msr_hv_crash_params[j]);
2878 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2880 if (has_msr_hv_runtime) {
2881 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2883 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2884 && hv_vpindex_settable) {
2885 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2886 hyperv_vp_index(CPU(cpu)));
2888 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2889 int j;
2891 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2893 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2894 env->msr_hv_synic_control);
2895 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2896 env->msr_hv_synic_evt_page);
2897 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2898 env->msr_hv_synic_msg_page);
2900 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2901 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2902 env->msr_hv_synic_sint[j]);
2905 if (has_msr_hv_stimer) {
2906 int j;
2908 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2909 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2910 env->msr_hv_stimer_config[j]);
2913 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2914 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2915 env->msr_hv_stimer_count[j]);
2918 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2919 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2921 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2922 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2923 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2924 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2925 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2926 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2927 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2928 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2929 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2930 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2931 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2932 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2933 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2934 /* The CPU GPs if we write to a bit above the physical limit of
2935 * the host CPU (and KVM emulates that)
2937 uint64_t mask = env->mtrr_var[i].mask;
2938 mask &= phys_mask;
2940 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2941 env->mtrr_var[i].base);
2942 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2945 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2946 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2947 0x14, 1, R_EAX) & 0x7;
2949 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2950 env->msr_rtit_ctrl);
2951 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2952 env->msr_rtit_status);
2953 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2954 env->msr_rtit_output_base);
2955 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2956 env->msr_rtit_output_mask);
2957 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2958 env->msr_rtit_cr3_match);
2959 for (i = 0; i < addr_num; i++) {
2960 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2961 env->msr_rtit_addrs[i]);
2965 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2966 * kvm_put_msr_feature_control. */
2969 if (env->mcg_cap) {
2970 int i;
2972 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2973 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2974 if (has_msr_mcg_ext_ctl) {
2975 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2977 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2978 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2982 return kvm_buf_set_msrs(cpu);
2986 static int kvm_get_fpu(X86CPU *cpu)
2988 CPUX86State *env = &cpu->env;
2989 struct kvm_fpu fpu;
2990 int i, ret;
2992 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2993 if (ret < 0) {
2994 return ret;
2997 env->fpstt = (fpu.fsw >> 11) & 7;
2998 env->fpus = fpu.fsw;
2999 env->fpuc = fpu.fcw;
3000 env->fpop = fpu.last_opcode;
3001 env->fpip = fpu.last_ip;
3002 env->fpdp = fpu.last_dp;
3003 for (i = 0; i < 8; ++i) {
3004 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3006 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3007 for (i = 0; i < CPU_NB_REGS; i++) {
3008 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3009 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3011 env->mxcsr = fpu.mxcsr;
3013 return 0;
3016 static int kvm_get_xsave(X86CPU *cpu)
3018 CPUX86State *env = &cpu->env;
3019 X86XSaveArea *xsave = env->xsave_buf;
3020 int ret;
3022 if (!has_xsave) {
3023 return kvm_get_fpu(cpu);
3026 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3027 if (ret < 0) {
3028 return ret;
3030 x86_cpu_xrstor_all_areas(cpu, xsave);
3032 return 0;
3035 static int kvm_get_xcrs(X86CPU *cpu)
3037 CPUX86State *env = &cpu->env;
3038 int i, ret;
3039 struct kvm_xcrs xcrs;
3041 if (!has_xcrs) {
3042 return 0;
3045 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3046 if (ret < 0) {
3047 return ret;
3050 for (i = 0; i < xcrs.nr_xcrs; i++) {
3051 /* Only support xcr0 now */
3052 if (xcrs.xcrs[i].xcr == 0) {
3053 env->xcr0 = xcrs.xcrs[i].value;
3054 break;
3057 return 0;
3060 static int kvm_get_sregs(X86CPU *cpu)
3062 CPUX86State *env = &cpu->env;
3063 struct kvm_sregs sregs;
3064 int bit, i, ret;
3066 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3067 if (ret < 0) {
3068 return ret;
3071 /* There can only be one pending IRQ set in the bitmap at a time, so try
3072 to find it and save its number instead (-1 for none). */
3073 env->interrupt_injected = -1;
3074 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3075 if (sregs.interrupt_bitmap[i]) {
3076 bit = ctz64(sregs.interrupt_bitmap[i]);
3077 env->interrupt_injected = i * 64 + bit;
3078 break;
3082 get_seg(&env->segs[R_CS], &sregs.cs);
3083 get_seg(&env->segs[R_DS], &sregs.ds);
3084 get_seg(&env->segs[R_ES], &sregs.es);
3085 get_seg(&env->segs[R_FS], &sregs.fs);
3086 get_seg(&env->segs[R_GS], &sregs.gs);
3087 get_seg(&env->segs[R_SS], &sregs.ss);
3089 get_seg(&env->tr, &sregs.tr);
3090 get_seg(&env->ldt, &sregs.ldt);
3092 env->idt.limit = sregs.idt.limit;
3093 env->idt.base = sregs.idt.base;
3094 env->gdt.limit = sregs.gdt.limit;
3095 env->gdt.base = sregs.gdt.base;
3097 env->cr[0] = sregs.cr0;
3098 env->cr[2] = sregs.cr2;
3099 env->cr[3] = sregs.cr3;
3100 env->cr[4] = sregs.cr4;
3102 env->efer = sregs.efer;
3104 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3105 x86_update_hflags(env);
3107 return 0;
3110 static int kvm_get_msrs(X86CPU *cpu)
3112 CPUX86State *env = &cpu->env;
3113 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3114 int ret, i;
3115 uint64_t mtrr_top_bits;
3117 kvm_msr_buf_reset(cpu);
3119 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3120 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3121 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3122 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3123 if (has_msr_star) {
3124 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3126 if (has_msr_hsave_pa) {
3127 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3129 if (has_msr_tsc_aux) {
3130 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3132 if (has_msr_tsc_adjust) {
3133 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3135 if (has_msr_tsc_deadline) {
3136 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3138 if (has_msr_misc_enable) {
3139 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3141 if (has_msr_smbase) {
3142 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3144 if (has_msr_smi_count) {
3145 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3147 if (has_msr_feature_control) {
3148 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3150 if (has_msr_bndcfgs) {
3151 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3153 if (has_msr_xss) {
3154 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3156 if (has_msr_umwait) {
3157 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3159 if (has_msr_spec_ctrl) {
3160 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3162 if (has_msr_tsx_ctrl) {
3163 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3165 if (has_msr_virt_ssbd) {
3166 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3168 if (!env->tsc_valid) {
3169 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3170 env->tsc_valid = !runstate_is_running();
3173 #ifdef TARGET_X86_64
3174 if (lm_capable_kernel) {
3175 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3176 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3177 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3178 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3180 #endif
3181 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3182 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3183 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3184 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3186 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3187 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3189 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3190 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3192 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3193 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3195 if (has_architectural_pmu_version > 0) {
3196 if (has_architectural_pmu_version > 1) {
3197 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3198 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3199 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3200 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3202 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3203 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3205 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3206 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3207 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3211 if (env->mcg_cap) {
3212 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3213 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3214 if (has_msr_mcg_ext_ctl) {
3215 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3217 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3218 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3222 if (has_msr_hv_hypercall) {
3223 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3224 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3226 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3227 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3229 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3230 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3232 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3233 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3234 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3235 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3237 if (has_msr_hv_crash) {
3238 int j;
3240 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3241 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3244 if (has_msr_hv_runtime) {
3245 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3247 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3248 uint32_t msr;
3250 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3251 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3252 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3253 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3254 kvm_msr_entry_add(cpu, msr, 0);
3257 if (has_msr_hv_stimer) {
3258 uint32_t msr;
3260 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3261 msr++) {
3262 kvm_msr_entry_add(cpu, msr, 0);
3265 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3266 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3267 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3268 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3269 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3270 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3271 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3272 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3273 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3274 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3275 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3276 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3277 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3278 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3279 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3280 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3284 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3285 int addr_num =
3286 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3288 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3289 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3290 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3291 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3292 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3293 for (i = 0; i < addr_num; i++) {
3294 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3298 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3299 if (ret < 0) {
3300 return ret;
3303 if (ret < cpu->kvm_msr_buf->nmsrs) {
3304 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3305 error_report("error: failed to get MSR 0x%" PRIx32,
3306 (uint32_t)e->index);
3309 assert(ret == cpu->kvm_msr_buf->nmsrs);
3311 * MTRR masks: Each mask consists of 5 parts
3312 * a 10..0: must be zero
3313 * b 11 : valid bit
3314 * c n-1.12: actual mask bits
3315 * d 51..n: reserved must be zero
3316 * e 63.52: reserved must be zero
3318 * 'n' is the number of physical bits supported by the CPU and is
3319 * apparently always <= 52. We know our 'n' but don't know what
3320 * the destinations 'n' is; it might be smaller, in which case
3321 * it masks (c) on loading. It might be larger, in which case
3322 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3323 * we're migrating to.
3326 if (cpu->fill_mtrr_mask) {
3327 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3328 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3329 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3330 } else {
3331 mtrr_top_bits = 0;
3334 for (i = 0; i < ret; i++) {
3335 uint32_t index = msrs[i].index;
3336 switch (index) {
3337 case MSR_IA32_SYSENTER_CS:
3338 env->sysenter_cs = msrs[i].data;
3339 break;
3340 case MSR_IA32_SYSENTER_ESP:
3341 env->sysenter_esp = msrs[i].data;
3342 break;
3343 case MSR_IA32_SYSENTER_EIP:
3344 env->sysenter_eip = msrs[i].data;
3345 break;
3346 case MSR_PAT:
3347 env->pat = msrs[i].data;
3348 break;
3349 case MSR_STAR:
3350 env->star = msrs[i].data;
3351 break;
3352 #ifdef TARGET_X86_64
3353 case MSR_CSTAR:
3354 env->cstar = msrs[i].data;
3355 break;
3356 case MSR_KERNELGSBASE:
3357 env->kernelgsbase = msrs[i].data;
3358 break;
3359 case MSR_FMASK:
3360 env->fmask = msrs[i].data;
3361 break;
3362 case MSR_LSTAR:
3363 env->lstar = msrs[i].data;
3364 break;
3365 #endif
3366 case MSR_IA32_TSC:
3367 env->tsc = msrs[i].data;
3368 break;
3369 case MSR_TSC_AUX:
3370 env->tsc_aux = msrs[i].data;
3371 break;
3372 case MSR_TSC_ADJUST:
3373 env->tsc_adjust = msrs[i].data;
3374 break;
3375 case MSR_IA32_TSCDEADLINE:
3376 env->tsc_deadline = msrs[i].data;
3377 break;
3378 case MSR_VM_HSAVE_PA:
3379 env->vm_hsave = msrs[i].data;
3380 break;
3381 case MSR_KVM_SYSTEM_TIME:
3382 env->system_time_msr = msrs[i].data;
3383 break;
3384 case MSR_KVM_WALL_CLOCK:
3385 env->wall_clock_msr = msrs[i].data;
3386 break;
3387 case MSR_MCG_STATUS:
3388 env->mcg_status = msrs[i].data;
3389 break;
3390 case MSR_MCG_CTL:
3391 env->mcg_ctl = msrs[i].data;
3392 break;
3393 case MSR_MCG_EXT_CTL:
3394 env->mcg_ext_ctl = msrs[i].data;
3395 break;
3396 case MSR_IA32_MISC_ENABLE:
3397 env->msr_ia32_misc_enable = msrs[i].data;
3398 break;
3399 case MSR_IA32_SMBASE:
3400 env->smbase = msrs[i].data;
3401 break;
3402 case MSR_SMI_COUNT:
3403 env->msr_smi_count = msrs[i].data;
3404 break;
3405 case MSR_IA32_FEATURE_CONTROL:
3406 env->msr_ia32_feature_control = msrs[i].data;
3407 break;
3408 case MSR_IA32_BNDCFGS:
3409 env->msr_bndcfgs = msrs[i].data;
3410 break;
3411 case MSR_IA32_XSS:
3412 env->xss = msrs[i].data;
3413 break;
3414 case MSR_IA32_UMWAIT_CONTROL:
3415 env->umwait = msrs[i].data;
3416 break;
3417 default:
3418 if (msrs[i].index >= MSR_MC0_CTL &&
3419 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3420 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3422 break;
3423 case MSR_KVM_ASYNC_PF_EN:
3424 env->async_pf_en_msr = msrs[i].data;
3425 break;
3426 case MSR_KVM_PV_EOI_EN:
3427 env->pv_eoi_en_msr = msrs[i].data;
3428 break;
3429 case MSR_KVM_STEAL_TIME:
3430 env->steal_time_msr = msrs[i].data;
3431 break;
3432 case MSR_KVM_POLL_CONTROL: {
3433 env->poll_control_msr = msrs[i].data;
3434 break;
3436 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3437 env->msr_fixed_ctr_ctrl = msrs[i].data;
3438 break;
3439 case MSR_CORE_PERF_GLOBAL_CTRL:
3440 env->msr_global_ctrl = msrs[i].data;
3441 break;
3442 case MSR_CORE_PERF_GLOBAL_STATUS:
3443 env->msr_global_status = msrs[i].data;
3444 break;
3445 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3446 env->msr_global_ovf_ctrl = msrs[i].data;
3447 break;
3448 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3449 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3450 break;
3451 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3452 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3453 break;
3454 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3455 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3456 break;
3457 case HV_X64_MSR_HYPERCALL:
3458 env->msr_hv_hypercall = msrs[i].data;
3459 break;
3460 case HV_X64_MSR_GUEST_OS_ID:
3461 env->msr_hv_guest_os_id = msrs[i].data;
3462 break;
3463 case HV_X64_MSR_APIC_ASSIST_PAGE:
3464 env->msr_hv_vapic = msrs[i].data;
3465 break;
3466 case HV_X64_MSR_REFERENCE_TSC:
3467 env->msr_hv_tsc = msrs[i].data;
3468 break;
3469 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3470 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3471 break;
3472 case HV_X64_MSR_VP_RUNTIME:
3473 env->msr_hv_runtime = msrs[i].data;
3474 break;
3475 case HV_X64_MSR_SCONTROL:
3476 env->msr_hv_synic_control = msrs[i].data;
3477 break;
3478 case HV_X64_MSR_SIEFP:
3479 env->msr_hv_synic_evt_page = msrs[i].data;
3480 break;
3481 case HV_X64_MSR_SIMP:
3482 env->msr_hv_synic_msg_page = msrs[i].data;
3483 break;
3484 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3485 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3486 break;
3487 case HV_X64_MSR_STIMER0_CONFIG:
3488 case HV_X64_MSR_STIMER1_CONFIG:
3489 case HV_X64_MSR_STIMER2_CONFIG:
3490 case HV_X64_MSR_STIMER3_CONFIG:
3491 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3492 msrs[i].data;
3493 break;
3494 case HV_X64_MSR_STIMER0_COUNT:
3495 case HV_X64_MSR_STIMER1_COUNT:
3496 case HV_X64_MSR_STIMER2_COUNT:
3497 case HV_X64_MSR_STIMER3_COUNT:
3498 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3499 msrs[i].data;
3500 break;
3501 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3502 env->msr_hv_reenlightenment_control = msrs[i].data;
3503 break;
3504 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3505 env->msr_hv_tsc_emulation_control = msrs[i].data;
3506 break;
3507 case HV_X64_MSR_TSC_EMULATION_STATUS:
3508 env->msr_hv_tsc_emulation_status = msrs[i].data;
3509 break;
3510 case MSR_MTRRdefType:
3511 env->mtrr_deftype = msrs[i].data;
3512 break;
3513 case MSR_MTRRfix64K_00000:
3514 env->mtrr_fixed[0] = msrs[i].data;
3515 break;
3516 case MSR_MTRRfix16K_80000:
3517 env->mtrr_fixed[1] = msrs[i].data;
3518 break;
3519 case MSR_MTRRfix16K_A0000:
3520 env->mtrr_fixed[2] = msrs[i].data;
3521 break;
3522 case MSR_MTRRfix4K_C0000:
3523 env->mtrr_fixed[3] = msrs[i].data;
3524 break;
3525 case MSR_MTRRfix4K_C8000:
3526 env->mtrr_fixed[4] = msrs[i].data;
3527 break;
3528 case MSR_MTRRfix4K_D0000:
3529 env->mtrr_fixed[5] = msrs[i].data;
3530 break;
3531 case MSR_MTRRfix4K_D8000:
3532 env->mtrr_fixed[6] = msrs[i].data;
3533 break;
3534 case MSR_MTRRfix4K_E0000:
3535 env->mtrr_fixed[7] = msrs[i].data;
3536 break;
3537 case MSR_MTRRfix4K_E8000:
3538 env->mtrr_fixed[8] = msrs[i].data;
3539 break;
3540 case MSR_MTRRfix4K_F0000:
3541 env->mtrr_fixed[9] = msrs[i].data;
3542 break;
3543 case MSR_MTRRfix4K_F8000:
3544 env->mtrr_fixed[10] = msrs[i].data;
3545 break;
3546 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3547 if (index & 1) {
3548 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3549 mtrr_top_bits;
3550 } else {
3551 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3553 break;
3554 case MSR_IA32_SPEC_CTRL:
3555 env->spec_ctrl = msrs[i].data;
3556 break;
3557 case MSR_IA32_TSX_CTRL:
3558 env->tsx_ctrl = msrs[i].data;
3559 break;
3560 case MSR_VIRT_SSBD:
3561 env->virt_ssbd = msrs[i].data;
3562 break;
3563 case MSR_IA32_RTIT_CTL:
3564 env->msr_rtit_ctrl = msrs[i].data;
3565 break;
3566 case MSR_IA32_RTIT_STATUS:
3567 env->msr_rtit_status = msrs[i].data;
3568 break;
3569 case MSR_IA32_RTIT_OUTPUT_BASE:
3570 env->msr_rtit_output_base = msrs[i].data;
3571 break;
3572 case MSR_IA32_RTIT_OUTPUT_MASK:
3573 env->msr_rtit_output_mask = msrs[i].data;
3574 break;
3575 case MSR_IA32_RTIT_CR3_MATCH:
3576 env->msr_rtit_cr3_match = msrs[i].data;
3577 break;
3578 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3579 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3580 break;
3584 return 0;
3587 static int kvm_put_mp_state(X86CPU *cpu)
3589 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3591 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3594 static int kvm_get_mp_state(X86CPU *cpu)
3596 CPUState *cs = CPU(cpu);
3597 CPUX86State *env = &cpu->env;
3598 struct kvm_mp_state mp_state;
3599 int ret;
3601 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3602 if (ret < 0) {
3603 return ret;
3605 env->mp_state = mp_state.mp_state;
3606 if (kvm_irqchip_in_kernel()) {
3607 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3609 return 0;
3612 static int kvm_get_apic(X86CPU *cpu)
3614 DeviceState *apic = cpu->apic_state;
3615 struct kvm_lapic_state kapic;
3616 int ret;
3618 if (apic && kvm_irqchip_in_kernel()) {
3619 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3620 if (ret < 0) {
3621 return ret;
3624 kvm_get_apic_state(apic, &kapic);
3626 return 0;
3629 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3631 CPUState *cs = CPU(cpu);
3632 CPUX86State *env = &cpu->env;
3633 struct kvm_vcpu_events events = {};
3635 if (!kvm_has_vcpu_events()) {
3636 return 0;
3639 events.flags = 0;
3641 if (has_exception_payload) {
3642 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3643 events.exception.pending = env->exception_pending;
3644 events.exception_has_payload = env->exception_has_payload;
3645 events.exception_payload = env->exception_payload;
3647 events.exception.nr = env->exception_nr;
3648 events.exception.injected = env->exception_injected;
3649 events.exception.has_error_code = env->has_error_code;
3650 events.exception.error_code = env->error_code;
3652 events.interrupt.injected = (env->interrupt_injected >= 0);
3653 events.interrupt.nr = env->interrupt_injected;
3654 events.interrupt.soft = env->soft_interrupt;
3656 events.nmi.injected = env->nmi_injected;
3657 events.nmi.pending = env->nmi_pending;
3658 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3660 events.sipi_vector = env->sipi_vector;
3662 if (has_msr_smbase) {
3663 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3664 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3665 if (kvm_irqchip_in_kernel()) {
3666 /* As soon as these are moved to the kernel, remove them
3667 * from cs->interrupt_request.
3669 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3670 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3671 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3672 } else {
3673 /* Keep these in cs->interrupt_request. */
3674 events.smi.pending = 0;
3675 events.smi.latched_init = 0;
3677 /* Stop SMI delivery on old machine types to avoid a reboot
3678 * on an inward migration of an old VM.
3680 if (!cpu->kvm_no_smi_migration) {
3681 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3685 if (level >= KVM_PUT_RESET_STATE) {
3686 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3687 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3688 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3692 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3695 static int kvm_get_vcpu_events(X86CPU *cpu)
3697 CPUX86State *env = &cpu->env;
3698 struct kvm_vcpu_events events;
3699 int ret;
3701 if (!kvm_has_vcpu_events()) {
3702 return 0;
3705 memset(&events, 0, sizeof(events));
3706 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3707 if (ret < 0) {
3708 return ret;
3711 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3712 env->exception_pending = events.exception.pending;
3713 env->exception_has_payload = events.exception_has_payload;
3714 env->exception_payload = events.exception_payload;
3715 } else {
3716 env->exception_pending = 0;
3717 env->exception_has_payload = false;
3719 env->exception_injected = events.exception.injected;
3720 env->exception_nr =
3721 (env->exception_pending || env->exception_injected) ?
3722 events.exception.nr : -1;
3723 env->has_error_code = events.exception.has_error_code;
3724 env->error_code = events.exception.error_code;
3726 env->interrupt_injected =
3727 events.interrupt.injected ? events.interrupt.nr : -1;
3728 env->soft_interrupt = events.interrupt.soft;
3730 env->nmi_injected = events.nmi.injected;
3731 env->nmi_pending = events.nmi.pending;
3732 if (events.nmi.masked) {
3733 env->hflags2 |= HF2_NMI_MASK;
3734 } else {
3735 env->hflags2 &= ~HF2_NMI_MASK;
3738 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3739 if (events.smi.smm) {
3740 env->hflags |= HF_SMM_MASK;
3741 } else {
3742 env->hflags &= ~HF_SMM_MASK;
3744 if (events.smi.pending) {
3745 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3746 } else {
3747 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3749 if (events.smi.smm_inside_nmi) {
3750 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3751 } else {
3752 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3754 if (events.smi.latched_init) {
3755 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3756 } else {
3757 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3761 env->sipi_vector = events.sipi_vector;
3763 return 0;
3766 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3768 CPUState *cs = CPU(cpu);
3769 CPUX86State *env = &cpu->env;
3770 int ret = 0;
3771 unsigned long reinject_trap = 0;
3773 if (!kvm_has_vcpu_events()) {
3774 if (env->exception_nr == EXCP01_DB) {
3775 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3776 } else if (env->exception_injected == EXCP03_INT3) {
3777 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3779 kvm_reset_exception(env);
3783 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3784 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3785 * by updating the debug state once again if single-stepping is on.
3786 * Another reason to call kvm_update_guest_debug here is a pending debug
3787 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3788 * reinject them via SET_GUEST_DEBUG.
3790 if (reinject_trap ||
3791 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3792 ret = kvm_update_guest_debug(cs, reinject_trap);
3794 return ret;
3797 static int kvm_put_debugregs(X86CPU *cpu)
3799 CPUX86State *env = &cpu->env;
3800 struct kvm_debugregs dbgregs;
3801 int i;
3803 if (!kvm_has_debugregs()) {
3804 return 0;
3807 memset(&dbgregs, 0, sizeof(dbgregs));
3808 for (i = 0; i < 4; i++) {
3809 dbgregs.db[i] = env->dr[i];
3811 dbgregs.dr6 = env->dr[6];
3812 dbgregs.dr7 = env->dr[7];
3813 dbgregs.flags = 0;
3815 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3818 static int kvm_get_debugregs(X86CPU *cpu)
3820 CPUX86State *env = &cpu->env;
3821 struct kvm_debugregs dbgregs;
3822 int i, ret;
3824 if (!kvm_has_debugregs()) {
3825 return 0;
3828 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3829 if (ret < 0) {
3830 return ret;
3832 for (i = 0; i < 4; i++) {
3833 env->dr[i] = dbgregs.db[i];
3835 env->dr[4] = env->dr[6] = dbgregs.dr6;
3836 env->dr[5] = env->dr[7] = dbgregs.dr7;
3838 return 0;
3841 static int kvm_put_nested_state(X86CPU *cpu)
3843 CPUX86State *env = &cpu->env;
3844 int max_nested_state_len = kvm_max_nested_state_length();
3846 if (!env->nested_state) {
3847 return 0;
3850 assert(env->nested_state->size <= max_nested_state_len);
3851 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3854 static int kvm_get_nested_state(X86CPU *cpu)
3856 CPUX86State *env = &cpu->env;
3857 int max_nested_state_len = kvm_max_nested_state_length();
3858 int ret;
3860 if (!env->nested_state) {
3861 return 0;
3865 * It is possible that migration restored a smaller size into
3866 * nested_state->hdr.size than what our kernel support.
3867 * We preserve migration origin nested_state->hdr.size for
3868 * call to KVM_SET_NESTED_STATE but wish that our next call
3869 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3871 env->nested_state->size = max_nested_state_len;
3873 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3874 if (ret < 0) {
3875 return ret;
3878 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3879 env->hflags |= HF_GUEST_MASK;
3880 } else {
3881 env->hflags &= ~HF_GUEST_MASK;
3884 return ret;
3887 int kvm_arch_put_registers(CPUState *cpu, int level)
3889 X86CPU *x86_cpu = X86_CPU(cpu);
3890 int ret;
3892 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3894 if (level >= KVM_PUT_RESET_STATE) {
3895 ret = kvm_put_nested_state(x86_cpu);
3896 if (ret < 0) {
3897 return ret;
3900 ret = kvm_put_msr_feature_control(x86_cpu);
3901 if (ret < 0) {
3902 return ret;
3906 if (level == KVM_PUT_FULL_STATE) {
3907 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3908 * because TSC frequency mismatch shouldn't abort migration,
3909 * unless the user explicitly asked for a more strict TSC
3910 * setting (e.g. using an explicit "tsc-freq" option).
3912 kvm_arch_set_tsc_khz(cpu);
3915 ret = kvm_getput_regs(x86_cpu, 1);
3916 if (ret < 0) {
3917 return ret;
3919 ret = kvm_put_xsave(x86_cpu);
3920 if (ret < 0) {
3921 return ret;
3923 ret = kvm_put_xcrs(x86_cpu);
3924 if (ret < 0) {
3925 return ret;
3927 ret = kvm_put_sregs(x86_cpu);
3928 if (ret < 0) {
3929 return ret;
3931 /* must be before kvm_put_msrs */
3932 ret = kvm_inject_mce_oldstyle(x86_cpu);
3933 if (ret < 0) {
3934 return ret;
3936 ret = kvm_put_msrs(x86_cpu, level);
3937 if (ret < 0) {
3938 return ret;
3940 ret = kvm_put_vcpu_events(x86_cpu, level);
3941 if (ret < 0) {
3942 return ret;
3944 if (level >= KVM_PUT_RESET_STATE) {
3945 ret = kvm_put_mp_state(x86_cpu);
3946 if (ret < 0) {
3947 return ret;
3951 ret = kvm_put_tscdeadline_msr(x86_cpu);
3952 if (ret < 0) {
3953 return ret;
3955 ret = kvm_put_debugregs(x86_cpu);
3956 if (ret < 0) {
3957 return ret;
3959 /* must be last */
3960 ret = kvm_guest_debug_workarounds(x86_cpu);
3961 if (ret < 0) {
3962 return ret;
3964 return 0;
3967 int kvm_arch_get_registers(CPUState *cs)
3969 X86CPU *cpu = X86_CPU(cs);
3970 int ret;
3972 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3974 ret = kvm_get_vcpu_events(cpu);
3975 if (ret < 0) {
3976 goto out;
3979 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3980 * KVM_GET_REGS and KVM_GET_SREGS.
3982 ret = kvm_get_mp_state(cpu);
3983 if (ret < 0) {
3984 goto out;
3986 ret = kvm_getput_regs(cpu, 0);
3987 if (ret < 0) {
3988 goto out;
3990 ret = kvm_get_xsave(cpu);
3991 if (ret < 0) {
3992 goto out;
3994 ret = kvm_get_xcrs(cpu);
3995 if (ret < 0) {
3996 goto out;
3998 ret = kvm_get_sregs(cpu);
3999 if (ret < 0) {
4000 goto out;
4002 ret = kvm_get_msrs(cpu);
4003 if (ret < 0) {
4004 goto out;
4006 ret = kvm_get_apic(cpu);
4007 if (ret < 0) {
4008 goto out;
4010 ret = kvm_get_debugregs(cpu);
4011 if (ret < 0) {
4012 goto out;
4014 ret = kvm_get_nested_state(cpu);
4015 if (ret < 0) {
4016 goto out;
4018 ret = 0;
4019 out:
4020 cpu_sync_bndcs_hflags(&cpu->env);
4021 return ret;
4024 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4026 X86CPU *x86_cpu = X86_CPU(cpu);
4027 CPUX86State *env = &x86_cpu->env;
4028 int ret;
4030 /* Inject NMI */
4031 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4032 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4033 qemu_mutex_lock_iothread();
4034 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4035 qemu_mutex_unlock_iothread();
4036 DPRINTF("injected NMI\n");
4037 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4038 if (ret < 0) {
4039 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4040 strerror(-ret));
4043 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4044 qemu_mutex_lock_iothread();
4045 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4046 qemu_mutex_unlock_iothread();
4047 DPRINTF("injected SMI\n");
4048 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4049 if (ret < 0) {
4050 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4051 strerror(-ret));
4056 if (!kvm_pic_in_kernel()) {
4057 qemu_mutex_lock_iothread();
4060 /* Force the VCPU out of its inner loop to process any INIT requests
4061 * or (for userspace APIC, but it is cheap to combine the checks here)
4062 * pending TPR access reports.
4064 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4065 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4066 !(env->hflags & HF_SMM_MASK)) {
4067 cpu->exit_request = 1;
4069 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4070 cpu->exit_request = 1;
4074 if (!kvm_pic_in_kernel()) {
4075 /* Try to inject an interrupt if the guest can accept it */
4076 if (run->ready_for_interrupt_injection &&
4077 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4078 (env->eflags & IF_MASK)) {
4079 int irq;
4081 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4082 irq = cpu_get_pic_interrupt(env);
4083 if (irq >= 0) {
4084 struct kvm_interrupt intr;
4086 intr.irq = irq;
4087 DPRINTF("injected interrupt %d\n", irq);
4088 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4089 if (ret < 0) {
4090 fprintf(stderr,
4091 "KVM: injection failed, interrupt lost (%s)\n",
4092 strerror(-ret));
4097 /* If we have an interrupt but the guest is not ready to receive an
4098 * interrupt, request an interrupt window exit. This will
4099 * cause a return to userspace as soon as the guest is ready to
4100 * receive interrupts. */
4101 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4102 run->request_interrupt_window = 1;
4103 } else {
4104 run->request_interrupt_window = 0;
4107 DPRINTF("setting tpr\n");
4108 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4110 qemu_mutex_unlock_iothread();
4114 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4116 X86CPU *x86_cpu = X86_CPU(cpu);
4117 CPUX86State *env = &x86_cpu->env;
4119 if (run->flags & KVM_RUN_X86_SMM) {
4120 env->hflags |= HF_SMM_MASK;
4121 } else {
4122 env->hflags &= ~HF_SMM_MASK;
4124 if (run->if_flag) {
4125 env->eflags |= IF_MASK;
4126 } else {
4127 env->eflags &= ~IF_MASK;
4130 /* We need to protect the apic state against concurrent accesses from
4131 * different threads in case the userspace irqchip is used. */
4132 if (!kvm_irqchip_in_kernel()) {
4133 qemu_mutex_lock_iothread();
4135 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4136 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4137 if (!kvm_irqchip_in_kernel()) {
4138 qemu_mutex_unlock_iothread();
4140 return cpu_get_mem_attrs(env);
4143 int kvm_arch_process_async_events(CPUState *cs)
4145 X86CPU *cpu = X86_CPU(cs);
4146 CPUX86State *env = &cpu->env;
4148 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4149 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4150 assert(env->mcg_cap);
4152 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4154 kvm_cpu_synchronize_state(cs);
4156 if (env->exception_nr == EXCP08_DBLE) {
4157 /* this means triple fault */
4158 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4159 cs->exit_request = 1;
4160 return 0;
4162 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4163 env->has_error_code = 0;
4165 cs->halted = 0;
4166 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4167 env->mp_state = KVM_MP_STATE_RUNNABLE;
4171 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4172 !(env->hflags & HF_SMM_MASK)) {
4173 kvm_cpu_synchronize_state(cs);
4174 do_cpu_init(cpu);
4177 if (kvm_irqchip_in_kernel()) {
4178 return 0;
4181 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4182 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4183 apic_poll_irq(cpu->apic_state);
4185 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4186 (env->eflags & IF_MASK)) ||
4187 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4188 cs->halted = 0;
4190 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4191 kvm_cpu_synchronize_state(cs);
4192 do_cpu_sipi(cpu);
4194 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4195 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4196 kvm_cpu_synchronize_state(cs);
4197 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4198 env->tpr_access_type);
4201 return cs->halted;
4204 static int kvm_handle_halt(X86CPU *cpu)
4206 CPUState *cs = CPU(cpu);
4207 CPUX86State *env = &cpu->env;
4209 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4210 (env->eflags & IF_MASK)) &&
4211 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4212 cs->halted = 1;
4213 return EXCP_HLT;
4216 return 0;
4219 static int kvm_handle_tpr_access(X86CPU *cpu)
4221 CPUState *cs = CPU(cpu);
4222 struct kvm_run *run = cs->kvm_run;
4224 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4225 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4226 : TPR_ACCESS_READ);
4227 return 1;
4230 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4232 static const uint8_t int3 = 0xcc;
4234 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4235 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4236 return -EINVAL;
4238 return 0;
4241 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4243 uint8_t int3;
4245 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4246 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4247 return -EINVAL;
4249 return 0;
4252 static struct {
4253 target_ulong addr;
4254 int len;
4255 int type;
4256 } hw_breakpoint[4];
4258 static int nb_hw_breakpoint;
4260 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4262 int n;
4264 for (n = 0; n < nb_hw_breakpoint; n++) {
4265 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4266 (hw_breakpoint[n].len == len || len == -1)) {
4267 return n;
4270 return -1;
4273 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4274 target_ulong len, int type)
4276 switch (type) {
4277 case GDB_BREAKPOINT_HW:
4278 len = 1;
4279 break;
4280 case GDB_WATCHPOINT_WRITE:
4281 case GDB_WATCHPOINT_ACCESS:
4282 switch (len) {
4283 case 1:
4284 break;
4285 case 2:
4286 case 4:
4287 case 8:
4288 if (addr & (len - 1)) {
4289 return -EINVAL;
4291 break;
4292 default:
4293 return -EINVAL;
4295 break;
4296 default:
4297 return -ENOSYS;
4300 if (nb_hw_breakpoint == 4) {
4301 return -ENOBUFS;
4303 if (find_hw_breakpoint(addr, len, type) >= 0) {
4304 return -EEXIST;
4306 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4307 hw_breakpoint[nb_hw_breakpoint].len = len;
4308 hw_breakpoint[nb_hw_breakpoint].type = type;
4309 nb_hw_breakpoint++;
4311 return 0;
4314 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4315 target_ulong len, int type)
4317 int n;
4319 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4320 if (n < 0) {
4321 return -ENOENT;
4323 nb_hw_breakpoint--;
4324 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4326 return 0;
4329 void kvm_arch_remove_all_hw_breakpoints(void)
4331 nb_hw_breakpoint = 0;
4334 static CPUWatchpoint hw_watchpoint;
4336 static int kvm_handle_debug(X86CPU *cpu,
4337 struct kvm_debug_exit_arch *arch_info)
4339 CPUState *cs = CPU(cpu);
4340 CPUX86State *env = &cpu->env;
4341 int ret = 0;
4342 int n;
4344 if (arch_info->exception == EXCP01_DB) {
4345 if (arch_info->dr6 & DR6_BS) {
4346 if (cs->singlestep_enabled) {
4347 ret = EXCP_DEBUG;
4349 } else {
4350 for (n = 0; n < 4; n++) {
4351 if (arch_info->dr6 & (1 << n)) {
4352 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4353 case 0x0:
4354 ret = EXCP_DEBUG;
4355 break;
4356 case 0x1:
4357 ret = EXCP_DEBUG;
4358 cs->watchpoint_hit = &hw_watchpoint;
4359 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4360 hw_watchpoint.flags = BP_MEM_WRITE;
4361 break;
4362 case 0x3:
4363 ret = EXCP_DEBUG;
4364 cs->watchpoint_hit = &hw_watchpoint;
4365 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4366 hw_watchpoint.flags = BP_MEM_ACCESS;
4367 break;
4372 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4373 ret = EXCP_DEBUG;
4375 if (ret == 0) {
4376 cpu_synchronize_state(cs);
4377 assert(env->exception_nr == -1);
4379 /* pass to guest */
4380 kvm_queue_exception(env, arch_info->exception,
4381 arch_info->exception == EXCP01_DB,
4382 arch_info->dr6);
4383 env->has_error_code = 0;
4386 return ret;
4389 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4391 const uint8_t type_code[] = {
4392 [GDB_BREAKPOINT_HW] = 0x0,
4393 [GDB_WATCHPOINT_WRITE] = 0x1,
4394 [GDB_WATCHPOINT_ACCESS] = 0x3
4396 const uint8_t len_code[] = {
4397 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4399 int n;
4401 if (kvm_sw_breakpoints_active(cpu)) {
4402 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4404 if (nb_hw_breakpoint > 0) {
4405 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4406 dbg->arch.debugreg[7] = 0x0600;
4407 for (n = 0; n < nb_hw_breakpoint; n++) {
4408 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4409 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4410 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4411 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4416 static bool host_supports_vmx(void)
4418 uint32_t ecx, unused;
4420 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4421 return ecx & CPUID_EXT_VMX;
4424 #define VMX_INVALID_GUEST_STATE 0x80000021
4426 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4428 X86CPU *cpu = X86_CPU(cs);
4429 uint64_t code;
4430 int ret;
4432 switch (run->exit_reason) {
4433 case KVM_EXIT_HLT:
4434 DPRINTF("handle_hlt\n");
4435 qemu_mutex_lock_iothread();
4436 ret = kvm_handle_halt(cpu);
4437 qemu_mutex_unlock_iothread();
4438 break;
4439 case KVM_EXIT_SET_TPR:
4440 ret = 0;
4441 break;
4442 case KVM_EXIT_TPR_ACCESS:
4443 qemu_mutex_lock_iothread();
4444 ret = kvm_handle_tpr_access(cpu);
4445 qemu_mutex_unlock_iothread();
4446 break;
4447 case KVM_EXIT_FAIL_ENTRY:
4448 code = run->fail_entry.hardware_entry_failure_reason;
4449 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4450 code);
4451 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4452 fprintf(stderr,
4453 "\nIf you're running a guest on an Intel machine without "
4454 "unrestricted mode\n"
4455 "support, the failure can be most likely due to the guest "
4456 "entering an invalid\n"
4457 "state for Intel VT. For example, the guest maybe running "
4458 "in big real mode\n"
4459 "which is not supported on less recent Intel processors."
4460 "\n\n");
4462 ret = -1;
4463 break;
4464 case KVM_EXIT_EXCEPTION:
4465 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4466 run->ex.exception, run->ex.error_code);
4467 ret = -1;
4468 break;
4469 case KVM_EXIT_DEBUG:
4470 DPRINTF("kvm_exit_debug\n");
4471 qemu_mutex_lock_iothread();
4472 ret = kvm_handle_debug(cpu, &run->debug.arch);
4473 qemu_mutex_unlock_iothread();
4474 break;
4475 case KVM_EXIT_HYPERV:
4476 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4477 break;
4478 case KVM_EXIT_IOAPIC_EOI:
4479 ioapic_eoi_broadcast(run->eoi.vector);
4480 ret = 0;
4481 break;
4482 default:
4483 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4484 ret = -1;
4485 break;
4488 return ret;
4491 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4493 X86CPU *cpu = X86_CPU(cs);
4494 CPUX86State *env = &cpu->env;
4496 kvm_cpu_synchronize_state(cs);
4497 return !(env->cr[0] & CR0_PE_MASK) ||
4498 ((env->segs[R_CS].selector & 3) != 3);
4501 void kvm_arch_init_irq_routing(KVMState *s)
4503 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4504 /* If kernel can't do irq routing, interrupt source
4505 * override 0->2 cannot be set up as required by HPET.
4506 * So we have to disable it.
4508 no_hpet = 1;
4510 /* We know at this point that we're using the in-kernel
4511 * irqchip, so we can use irqfds, and on x86 we know
4512 * we can use msi via irqfd and GSI routing.
4514 kvm_msi_via_irqfd_allowed = true;
4515 kvm_gsi_routing_allowed = true;
4517 if (kvm_irqchip_is_split()) {
4518 int i;
4520 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4521 MSI routes for signaling interrupts to the local apics. */
4522 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4523 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4524 error_report("Could not enable split IRQ mode.");
4525 exit(1);
4531 int kvm_arch_irqchip_create(KVMState *s)
4533 int ret;
4534 if (kvm_kernel_irqchip_split()) {
4535 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4536 if (ret) {
4537 error_report("Could not enable split irqchip mode: %s",
4538 strerror(-ret));
4539 exit(1);
4540 } else {
4541 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4542 kvm_split_irqchip = true;
4543 return 1;
4545 } else {
4546 return 0;
4550 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4551 uint64_t address, uint32_t data, PCIDevice *dev)
4553 X86IOMMUState *iommu = x86_iommu_get_default();
4555 if (iommu) {
4556 int ret;
4557 MSIMessage src, dst;
4558 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4560 if (!class->int_remap) {
4561 return 0;
4564 src.address = route->u.msi.address_hi;
4565 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4566 src.address |= route->u.msi.address_lo;
4567 src.data = route->u.msi.data;
4569 ret = class->int_remap(iommu, &src, &dst, dev ? \
4570 pci_requester_id(dev) : \
4571 X86_IOMMU_SID_INVALID);
4572 if (ret) {
4573 trace_kvm_x86_fixup_msi_error(route->gsi);
4574 return 1;
4577 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4578 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4579 route->u.msi.data = dst.data;
4582 return 0;
4585 typedef struct MSIRouteEntry MSIRouteEntry;
4587 struct MSIRouteEntry {
4588 PCIDevice *dev; /* Device pointer */
4589 int vector; /* MSI/MSIX vector index */
4590 int virq; /* Virtual IRQ index */
4591 QLIST_ENTRY(MSIRouteEntry) list;
4594 /* List of used GSI routes */
4595 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4596 QLIST_HEAD_INITIALIZER(msi_route_list);
4598 static void kvm_update_msi_routes_all(void *private, bool global,
4599 uint32_t index, uint32_t mask)
4601 int cnt = 0, vector;
4602 MSIRouteEntry *entry;
4603 MSIMessage msg;
4604 PCIDevice *dev;
4606 /* TODO: explicit route update */
4607 QLIST_FOREACH(entry, &msi_route_list, list) {
4608 cnt++;
4609 vector = entry->vector;
4610 dev = entry->dev;
4611 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4612 msg = msix_get_message(dev, vector);
4613 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4614 msg = msi_get_message(dev, vector);
4615 } else {
4617 * Either MSI/MSIX is disabled for the device, or the
4618 * specific message was masked out. Skip this one.
4620 continue;
4622 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4624 kvm_irqchip_commit_routes(kvm_state);
4625 trace_kvm_x86_update_msi_routes(cnt);
4628 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4629 int vector, PCIDevice *dev)
4631 static bool notify_list_inited = false;
4632 MSIRouteEntry *entry;
4634 if (!dev) {
4635 /* These are (possibly) IOAPIC routes only used for split
4636 * kernel irqchip mode, while what we are housekeeping are
4637 * PCI devices only. */
4638 return 0;
4641 entry = g_new0(MSIRouteEntry, 1);
4642 entry->dev = dev;
4643 entry->vector = vector;
4644 entry->virq = route->gsi;
4645 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4647 trace_kvm_x86_add_msi_route(route->gsi);
4649 if (!notify_list_inited) {
4650 /* For the first time we do add route, add ourselves into
4651 * IOMMU's IEC notify list if needed. */
4652 X86IOMMUState *iommu = x86_iommu_get_default();
4653 if (iommu) {
4654 x86_iommu_iec_register_notifier(iommu,
4655 kvm_update_msi_routes_all,
4656 NULL);
4658 notify_list_inited = true;
4660 return 0;
4663 int kvm_arch_release_virq_post(int virq)
4665 MSIRouteEntry *entry, *next;
4666 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4667 if (entry->virq == virq) {
4668 trace_kvm_x86_remove_msi_route(virq);
4669 QLIST_REMOVE(entry, list);
4670 g_free(entry);
4671 break;
4674 return 0;
4677 int kvm_arch_msi_data_to_gsi(uint32_t data)
4679 abort();